JP4433593B2 - Control valve type lead acid battery - Google Patents

Control valve type lead acid battery Download PDF

Info

Publication number
JP4433593B2
JP4433593B2 JP2000284453A JP2000284453A JP4433593B2 JP 4433593 B2 JP4433593 B2 JP 4433593B2 JP 2000284453 A JP2000284453 A JP 2000284453A JP 2000284453 A JP2000284453 A JP 2000284453A JP 4433593 B2 JP4433593 B2 JP 4433593B2
Authority
JP
Japan
Prior art keywords
lead
volume
positive electrode
electrode plate
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000284453A
Other languages
Japanese (ja)
Other versions
JP2002093409A (en
Inventor
久顯 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2000284453A priority Critical patent/JP4433593B2/en
Publication of JP2002093409A publication Critical patent/JP2002093409A/en
Application granted granted Critical
Publication of JP4433593B2 publication Critical patent/JP4433593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、制御弁式鉛蓄電池に関するものである。
【0002】
【従来の技術】
制御弁式鉛蓄電池は安価で信頼性が高いという特徴を有するため、無停電電源装置などの非常用電源設備や電力貯蔵用として使用されている。制御弁式鉛蓄電池に用いる正極板として、鉛合金からなる格子体にペースト状活物質を充填して作製する、ペースト式正極板を用いるのが一般的である。
【0003】
制御弁式鉛蓄電池をサイクル用途として使用する場合において、放電量に対する充電量が充分でない場合には、前記ペースト式正極板の活物質層に放電生成物である硫酸鉛が残留する。そして、前記したような不十分な充電を繰り返して行うと、前記硫酸鉛が蓄積するために、制御弁式鉛蓄電池の放電容量が低下するという問題点がある。
【0004】
一方、充電量を多くして過充電をすると、正極板の活物質が泥状化しやすくなったり、集電体として用いている格子体の腐食によって、制御弁式鉛蓄電池が短期間に寿命になるという問題点があることも知られている。
【0005】
【発明が解決しようとする課題】
上記した傾向は、正極板の寸法が大きくなるほど顕著になることが知られている。すなわち、正極板の寸法が大きくなると、集電端子から遠い位置ほど内部抵抗の増加に伴う電圧のドロップが大きくなる。したがって、前記集電端子に近い位置では、比較的少ない充電量で放電生成物である硫酸鉛の除去が可能となるものの、耳部から遠い位置では充電が入りにくく、硫酸鉛が残留しやすいため放電容量の低下が起こる。
【0006】
そこで、耳部から遠い位置の硫酸鉛を除去するために、充電量を過剰にする必要がある。その結果、前記集電端子に近い部分の正極活物質が過充電されて泥状化しやすくなる。また、充電量を多くすることによって、電解液中の水が分解されて水素ガスの発生が起こり、その結果、電解液量が減少して早期に寿命となるという問題点もある。さらに、過充電によって、正極板の集電体として用いられている格子体が腐食しやすくなるという問題点もある。
【0007】
本発明は上記した課題を解決するものであり、正極板や負極板の寸法が大きい制御弁式鉛蓄電池において、正極板の集電特性を改良し、充電受け入れ性を向上させることによって過充電量を低減し、長寿命化をはかることを目的とするものである。
【0008】
【課題を解決するための手段】
本発明は上記した課題を解決するために、正極板の格子体や、それを用いた正極板及び極板群の加圧条件を改良したものである。
【0009】
すなわち、第一の発明は、錫を0.9〜2.5質量%含み、カルシウムと前記錫との質量比が0.09以下であり、残部を鉛とする鉛−カルシウム−錫合金製の格子体を用いたペースト式正極板と、ペースト式負極板と、リテーナとを積層した極板群を加圧して用いる制御弁式鉛蓄電池において、前記格子体の体積が、前記ペースト式正極板の体積の15体積%以上30体積%以下であることを特徴とする。
