JP5160065B2 - Method for producing liquid crystal alignment film - Google Patents

Method for producing liquid crystal alignment film Download PDF

Info

Publication number
JP5160065B2
JP5160065B2 JP2006290379A JP2006290379A JP5160065B2 JP 5160065 B2 JP5160065 B2 JP 5160065B2 JP 2006290379 A JP2006290379 A JP 2006290379A JP 2006290379 A JP2006290379 A JP 2006290379A JP 5160065 B2 JP5160065 B2 JP 5160065B2
Authority
JP
Japan
Prior art keywords
liquid crystal
transparent conductive
conductive film
walled carbon
crystal alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006290379A
Other languages
Japanese (ja)
Other versions
JP2008108575A (en
Inventor
高広 北野
眞康 大串
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2006290379A priority Critical patent/JP5160065B2/en
Priority to TW096139645A priority patent/TWI434904B/en
Priority to CN2011102304597A priority patent/CN102408105A/en
Priority to CNA2007800400267A priority patent/CN101528595A/en
Priority to US12/447,377 priority patent/US20100297449A1/en
Priority to EP09161029A priority patent/EP2143686A1/en
Priority to EP07830442A priority patent/EP2088122A4/en
Priority to PCT/JP2007/070708 priority patent/WO2008050794A1/en
Priority to KR1020097008532A priority patent/KR101273961B1/en
Publication of JP2008108575A publication Critical patent/JP2008108575A/en
Application granted granted Critical
Publication of JP5160065B2 publication Critical patent/JP5160065B2/en
Priority to US13/938,850 priority patent/US20140017417A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は透明導電膜に関するものであり、より詳しくはカーボンナノチューブを用いた透明電極基板に関する。   The present invention relates to a transparent conductive film, and more particularly to a transparent electrode substrate using carbon nanotubes.

近年、電子手帳、携帯電話、ビデオカメラ、コンピューターのディスプレイ、液晶テレビなどに液晶表示素子が広く使用されている。
液晶表示素子としては、透明電極基板上にポリアミック酸や、ポリイミドからなる液晶配向膜を形成した2枚の基板間に正の誘電異方性を有するネマチック液晶層を挟持してサンドイッチ構造のセルとした、液晶分子の長軸が一方の基板から他方の基板に向かって90°ねじれた構造を有する、いわゆるTN(Twisted Nematic)型液晶表示素子、該TN型よりコントラスト、視角依存性の点で優れるSTN(Super Twisted Nematic)型液晶表示素子が知られている。
In recent years, liquid crystal display elements are widely used in electronic notebooks, mobile phones, video cameras, computer displays, liquid crystal televisions, and the like.
As a liquid crystal display element, a sandwich structure cell in which a nematic liquid crystal layer having positive dielectric anisotropy is sandwiched between two substrates in which a liquid crystal alignment film made of polyamic acid or polyimide is formed on a transparent electrode substrate, and The so-called TN (Twisted Nematic) type liquid crystal display element having a structure in which the major axis of the liquid crystal molecules is twisted by 90 ° from one substrate to the other substrate, is superior in terms of contrast and viewing angle dependency than the TN type. An STN (Super Twisted Nematic) type liquid crystal display element is known.

透明電極基板の電極として用いられる材料はインジウム錫酸化物などの金属酸化物が主流である。透明電極基板上に液晶配向膜を形成する方法としてはポリアミック酸や、溶剤に可溶なポリイミドなどの溶液を凸版印刷法、フレキソ印刷法などにより印刷し、焼成した後、ナイロンやレーヨンなどの布(ラビング材)で一方向に擦ることで形成される方法が主流である。この配向処理方法は通常「ラビング法」と呼ばれており、一定方向の微細な凹凸に沿って液晶分子を配列させることで液晶の配向を制御する。   A material used as an electrode of the transparent electrode substrate is mainly a metal oxide such as indium tin oxide. A method for forming a liquid crystal alignment film on a transparent electrode substrate is to print a solution such as polyamic acid or polyimide soluble in a solvent by a relief printing method, a flexographic printing method, etc. A method formed by rubbing in one direction with a (rubbing material) is the mainstream. This alignment treatment method is generally called “rubbing method”, and the alignment of liquid crystal is controlled by aligning liquid crystal molecules along fine irregularities in a certain direction.

ポリアミック酸を用いる場合は良好な印刷性が得られるものの電気的特性が低い。
一方、ポリイミド溶液を用いる場合は良好な電気的特性が得られるが、印刷性が悪く、均一な膜を得ることが困難である。ポリイミドの溶解性の観点からアミド系溶剤を用いることが多いが、アミド系溶媒は一般に表面張力が高く、これが印刷性の悪い原因となっている。
When a polyamic acid is used, good printability is obtained, but the electrical characteristics are low.
On the other hand, when a polyimide solution is used, good electrical characteristics can be obtained, but printability is poor and it is difficult to obtain a uniform film. An amide solvent is often used from the viewpoint of the solubility of polyimide, but the amide solvent generally has a high surface tension, which causes poor printability.

従来は、これを解決するために脂肪族環状構造を有する酸無水物のオリゴマーと、芳香族環がエーテル結合等で結合した化合物のオリゴマーの混合物を用いることで溶解性を向上させる方法(特許文献1)、N,N−ジメチルアセトアミドを溶媒として濡れ性を改善する方法(特許文献2)、表面張力の低い溶剤を加える(特許文献3)方法が提案されている。   Conventionally, in order to solve this problem, a method for improving solubility by using a mixture of an oligomer of an acid anhydride having an aliphatic ring structure and an oligomer of a compound in which an aromatic ring is bonded by an ether bond or the like (Patent Literature) 1) A method for improving wettability using N, N-dimethylacetamide as a solvent (Patent Document 2) and a method for adding a solvent having a low surface tension (Patent Document 3) have been proposed.

いずれの方法も電極基板への濡れ性を向上させる方法としては優れた方法であるが、特許文献1および2に開示されている方法は、上述のポリアミック酸の場合同様にポリアミック酸を用いているため電気的特性が低下する可能性があり、特許文献3に開示されている方法は、ハロゲン系溶媒を用いるため環境への負荷が大きい。このため、電気的特性を下げることなく均一な配向膜が得られる配向膜の作製方法が望まれていた。   Either method is an excellent method for improving the wettability to the electrode substrate, but the methods disclosed in Patent Documents 1 and 2 use a polyamic acid as in the case of the polyamic acid described above. Therefore, there is a possibility that the electrical characteristics are deteriorated, and the method disclosed in Patent Document 3 uses a halogen-based solvent, and therefore has a large environmental load. For this reason, there has been a demand for a method for manufacturing an alignment film that can provide a uniform alignment film without degrading electrical characteristics.

