JP5156939B2 - Method for producing high-frequency soft magnetic film - Google Patents

Method for producing high-frequency soft magnetic film Download PDF

Info

Publication number
JP5156939B2
JP5156939B2 JP2006027841A JP2006027841A JP5156939B2 JP 5156939 B2 JP5156939 B2 JP 5156939B2 JP 2006027841 A JP2006027841 A JP 2006027841A JP 2006027841 A JP2006027841 A JP 2006027841A JP 5156939 B2 JP5156939 B2 JP 5156939B2
Authority
JP
Japan
Prior art keywords
magnetic
frequency
soft magnetic
substrate
cluster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006027841A
Other languages
Japanese (ja)
Other versions
JP2007208156A (en
Inventor
兼治 隅山
棟梁 彭
Original Assignee
国立大学法人 名古屋工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 名古屋工業大学 filed Critical 国立大学法人 名古屋工業大学
Priority to JP2006027841A priority Critical patent/JP5156939B2/en
Publication of JP2007208156A publication Critical patent/JP2007208156A/en
Application granted granted Critical
Publication of JP5156939B2 publication Critical patent/JP5156939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高周波領域で高機能性を示すマイクロ磁気デバイスや電磁ノイズ吸収膜に関し、特に、軟磁性金属及び合金クラスターを堆積させた集合体及びその製造方法に関するものである。   The present invention relates to a micro magnetic device and an electromagnetic noise absorbing film exhibiting high functionality in a high frequency region, and more particularly to an aggregate in which soft magnetic metals and alloy clusters are deposited and a method for manufacturing the same.

近年の情報通信機器の急速な高速化、高密度化及びITS(Intelligent Transport System)、次世代マルチメディア通信(MMAC)、携帯電話やPHS、無線LAN等にGHz帯域の電磁波が用いられるようになってきており、高周波用のマイクロ磁気デバイスの利用範囲が今後ますます拡大すると予想される。   In recent years, high-speed and high-density information communication equipment, ITS (Intelligent Transport System), next-generation multimedia communication (MMAC), mobile phones, PHS, wireless LAN, etc., have come to use electromagnetic waves in the GHz band. The range of use of high-frequency micromagnetic devices is expected to expand further in the future.

また、このような高周波の積極的利用に起因して、電磁ノイズ(電子機器に搭載されるデジタル回路から発生する電磁妨害波)による電子機器の誤動作、電磁波干渉ならびに人体やペースメーカーへの影響が大きな問題となっている。   In addition, due to the active use of such high frequencies, electromagnetic noise (electromagnetic interference generated from digital circuits mounted on electronic devices) has a major impact on electronic equipment malfunction, electromagnetic interference, and the human body and pacemaker. It is a problem.

特に、デジタル回路から発生する電磁妨害波を抑制するための有効な解決手段の一つとして、電磁波吸収材料が注目されているが、従来の電磁波吸収材料よりも薄く、1GHz以上帯域でも高性能な電磁波吸収材料の登場が望まれている。
特開2000−151183 特開2002−217583 特開2005−129764
In particular, electromagnetic wave absorbing materials are attracting attention as one of the effective solutions for suppressing electromagnetic interference generated from digital circuits. The advent of electromagnetic wave absorbing materials is desired.
JP2000-151183A JP 2002-217583 A JP-A-2005-129964

MHzからGHzにわたる高周波数帯域において大きな比透磁率を有する軟磁性体の開発に当たり、マイクロ磁気デバイス用軟磁性体としては比透磁率の実部が大きいこと、電磁波吸収体、電磁妨害波の抑制には比透磁率の虚部が大きいことがそれぞれの目標となる。   In developing a soft magnetic material having a large relative permeability in a high frequency band from MHz to GHz, the soft magnetic material for a micro magnetic device has a large real part of the relative permeability, an electromagnetic wave absorber, and an electromagnetic interference wave. Each has a target that the imaginary part of the relative permeability is large.