【0010】
第二の発明は、前記格子体の縦枠骨と縦内骨の合計の体積が、前記ペースト式正極板の体積の8体積%以上12体積%以下であることを特徴とし、第三の発明は、前記格子体の縦骨間隔が、20mm未満であることを特徴とし、第四の発明は、電槽化成後における前記ペースト式正極板の活物質層の密度が、3.5〜4.4g/mlであることを特徴とし、第五の発明は、前記極板群の加圧力が、20kPa以上であることを特徴としている。
【0011】
【発明の実施の形態】
以下に、本発明の実施の形態を説明する。
【0012】
1.正極板
以下の実験では、カルシウムが0.09質量%、錫が1.5質量%、前記カルシウムと前記錫との質量比を0.06とし、残部を鉛とする鉛−カルシウム−錫合金を格子体に用いた。
【0013】
そして、図1に示すように、鋳造によって格子体の長辺9の寸法値を300mmとし、短辺8の寸法値を200mmとする略長方形状をし、縦骨間隔6が15mmである後述する各種の正極用格子体を作製した。
【0014】
従来から使用している一酸化鉛を70〜80質量%含む鉛粉に、比重1.40の硫酸と適量の水を加えて正極用ペースト状活物質を作製し、それを前記した各種の格子体に充填し、35℃、相対湿度が90%以上の雰囲気中で24hの条件で熟成・乾燥させてペースト式正極板を作製した。
【0015】
2.制御弁式鉛電池の作製
上記したペースト式正極板2枚と、従来から使用されてきたカーボンを2質量%含むペースト式負極板3枚とをガラス繊維製のリテーナを介して組み合わせ、それらを積層・溶接して極板群を作製する。
【0016】
そして、該極板群の両側面にポリプロピレン製のスペーサを当接させた状態で電槽に挿入した後、電解液を注液し、電槽化成をして2V−100Ahの制御弁式鉛蓄電池を作製した。前記制御弁式鉛蓄電池を解体して、ペースト式正極板の活物質層の密度を測定した。
【0017】
なお、ペースト式負極板やリテーナの仕様及び、制御弁式鉛蓄電池の作製条件等は従来と同一の条件である。
【0018】
3.サイクル寿命試験条件
作製した制御弁式鉛蓄電池は、10A放電(0.1CA、放電終止電圧:1.8V)を行い、初期の放電容量を測定した。そして、0.1CAの定電流で満充電状態にした後、25A(0.25CA)で3h放電する。その後、2.45V/セル(制限電流:25A(0.25CA))の定電圧充電で放電量の102%を充電するパターンのサイクル寿命試験を行った。
【0019】
制御弁式鉛蓄電池の放電容量は、100サイクル毎に10A放電(0.1CA、放電終止電圧:1.8V)して、放電容量の確認を行い、初期の放電容量の80%以下まで低下した時点をもって寿命とした。なお、電解液の成層化現象を生じにくくするため、制御弁式鉛蓄電池の極板面がほぼ水平になるような状態でサイクル寿命試験を実施した。
【0020】
また、500サイクル目に一部の制御弁式鉛蓄電池を解体し、ペースト式正極板の耳部5付近と、該耳部5から最も離れた対角線上の部分について正極活物質を取り出し、該活物質中の硫酸鉛量を測定してその差を比較した。以下において、この差を硫酸鉛量の差(%)と呼ぶことにする。
【0021】
【実施例】
(比較例1、2、実施例1〜4)
図1に示す正極用の格子体において、ペースト式正極板の体積に占める前記格子体の体積の割合(以下、格子体体積%と呼ぶ)が、前記制御弁式鉛蓄電池の硫酸鉛量の差(%)やサイクル寿命特性に、どの様に影響するかについて実験した。
【0022】
以下の実験では、格子体の形状を彫り込んだ鋳型の溝の深さを変えることにより、前記格子体の体積が、前記ペースト式正極板の体積のそれぞれ5、10、15、20、25、30体積%にした。以下において、前記格子体の体積が、前記ペースト式正極板の体積に占める割合を、格子体体積%と呼ぶことにする。
【0023】
従来から使用している一酸化鉛を70〜80質量%含む鉛粉に、比重1.40の硫酸と水を加えて、水分量が13.2質量%の正極用ペースト状活物質を作製し、それを前記した各種の格子体に充填し、35℃、相対湿度が90%以上の雰囲気中で24hの条件で熟成・乾燥させてペースト式正極板を作製して極板群とした。
【0024】
そして、前記極板群の両側面に当接するポリプロピレン製のスペーサの枚数を調整することにより、極板群の加圧力を30kPaにした。なお、その他の制御弁式鉛蓄電池の作製条件やサイクル寿命試験条件等は上述したものである。
【0025】
表1に、これらの制御弁式鉛蓄電池について、格子体体積%と硫酸鉛量の差(%)及びサイクル寿命の関係を示す。表1より格子体体積%が15体積%以上の制御弁式鉛蓄電池では、放電時の硫酸鉛量の差が小さく、良好なサイクル寿命特性を示した。すなわち、本発明を用いると正極板全体に均一に充電が入りやすく、充電量の過不足を少なくできるため、制御弁式鉛蓄電池が長寿命化したものと考えられる。
【0026】
【表1】