特開2002−88241号公報JP 2002-88241 A 特開2006−53380号公報JP 2006-53380 A 特開2006−154158号公報JP 2006-154158 A

従って、本発明の課題は電気的特性を下げることなく均一な配向膜が得られる配向膜の製造方法を提供することである。   Accordingly, an object of the present invention is to provide a method for producing an alignment film that can obtain a uniform alignment film without deteriorating electrical characteristics.

本発明者らは、濡れ性の高い透明電極基板を用いることによって上述の課題が解決できることを見出した。さらに濡れ性の高い透明電極基板を得る具体的方法としてはカーボンナノチューブを主成分とする薄膜層を用いることで透明性、導電性を有し、かつ、膜状態でのカーボンナノチューブの形状を制御することで濡れ性を高くできることを見出し、さらに検討を重ねた結果、本発明を完成させた。   The present inventors have found that the above-described problems can be solved by using a transparent electrode substrate having high wettability. Furthermore, as a specific method for obtaining a transparent electrode substrate with high wettability, the shape of the carbon nanotubes in the film state is controlled by using a thin film layer mainly composed of carbon nanotubes and having transparency and conductivity. As a result of further finding out that the wettability can be improved, the present invention was completed.

即ち本発明は、透明導電膜の主成分が単層カーボンナノチューブであって、該単層カーボンナノチューブがバンドル状態で存在しており、走査型電子顕微鏡観察にてバンドルの集合状態であるロープ形状が確認できる透明導電膜を備える透明電極基板に、液晶配向膜を形成することを特徴とする液晶配向膜の製造方法であるThat is, according to the present invention, the main component of the transparent conductive film is a single-walled carbon nanotube, and the single-walled carbon nanotube exists in a bundle state. a transparent electrode substrate with a Ru confirmed permeable transparent conductive film, a method of manufacturing a liquid crystal alignment film and forming a liquid crystal alignment film.

そして本発明は、前記単層カーボンナノチューブが、波長532nmのレーザーを照射して検出されるラマン強度分布特性において、ラマンシフトが1340±40カイザーである範囲にラマン散乱光の強度に第1の吸収を有すると共に、ラマンシフトが1590±20カイザーである範囲にラマン散乱光の強度に第2の吸収を有し、前記第1の吸収強度をID、第2の吸収強度をIGとしたときに式(1)
0<ID/IG≦0.03 (1)
を満たすものであり、透明導電膜に対するN−メチル−2−ピロリドンの静的接触角が0°以上5°以下であることが好ましいものである。
The present invention is absorbing the single-walled carbon nanotubes, according to Raman spectrum characteristic detected by irradiating laser having a wavelength of 532 nm, in the range Raman shift is 1340 ± 40 Kaiser Raman scattered light intensity in the first And having a second absorption in the intensity of Raman scattered light in a range where the Raman shift is 1590 ± 20 Kaiser, the first absorption intensity is ID, and the second absorption intensity is IG. (1)
0 <ID / IG ≦ 0.03 (1)
The are those that meet, but it is preferred static contact angle of N- methyl-2-pyrrolidone to the transparent conductive film is 0 ° to 5 °.

また本発明において、透明導電膜の膜厚が10nm以上500nm以下であることが好ましい
In the present invention, the thickness of the permeable transparent conductive film is preferably 10nm or more 500nm or less.

本発明による透明電極基板は濡れ性の高い透明電極を有しているため、液晶配向膜を形成するための材料を均一に塗工することができる。このため液晶表示素子の作製に際し有利に利用することができる。   Since the transparent electrode substrate according to the present invention has a transparent electrode having high wettability, a material for forming the liquid crystal alignment film can be applied uniformly. For this reason, it can be advantageously used in the production of a liquid crystal display element.

本発明は透明導電膜の主成分が単層カーボンナノチューブであって、該単層カーボンナノチューブがバンドル状態で存在しており、走査型電子顕微鏡観察にてバンドルの集合状態であるロープ形状が確認できることを特徴とする透明導電膜である。単層カーボンナノチューブは側壁を構成するベンゼン環の相互作用によって数本が束状に集まったいわゆるバンドル状態で存在することが一般的である。   In the present invention, the main component of the transparent conductive film is a single-walled carbon nanotube, the single-walled carbon nanotube exists in a bundle state, and a rope shape that is an aggregate state of the bundle can be confirmed by observation with a scanning electron microscope It is a transparent conductive film characterized by these. In general, single-walled carbon nanotubes exist in a so-called bundle state in which several bundles are gathered in a bundle by the interaction of benzene rings constituting the side walls.

従来、カーボンナノチューブを用いた透明導電膜については、次のように報告されている。例えばL.Huらの報告(Nano Lett.,Vol.4,No.12,2004 2513−2517)、Zhuangchun Wuらの報告(Science Vol.305,2004 1273−1276)、M.Kaempgenらの報告(Applied Surface Science Vol.252,2005 425−429)では、いずれも単層カーボンナノチューブがバンドル状態で存在しているが、バンドル同士が更に集まった形状は確認できない。上記報告ではバンドルの太さは10nm程度であるため、これらの単層カーボンナノチューブを積層して透明導電膜を作製しても表面の凹凸が小さいので濡れ性を向上させることはできない。   Conventionally, a transparent conductive film using carbon nanotubes has been reported as follows. For example, L.M. Hu et al. (Nano Lett., Vol. 4, No. 12, 2004 2513-2517), Zhuangchun Wu et al. (Science Vol. 305, 2004 1273-1276), M. et al. In Kaempgen et al.'S report (Applied Surface Science Vol. 252, 2005 425-429), single-walled carbon nanotubes are present in a bundled state, but a shape in which bundles are further gathered cannot be confirmed. In the above report, since the thickness of the bundle is about 10 nm, even if these single-walled carbon nanotubes are laminated to produce a transparent conductive film, the wettability cannot be improved because the surface unevenness is small.

本発明では、単層カーボンナノチューブのバンドルが更に数本集まってロープ形状を構成していることが必要である。ロープ形状を構成することによって太さを20〜100nmとし、表面の凹凸が大きくなり、これによって濡れ性を向上させることができる。   In the present invention, it is necessary that several bundles of single-walled carbon nanotubes gather to form a rope shape. By constituting the rope shape, the thickness is set to 20 to 100 nm, the unevenness of the surface is increased, and thereby the wettability can be improved.

バンドル状態とバンドルが集合したロープ状態とは、走査型電子顕微鏡観察によって判別することができる。例えば、図1ではバンドルは1本の繊維状に見え、バンドルが数本集まったロープ状態も確認することができる。   The bundle state and the rope state where the bundles are gathered can be determined by observation with a scanning electron microscope. For example, in FIG. 1, the bundle looks like a single fiber, and a rope state in which several bundles are gathered can also be confirmed.