また、磁気記録ヘッドなど強力なマイクロ磁気デバイスを作製するには、高透磁率とともに飽和磁束密度が大きいことが重要であり、グラニュラー化(強磁性金属合金粒子と酸化物の微細な集合)やFe合金薄膜への僅かな酸素導入により、飽和磁化を著しく損なわずに電気抵抗を高める(渦電流損を抑制する)手法が用いられている。一方電磁波吸収体用には、電磁波の電場と磁場成分の双方の寄与を高めるために、電気抵抗が高いことが重要であり、Ni-Zn系フェライトや偏平状Fe-Si-Al粉末・ポリマー複合磁性体などの酸化物磁性材料を用いるのが一般的である。   In order to fabricate powerful micro magnetic devices such as magnetic recording heads, it is important that the saturation magnetic flux density is high as well as the high magnetic permeability. Granularization (fine aggregation of ferromagnetic metal alloy particles and oxides) and Fe A technique of increasing electric resistance (suppressing eddy current loss) without significantly impairing saturation magnetization by introducing a slight amount of oxygen into the alloy thin film is used. On the other hand, for electromagnetic wave absorbers, in order to increase the contribution of both the electric and magnetic field components of electromagnetic waves, it is important that the electric resistance is high, and Ni-Zn ferrite and flat Fe-Si-Al powder / polymer composites are important. In general, an oxide magnetic material such as a magnetic material is used.

しかし、酸化物は、飽和磁化が低い上に、1GHz以上帯域で比透磁率の値が大幅に低下してしまう問題がある。上述したように、従来のマイクロ磁気デバイスや電磁波吸収材料よりも薄く(少量で)、1GHz以上帯域でも高機能を発揮する軟磁性材料の開発が切望されている。   However, the oxide has a problem that the saturation magnetization is low and the value of the relative permeability is greatly reduced in the band of 1 GHz or more. As described above, development of a soft magnetic material that is thinner (in a small amount) than a conventional micromagnetic device or electromagnetic wave absorbing material and that exhibits high functions even in a band of 1 GHz or more is eagerly desired.

更に、従来のマイクロ磁気デバイス作成法においては、トランスや電磁波吸収領域の形状に応じた複雑なリソグラフィー加工(何段階もの被覆と、光や電子線露光によるパターニングと化学的エッチング処理)を施す必要があり、より簡単なプロセスが望ましい。   Furthermore, in the conventional micro magnetic device fabrication method, it is necessary to perform complicated lithography processing (coating with many steps, patterning and chemical etching treatment by light and electron beam exposure) according to the shape of the transformer and the electromagnetic wave absorption region. A simpler process is desirable.

上述のように高周波用軟磁性体の高性能化を図るには、比透磁率の実部あるいは虚部を大きくすると同時に、渦電流損失を抑制するため高い電気抵抗が得られるようバランスをとる必要がある。グラニュラー化(強磁性金属合金粒子と酸化物の微細な集合)やFe合金薄膜への僅かな酸素導入による比透磁率の実部の向上と電気抵抗、飽和磁化の確保の方法では電気抵抗の更なる向上が困難であり、酸化物スピネル型フェライトによる高電気抵抗、比透磁率の虚部の向上方法では、飽和磁化が不十分であり、スヌーク(Snoek)の限界則のため、GHz領域で比透磁率の虚部を大きくすることができない。   In order to improve the performance of high-frequency soft magnetic materials as described above, it is necessary to increase the real part or imaginary part of the relative permeability, and at the same time, balance to obtain a high electrical resistance to suppress eddy current loss. There is. In the method of improving the real part of relative permeability and ensuring electrical resistance and saturation magnetization by granulating (fine aggregation of ferromagnetic metal alloy particles and oxide) and introducing a small amount of oxygen into the Fe alloy thin film, the electrical resistance can be further increased. In the method of improving the imaginary part of high electrical resistance and relative permeability with oxide spinel ferrite, saturation magnetization is insufficient, and due to Snoek's limit law, The imaginary part of the permeability cannot be increased.

一方、軟磁性金属の磁化はフェライトの3倍程度も大きく、ナノサイズのクラスターとして複合化させることにより、高周波数領域でフェライトを凌駕する複素透磁率が実現できる。すなわち、本発明は、飽和磁化が最も高いFe-Co、Fe-Ni、Fe-Co-Ni合金クラスターを用い、クラスターの表面を酸化させ、特許文献(特開2005-97706号公報「軟磁性材料の製造方法及び製造装置」)中に提案されているように電圧の印加により高密度化させて強磁性合金クラスター集合体を基本として、高周波用マイクロ磁気デバイスや電磁波吸収体ができる。   On the other hand, the magnetization of a soft magnetic metal is about three times as large as that of ferrite, and a complex magnetic permeability that surpasses that of ferrite in a high frequency region can be realized by combining it as a nano-sized cluster. That is, the present invention uses an Fe-Co, Fe-Ni, and Fe-Co-Ni alloy cluster having the highest saturation magnetization, and oxidizes the surface of the cluster. As proposed in "Manufacturing method and manufacturing apparatus"), a high-frequency micromagnetic device and an electromagnetic wave absorber can be formed based on a ferromagnetic alloy cluster aggregate by increasing the density by applying a voltage.

更に、クラスター堆積中に、基材上に磁場を印加することにより作製すると、作製したクラスター集合体膜中に磁気異方性が付与され、磁気特性として使用周波数1GHz以上の高周波数(準マイクロ波)領域において、虚数部μ”の最大値が200以上(磁気損失成分が大)となり、汎用されている偏平状Fe-Si-Al粉末・ポリマー複合磁性体及びフェライト膜と比べ、格段に優れた電磁波吸収特性(電磁妨害波抑制効果)を示す。   Furthermore, when the magnetic field is applied to the substrate during cluster deposition, magnetic anisotropy is imparted to the prepared cluster aggregate film, and a high frequency (quasi-microwave) with a use frequency of 1 GHz or more is used as a magnetic property. ) In the region, the maximum value of the imaginary part μ ”is 200 or more (large magnetic loss component), which is far superior to the widely used flat Fe-Si-Al powder / polymer composite magnetic material and ferrite film. Shows electromagnetic wave absorption characteristics (electromagnetic interference wave suppression effect).

また、本作製装置を用いると、クラスターをビーム状に発生させることができるので、簡単なマスクを通して基板上に堆積させると、何段階もの被覆、薄膜堆積、光や電子線露光によるパターニング、化学的エッチング処理を施すことなく、目的の形状の高周波軟磁性体が作製できる。   In addition, using this manufacturing device, clusters can be generated in the form of a beam, so when deposited on a substrate through a simple mask, many stages of coating, thin film deposition, patterning by light or electron beam exposure, chemical A high-frequency soft magnetic material having a desired shape can be produced without performing an etching process.

本発明の高周波用マイクロ磁気デバイスや電磁波吸収体への応用に適した軟磁性体膜を、室温でクラスターを直接に基材上に堆積して作製でき、基材に対する要求、制限が少ない。   A soft magnetic film suitable for application to the high-frequency micromagnetic device or electromagnetic wave absorber of the present invention can be produced by depositing clusters directly on a substrate at room temperature, and there are few requirements and restrictions on the substrate.

本発明で、飽和磁化が最も高いFe-Co合金クラスターを用いることにより、飽和磁化2T以上が実現するとともに、周波数1 GHz以上でも比透磁率の実部μ’100以上が維持され、更に、基材上に磁場を印加して一軸磁気異方性を付与することにより3GHzでも比透磁率の虚部μ”200以上が実現され、現在開発されつつあるマイクロ磁気デバイス用の部分酸化Fe合金薄膜のμ’の値や、汎用の偏平状Fe-Si-Al粉末・ポリマー複合磁性電磁波吸収体を与えるパラメーターμ”・fと比較して、1 GHz以上の高周波数(準マイクロ波)領域において1桁以上高い値を有する(図7参照)。例えば、本発明で作製されたFe65Co35合金クラスターからなる高周波用軟磁性体膜は、従来のマイクロ磁気デバイス用材料や電磁波吸収体材料に比べて、より少量で同程度の磁気特性が達成でき、或いはより薄型化が可能となる効果がある。 In the present invention, by using the Fe-Co alloy cluster having the highest saturation magnetization, a saturation magnetization of 2T or more is realized, and the real part μ′100 or more of the relative permeability is maintained even at a frequency of 1 GHz or more. By applying a magnetic field on the material to impart uniaxial magnetic anisotropy, an imaginary part μ ”of 200” or more is achieved even at 3 GHz, and a partially oxidized Fe alloy thin film for micro magnetic devices is currently being developed. Compared to the value of μ 'and the parameter μ ”· f that gives general-purpose flat Fe-Si-Al powder / polymer composite magnetic electromagnetic wave absorbers, it is one digit in the high frequency (quasi-microwave) region above 1 GHz. It has a higher value (see FIG. 7). For example, the high-frequency soft magnetic film made of Fe 65 Co 35 alloy cluster produced in the present invention achieves the same level of magnetic properties in a smaller amount than conventional micro magnetic device materials and electromagnetic wave absorber materials. This is advantageous in that it can be made thinner or thinner.