Figure 0004433593
【0027】
(実施例1、5〜8)
図1に示す正極用の格子体において、格子体体積%を15%に固定し、縦枠骨1と縦内骨2の合計体積が前記制御弁式鉛蓄電池の硫酸鉛量の差(%)やサイクル寿命に、どの様に影響するかについて実験した。
【0028】
以下の実験では、格子体の彫り込んだ鋳型の溝の深さを変えることにより、縦枠骨1と縦内骨2の合計体積がペースト式正極板の体積に占める割合をそれぞれ4%、6%、8%、10%、12%に調整した。以下において、縦枠骨1と縦内骨2の合計体積が、前記ペースト式正極板の体積に占める割合を、縦骨体積%と呼ぶことにする。
【0029】
従来から使用している一酸化鉛を70〜80質量%含む鉛粉に、比重1.40の硫酸と水を加えて作製した水分量が13.2質量%の正極用ペースト状活物質を作製し、それを前記した各種の格子体に充填し、35℃、相対湿度が90%以上の雰囲気中で24hの条件で熟成・乾燥させて正極板を作製した。
【0030】
そして、前記極板群の両側面に当接するポリプロピレン製のスペーサの枚数を調整することにより、極板群の加圧力を30kPaにした。なお、その他の制御弁式鉛蓄電池の作製条件やサイクル寿命試験条件等は上述したものである。
【0031】
表2に、これらの制御弁式鉛蓄電池について、縦骨体積%と硫酸鉛量の差(%)及びサイクル寿命の関係を示す。表2より縦骨体積%が8体積%以上の制御弁式鉛蓄電池では、放電時の硫酸鉛量の差が小さく、良好なサイクル寿命特性を示した。すなわち、本発明を用いると正極板全体に均一に充電が入りやすく、過充電量を少なくすることができるため、制御弁式鉛蓄電池が長寿命化できたものと考えられる。
【0032】
【表2】
Figure 0004433593
【0033】
(実施例7、9〜13)
図1に示す正極用の格子体において、格子体体積%を15%、縦骨体積%が10%の正極用格子体を用い、正極活物質密度が前記制御弁式鉛蓄電池のサイクル寿命に、どの様に影響するかについて実験した。
【0034】
従来から使用している一酸化鉛を70〜80質量%含む鉛粉に、比重1.40の硫酸と水を加えて作製した水分量がそれぞれ、9.6、11.7、13.2、14.3、15.3、16.4質量%の正極用ペースト状活物質を作製し、それらを前記した格子体に充填し、35℃、相対湿度が90%以上の雰囲気中で24hの条件で熟成・乾燥させて正極板を作製した。
【0035】
そして、前記極板群の両側面に当接するポリプロピレン製のスペーサの枚数を調整することにより、極板群の加圧力を30kPaにした。なお、その他の制御弁式鉛蓄電池の作製条件やサイクル寿命試験条件等は、上述したものである。
【0036】
電槽化成後の正極板の活物質層密度とサイクル寿命の関係を表3に示す。表3に示す様に、水分量を調節することにより、正極活物質密度を3.5〜4.4g/mlにすることによって制御弁式鉛蓄電池の寿命性能が向上する。
【0037】
【表3】
Figure 0004433593
【0038】
(実施例7、14〜19)
図1に示す正極用の格子体において、格子体体積%を15%、縦骨体積%が10%の正極用格子体を用い、極板群の加圧力が前記制御弁式鉛蓄電池のサイクル寿命に、どの様に影響するかについて実験した。
【0039】
従来から使用している一酸化鉛を70〜80質量%含む鉛粉に、比重1.40の硫酸と水を加えて作製した水分量が13.2質量%の正極用ペースト状活物質を作製し、それらを前記した格子体に充填し、35℃、相対湿度が90%以上の雰囲気中で24hの条件で熟成・乾燥させて正極板を作製した。すなわち、正極用のペースト状活物質中の水分量を調整することにより、電槽化成後の正極活物質密度が3.7g/mlとなる正極板を用いた。
【0040】
そして、電槽と極板群の両側面に当接するポリプロピレン製のスペーサの枚数を調整することにより、極板群の加圧力を5〜100kPaに調整した。なお、その他の制御弁式鉛蓄電池の作製条件やサイクル寿命試験条件等は、前述したものである。
【0041】
表4に極板群の加圧力とサイクル寿命の関係を示す。極板群の加圧力を20kPa以上にすることによって、長寿命な制御弁式鉛蓄電池を作製することができる。
【0042】
【表4】
Figure 0004433593
【0043】
なお、前記格子体として錫を0.9〜2.5質量%含み、前記カルシウムと前記錫との質量比が0.09とする範囲の鉛合金を用いた場合でも、同様の結果を得た。なお、質量比が0.09以下の範囲の鉛合金を格子体に用いると取り扱いが容易となることや、過充電によっても腐食されにくくなるため好ましい。
【0044】
また、詳細なデータは示さなかったが、格子体の縦骨間隔が20mm以上では、充填時にペースト状活物質が格子体から剥離しやすいという問題点が認められるため、格子体の縦骨間隔は20mm未満にするのが好ましい。又、上記した実施例では、放電量の102%を充電した場合の実施例を示したが、103〜105%の範囲の充電量でも同様の傾向を示した。
【0045】
【発明の効果】
上述したように、本発明を用いると正極活物質に充電が入りやすくなり、長寿命な制御弁式鉛蓄電池を提供することができるため、その工業的価値はきわめて大なるものである。
【図面の簡単な説明】
【図1】正極用格子体の概略図である。
【符号の説明】
1:縦枠骨、2:縦内骨、3:横枠骨、4:横内骨、5:耳部、6:縦骨間隔、8:短辺、9:長辺[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a valve-regulated lead-acid battery.
[0002]
[Prior art]
Since the control valve type lead-acid battery has the feature of being inexpensive and highly reliable, it is used for emergency power supply facilities such as an uninterruptible power supply and for power storage. As a positive electrode plate used for a control valve type lead storage battery, it is common to use a paste type positive electrode plate prepared by filling a grid made of a lead alloy with a pasty active material.
[0003]
When the control valve type lead-acid battery is used as a cycle application, if the charge amount relative to the discharge amount is not sufficient, lead sulfate as a discharge product remains in the active material layer of the paste type positive electrode plate. When the insufficient charge as described above is repeated, the lead sulfate accumulates, so that there is a problem that the discharge capacity of the control valve type lead storage battery decreases.
[0004]
On the other hand, when the amount of charge is increased and overcharged, the active material of the positive electrode plate tends to become muddy, or corrosion of the grid used as a current collector makes the control valve type lead storage battery have a short life. It is also known that there is a problem of becoming.
[0005]
[Problems to be solved by the invention]
It is known that the above tendency becomes more prominent as the size of the positive electrode plate increases. That is, as the dimension of the positive electrode plate increases, the voltage drop associated with the increase in internal resistance increases as the distance from the current collecting terminal increases. Therefore, although it is possible to remove lead sulfate, which is a discharge product, with a relatively small amount of charge at a position close to the current collecting terminal, it is difficult to charge at a position far from the ear and lead sulfate tends to remain. A decrease in discharge capacity occurs.
[0006]
Therefore, in order to remove lead sulfate at a position far from the ear, it is necessary to make the charge amount excessive. As a result, a portion of the positive electrode active material close to the current collecting terminal is overcharged and easily becomes muddy. Further, when the amount of charge is increased, water in the electrolytic solution is decomposed to generate hydrogen gas. As a result, there is a problem that the amount of the electrolytic solution is reduced and life is shortened. Furthermore, there is a problem that the grid used as a current collector for the positive electrode plate is easily corroded by overcharging.