本発明による透明導電膜は走査型電子顕微鏡観察にてバンドルの集合状態であるロープ形状が確認できることが必要であるが、存在する全てのバンドルがロープ状態になっている必要はなく、5万倍の走査型電子顕微鏡観察においてロープ状態を確認できる部分が1箇所以上あればよい。   The transparent conductive film according to the present invention needs to be able to confirm the rope shape which is an aggregate state of the bundle by observation with a scanning electron microscope, but it is not necessary that all existing bundles are in the rope state, and is 50,000 times. It is only necessary to have one or more portions where the rope state can be confirmed in the observation with a scanning electron microscope.

ロープ状態を作る方法としては特に制限はないが、単層カーボンナノチューブあるいはそのバンドルに対し機械的せん断力を加える方法が好ましく、具体的には単層カーボンナノチューブを液体中に分散させた状態でビーズミル処理、中空糸膜処理を行う方法などが挙げられる。   The method of creating the rope state is not particularly limited, but a method of applying a mechanical shearing force to the single-walled carbon nanotube or the bundle thereof is preferable. Specifically, the bead mill in a state where the single-walled carbon nanotube is dispersed in the liquid. The method of performing a process and a hollow fiber membrane process etc. are mentioned.

本発明による透明導電膜は、主成分が単層カーボンナノチューブであれば例えば界面活性剤などのその他の成分があっても良い。本発明において主成分が単層カーボンナノチューブであるとは、具体的には透明導電膜を走査型電子顕微鏡観察した場合に、カーボンナノチューブあるいはそのバンドル、バンドルが集まったロープ形状の存在が確認できる程度の単層カーボンナノチューブが含まれている状態のことである。また、本発明の効果を損なわない範囲において、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂、分散剤、導電性高分子、顔料などを含むことが可能である。   The transparent conductive film according to the present invention may have other components such as a surfactant as long as the main component is a single-walled carbon nanotube. In the present invention, the main component is a single-walled carbon nanotube. Specifically, when a transparent conductive film is observed with a scanning electron microscope, the presence of a carbon nanotube, or a bundle thereof, and a rope shape in which bundles are collected can be confirmed. This is a state in which single-walled carbon nanotubes are included. In addition, a thermoplastic resin, a thermosetting resin, a photocurable resin, a dispersant, a conductive polymer, a pigment, and the like can be included as long as the effects of the present invention are not impaired.

本発明による透明導電膜に用いる基材は透明なシートまたはフィルムなどであれば特に制限はなく、アクリル、ポリエステル、ポリカーボネート、ポリスチレン、スチレン-アクリル共重合体、塩化ビニル系樹脂、ポリオレフィン、ABS(アクリロニトリル−ブタジエン−スチレン共重合体)、シクロオレフィン系樹脂、セルロース樹脂、ガラスなどが挙げられる。また、必要に応じて基材と導電層間あるいは基材に対して導電層とは反対面上にハードコート層、防汚層、防眩層、反射防止層、粘着層などを積層したものを用いることも可能である。   The substrate used for the transparent conductive film according to the present invention is not particularly limited as long as it is a transparent sheet or film, and is not limited to acrylic, polyester, polycarbonate, polystyrene, styrene-acrylic copolymer, vinyl chloride resin, polyolefin, ABS (acrylonitrile). -Butadiene-styrene copolymer), cycloolefin resin, cellulose resin, glass and the like. In addition, if necessary, a laminate in which a hard coat layer, an antifouling layer, an antiglare layer, an antireflection layer, an adhesive layer, etc. are laminated on the surface opposite to the conductive layer with respect to the substrate and the conductive layer is used. It is also possible.

本発明に用いる透明導電膜は、用いる用途によっても異なるが、表面抵抗率が1Ω/□以上10000Ω/□以下かつ、全光線透過率が40%以上であることが好ましい。   Although the transparent conductive film used for this invention changes also with the uses to be used, it is preferable that surface resistivity is 1 ohm / square or more and 10,000 ohm / square or less, and a total light transmittance is 40% or more.

本発明に用いるカーボンナノチューブは、単層カーボンナノチューブであれば特に制限はなく、化学修飾、物理修飾したものであっても良い。また単層カーボンナノチューブの製法についても特に制限はなく、化学蒸発法、レーザー蒸発法、アーク放電法など公知の製法を用いることができる。特に結晶性と生産性の観点からアーク放電法によって作製された単層カーボンナノチューブを用いることが好ましい。   The carbon nanotube used in the present invention is not particularly limited as long as it is a single-walled carbon nanotube, and may be chemically modified or physically modified. Also, the production method of the single-walled carbon nanotube is not particularly limited, and a known production method such as a chemical evaporation method, a laser evaporation method, or an arc discharge method can be used. In particular, it is preferable to use single-walled carbon nanotubes produced by an arc discharge method from the viewpoints of crystallinity and productivity.

また、一般に単層カーボンナノチューブは製造時にアモルファスカーボンや触媒として用いた金属粒子などの不純物を含むことが多いが、本発明において用いる単層カーボンナノチューブは純度が高い程より好ましい。   In general, single-walled carbon nanotubes often contain impurities such as amorphous carbon and metal particles used as a catalyst at the time of production, but the single-walled carbon nanotubes used in the present invention are more preferable as the purity is higher.

カーボンナノチューブの精製方法としては、硝酸や硫酸などを用いた液相酸処理や、酸素や空気雰囲気中での気相酸化処理あるいはこれらの組み合わせなどが挙げられる。   Examples of the method for purifying carbon nanotubes include liquid phase acid treatment using nitric acid, sulfuric acid, etc., gas phase oxidation treatment in an oxygen or air atmosphere, or a combination thereof.

単層カーボンナノチューブの純度はラマン測定によって測定することが可能であり、本発明による透明導電膜は、単層カーボンナノチューブが波長532nmのレーザーを照射して検出されるラマン強度分布特性において、ラマンシフトが1340±40カイザーである範囲にラマン散乱光の強度に第1の吸収を有すると共に、ラマンシフトが1590±20カイザーである範囲にラマン散乱光の強度に第2の吸収を有し、前記第1の吸収強度をID、第2の吸収強度をIGとしたときに式(1)
0<ID/IG≦0.03 (1)
を満たすことがより好ましい。
The purity of the single-walled carbon nanotube can be measured by Raman measurement. The transparent conductive film according to the present invention has a Raman shift in the Raman intensity distribution characteristic detected by irradiating the single-walled carbon nanotube with a laser having a wavelength of 532 nm. Has a first absorption in the intensity of Raman scattered light in the range of 1340 ± 40 Kaiser, and has a second absorption in the intensity of Raman scattered light in the range of Raman shift of 1590 ± 20 Kaiser, Equation (1) where ID is the absorption intensity of 1 and IG is the second absorption intensity
0 <ID / IG ≦ 0.03 (1)
It is more preferable to satisfy.