クラスターをビーム状に基板に入射させると同時に、目的形状の隙間の開いたマスクを併用することにより、その形状の高周波用軟磁性体薄膜が容易に作製できる。   A high frequency soft magnetic thin film having a desired shape can be easily fabricated by using a mask with a gap having a desired shape at the same time that the cluster is incident on the substrate in the form of a beam.

以下、本発明を具体化した実施例を図面を参照しつつ説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the drawings.

図1に示すように、スキマーの箇所にコリメータ(内径2から5mm管状のノズル)を設置することにより、ビーム状のクラスターを噴出させることができ、基板の直上にマスクを取り付けると、目的とする形状のクラスター堆積膜が作製できる。   As shown in FIG. 1, a beam-like cluster can be ejected by installing a collimator (inner diameter 2 to 5 mm tubular nozzle) at the location of the skimmer. A cluster deposited film having a shape can be produced.

室温でクラスターを直接に基材上に堆積して、高周波用のマイクロ磁気デバイスや電磁波吸収体を作製するので、基材に対する要求(基板温度、熱処理、基板材料の種類などの制限)が少ない。   Since the cluster is directly deposited on the base material at room temperature to produce a high-frequency micromagnetic device or electromagnetic wave absorber, the requirements for the base material (restrictions on substrate temperature, heat treatment, type of substrate material, etc.) are few.

表面酸化用酸素流量をコントロールすることで、用途に応じた高周波数帯域で機能性を発揮できるよう、比透磁率の実部μ’と虚部μ”、電気抵抗を調整することが可能となる(図3と4参照)。   By controlling the oxygen flow rate for surface oxidation, the real part μ ′ and imaginary part μ ″ of the relative permeability and the electric resistance can be adjusted so that the functionality can be exhibited in the high frequency band according to the application. (See FIGS. 3 and 4).

特に、基材上に磁場を印加することにより作製した高周波電磁ノイズ抑制体に一軸磁気異方性を発生させることで、1GHz以上の高周波数(準マイクロ波)領域において高い複数透磁率の虚数部μ”(200以上)を有することができる(図5と6参照)。   In particular, by generating uniaxial magnetic anisotropy in a high-frequency electromagnetic noise suppressor fabricated by applying a magnetic field on a substrate, an imaginary part with high multiple permeability in a high frequency (quasi-microwave) region of 1 GHz or higher μ ″ (200 or more) (see FIGS. 5 and 6).

図1においては、スキマーから噴出されたクラスターは発散して基板面上に堆積されクラスター集合体膜が形成される。しかし、スキマーの形状制御、コリメーターの取り付けにより、クラスターがビーム状に噴出される。したがって、基板上に目的形状の隙間の開いたマスクを設置することにより、目的形状の高周波用軟磁性体薄膜が作製可能となる。   In FIG. 1, clusters ejected from the skimmer diverge and are deposited on the substrate surface to form a cluster assembly film. However, the cluster is ejected in the form of a beam by controlling the shape of the skimmer and attaching a collimator. Therefore, a high-frequency soft magnetic thin film having a target shape can be produced by installing a mask having a target shape with a gap in between.

本発明は、例えば高周波マイクロ磁気デバイス、高周波電磁ノイズ吸収体用軟磁性体膜等に利用可能である。   The present invention is applicable to, for example, a high-frequency micromagnetic device, a soft magnetic film for a high-frequency electromagnetic noise absorber, and the like.

本発明の高周波用軟磁性体膜の製造装置の構成の一例を模式的に説明するブロック図である。It is a block diagram which illustrates typically an example of a structure of the manufacturing apparatus of the soft magnetic material film for high frequencies of this invention. 本発明の高周波用軟磁性体膜の製造装置の構成の一例を模式的に説明するブロック図の要部(電圧及び磁場を印加する部分)拡大模式図である(90度回転した)である。FIG. 3 is an enlarged schematic view (rotated 90 degrees) of a main part (a portion to which a voltage and a magnetic field are applied) of a block diagram for schematically explaining an example of the configuration of the high-frequency soft magnetic film manufacturing apparatus of the present invention. 表面酸化用酸素ガス流量の変化による電気抵抗率変化を示すグラフである。It is a graph which shows the electrical resistivity change by the change of the oxygen gas flow rate for surface oxidation. 表面酸化用酸素ガス流量の変化による比透磁率の実部μ’と虚部μ”の周波数依存性を示すグラフである。It is a graph which shows the frequency dependence of the real part micro 'and imaginary part mu "of relative permeability by change of oxygen gas for surface oxidation. 酸素を導入しない場合、基材上に磁場を印加して作製したクラスター集合体膜の複数透磁率の実部μ’と虚部μ”の周波数依存性を示すグラフである。6 is a graph showing the frequency dependence of real part μ ′ and imaginary part μ ″ of a plurality of magnetic permeability of a cluster assembly film produced by applying a magnetic field on a substrate when oxygen is not introduced. 酸素を導入した場合、基材上に磁場を印加して作製したクラスター集合体膜の比透磁率の実部μ’と虚部μ”の周波数依存性を示すグラフである。6 is a graph showing the frequency dependence of the real part μ ′ and the imaginary part μ ″ of the relative permeability of a cluster assembly film produced by applying a magnetic field on a substrate when oxygen is introduced. 本発明のクラスター集合体軟磁性膜と実用あるいは報告されている高機能軟磁性体材料との飽和磁化及び電気抵抗の比較図である。It is a comparison figure of saturation magnetization and electrical resistance of the cluster aggregate soft magnetic film of the present invention and a practical or reported high-functional soft magnetic material. 本発明の高周波電磁ノイズ抑制体の電磁ノイズ抑制効果に関して、汎用されている偏平状Fe-Si-Al粉末・ポリマー複合磁性体及びゴム・フェライトと比較したグラフである。It is the graph compared with the flat-shaped Fe-Si-Al powder-polymer composite magnetic body and rubber-ferrite which are used widely regarding the electromagnetic noise suppression effect of the high frequency electromagnetic noise suppression body of this invention.

Claims (2)

Fe−Co、Fe−NiまたはFe−Co−Niからなる合金クラスターを直接に基材(基板)上に堆積した高周波難磁性体膜の製造方法であって、クラスター堆積中に基材上に磁場を印加することにより膜中に磁気異方性を付与し、さらに合金クラスターの表面を酸化させることにより、磁気特性として1GHz以上の高周波領域において比磁率の虚数部の最大値が200以上となる高周波軟磁性体膜の製造方法。 A method for producing a high-frequency non-magnetic film in which an alloy cluster composed of Fe-Co, Fe-Ni, or Fe-Co-Ni is directly deposited on a substrate (substrate), wherein a magnetic field is formed on the substrate during cluster deposition. the magnetic anisotropy is given to the film by applying a further by oxidizing the surface of the alloy clusters, the maximum value of the imaginary part of the specific magnetic permeability in a 1GHz high frequency region as the magnetic properties is more than 200 A method for producing a high-frequency soft magnetic film. 前記合金クラスターをビーム状に発生させ、マスクを通して前記基材上に堆積させる請求項1に記載の高周波軟磁性体の製造方法。
The method for producing a high-frequency soft magnetic material according to claim 1, wherein the alloy cluster is generated in a beam shape and deposited on the substrate through a mask.
JP2006027841A 2006-02-06 2006-02-06 Method for producing high-frequency soft magnetic film Active JP5156939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006027841A JP5156939B2 (en) 2006-02-06 2006-02-06 Method for producing high-frequency soft magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006027841A JP5156939B2 (en) 2006-02-06 2006-02-06 Method for producing high-frequency soft magnetic film

Publications (2)

Publication Number Publication Date
JP2007208156A JP2007208156A (en) 2007-08-16
JP5156939B2 true JP5156939B2 (en) 2013-03-06

Family

ID=38487331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006027841A Active JP5156939B2 (en) 2006-02-06 2006-02-06 Method for producing high-frequency soft magnetic film

Country Status (1)

Country Link
JP (1) JP5156939B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04168272A (en) * 1990-10-31 1992-06-16 Matsushita Electric Ind Co Ltd Method and device for forming film by ion beam
JP3182399B2 (en) * 1997-09-17 2001-07-03 株式会社東芝 Soft magnetic alloy film and manufacturing method thereof, magnetic head, and magnetic disk
JP3723377B2 (en) * 1999-04-20 2005-12-07 独立行政法人科学技術振興機構 Method and apparatus for producing alloy or compound cluster particles
JP3751767B2 (en) * 1999-06-04 2006-03-01 独立行政法人科学技術振興機構 Method for producing layered cluster
JP2001297905A (en) * 2000-04-17 2001-10-26 Tokin Corp High-frequency current suppressor
KR100394993B1 (en) * 2001-02-20 2003-08-19 한국과학기술연구원 FeCoNiN Based Soft Magnetic Thin Films Compositions
SG121757A1 (en) * 2003-02-11 2006-05-26 Agency Science Tech & Res Thin film magnetic recording media
JP2004260020A (en) * 2003-02-26 2004-09-16 Tdk Corp Soft magnetism member
JP4485164B2 (en) * 2003-09-26 2010-06-16 兼治 隅山 Method and apparatus for producing soft magnetic material
JP2005109246A (en) * 2003-09-30 2005-04-21 Tdk Corp High frequency magnetic thin film and its manufacturing method, and magnetic element
JP4521174B2 (en) * 2003-10-15 2010-08-11 国立大学法人 名古屋工業大学 Cluster manufacturing apparatus and cluster manufacturing method
JP4490720B2 (en) * 2004-04-05 2010-06-30 日本放送協会 Soft magnetic thin film, manufacturing method thereof, and magnetic head

Also Published As

Publication number Publication date
JP2007208156A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
Sun et al. Multi-dimensional Ni@ C-CoNi composites with strong magnetic interaction toward superior microwave absorption
KR20070033253A (en) Chip inductor
JP2006191041A (en) Magnetic laminated structure and method of manufacturing the same
JP2009239153A (en) High-frequency magnetic material and method of manufacturing the same
JPH04226003A (en) Composite soft magnetic material and coated particles for composite soft magnetic material
CN109215922B (en) Composite magnetic material and magnetic core
KR101963265B1 (en) Inductor component
JP2011249628A (en) Method for producing electromagnetic interference suppression body
JP5156939B2 (en) Method for producing high-frequency soft magnetic film
JP2010135567A (en) Radio wave absorbing material
CN113000834B (en) Wave absorbing material and method for producing same
JP2013125901A (en) Magnetic nanoparticle
JP2002158486A (en) Electromagnetic wave absorbing film
JPH09181476A (en) Ultrafine-crystalline magnetic film-made radio wave absorber
CN109825687B (en) Method for preparing electromagnetic wave absorption structure by adopting iron-based nanocrystalline absorbent
JP4328885B2 (en) Ferrite-plated sendust fine particles and method for producing the same
JP2006086421A (en) Laminate magnetic thin film and its manufacturing method
EP1172806A1 (en) Method for producing magnetic information carrier
Kim et al. Magnetic cores usable in gigahertz range: Permalloy/Ni-Zn ferrite microcomposite made by low-temperature wet process
JP7251468B2 (en) Composite magnetic materials, magnetic cores and electronic components
CN113192720A (en) Nanoparticle composite magnetic core film and preparation method thereof
JP6612676B2 (en) Near-field noise suppression sheet
JP2011082278A (en) Composite magnetic material
JP2004303825A (en) Laminated soft magnetic member, and electronic apparatus
TW201106583A (en) Electronicmagnetic interference shielding material, electronic inferference shielding cover and voice coil motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150