[0007]
The present invention solves the above-described problems, and in a control valve type lead-acid battery having a large positive electrode plate or negative electrode plate size, the overcharge amount is improved by improving the current collection characteristics of the positive electrode plate and improving the charge acceptability. The purpose of this is to increase the life of the product.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention improves the pressurizing conditions of the grid of the positive electrode plate and the positive electrode plate and electrode plate group using the same.
[0009]
That is, the first invention is made of a lead-calcium-tin alloy containing 0.9 to 2.5% by mass of tin, the mass ratio of calcium and tin being 0.09 or less, and the balance being lead. In a control valve type lead-acid battery using a positive electrode plate in which a paste-type positive electrode plate, a paste-type negative electrode plate, and a retainer stacked using a grid body are pressurized, the volume of the lattice body is equal to that of the paste-type positive electrode plate. It is characterized by being 15 volume% or more and 30 volume% or less of the volume .
[0010]
The second invention is characterized in that the total volume of the vertical frame bone and the longitudinal inner bone of the lattice body is 8% by volume or more and 12% by volume or less of the volume of the paste type positive electrode plate. Is characterized in that the interval between the vertical bones of the lattice body is less than 20 mm, and the fourth aspect of the invention is that the density of the active material layer of the paste type positive electrode plate after the formation of the battery case is 3.5-4. The fifth invention is characterized in that the pressing force of the electrode plate group is 20 kPa or more.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0012]
1. In the experiment below the positive electrode plate, a lead-calcium-tin alloy having 0.09 mass% calcium, 1.5 mass% tin, 0.06 mass ratio of calcium and tin, and the balance being lead Used for the lattice.
[0013]
And as shown in FIG. 1, it is made into the substantially rectangular shape by which the dimension value of the long side 9 of a lattice body is set to 300 mm and the dimension value of the short side 8 is 200 mm by casting, and the vertical bone interval 6 is 15 mm, which will be described later. Various positive electrode grids were prepared.
[0014]
A paste active material for a positive electrode is prepared by adding sulfuric acid having a specific gravity of 1.40 and an appropriate amount of water to lead powder containing 70 to 80% by mass of lead monoxide that has been conventionally used, and the various kinds of lattices described above. The paste-type positive electrode plate was produced by filling the body and aging and drying in an atmosphere of 35 ° C. and a relative humidity of 90% or more for 24 hours.
[0015]
2. Production of a control valve type lead battery Two pasted positive electrode plates described above and three pasted negative electrode plates containing 2% by mass of carbon conventionally used are combined through a glass fiber retainer and laminated.・ Weld the electrode plate group.
[0016]
And after inserting in the battery case in the state which made the spacer made from a polypropylene contact | abutted on the both sides | surfaces of this electrode group, electrolyte solution is injected, battery case formation is carried out, and 2V-100Ah control valve type lead acid battery Was made. The control valve type lead storage battery was disassembled, and the density of the active material layer of the paste type positive electrode plate was measured.
[0017]
The specifications of the paste type negative electrode plate and the retainer, the production conditions of the control valve type lead storage battery, and the like are the same as the conventional conditions.
[0018]
3. The control valve type lead storage battery produced under the cycle life test conditions was subjected to 10 A discharge (0.1 CA, discharge end voltage: 1.8 V), and the initial discharge capacity was measured. The battery is fully charged with a constant current of 0.1 CA, and then discharged at 25 A (0.25 CA) for 3 hours. Thereafter, a cycle life test of a pattern in which 102% of the discharge amount was charged by constant voltage charging of 2.45 V / cell (limited current: 25 A (0.25 CA)) was performed.
[0019]
The discharge capacity of the control valve type lead-acid battery was 10 A discharged (0.1 CA, discharge final voltage: 1.8 V) every 100 cycles, the discharge capacity was confirmed, and decreased to 80% or less of the initial discharge capacity. The time was taken as the lifetime. In order to make the stratification phenomenon of the electrolyte difficult to occur, a cycle life test was performed in a state where the electrode plate surface of the control valve type lead-acid battery was almost horizontal.
[0020]
In addition, a part of the control valve type lead storage battery is disassembled at the 500th cycle, and the positive electrode active material is taken out from the vicinity of the ear portion 5 of the paste-type positive electrode plate and the portion on the diagonal line farthest from the ear portion 5, The amount of lead sulfate in the materials was measured and the difference was compared. Hereinafter, this difference is referred to as a difference (%) in the amount of lead sulfate.
[0021]
【Example】
(Comparative Examples 1 and 2 and Examples 1 to 4)
In the positive electrode grid body shown in FIG. 1, the ratio of the volume of the grid body to the volume of the paste-type positive electrode plate (hereinafter referred to as grid volume%) is the difference in the amount of lead sulfate in the control valve type lead acid battery. (%) And how it affects the cycle life characteristics.
[0022]
In the following experiment, by changing the depth of the groove of the mold engraved with the shape of the lattice, the volume of the lattice is 5, 10, 15, 20, 25, 30 respectively of the volume of the paste-type positive electrode plate. Volume%. Hereinafter, the ratio of the volume of the grid body to the volume of the paste type positive electrode plate is referred to as grid volume%.
[0023]
A sulfuric acid having a specific gravity of 1.40 and water are added to lead powder containing 70 to 80% by mass of lead monoxide that has been conventionally used to produce a paste active material for positive electrode having a moisture content of 13.2% by mass. Then, it was filled in the above-described various lattices, and aged and dried in an atmosphere of 35 ° C. and a relative humidity of 90% or more for 24 hours to produce a paste type positive electrode plate to obtain an electrode plate group.
[0024]
And the pressurizing force of the electrode plate group was set to 30 kPa by adjusting the number of the spacers made of polypropylene in contact with both side surfaces of the electrode plate group. The other production conditions, cycle life test conditions, etc. of the control valve type lead-acid battery are as described above.
[0025]
Table 1 shows the relationship between the lattice volume%, the difference (%) in the amount of lead sulfate, and the cycle life of these control valve type lead storage batteries. From Table 1, in the control valve type lead storage battery having a lattice volume of 15 volume% or more, the difference in the amount of lead sulfate at the time of discharge was small and good cycle life characteristics were shown. That is, when the present invention is used, the entire positive electrode plate is easily charged, and the excess or deficiency of the charge amount can be reduced. Therefore, it is considered that the life of the control valve type lead storage battery is extended.
[0026]
[Table 1]
Figure 0004433593
[0027]
(Example 1, 5-8)
In the positive electrode grid shown in FIG. 1, the volume% of the grid is fixed at 15%, and the total volume of the vertical frame bone 1 and the vertical inner bone 2 is the difference (%) in the amount of lead sulfate in the control valve type lead storage battery. And how it affects cycle life.
[0028]
In the following experiment, the ratio of the total volume of the longitudinal frame bone 1 and the longitudinal inner bone 2 to the volume of the paste type positive electrode plate is changed to 4% and 6%, respectively, by changing the depth of the groove of the mold engraved with the lattice. , 8%, 10% and 12%. Hereinafter, the ratio of the total volume of the longitudinal frame bone 1 and the longitudinal inner bone 2 to the volume of the paste-type positive electrode plate is referred to as longitudinal bone volume%.
[0029]
A positive electrode paste active material having a moisture content of 13.2% by mass was prepared by adding sulfuric acid and water having a specific gravity of 1.40 to lead powder containing 70 to 80% by mass of lead monoxide used conventionally. Then, it was filled in the various lattices described above, and aged and dried in an atmosphere of 35 ° C. and relative humidity of 90% or more for 24 hours to produce a positive electrode plate.
[0030]
And the pressurizing force of the electrode plate group was set to 30 kPa by adjusting the number of the spacers made of polypropylene in contact with both side surfaces of the electrode plate group. The other production conditions, cycle life test conditions, etc. of the control valve type lead-acid battery are as described above.
[0031]
Table 2 shows the relationship between the longitudinal bone volume% and the difference (%) in the amount of lead sulfate and the cycle life of these control valve type lead storage batteries. As shown in Table 2, the control valve type lead storage battery having a longitudinal bone volume% of 8 volume% or more showed a small difference in the amount of lead sulfate at the time of discharge and exhibited good cycle life characteristics. That is, when the present invention is used, the entire positive electrode plate is easily charged and the amount of overcharge can be reduced. Therefore, it is considered that the control valve type lead-acid battery has been able to have a long life.
[0032]
[Table 2]
Figure 0004433593
[0033]
(Examples 7 and 9 to 13)
In the positive electrode lattice body shown in FIG. 1, a positive electrode lattice body having a lattice volume percentage of 15% and a longitudinal bone volume percentage of 10% is used, and the positive electrode active material density is reduced to the cycle life of the control valve type lead storage battery. An experiment was conducted on how it affected.
[0034]
Moisture amounts produced by adding sulfuric acid and water with a specific gravity of 1.40 to lead powder containing 70 to 80% by mass of lead monoxide used conventionally are 9.6, 11.7, 13.2, respectively. 14.3, 15.3, 16.4% by mass of a paste active material for a positive electrode was prepared, filled in the above-described lattice body, and the conditions were 24 h in an atmosphere at 35 ° C. and a relative humidity of 90% or more. A positive electrode plate was prepared by aging and drying.
[0035]
And the pressurizing force of the electrode plate group was set to 30 kPa by adjusting the number of the spacers made of polypropylene in contact with both side surfaces of the electrode plate group. The other production conditions and cycle life test conditions of the control valve type lead storage battery are as described above.
[0036]
Table 3 shows the relationship between the active material layer density and cycle life of the positive electrode plate after battery case formation. As shown in Table 3, by adjusting the amount of water, the life performance of the control valve type lead-acid battery is improved by setting the positive electrode active material density to 3.5 to 4.4 g / ml.
[0037]
[Table 3]
Figure 0004433593
[0038]
(Examples 7, 14 to 19)
In the positive electrode lattice shown in FIG. 1, a positive electrode lattice having a lattice volume percentage of 15% and a longitudinal bone volume percentage of 10% is used, and the pressure applied to the electrode plate group is the cycle life of the control valve type lead storage battery. I experimented on how it affects them.
[0039]
A positive electrode paste active material having a moisture content of 13.2% by mass was prepared by adding sulfuric acid and water having a specific gravity of 1.40 to lead powder containing 70 to 80% by mass of lead monoxide used conventionally. Then, they were filled in the above-described lattice body, and aged and dried in an atmosphere of 35 ° C. and a relative humidity of 90% or more for 24 hours to produce a positive electrode plate. That is, a positive electrode plate having a positive electrode active material density of 3.7 g / ml after battery case formation was used by adjusting the amount of water in the positive electrode paste-like active material.
[0040]
And the pressurizing force of the electrode plate group was adjusted to 5 to 100 kPa by adjusting the number of polypropylene spacers in contact with both sides of the battery case and the electrode plate group. The other production conditions and cycle life test conditions of the control valve type lead storage battery are as described above.
[0041]
Table 4 shows the relationship between the pressing force of the electrode plate group and the cycle life. By setting the pressure applied to the electrode plate group to 20 kPa or more, a long-life control valve type lead-acid battery can be produced.
[0042]
[Table 4]
Figure 0004433593
[0043]
Even when a lead alloy containing 0.9 to 2.5 mass% of tin as the lattice body and having a mass ratio of the calcium to the tin of 0.09 was used, similar results were obtained. . In addition, it is preferable to use a lead alloy having a mass ratio of 0.09 or less for the lattice body because it is easy to handle and is not easily corroded by overcharge.
[0044]
In addition, although detailed data was not shown, when the longitudinal bone interval of the lattice body is 20 mm or more, there is a problem that the paste-like active material easily peels from the lattice body at the time of filling, so the longitudinal bone interval of the lattice body is It is preferable to make it less than 20 mm. Further, in the above-described embodiment, the embodiment in which 102% of the discharge amount is charged is shown, but the same tendency is shown even in the charge amount in the range of 103 to 105%.
[0045]
【The invention's effect】
As described above, when the present invention is used, the positive electrode active material can be easily charged, and a long-life control valve type lead storage battery can be provided. Therefore, its industrial value is extremely large.
[Brief description of the drawings]
FIG. 1 is a schematic view of a positive electrode grid.
[Explanation of symbols]
1: Vertical frame bone, 2: Vertical internal bone, 3: Horizontal frame bone, 4: Horizontal internal bone, 5: Ear part, 6: Vertical bone interval, 8: Short side, 9: Long side

Claims (5)

錫を0.9〜2.5質量%含み、カルシウムと前記錫との質量比が0.09以下であり、残部を鉛とする鉛−カルシウム−錫合金製の格子体を用いたペースト式正極板と、ペースト式負極板と、リテーナとを積層した極板群を加圧して用いる制御弁式鉛蓄電池において、前記格子体の体積が、前記ペースト式正極板の体積の15体積%以上30体積%以下であることを特徴とする制御弁式鉛蓄電池。Paste-type positive electrode using a lead-calcium-tin alloy grid containing 0.9 to 2.5% by mass of tin, the mass ratio of calcium to tin being 0.09 or less, and the balance being lead In a control valve type lead-acid battery using a plate group in which a plate, a paste-type negative electrode plate, and a retainer are pressed, the volume of the lattice body is 15% by volume to 30 % of the volume of the paste-type positive plate. % Lead-acid storage battery characterized by being less than or equal to % . 前記格子体の縦枠骨と縦内骨の合計の体積が、前記ペースト式正極板の体積の8体積%以上12体積%以下であることを特徴とする請求項1記載の制御弁式鉛蓄電池。2. The control valve type lead storage battery according to claim 1, wherein the total volume of the vertical frame bone and the vertical inner bone of the lattice body is 8 volume% or more and 12 volume% or less of the volume of the paste type positive electrode plate. . 前記格子体の縦骨間隔が、20mm未満であることを特徴とする請求項1又は2記載の制御弁式鉛蓄電池。The valve-regulated lead-acid battery according to claim 1 or 2, wherein a vertical bone interval of the lattice body is less than 20 mm. 電槽化成後における前記ペースト式正極板の活物質層の密度が、3.5〜4.4g/mlであることを特徴とする請求項1、2又は3記載の制御弁式鉛蓄電池。The control valve type lead acid battery according to claim 1, 2 or 3, wherein the density of the active material layer of the paste type positive electrode plate after the formation of the battery case is 3.5 to 4.4 g / ml. 前記極板群の加圧力が、20kPa以上であることを特徴とする請求項1、2、3又は4記載の制御弁式鉛蓄電池。The control valve type lead-acid battery according to claim 1, 2, 3, or 4, wherein the pressure force of the electrode plate group is 20 kPa or more.
JP2000284453A 2000-09-20 2000-09-20 Control valve type lead acid battery Expired - Lifetime JP4433593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000284453A JP4433593B2 (en) 2000-09-20 2000-09-20 Control valve type lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000284453A JP4433593B2 (en) 2000-09-20 2000-09-20 Control valve type lead acid battery

Publications (2)

Publication Number Publication Date
JP2002093409A JP2002093409A (en) 2002-03-29
JP4433593B2 true JP4433593B2 (en) 2010-03-17

Family

ID=18768659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000284453A Expired - Lifetime JP4433593B2 (en) 2000-09-20 2000-09-20 Control valve type lead acid battery

Country Status (1)

Country Link
JP (1) JP4433593B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4646572B2 (en) * 2004-08-27 2011-03-09 古河電池株式会社 Positive electrode plate for sealed lead-acid battery and sealed lead-acid battery using the positive electrode plate
JP5092230B2 (en) * 2005-12-08 2012-12-05 パナソニック株式会社 Control valve type lead acid battery
JP5569164B2 (en) * 2010-06-11 2014-08-13 株式会社Gsユアサ Lead acid battery
JP5673194B2 (en) * 2011-02-23 2015-02-18 新神戸電機株式会社 Positive electrode lattice substrate, electrode plate using the positive electrode lattice substrate, and lead-acid battery using the electrode plate
JP5787167B2 (en) * 2011-12-28 2015-09-30 株式会社Gsユアサ Liquid lead-acid battery
IN2014CH02207A (en) 2013-05-31 2015-07-03 Gs Yuasa Int Ltd
JP6175930B2 (en) * 2013-06-20 2017-08-09 株式会社Gsユアサ Lead acid battery

Also Published As

Publication number Publication date
JP2002093409A (en) 2002-03-29

Similar Documents

Publication Publication Date Title
EP2960978B1 (en) Flooded lead-acid battery
JP5138391B2 (en) Control valve type lead acid battery
JP5241264B2 (en) Control valve type lead storage battery manufacturing method
JP2003123760A (en) Negative electrode for lead-acid battery
JP4433593B2 (en) Control valve type lead acid battery
JP2008243493A (en) Lead acid storage battery
JP5168893B2 (en) Lead acid battery
JP4635325B2 (en) Control valve type lead acid battery
JP3936157B2 (en) Manufacturing method for sealed lead-acid batteries
JP5017746B2 (en) Control valve type lead acid battery
JP4492024B2 (en) Lead acid battery
JP5402090B2 (en) Manufacturing method of all-solid-state lithium ion secondary battery
JP2002164080A (en) Lead-acid battery
WO2011077640A1 (en) Valve-regulated lead acid battery
JP2003338310A (en) Lead storage battery
JP3835093B2 (en) Sealed lead acid battery
JP2001332268A (en) Lead battery having control valve
JP2004327299A (en) Sealed lead-acid storage battery
JP2001043863A (en) Sealed lead-acid battery
JP2002075379A (en) Lead-acid battery
JP2003346790A (en) Lead acid storage battery
JP2001273905A (en) Lead-acid battery
JP2001155722A (en) Sealed lead acid storage battery and method of fabricating it
JP2001068117A (en) Lead-acid battery
JP4069743B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091221

R150 Certificate of patent or registration of utility model

Ref document number: 4433593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

EXPY Cancellation because of completion of term