式(1)において、ID/IGの値が小さいほど単層カーボンナノチューブの純度が高いことを表している。本発明においては、ID/IGの値は0.03以下であることが好ましく、0.02以下であることがより好ましい。ID/IGの値が0.03より大きい場合は純度が低く透明性が低下する可能性がある。本発明に用いる透明導電膜は用いる用途によっても異なるが、透明導電膜の膜厚が10nm以上500nm以下であることが好ましい。透明導電膜の膜厚が10nm以下の場合は導電性が不足することがあり、500nm以上の場合は透明性が不足することがある。   In Formula (1), it represents that the purity of a single-walled carbon nanotube is so high that the value of ID / IG is small. In the present invention, the value of ID / IG is preferably 0.03 or less, and more preferably 0.02 or less. When the value of ID / IG is larger than 0.03, the purity is low and the transparency may be lowered. Although the transparent conductive film used for this invention changes also with the uses to be used, it is preferable that the film thickness of a transparent conductive film is 10 nm or more and 500 nm or less. When the film thickness of the transparent conductive film is 10 nm or less, the conductivity may be insufficient, and when it is 500 nm or more, the transparency may be insufficient.

基材上に導電層を形成する方法としては、カーボンナノチューブを溶媒中に分散させた後、基材上に塗工し、溶剤を加熱によって除去する方法が好ましい。
カーボンナノチューブを溶媒中に分散させる方法としては公知の分散法であれば特に制限はないが、例えば水酸基、カルボキシル基、アミノ基などの極性基を有する化合物を分散剤としてカーボンナノチューブの表面を修飾する方法や、ロールミル、ビーズミル、ボールミル、超音波照射など機械的せん断力を用いて分散させる方法が挙げられる。
As a method for forming a conductive layer on a substrate, a method in which carbon nanotubes are dispersed in a solvent and then coated on the substrate, and the solvent is removed by heating is preferable.
The method for dispersing the carbon nanotubes in the solvent is not particularly limited as long as it is a known dispersion method. For example, the surface of the carbon nanotubes is modified using a compound having a polar group such as a hydroxyl group, a carboxyl group, or an amino group as a dispersant. And a method of dispersing using a mechanical shearing force such as a roll mill, a bead mill, a ball mill, and ultrasonic irradiation.

溶媒は一般的に塗料に用いられるものであれば特に制限はないが、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系化合物;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、酢酸メトキシエチルなどのエステル系化合物;ジエチルエーテル、エチレングリコールジメチルエーテル、エチルセロソルブ、ブチルセロソルブ、フェニルセロソルブ、ジオキサン等のエーテル系化合物;トルエン、キシレンなどの芳香族化合物;ペンタン、ヘキサンなどの脂肪族化合物;塩化メチレン、クロロベンゼン、クロロホルムなどのハロゲン系炭化水素;メタノール、エタノール、ノルマルプロパノール、イソプロパノールなどのアルコール化合物、水などを挙げることができる。   The solvent is not particularly limited as long as it is generally used for paints, but for example, ketone compounds such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone; methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, methoxyethyl acetate Ester compounds such as diethyl ether, ethylene glycol dimethyl ether, ethyl cellosolve, butyl cellosolve, phenyl cellosolve, dioxane and the like; aromatic compounds such as toluene and xylene; aliphatic compounds such as pentane and hexane; methylene chloride and chlorobenzene And halogen-based hydrocarbons such as chloroform; alcohol compounds such as methanol, ethanol, normal propanol and isopropanol; and water.

カーボンナノチューブの溶媒に対する比率は、総重量を100wt%とした時に0.01wt%以上10wt%以下が好ましく0.1wt%以上1wt%以下がより好ましい。また必要に応じてアクリル、ポリエステル、ポリカーボネート、ポリスチレン、スチレン-アクリル共重合体、塩化ビニル系樹脂、ポリオレフィン、ABS(アクリロニトリル-ブタジエン-スチレン共重合体)、シクロオレフィン系樹脂、酢酸ビニル、ブチラール、エポキシ、光硬化性樹脂、熱硬化性樹脂等の樹脂を本発明の効果を損なわない範囲で加えることも可能である。   The ratio of the carbon nanotubes to the solvent is preferably 0.01 wt% or more and 10 wt% or less, and more preferably 0.1 wt% or more and 1 wt% or less when the total weight is 100 wt%. If necessary, acrylic, polyester, polycarbonate, polystyrene, styrene-acrylic copolymer, vinyl chloride resin, polyolefin, ABS (acrylonitrile-butadiene-styrene copolymer), cycloolefin resin, vinyl acetate, butyral, epoxy It is also possible to add a resin such as a photocurable resin or a thermosetting resin within a range that does not impair the effects of the present invention.

基材上に塗工する方法は公知の方法であれば特に制限はないが、含浸法、ロールを用いた塗工法、ダイコート、基材に噴霧するようなスプレー法、カーテンフローコートなどが挙げられる。また、通常金属酸化物の導電フィルムを用いたときに導電膜を所望の形状に加工する必要がある場合は、一旦全面に透明導電膜を形成した後、不要な部分を除去するエッチングと呼ばれる工程が必要であるが、本発明において用いる塗工法の場合は、凸版印刷、凹版印刷、グラビア印刷などの方法によって所望の形状に印刷するだけで目的とするパターンを形成することが可能である。   The method of coating on the substrate is not particularly limited as long as it is a known method, but examples include an impregnation method, a coating method using a roll, a die coat, a spray method of spraying on a substrate, and a curtain flow coat. . Also, when it is necessary to process a conductive film into a desired shape when a metal oxide conductive film is used, a process called etching, in which an unnecessary portion is removed after a transparent conductive film is once formed on the entire surface. However, in the case of the coating method used in the present invention, it is possible to form a target pattern simply by printing in a desired shape by a method such as letterpress printing, intaglio printing, or gravure printing.

溶剤を加熱によって除去する工程は公知の方法であれば特に制限はないが、加熱炉、遠赤外炉などが挙げられる。   The step of removing the solvent by heating is not particularly limited as long as it is a known method, and examples thereof include a heating furnace and a far infrared furnace.

また本発明は、透明導電膜に対するN−メチル−2−ピロリドンの静的接触角が0°以上5°以下である透明導電膜を提供する。N−メチル−2−ピロリドンは、配向膜を製造する際に用いるポリイミドを溶解する際に一般的に用いられている有機溶剤であり、N−メチル−2−ピロリドンに対する濡れ性の高い基材を用いることによって透明電極層上に均一なポリイミド薄膜を形成することができる。   The present invention also provides a transparent conductive film having a static contact angle of N-methyl-2-pyrrolidone with respect to the transparent conductive film of 0 ° or more and 5 ° or less. N-methyl-2-pyrrolidone is an organic solvent that is generally used when dissolving polyimide used in the production of an alignment film. A substrate having high wettability with respect to N-methyl-2-pyrrolidone is used. By using it, a uniform polyimide thin film can be formed on the transparent electrode layer.

本発明において静的接触角とは、N−メチル−2−ピロリドンを基材に滴下した後、平衡状態における基材と液滴の接点の接線と基材との角度をいう。静的接触角が小さいほど濡れ生が高いことを表し、本発明においては透明電極層に対するN−メチル−2−ピロリドンの静的接触角が0°以上5°以下である透明導電膜である。静的接触角が5°以上の場合は濡れ性が低く、透明電極層上にポリイミド溶液を塗布した場合もはじきやピンホールが発生し、均一な膜が得られない可能性がある。   In the present invention, the static contact angle refers to the angle between the substrate and the contact point of the droplet and the substrate in an equilibrium state after N-methyl-2-pyrrolidone is dropped onto the substrate. The smaller the static contact angle, the higher the wettability. In the present invention, the transparent conductive film has a static contact angle of N-methyl-2-pyrrolidone with respect to the transparent electrode layer of 0 ° to 5 °. When the static contact angle is 5 ° or more, the wettability is low, and even when a polyimide solution is applied on the transparent electrode layer, repelling or pinholes may occur, and a uniform film may not be obtained.

具体的には、透明導電膜表面が微細凹凸形状を有するものであれば特に制限はないが、透明導電膜の主成分が単層カーボンナノチューブであって、該単層カーボンナノチューブがバンドル状態で存在しており、走査型電子顕微鏡観察にてバンドルの集合状態であるロープ形状が確認できる透明導電膜や、金属酸化物からなる透明導電層表面を擦傷し凹凸形状を形成したものなどが挙げられる。   Specifically, there is no particular limitation as long as the surface of the transparent conductive film has fine irregularities, but the main component of the transparent conductive film is a single-walled carbon nanotube, and the single-walled carbon nanotube exists in a bundle state. Examples thereof include a transparent conductive film in which a rope shape, which is an aggregated state of bundles, can be confirmed by observation with a scanning electron microscope, and a surface in which a transparent conductive layer made of a metal oxide is scratched to form an uneven shape.

本発明は、上記の透明導電膜を用いた透明電極基板を提供する。
本発明による透明電極基板は本発明による透明導電膜を用いたものであれば特に制限はなく、基材表面全面が電極で覆われているものであってもよいし、パターニングされたものであってもよい。パターニングされた透明電極の場合は、一旦基板表面全体に透明導電膜を配置した後、一部除去する方法であってもよいし、パターン印刷によって透明電極を配置する方法であってもよい。また基板と透明電極間にカラーフィルター層や誘電体層などがあってもよい。透明電極板に用いられる透明導電膜の膜厚は、10nm以上500nm以下であることが好ましい。透明導電膜の膜厚が10nm以下の場合は導電性が不足することがあり、500nm以上の場合は透明性が不足することがある。
The present invention provides a transparent electrode substrate using the transparent conductive film.
The transparent electrode substrate according to the present invention is not particularly limited as long as the transparent conductive film according to the present invention is used, and the entire surface of the substrate may be covered with an electrode or may be patterned. May be. In the case of a patterned transparent electrode, it may be a method in which a transparent conductive film is once disposed on the entire surface of the substrate and then partially removed, or a method in which the transparent electrode is disposed by pattern printing. There may also be a color filter layer or a dielectric layer between the substrate and the transparent electrode. The film thickness of the transparent conductive film used for the transparent electrode plate is preferably 10 nm or more and 500 nm or less. When the film thickness of the transparent conductive film is 10 nm or less, the conductivity may be insufficient, and when it is 500 nm or more, the transparency may be insufficient.

本発明は、本発明による透明電極基板を用いた液晶配向膜の製造方法を提供する。
本発明による配向膜の製造方法は、本発明による透明電極基板を用いるものであれば特に制限はないが、本発明による透明電極基板上にポリイミド溶液あるいはポリイミド前駆体の溶液を塗布する方法が好ましい。配向膜の膜厚は、少なくとも透明導電層の凹凸の段差よりも厚いことが好ましく、具体的には100nm以上10μm以下が好ましい。
さらに、必要に応じて加熱し、ポリイミド前駆体からポリイミド膜を作製したり、溶剤を除去したりすることができる。加熱する温度は、用いる基材が変形しない範囲が好ましい。
液晶を配向させる方法としては公知の方法であれば特に制限はないが、ポリイミド膜表面を物理的に擦る方法や、活性エネルギー線を照射する方法などが挙げられる。
The present invention provides a method for producing a liquid crystal alignment film using a transparent electrode substrate according to the present invention.
The method for producing an alignment film according to the present invention is not particularly limited as long as the transparent electrode substrate according to the present invention is used, but a method of applying a polyimide solution or a polyimide precursor solution on the transparent electrode substrate according to the present invention is preferable. . The thickness of the alignment film is preferably at least thicker than the uneven step of the transparent conductive layer, and specifically, it is preferably 100 nm or more and 10 μm or less.
Furthermore, it can heat as needed and can produce a polyimide film from a polyimide precursor, or can remove a solvent. The heating temperature is preferably within a range where the base material to be used is not deformed.
The method of aligning the liquid crystal is not particularly limited as long as it is a known method, and examples thereof include a method of physically rubbing the polyimide film surface and a method of irradiating active energy rays.

<実施例>
5Lセパラブルフラスコにアーク放電法によって作製した未精製の単層カーボンナノチューブ(Carbolex社製)30g、蒸留水300mlを投入し、単層カーボンナノチューブを完全に蒸留水にて湿潤させた。
メカニカルスターラーにて攪拌しつつ、69%硝酸(和光純薬工業社製)2700mlを滴下した後、85℃にて48時間攪拌した。
反応液を室温まで冷却後、攪拌しつつ反応液のpHが10になるまで炭酸ナトリウム(和光純薬工業社製)を紛体状態で投入した。この時点での未精製の単層カーボンナノチューブに対する回収率は51%であった。
pHが10になった反応液にドデシルベンゼンスルホン酸ナトリウム(ソフト型)(東京化成工業株式会社製)を固形分換算で6g投入後、コーン型超音波照射機(装置名ULTRASONIC HOMOGENIZER MODEL UH−600SR、エスエムテー社製)にて超音波を5分間照射した。
<Example>
30 g of unpurified single-walled carbon nanotubes (manufactured by Carbolex) prepared by an arc discharge method and 300 ml of distilled water were put into a 5 L separable flask, and the single-walled carbon nanotubes were completely wetted with distilled water.
While stirring with a mechanical stirrer, 2700 ml of 69% nitric acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise, followed by stirring at 85 ° C. for 48 hours.
After cooling the reaction solution to room temperature, sodium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) was charged in a powder state while stirring until the pH of the reaction solution reached 10. At this time, the recovery rate for the unpurified single-walled carbon nanotubes was 51%.
After adding 6 g of sodium dodecylbenzenesulfonate (soft type) (manufactured by Tokyo Chemical Industry Co., Ltd.) in terms of solid content to the reaction solution having a pH of 10, a cone type ultrasonic irradiator (device name: ULTRASONIC HOMOGENIZER MODEL UH-600SR) And manufactured by SMT Co., Ltd.) for 5 minutes.

反応液より300mlを取り出し、13000rpmにて1時間遠心分離を行った(製品名CR26H 日立工機株式会社製)。上澄み液を回収し粗精製液とした。この時点での未精製の単層カーボンナノチューブに対する回収率は20%であった。
粗精製液を300mlのフラスコに投入し、クロスフローろ過に供した。使用した中空糸膜モジュールは孔径200nm、膜面積105cm(製品名ミディクロス・クロスフローモジュール SPECTRUM社製)であり、洗浄液は0.005M水酸化ナトリウム水溶液に0.2wt%になるようにドデシルベンゼンスルホン酸ナトリウム(ソフト型))を加えた弱アルカリ性水溶液である。粗精製液を20.0Lの洗浄液で洗浄することによって精製単層カーボンナノチューブの分散液を得た。
300 ml was taken out from the reaction solution, and centrifuged at 13000 rpm for 1 hour (product name CR26H manufactured by Hitachi Koki Co., Ltd.). The supernatant was recovered and used as a crude purified solution. At this time, the recovery rate for the unpurified single-walled carbon nanotubes was 20%.
The crudely purified liquid was put into a 300 ml flask and subjected to cross flow filtration. The hollow fiber membrane module used has a pore diameter of 200 nm and a membrane area of 105 cm 2 (product name: Midicloth / Crossflow Module manufactured by SPECTRUM), and the washing solution is dodecylbenzene so that the cleaning solution is 0.2 wt% in a 0.005 M sodium hydroxide aqueous solution. It is a weak alkaline aqueous solution to which sodium sulfonate (soft type) is added. The crude purified solution was washed with 20.0 L of washing solution to obtain a purified single-walled carbon nanotube dispersion.

精製単層カーボンナノチューブの分散液300mlに対し、イソプロピルアルコール300mlを投入し精製単層カーボンナノチューブを凝集させ、20000rpmにて10分間遠心分離を行った(製品名CR26H 日立工機株式会社製)。残渣を回収し、ラマン測定を行った(波長532nm、装置名:HoloLab5000株式会社島津製作所製)。ID/IGは0.016であった。
残渣を回収し、300mlの蒸留水に投入後コーン型超音波照射機(装置名ULTRASONIC HOMOGENIZER MODEL UH−600SR、エスエムテー社製)にて超音波を5分間照射し、精製カーボンナノチューブの水分散液を得た。
得られた精製カーボンナノチューブの水分散液を125μm厚ポリエステルフィルム(商品名 コスモシャインA4100 東洋紡社製)にスプレーコートし、透明電極基板を得た。
To 300 ml of the purified single-walled carbon nanotube dispersion, 300 ml of isopropyl alcohol was added to aggregate the purified single-walled carbon nanotubes, followed by centrifugation at 20000 rpm for 10 minutes (product name CR26H manufactured by Hitachi Koki Co., Ltd.). The residue was collected and subjected to Raman measurement (wavelength 532 nm, device name: HoloLab 5000, manufactured by Shimadzu Corporation). ID / IG was 0.016.
The residue was collected, poured into 300 ml of distilled water, and then irradiated with ultrasonic waves for 5 minutes with a cone-type ultrasonic irradiator (device name: ULTRASONIC HOMOGENIZER MODEL UH-600SR, manufactured by SMT Co.) to give an aqueous dispersion of purified carbon nanotubes. Obtained.
The obtained purified carbon nanotube aqueous dispersion was spray-coated on a 125 μm thick polyester film (trade name: Cosmo Shine A4100, manufactured by Toyobo Co., Ltd.) to obtain a transparent electrode substrate.

得られた透明電極基板に対するN−メチル−2−ピロリドンの接触角は0°であった(装置名:エルマ ゴニオメータ式 接触角測定器 エルマ光学株式会社製)。
表面抵抗率を4端子2探針法(装置名ロレスタ−FP、ダイアインスツルメンツ社製)にて測定したところ170Ω/□、全光線透過率を測定したところ(装置名:直読ヘーズコンピュータ、スガ試験機社製)60.5%であった。
The contact angle of N-methyl-2-pyrrolidone with respect to the obtained transparent electrode substrate was 0 ° (device name: Elma Goniometer type contact angle measuring instrument, manufactured by Elma Optical Co., Ltd.).
When surface resistivity was measured by a 4-terminal 2-probe method (device name: Loresta-FP, manufactured by Dia Instruments), 170Ω / □, and total light transmittance was measured (device name: direct reading haze computer, Suga tester) 60.5%).

実施例で得られた透明電極基板表面の走査型電子顕微鏡写真を図1に記す。
図1から分かるようにカーボンナノチューブはバンドル状態で存在し、バンドルの集合状態であるロープ形状が図1中央部など確認できる。
A scanning electron micrograph of the surface of the transparent electrode substrate obtained in the example is shown in FIG.
As can be seen from FIG. 1, the carbon nanotubes exist in a bundle state, and the shape of the rope, which is an aggregated state of the bundle, can be confirmed in the center of FIG.

<比較例1>
ポリエステルフィルム上にITO膜を積層した透明電極基板(商品名 300RK(CL) 東洋紡社製)に対するN−メチル−2−ピロリドンの接触角は11°であった(装置名:エルマ ゴニオメータ式 接触角測定器 エルマ光学株式会社製)。
表面抵抗率を4端子2探針法(装置名ロレスタ−FP、ダイアインスツルメンツ社製)にて測定したところ250Ω/□、全光線透過率を測定したところ(装置名:直読ヘーズコンピュータ、スガ試験機社製)88.5%であった。
<Comparative Example 1>
The contact angle of N-methyl-2-pyrrolidone to a transparent electrode substrate (trade name 300RK (CL) manufactured by Toyobo Co., Ltd.) having an ITO film laminated on a polyester film was 11 ° (device name: Elma goniometer type contact angle measurement) Instrument made by Elma Optical Co., Ltd.).
When the surface resistivity was measured by a 4-terminal 2-probe method (device name: Loresta-FP, manufactured by Dia Instruments Co., Ltd.), 250 Ω / □ was measured, and the total light transmittance was measured (device name: direct reading haze computer, Suga test equipment) 88.5%).

<比較例2>
化学蒸発法によって作製した単層カーボンナノチューブ(CNI社製)10mgを0.5%のドデシルベンゼンスルホン酸ナトリウム(ソフト型)水溶液10gに投入後コーン型超音波照射機(装置名ULTRASONIC HOMOGENIZER MODEL UH−600SR、エスエムテー社製)にて超音波を5分間照射し、3000rpmにて20分間遠心分離を行った(製品名CR26H 日立工機株式会社製)後、上澄み液を回収し、精製カーボンナノチューブの水分散液を得た。
得られた分散液を実施例と同様にスプレーコートし透明電極基板を得た。
<Comparative example 2>
10 mg of single-walled carbon nanotubes (manufactured by CNI) produced by chemical evaporation method was added to 10 g of 0.5% sodium dodecylbenzenesulfonate aqueous solution (soft type) and then cone-type ultrasonic irradiator (device name: ULTRASONIC HOMOGENIZER MODEL UH- 600 SR, manufactured by SMT Co., Ltd.) was irradiated with ultrasonic waves for 5 minutes and centrifuged at 3000 rpm for 20 minutes (product name: CR26H, manufactured by Hitachi Koki Co., Ltd.), and then the supernatant was recovered and purified carbon nanotube water A dispersion was obtained.
The obtained dispersion was spray coated in the same manner as in Example to obtain a transparent electrode substrate.

得られた透明電極基板に対するN−メチル−2−ピロリドンの接触角は10°であった(装置名:エルマ ゴニオメータ式 接触角測定器 エルマ光学株式会社製)。
表面抵抗率を4端子2探針法(装置名ロレスタ−FP、ダイアインスツルメンツ社製)にて測定したところ1500Ω/□、全光線透過率を測定したところ(装置名:直読ヘーズコンピュータ、スガ試験機社製)65.0%であった。
比較例2で得られた透明電極基板表面の走査型電子顕微鏡写真を図2に記す。
図2から分かるようにカーボンナノチューブはバンドル状態で存在するが、バンドルの集合状態であるロープ形状は確認できない。
The contact angle of N-methyl-2-pyrrolidone with respect to the obtained transparent electrode substrate was 10 ° (device name: Elma Goniometer type contact angle measuring instrument, manufactured by Elma Optical Co., Ltd.).
When the surface resistivity was measured by a four-terminal two-probe method (device name: Loresta-FP, manufactured by Dia Instruments), 1500 Ω / □, and the total light transmittance was measured (device name: direct reading haze computer, Suga test equipment) 65.0%).
A scanning electron micrograph of the surface of the transparent electrode substrate obtained in Comparative Example 2 is shown in FIG.
As can be seen from FIG. 2, the carbon nanotubes exist in a bundle state, but the rope shape which is an aggregate state of the bundle cannot be confirmed.

上記の、実施例並びに比較例1および2の結果から、カーボンナノチューブを用い、かつSEM観察にてバンドルの集合状態であるロープ形状が確認できる透明電極基板の方が濡れ性の高いことが分かる。したがって、配向膜を作製するに際し、実施例で得られる透明電極基板の方が比較例1および2で得られる透明電極基板に比べ、はじきやピンホールのない均一な膜が得られることがわかる。   From the results of Examples and Comparative Examples 1 and 2 described above, it can be seen that the transparent electrode substrate using carbon nanotubes and capable of confirming the rope shape in the bundled state by SEM observation has higher wettability. Therefore, it can be seen that when the alignment film is produced, the transparent electrode substrate obtained in the example can provide a uniform film without repelling or pinholes compared to the transparent electrode substrate obtained in Comparative Examples 1 and 2.

実施例によるカーボンナノチューブを用いた透明電極基板の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the transparent electrode substrate using the carbon nanotube by an Example. 比較例2によるカーボンナノチューブを用いた透明電極基板の走査型電子顕微鏡写真である。4 is a scanning electron micrograph of a transparent electrode substrate using carbon nanotubes according to Comparative Example 2.

Claims (3)

透明導電膜の主成分が単層カーボンナノチューブであって、該単層カーボンナノチューブが、波長532nmのレーザーを照射して検出されるラマン強度分布特性において、ラマンシフトが1340±40カイザーである範囲にラマン散乱光の強度に第1の吸収を有すると共に、ラマンシフトが1590±20カイザーである範囲にラマン散乱光の強度に第2の吸収を有し、前記第1の吸収強度をID、第2の吸収強度をIGとしたときに式(1)
0<ID/IG≦0.03 (1)
を満たし、かつ、該単層カーボンナノチューブがバンドル状態で存在しており、走査型電子顕微鏡観察にてバンドルの集合状態であるロープ形状が確認できる透明導電膜を備える透明電極基板上に、液晶配向膜を形成することを特徴とする液晶配向膜の製造方法。
The main component of the transparent conductive film is a single-walled carbon nanotube, and the single-walled carbon nanotube has a Raman shift of 1340 ± 40 Kaiser in the Raman intensity distribution characteristic detected by irradiating with a laser having a wavelength of 532 nm. In addition to having the first absorption in the intensity of the Raman scattered light, the Raman shift has the second absorption in the range of the Raman shift of 1590 ± 20 Kaiser, and the first absorption intensity is ID, the second When the absorption intensity of IG is IG, the formula (1)
0 <ID / IG ≦ 0.03 (1)
And the single-walled carbon nanotubes are present in a bundle state, and a liquid crystal alignment is provided on a transparent electrode substrate provided with a transparent conductive film in which a rope shape that is an aggregate state of the bundle can be confirmed by observation with a scanning electron microscope A method for producing a liquid crystal alignment film, comprising forming a film.
前記透明導電膜に対するN−メチル−2−ピロリドンの静的接触角が0°以上5°以下である請求項1に記載の液晶配向膜の製造方法。 The method for producing a liquid crystal alignment film according to claim 1, wherein a static contact angle of N-methyl-2-pyrrolidone with respect to the transparent conductive film is from 0 ° to 5 °. 前記透明導電膜の膜厚が10nm以上500nm以下であることを特徴とする請求項1または2に記載の液晶配向膜の製造方法。 Method of manufacturing a liquid crystal alignment film according to claim 1 or 2, wherein the thickness of the transparent conductive film is 10nm or more 500nm or less.
JP2006290379A 2006-10-25 2006-10-25 Method for producing liquid crystal alignment film Expired - Fee Related JP5160065B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2006290379A JP5160065B2 (en) 2006-10-25 2006-10-25 Method for producing liquid crystal alignment film
TW096139645A TWI434904B (en) 2006-10-25 2007-10-23 Transparent conductive film, transparent electrode substrate, and liquid crystal alignment film using the same, and carbon nanotube tube and preparation method thereof
CNA2007800400267A CN101528595A (en) 2006-10-25 2007-10-24 Transparent conductive film, transparent electrode substrate and method for producing liquid crystal alignment film by using the same, and carbon nanotube and method for producing the same
US12/447,377 US20100297449A1 (en) 2006-10-25 2007-10-24 Transparent conductive film, transparent electrode substrate and method for producing liquid crystal alignment film by using the same, and carbon nanotube and method for producing the same
EP09161029A EP2143686A1 (en) 2006-10-25 2007-10-24 Transperent conductive film, transparent electrode substrate and method for producing liquid crystal alignment film by using the same, and carbon nanotube and method for producing the same
EP07830442A EP2088122A4 (en) 2006-10-25 2007-10-24 Transparent conductive film, transparent electrode substrate and method for producing liquid crystal alignment film by using the same, and carbon nanotube and method for producing the same
CN2011102304597A CN102408105A (en) 2006-10-25 2007-10-24 Transparent conductive film, transparent electrode substrate and method for producing liquid crystal alignment film by using same, and carbon nanotube and method for producing same
PCT/JP2007/070708 WO2008050794A1 (en) 2006-10-25 2007-10-24 Transparent conductive film, transparent electrode substrate and method for producing liquid crystal alignment film by using the same, and carbon nanotube and method for producing the same
KR1020097008532A KR101273961B1 (en) 2006-10-25 2007-10-24 Transparent conductive film, transparent electrode substrate and method for producing liquid crystal alignment film by using the same, and carbon nanotube and method for producing the same
US13/938,850 US20140017417A1 (en) 2006-10-25 2013-07-10 Transparent conductive film, transparent electrode substrate and method for producing liquid crystal alignment film by using the same, and carbon nanotube and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006290379A JP5160065B2 (en) 2006-10-25 2006-10-25 Method for producing liquid crystal alignment film

Publications (2)

Publication Number Publication Date
JP2008108575A JP2008108575A (en) 2008-05-08
JP5160065B2 true JP5160065B2 (en) 2013-03-13

Family

ID=39441751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006290379A Expired - Fee Related JP5160065B2 (en) 2006-10-25 2006-10-25 Method for producing liquid crystal alignment film

Country Status (1)

Country Link
JP (1) JP5160065B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5498058B2 (en) * 2009-05-22 2014-05-21 東京エレクトロン株式会社 Conductive film manufacturing method and manufacturing apparatus, and conductive film
EP2534181B1 (en) * 2010-02-12 2018-04-11 Nantero, Inc. Methods for controlling density, porosity, and/or gap size within nanotube fabric layers and films
JP2011175890A (en) * 2010-02-25 2011-09-08 Toray Ind Inc Conductive film
JP2013077415A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Conductive reflection film composition and manufacturing method of conductive reflection film

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03200118A (en) * 1989-12-28 1991-09-02 Toyota Central Res & Dev Lab Inc Liquid crystal cell
JPH0675225A (en) * 1992-08-25 1994-03-18 Ube Ind Ltd Orientation control film
US6183714B1 (en) * 1995-09-08 2001-02-06 Rice University Method of making ropes of single-wall carbon nanotubes
JP2002515847A (en) * 1997-05-29 2002-05-28 ウィリアム・マーシュ・ライス・ユニバーシティ Carbon fibers formed from single-walled carbon nanotubes
US6790425B1 (en) * 1999-10-27 2004-09-14 Wiliam Marsh Rice University Macroscopic ordered assembly of carbon nanotubes
JP5298398B2 (en) * 2000-07-07 2013-09-25 日産化学工業株式会社 Liquid crystal aligning agent and liquid crystal display device using the same
AU2002307283A1 (en) * 2001-04-12 2002-10-28 Honda Giken Kogyo Kabushiki Kaisha Purification of carbon filaments and their use in storing hydrogen
JP2004156057A (en) * 2002-09-10 2004-06-03 Ulvac Japan Ltd Method for depositing carbon thin film, and carbon thin film obtained thereby
JP4213616B2 (en) * 2004-03-31 2009-01-21 大日本印刷株式会社 Base film for liquid crystal panel, functional film for liquid crystal panel, method for producing functional film, and apparatus for producing functional film
KR100879392B1 (en) * 2004-04-19 2009-01-20 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Carbon-based fine structure group, aggregate of carbon based fine structure, use thereof and method for preparation thereof
JP3952476B2 (en) * 2004-07-26 2007-08-01 学校法人 名城大学 Single-walled carbon nanotube and method for producing the same
JP2006053380A (en) * 2004-08-12 2006-02-23 Seiko Epson Corp Composition for forming liquid crystal alignment layer, and method for manufacturing liquid crystal display device
JP2006154158A (en) * 2004-11-29 2006-06-15 Hitachi Displays Ltd Method for manufacturing liquid crystal alignment layer and liquid crystal display element

Also Published As

Publication number Publication date
JP2008108575A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
KR101273961B1 (en) Transparent conductive film, transparent electrode substrate and method for producing liquid crystal alignment film by using the same, and carbon nanotube and method for producing the same
JP5320287B2 (en) Transparent conductive film and method for producing transparent conductive film
TWI428275B (en) Monolayer carbon nanotube dispersion and the method for preparing monolayer carbon nanotube dispersion
JP5194480B2 (en) Carbon nanotube coating film and manufacturing method thereof
US20090032777A1 (en) Carbon nanotube dispersion liquid and transparent conductive film using same
TWI460123B (en) Method for preparing metallic carbon nanotube, carbon nanotube suspension, film containing carbon nanotube, and transparent conductive film
KR20120098823A (en) Conductive laminated body and touch panel using the same
KR102038206B1 (en) Conductive film, polarizing plate, and touch panel display device
JP5428924B2 (en) Conductive laminate and touch panel using the same
JP5160065B2 (en) Method for producing liquid crystal alignment film
WO2009125788A1 (en) Electrically conductive film wherein carbon nanotubes are used, and method of producing same
WO2016009915A1 (en) Conductive film and display device with touch panel
JP2011082165A (en) Method of manufacturing electrode substrate
KR20080107688A (en) Preparation of transparent conductive film composed of carbon nanotubes for display
JP2009282865A (en) Transparent electrode substrate for touch panel and touch panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees