JP5149431B2 - Temperature detection device that detects the temperature of the mover of the motor - Google Patents

Temperature detection device that detects the temperature of the mover of the motor Download PDF

Info

Publication number
JP5149431B2
JP5149431B2 JP2011167677A JP2011167677A JP5149431B2 JP 5149431 B2 JP5149431 B2 JP 5149431B2 JP 2011167677 A JP2011167677 A JP 2011167677A JP 2011167677 A JP2011167677 A JP 2011167677A JP 5149431 B2 JP5149431 B2 JP 5149431B2
Authority
JP
Japan
Prior art keywords
temperature
mover
phase
winding
estimation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011167677A
Other languages
Japanese (ja)
Other versions
JP2013029483A (en
Inventor
達也 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FANUC Corp
Original Assignee
FANUC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FANUC Corp filed Critical FANUC Corp
Priority to JP2011167677A priority Critical patent/JP5149431B2/en
Priority to US13/524,114 priority patent/US8967857B2/en
Priority to DE102012014320.6A priority patent/DE102012014320B4/en
Priority to CN201210262697.0A priority patent/CN102901584B/en
Publication of JP2013029483A publication Critical patent/JP2013029483A/en
Application granted granted Critical
Publication of JP5149431B2 publication Critical patent/JP5149431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、電動機の可動子を過熱から保護するために電動機の可動子の温度を検出する温度検出装置に関する。   The present invention relates to a temperature detection device that detects the temperature of a motor mover in order to protect the motor mover from overheating.

従来、固定子及び可動子を有する電動機を過熱から保護するための温度検出装置において、固定子の巻線付近に取り付けられたサーミスタやサーモスタットのような温度検出素子によって巻線の温度を検出し、検出した温度が所定の値を超えている場合にはアラーム信号を生成している。   Conventionally, in a temperature detection device for protecting an electric motor having a stator and a mover from overheating, the temperature of a winding is detected by a temperature detection element such as a thermistor or a thermostat attached in the vicinity of the winding of the stator, When the detected temperature exceeds a predetermined value, an alarm signal is generated.

また、電動機を過熱から保護するために巻線の温度を検出する際に、温度検出器によって検出された温度の他にモータロスを考慮する温度検出装置も提案されている(例えば、特許文献1)。   Also, a temperature detection device that considers motor loss in addition to the temperature detected by the temperature detector when detecting the temperature of the winding to protect the motor from overheating has been proposed (for example, Patent Document 1). .

特開2009−261078号公報JP 2009-261078 A

しかしながら、従来の温度検出装置は、巻線を過熱保護するためのものであり、可動子を過熱保護するものではない。例えば、同期型電動機の可動子(ロータ)が高速回転するときには、可動子の発熱量が大きくなり、固定子が強制冷却されるので、可動子の温度が固定子の温度より著しく高くなる場合がある。このように可動子の温度が固定子の温度より著しく高くなることによって、電動機に取り付けられたワークや工具のような被駆動体に熱が伝導するという不都合や、可動子が永久磁石を有する場合には永久磁石の減磁又は消磁が生じるという不都合がある。   However, the conventional temperature detection device is for protecting the windings from overheating, and does not protect the mover from overheating. For example, when the mover (rotor) of a synchronous motor rotates at a high speed, the amount of heat generated by the mover increases and the stator is forcibly cooled, so the temperature of the mover may be significantly higher than the temperature of the stator. is there. When the temperature of the mover is significantly higher than the temperature of the stator in this way, heat is conducted to a driven body such as a work or tool attached to the motor, or the mover has a permanent magnet. Has the disadvantage that permanent magnets are demagnetized or demagnetized.

これらの不都合を回避するために、巻線だけでなく可動子も過熱保護する必要がある。しかしながら、サーミスタやサーモスタットのような温度検出器は有線通信を行うので、可動子の温度を検出するために温度検出器を可動子に組み込むのは困難である。   In order to avoid these disadvantages, it is necessary to protect not only the windings but also the mover by overheating. However, since a temperature detector such as a thermistor or a thermostat performs wired communication, it is difficult to incorporate the temperature detector into the mover in order to detect the temperature of the mover.

本発明の目的は、電動機の可動子を過熱保護するために電動機の可動子の温度を検出することができる温度検出装置を提供することである。   The objective of this invention is providing the temperature detection apparatus which can detect the temperature of the needle | mover of an electric motor in order to carry out overheat protection of the needle | mover of an electric motor.

本発明による温度検出装置は、電動機の可動子の温度を検出する温度検出装置であって、前記電動機の固定子と可動子のうちのいずれか一方に設けられた巻線の電流値を検出する電流検出部と、前記電流値を用いて前記可動子の鉄損を推定する鉄損推定部と、前記鉄損を用いて前記可動子の温度を推定する可動子温度推定部と、を有する。   A temperature detection device according to the present invention is a temperature detection device that detects the temperature of a mover of an electric motor, and detects a current value of a winding provided on one of the stator and the mover of the electric motor. A current detection unit; an iron loss estimation unit that estimates the iron loss of the mover using the current value; and a mover temperature estimation unit that estimates the temperature of the mover using the iron loss.

好適には、前記巻線の温度を推定する巻線温度推定部を更に有し、前記可動子温度推定部は、前記鉄損及び前記巻線の温度を用いて前記可動子の温度を推定する。   Preferably, it further includes a winding temperature estimation unit that estimates the temperature of the winding, and the mover temperature estimation unit estimates the temperature of the mover using the iron loss and the temperature of the winding. .

好適には、前記巻線が前記固定子に設けられ、前記巻線温度推定部は、前記巻線の周辺に配置された温度検出素子である。   Preferably, the winding is provided in the stator, and the winding temperature estimation unit is a temperature detection element arranged around the winding.

好適には、前記巻線温度推定部は、前記電流値から前記巻線の銅損を推定し、前記銅損から前記巻線の温度の上昇分を推定する。   Preferably, the winding temperature estimation unit estimates a copper loss of the winding from the current value, and estimates an increase in the temperature of the winding from the copper loss.

好適には、三相交流電流のうちのU相、V相及びW相の交流電流がそれぞれ供給される三つの巻線が、前記固定子に設けられ、前記鉄損推定部は、式

Figure 0005149431
に基づいて前記可動子の鉄損を推定する。 Preferably, three windings to which U-phase, V-phase, and W-phase AC currents of the three-phase AC currents are respectively supplied are provided in the stator, and the iron loss estimation unit has the formula
Figure 0005149431
Based on the above, the iron loss of the mover is estimated.

好適には、三相交流電流のうちのU相、V相及びW相の交流電流がそれぞれ供給される三つの巻線が、前記固定子に設けられ、前記鉄損推定部は、式

Figure 0005149431
に基づいて前記可動子の鉄損を推定し、前記可動子温度推定部は、前記鉄損、前記巻線の温度及び前記可動子の温度を用いて前記可動子の温度の上昇分を推定する。 Preferably, three windings to which U-phase, V-phase, and W-phase AC currents of the three-phase AC currents are respectively supplied are provided in the stator, and the iron loss estimation unit has the formula
Figure 0005149431
The mover temperature estimation unit estimates an increase in temperature of the mover using the iron loss, the temperature of the winding, and the temperature of the mover. .

好適には、前記可動子温度推定部によって推定された温度が所定の温度を超えた場合にアラームを生成するアラーム生成部を更に有する。   Preferably, the apparatus further includes an alarm generation unit that generates an alarm when the temperature estimated by the mover temperature estimation unit exceeds a predetermined temperature.

好適には、前記電動機が同期電動機である。   Preferably, the electric motor is a synchronous motor.

本発明によれば、巻線の電流値を検出し、電流値を用いて可動子の鉄損を推定し、鉄損を用いて可動子の温度を推定することによって、電動機の可動子を過熱保護するために電動機の可動子の温度を検出することができる。   According to the present invention, the current value of the winding is detected, the iron loss of the mover is estimated using the current value, and the temperature of the mover is estimated using the iron loss, thereby overheating the mover of the motor. In order to protect, the temperature of the mover of the electric motor can be detected.

本発明の第1の実施の形態の温度検出装置を有するシステムのブロック図である。1 is a block diagram of a system having a temperature detection device according to a first embodiment of the present invention. 本発明の第1の実施の形態の温度検出装置の動作のフローチャートである。It is a flowchart of operation | movement of the temperature detection apparatus of the 1st Embodiment of this invention. 本発明の第2の実施の形態の温度検出装置を有するシステムのブロック図である。It is a block diagram of the system which has the temperature detection apparatus of the 2nd Embodiment of this invention. 本発明の第2の実施の形態の温度検出装置の動作のフローチャートである。It is a flowchart of operation | movement of the temperature detection apparatus of the 2nd Embodiment of this invention. 本発明の第3の実施の形態の温度検出装置を有するシステムのブロック図である。It is a block diagram of the system which has the temperature detection apparatus of the 3rd Embodiment of this invention. 本発明の第4の実施の形態の温度検出装置を有するシステムのブロック図である。It is a block diagram of the system which has the temperature detection apparatus of the 4th Embodiment of this invention. 本発明の第4の実施の形態の温度検出装置の動作のフローチャートである。It is a flowchart of operation | movement of the temperature detection apparatus of the 4th Embodiment of this invention.

本発明による温度検出装置の実施の形態を、図面を参照しながら説明する。なお、図面中、同一構成要素には同一符号を付す。
図1は、本発明の第1の実施の形態の温度検出装置を有するシステムのブロック図である。図1に示すシステムは、三相交流電源1と、コンバータ2と、平滑用コンデンサ3と、インバータ4と、永久磁石同期電動機5と、被駆動体6と、エンコーダ7と、温度検出装置10と、ディスプレイ21と、を有する。
Embodiments of a temperature detection device according to the present invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals.
FIG. 1 is a block diagram of a system having a temperature detection device according to a first embodiment of the present invention. The system shown in FIG. 1 includes a three-phase AC power source 1, a converter 2, a smoothing capacitor 3, an inverter 4, a permanent magnet synchronous motor 5, a driven body 6, an encoder 7, and a temperature detection device 10. And a display 21.

コンバータ2は、例えば、複数(3相交流の場合は6個)の整流ダイオード及びこれらの整流ダイオードのそれぞれに逆並列に接続されたトランジスタによって構成され、三相交流電源1から供給される交流電力を直流電力に変換する。平滑用コンデンサ3は、コンバータ2の整流ダイオードによって整流された電圧を平滑化するためにコンバータ2に並列に接続される。インバータ4は、平滑用コンデンサ3に並列に接続され、例えば、複数(3相交流の場合は6個)の整流ダイオード及びこれらの整流ダイオードのそれぞれに逆並列に接続されたトランジスタによって構成され、コンバータ2によって変換された直流電力を交流電力に変換する。   The converter 2 includes, for example, a plurality of (six in the case of three-phase alternating current) rectifier diodes and transistors connected in reverse parallel to these rectifier diodes, and the alternating-current power supplied from the three-phase alternating current power supply 1. Is converted to DC power. The smoothing capacitor 3 is connected in parallel to the converter 2 in order to smooth the voltage rectified by the rectifier diode of the converter 2. The inverter 4 is connected in parallel to the smoothing capacitor 3, and includes, for example, a plurality of (six in the case of three-phase alternating current) rectifier diodes and transistors connected in antiparallel to each of these rectifier diodes. DC power converted by 2 is converted into AC power.

永久磁石同期電動機5は、テーブル、アーム、それらに着脱されるワーク等の被駆動体6が接続され、例えば、工作機械においてワークを保持するテーブルの位置や姿勢を変えるためのもの、ロボットのアームを回転操作させるもの等であってもよい。本実施の形態では、永久磁石同期電動機5を、エンコーダ7が取り付けられた回転軸51を有する可動子としてのロータ52と、ロータ52を取り囲むように配置された固定子としてのステータ53とを有する回転型サーボモータとする。   The permanent magnet synchronous motor 5 is connected to a driven body 6 such as a table, an arm, and a work attached to and detached from the table, for example, for changing the position and posture of a table for holding a work in a machine tool, a robot arm It may be one that rotates and the like. In the present embodiment, the permanent magnet synchronous motor 5 includes a rotor 52 as a mover having a rotating shaft 51 to which an encoder 7 is attached, and a stator 53 as a stator arranged so as to surround the rotor 52. A rotary servo motor is used.

ロータ52は、90°間隔で配置された4個の永久磁石54a,54b,54c,54dを有する。永久磁石54a,54b,54c,54dは、ステータ53側の端部がロータ52の回転方向に対して互いに90°ずつ離れるとともに、永久磁石54a,54b,54c,54dの外側の端部が交互にN極、S極、N極及びS極となるように配置される。   The rotor 52 has four permanent magnets 54a, 54b, 54c, 54d arranged at intervals of 90 °. The permanent magnets 54a, 54b, 54c, and 54d are spaced apart from each other by 90 ° with respect to the rotation direction of the rotor 52, and the outer ends of the permanent magnets 54a, 54b, 54c, and 54d are alternately arranged. It arrange | positions so that it may become N pole, S pole, N pole, and S pole.

ステータ53は、120°間隔で配置され、U相、V相及びW相の交流電流がそれぞれ供給される3個の巻線55u,55v,55wを有する。したがって、永久磁石同期電動機3は、三相同期電動機として機能する。   The stator 53 has three windings 55u, 55v, and 55w that are arranged at intervals of 120 ° and are supplied with U-phase, V-phase, and W-phase AC currents, respectively. Therefore, the permanent magnet synchronous motor 3 functions as a three-phase synchronous motor.

温度検出装置10は、後に詳しく説明するように、可動子52の温度Trを検出する。このために、温度検出装置10は、電流検出部11と、鉄損推定部12と、可動子温度推定部13と、を有する。 The temperature detection device 10 detects the temperature Tr of the mover 52, as will be described in detail later. For this purpose, the temperature detection device 10 includes a current detection unit 11, an iron loss estimation unit 12, and a mover temperature estimation unit 13.

電流検出部11は、巻線55uに流れるU相交流電流値Iu、巻線55vに流れるV相交流電流値 v 及び巻線55wに流れるW相交流電流値Iwを検出する。そして、電流検出部11は、検出したU相交流電流値Iu、V相交流電流値 v 及びW相交流電流値Iwに基づいて、U相交流電流、V相交流電流及びW相交流電流の周波数ω、D相交流電流の振幅値(D相直流電流値)|Id|並びにQ相交流電流の振幅値(Q相直流電流値)|Iq|を求め、これらを鉄損推定部12に供給する。このために、電流検出部11は、例えば、U相交流電流値Iu、V相交流電流値 v 及びW相交流電流値IwをそれぞれU相直流電流値|Iu|、V相直流電流値| v |及びW相直流電流値|Iw|に変換するA/Dコンバータ、エンコーダ7で検出されたロータ52の位置の位相から励磁位相を取得する励磁位相取得部、三相二相変換行列を用いてU相直流電流値|Iu|、V相直流電流値| v |及びW相直流電流値|Iw|をD相直流電流値|Id|及びQ相直流電流値|Iq|に変換する三相二相変換器等によって構成される。 The current detector 11 detects the U-phase AC current value I u flowing through the winding 55u, the V-phase AC current value I v flowing through the winding 55v, and the W-phase AC current value I w flowing through the winding 55w. The current detection unit 11 then detects the U-phase AC current, the V-phase AC current, and the W-phase AC based on the detected U-phase AC current value I u , V-phase AC current value I v, and W-phase AC current value I w. Obtain the frequency ω of the current, the amplitude value of the D-phase AC current (D-phase DC current value) | I d | and the amplitude value of the Q-phase AC current (Q-phase DC current value) | I q | To the unit 12. For this purpose, the current detection unit 11 converts, for example, the U-phase AC current value I u , the V-phase AC current value I v, and the W-phase AC current value I w into the U-phase DC current value | I u | A / D converter that converts the current value | I v | and the W-phase DC current value | I w |, an excitation phase acquisition unit that acquires the excitation phase from the phase of the position of the rotor 52 detected by the encoder 7, and three-phase two The U-phase DC current value | I u |, the V-phase DC current value | I v | and the W-phase DC current value | I w | are converted into the D-phase DC current value | I d | and the Q-phase DC current using the phase conversion matrix. It is constituted by a three-phase two-phase converter or the like that converts the value | I q |.

鉄損推定部12は、式

Figure 0005149431
に基づいて可動子52の鉄損pを推定し、鉄損pを可動子温度推定部13に供給する。 The iron loss estimator 12 uses the formula
Figure 0005149431
Based on the above, the iron loss p of the mover 52 is estimated, and the iron loss p is supplied to the mover temperature estimation unit 13.

式(1)において、第1項は、渦電流による損失に相当し、第2項は、ヒステリシスによる損失に対応する。定数a,b,c,e,f,α,βを決定する際に、鉄損pの計測やシミュレーション(例えば、磁気解析)においてD相交流電流値Id及びQ相交流電流値Iqを変えながら鉄損pを求め、求めた鉄損pと式(1)との残差が最小となるような定数a,b,c,e,f,α,βを選択する。なお、指数α及びβが決定されていないために定数a,b,c,e,fの算出が困難である場合、既知の指数α及びβの値(例えば、α=2,β=1.6)を予め選択し、定数a,b,c,e,fのみを算出してもよい。なお、Id=Iq=0であるときの鉄損pに相当するbcαω2+fcβωは、可動子52の移動により生じる磁束変動に起因する鉄損である。また、ヒステリシスによる損失が非常に小さい場合、第2項を無視することもできる。 In Equation (1), the first term corresponds to loss due to eddy current, and the second term corresponds to loss due to hysteresis. When determining the constants a, b, c, e, f, α, and β, the D-phase AC current value I d and the Q-phase AC current value I q are measured in the iron loss p measurement and simulation (eg, magnetic analysis). The iron loss p is obtained while changing, and constants a, b, c, e, f, α, β are selected so that the residual between the obtained iron loss p and Equation (1) is minimized. If the constants a, b, c, e, and f are difficult to calculate because the indices α and β are not determined, the values of the known indices α and β (for example, α = 2, β = 1. 6) may be selected in advance, and only constants a, b, c, e, and f may be calculated. Note that bc α ω 2 + fc β ω corresponding to the iron loss p when I d = I q = 0 is an iron loss caused by a magnetic flux variation caused by the movement of the mover 52. If the loss due to hysteresis is very small, the second term can be ignored.

可動子温度推定部13は、式

Figure 0005149431
に基づいて可動子52の温度Trを推定し、温度Trに関する映像信号Stをディスプレイ21に出力する。なお、ここでは、Tr(0)=Tsとしている。また、式(2)によれば、可動子52の温度Trの上昇分を推定することもできる。 The mover temperature estimator 13 is given by the equation
Figure 0005149431
Estimating the temperature T r of the mover 52 based on the outputs a video signal S t relating to the temperature T r on the display 21. Here, T r (0) = T s is assumed. Further, according to the equation (2), it is possible to estimate an increase in the temperature Tr of the mover 52.

可動子52の温度Trを推定するためには可動子52の温度の初期値Tr(0)を決定する必要がある。式(2)において、可動子52の温度の初期値Tr(0)を、永久磁石同期電動機5の周囲の温度Tsとしているが、可動子52の温度の初期値Tr(0)を、巻線55u,55v,55wの温度の初期値又は直接測定した可動子52の温度としてもよい。 In order to estimate the temperature T r of the mover 52, it is necessary to determine the initial value T r (0) of the temperature of the mover 52. In the equation (2), the initial value T r (0) of the temperature of the mover 52 is set as the temperature T s around the permanent magnet synchronous motor 5, but the initial value T r (0) of the temperature of the mover 52 is The initial value of the temperature of the windings 55u, 55v, and 55w or the temperature of the mover 52 directly measured may be used.

ディスプレイ21は、液晶表示装置(LCD)等によって構成され、映像信号Stを表示し、可動子52の温度Trについての注意をユーザに対して喚起する。このように注意を喚起することによって、可動子52を過熱保護するよう永久磁石同期電動機5の動作を、ユーザによる永久磁石同期電動機5の操作によって制御することができる。 Display 21 includes a liquid crystal display device (LCD) or the like, to display the video signal S t, draw attention of the temperature T r of the movable element 52 to the user. By calling attention in this way, the operation of the permanent magnet synchronous motor 5 can be controlled by the operation of the permanent magnet synchronous motor 5 by the user so as to protect the mover 52 from overheating.

図2は、本発明の第1の実施の形態の温度検出装置の動作のフローチャートである。先ず、ステップS1において、電流検出部11は、U相交流電流値Iu、V相交流電流値 v 及びW相交流電流値Iwを検出し、検出したU相交流電流値Iu、V相交流電流値 v 及びW相交流電流値Iwに基づいて、U相交流電流、V相交流電流及びW相交流電流の周波数ω、D相交流電流の振幅値(D相直流電流値)|Id|並びにQ相交流電流の振幅値(Q相直流電流値)|Iq|を求め、これらを鉄損推定部12に供給する。 FIG. 2 is a flowchart of the operation of the temperature detection apparatus according to the first embodiment of the present invention. First, in step S1, the current detection unit 11 detects the U-phase AC current value I u , the V-phase AC current value I v, and the W-phase AC current value I w, and detects the detected U-phase AC current values I u , V Based on the phase AC current value I v and the W phase AC current value I w , the frequency ω of the U phase AC current, the V phase AC current and the W phase AC current, and the amplitude value of the D phase AC current (D phase DC current value) | I d | and the amplitude value of the Q-phase AC current (Q-phase DC current value) | I q | are obtained and supplied to the iron loss estimation unit 12.

次に、ステップS2において、鉄損推定部12は、式(1)に基づいて鉄損pを推定し、鉄損pを可動子温度推定部13に供給する。次に、ステップS3において、可動子温度推定部13は、式(2)に基づいて可動子52の温度Trを推定し、温度Trについての映像信号Stをディスプレイ21に出力する。次に、ステップS4において、ディスプレイ21は、映像信号Stを表示し、処理を終了する。 Next, in step S <b> 2, the iron loss estimation unit 12 estimates the iron loss p based on the formula (1), and supplies the iron loss p to the mover temperature estimation unit 13. Next, in step S3, the movable element temperature estimation unit 13 estimates the temperature T r of the mover 52 based on equation (2), and it outputs a video signal S t of the temperature T r on the display 21. Next, in step S4, the display 21 displays the video signal S t, the process ends.

本実施の形態によれば、U相交流電流値Iu、V相交流電流値 v 及びW相交流電流値Iwを検出し、これらU相交流電流値Iu、V相交流電流値 v 及びW相交流電流値Iwを用いて可動子52の鉄損pを推定し、鉄損pを用いて可動子52の温度Trを推定することによって、可動子52を過熱から保護するために可動子52の温度Trを検出することができる。 According to the present embodiment, U-phase AC current value I u , V-phase AC current value I v and W-phase AC current value I w are detected, and these U-phase AC current value I u and V-phase AC current value I are detected. using v and W-phase alternating current I w to estimate the iron loss p of the movable element 52, by estimating the temperature T r of the movable element 52 with a core loss p, to protect the movable element 52 from overheating Therefore, the temperature Tr of the mover 52 can be detected.

図3は、本発明の第2の実施の形態の温度検出装置を有するシステムのブロック図である。図3に示すシステムは、三相交流電源1と、コンバータ2と、平滑用コンデンサ3と、インバータ4と、永久磁石同期電動機5と、被駆動体6と、温度検出装置10’と、ディスプレイ21と、を有する。温度検出装置10’は、電流検出部11と、鉄損推定部12と、可動子温度推定部13’と、巻線温度推定部14と、を有する。   FIG. 3 is a block diagram of a system having the temperature detection device according to the second embodiment of the present invention. The system shown in FIG. 3 includes a three-phase AC power source 1, a converter 2, a smoothing capacitor 3, an inverter 4, a permanent magnet synchronous motor 5, a driven body 6, a temperature detection device 10 ′, and a display 21. And having. The temperature detection device 10 ′ includes a current detection unit 11, an iron loss estimation unit 12, a mover temperature estimation unit 13 ′, and a winding temperature estimation unit 14.

巻線温度推定部14は、巻線55u,55v,55wの周辺に配置されたサーミスタやサーモスタットのような温度検出素子である。したがって、巻線温度推定部14は、巻線55u,55v,55wの温度Tcを直接測定する。 The winding temperature estimation unit 14 is a temperature detection element such as a thermistor or a thermostat arranged around the windings 55u, 55v, and 55w. Therefore, the winding temperature estimation unit 14 directly measures the temperature T c of the windings 55u, 55v, and 55w.

可動子温度推定部13’は、式

Figure 0005149431
に基づいて可動子52の温度Trを推定し、温度Trについての映像信号Stをディスプレイ21に出力する。なお、式(3)は、可動子52の発熱量が鉄損と固定子53からの伝熱との和から大気等への放熱を引いたものに相当することを示している。 The mover temperature estimation unit 13 '
Figure 0005149431
Estimating the temperature T r of the mover 52 based on the outputs a video signal S t of the temperature T r on the display 21. Equation (3) indicates that the amount of heat generated by the mover 52 corresponds to the sum of the iron loss and the heat transfer from the stator 53 minus the heat released to the atmosphere or the like.

固定子53の温度が可動子52の温度より高い場合には固定子53から可動子52への伝熱が生じる。式(3)によれば、固定子53の温度に相当する巻線の温度Tcを用いることによって固定子53から可動子52への伝熱を考慮しているので、可動子52の温度Trを、式(2)の場合よりも高い精度で推定することができる。また、式(3)によれば、可動子52の温度Trの上昇分を推定することもできる。 When the temperature of the stator 53 is higher than the temperature of the mover 52, heat transfer from the stator 53 to the mover 52 occurs. According to Equation (3), heat transfer from the stator 53 to the mover 52 is taken into account by using the winding temperature T c corresponding to the temperature of the stator 53, and therefore the temperature T of the mover 52 is considered. r can be estimated with higher accuracy than in the case of equation (2). Further, according to the equation (3), the increase in the temperature Tr of the mover 52 can be estimated.

図4は、本発明の第2の実施の形態の温度検出装置の動作のフローチャートである。図4のフローチャートでは、ステップS2の後のステップS5において、巻線温度推定部14は、巻線55u,55v,55wの温度Tcを直接測定する。次に、ステップS3’において、可動子温度推定部13’は、式(3)に基づいて可動子52の温度Trを推定し、ステップS4に進む。 FIG. 4 is a flowchart of the operation of the temperature detection apparatus according to the second embodiment of the present invention. In the flowchart of FIG. 4, in step S5 after step S2, the winding temperature estimation unit 14 measures the winding 55u, 55v, the temperature T c of 55w directly. Next, in step S3 ′, the mover temperature estimation unit 13 ′ estimates the temperature Tr of the mover 52 based on Expression (3), and the process proceeds to step S4.

図5は、本発明の第3の実施の形態の温度検出装置を有するシステムのブロック図である。図5に示すシステムは、三相交流電源1と、コンバータ2と、平滑用コンデンサ3と、インバータ4と、永久磁石同期電動機5と、被駆動体6と、温度検出装置10”と、ディスプレイ21と、を有する。温度検出装置10”は、電流検出部11と、鉄損推定部12と、可動子温度推定部13”と、巻線温度推定部14’と、を有する。   FIG. 5 is a block diagram of a system having a temperature detection apparatus according to the third embodiment of the present invention. The system shown in FIG. 5 includes a three-phase AC power source 1, a converter 2, a smoothing capacitor 3, an inverter 4, a permanent magnet synchronous motor 5, a driven body 6, a temperature detection device 10 ″, and a display 21. The temperature detection device 10 ″ includes a current detection unit 11, an iron loss estimation unit 12, a mover temperature estimation unit 13 ″, and a winding temperature estimation unit 14 ′.

巻線温度推定部14’は、式

Figure 0005149431
に基づいて巻線55u,55v,55wの温度Tcを推定し、温度Tcを可動温度推定部13”に供給する。なお、銅損Q(t)は、D相交流電流の振幅値(D相直流電流値)|Id|、Q相交流電流の振幅値(Q相直流電流値)|Iq|、巻線55u,55v,55wの抵抗値及び永久磁石同期電動機5に交流電流が印加される時間に基づいて決定される。また、式(4)によれば、巻線55u,55v,55wの温度Tcの上昇分を推定することもできる。 Winding temperature estimation unit 14 '
Figure 0005149431
Is used to estimate the temperature T c of the windings 55u, 55v, 55w and supply the temperature T c to the movable temperature estimation unit 13 ″. The copper loss Q (t) is the amplitude value of the D-phase alternating current ( D-phase DC current value) | I d |, Q-phase AC current amplitude value (Q-phase DC current value) | I q |, resistance values of windings 55u, 55v, 55w, and AC current to permanent magnet synchronous motor 5 Further, according to the equation (4), it is also possible to estimate an increase in the temperature T c of the windings 55u, 55v, 55w.

なお、巻線温度推定部14’が巻線55u,55v,55wの温度Tcを可動子52の温度Trを用いて推定するために、巻線温度推定部14’には、可動子温度推定部13”から可動子52の温度Trが供給される。また、温度検出装置10”は、図4に示すフローチャートの処理と同様な処理を行うことによって可動子52の温度Trを推定し、映像信号Stをディスプレイ21に表示する。 Incidentally, the winding temperature estimation section 14 'windings 55u, 55v, the temperature T c of 55w to estimate using the temperature T r of the mover 52, the winding temperature estimation unit 14', the movable element temperature The temperature Tr of the mover 52 is supplied from the estimation unit 13 ″. Also, the temperature detection device 10 ″ estimates the temperature Tr of the mover 52 by performing the same processing as the processing of the flowchart shown in FIG. Then, the video signal St is displayed on the display 21.

図6は、本発明の第4の実施の形態の温度検出装置を有するシステムのブロック図である。図6に示すシステムは、三相交流電源1と、コンバータ2と、平滑用コンデンサ3と、インバータ4と、永久磁石同期電動機5と、被駆動体6と、温度検出装置100と、メモリ22と、上位制御装置23と、を有する。温度検出装置100は、電流検出部11と、鉄損推定部12と、可動子温度推定部13と、巻線温度推定部14と、アラーム生成部15と、を有する。   FIG. 6 is a block diagram of a system having a temperature detection device according to the fourth embodiment of the present invention. The system shown in FIG. 6 includes a three-phase AC power source 1, a converter 2, a smoothing capacitor 3, an inverter 4, a permanent magnet synchronous motor 5, a driven body 6, a temperature detection device 100, a memory 22, and the like. And the host control device 23. The temperature detection device 100 includes a current detection unit 11, an iron loss estimation unit 12, a mover temperature estimation unit 13, a winding temperature estimation unit 14, and an alarm generation unit 15.

メモリ22には、可動子52が過熱状態であるか否かを判断するための基準値Ttが格納されている。アラーム生成部15には、可動子温度推定部13から可動子52の温度Trが供給される。そして、アラーム生成部15は、メモリ22から基準値Ttを読み出し、可動子52の温度Trが基準値Ttより高い場合には、可動子52が過熱状態であることを報告するアラーム信号Saを生成し、アラーム信号Saを上位制御装置23に供給する。上位制御装置23は、CNC(数値制御装置)等によって構成され、アラーム信号Saがアラーム生成部15から供給されると、永久磁石同期電動機5の動作を停止させる。 The memory 22 stores a reference value T t for determining whether or not the mover 52 is in an overheated state. The alarm generation unit 15 is supplied with the temperature Tr of the mover 52 from the mover temperature estimation unit 13. Then, the alarm generation unit 15 reads the reference value T t from the memory 22, and when the temperature T r of the mover 52 is higher than the reference value T t , an alarm signal that reports that the mover 52 is in an overheated state. S a is generated, and the alarm signal S a is supplied to the host controller 23. The host controller 23 is constituted by a CNC (numerical controller) or the like, and stops the operation of the permanent magnet synchronous motor 5 when the alarm signal Sa is supplied from the alarm generator 15.

図7は、本発明の第4の実施の形態の温度検出装置の動作のフローチャートである。図7のフローチャートでは、ステップS4の後のステップS6において、アラーム生成部15は、可動子52の温度Trが値Ttより高いか否か判断する。可動子52の温度Trが値Ttより高い場合、ステップS7において、アラーム生成部15は、アラーム信号Saを生成し、アラーム信号Saを上位制御装置23に供給し、処理を終了する。それに対し、可動子52の温度Trが値Ttより高くない場合、そのまま処理を終了する。 FIG. 7 is a flowchart of the operation of the temperature detection device according to the fourth embodiment of the present invention. In the flowchart of FIG. 7, in step S6 after step S4, the alarm generation unit 15 determines whether or not the temperature Tr of the mover 52 is higher than the value Tt . If the temperature T r of the movable element 52 is higher than the value T t, in step S7, the alarm generation section 15 generates an alarm signal S a, supplies an alarm signal S a to the host controller 23, the process ends . On the other hand, if the temperature T r of the mover 52 is not higher than the value T t , the process is terminated as it is.

本発明は、上記実施の形態に限定されるものではなく、幾多の変更及び変形が可能である。例えば、上記実施の形態において、交流電源として三相交流電源を用いる場合について説明したが、交流電源は三相交流電源に限定されるものではない。   The present invention is not limited to the above-described embodiment, and many changes and modifications can be made. For example, although the case where a three-phase AC power source is used as an AC power source has been described in the above embodiment, the AC power source is not limited to a three-phase AC power source.

また、上記実施の形態において、電動機として回転型サーボモータを用いる場合について説明したが、ステータ及びスライダを有するリニアサーボモータ、ステータ及びバイブレータを有する振動型サーボモータ等の永久磁石同期電動機を用いる場合にも本発明を適用することができ、同期電動機の代わりに誘導電動機を用いる場合にも本発明を適用することができる。   In the above embodiment, the case where a rotary servo motor is used as the electric motor has been described. However, when a permanent magnet synchronous motor such as a linear servo motor having a stator and a slider and a vibration servo motor having a stator and a vibrator is used. The present invention can also be applied, and the present invention can also be applied when an induction motor is used instead of a synchronous motor.

上記実施の形態において、巻線を流れる交流電流の周波数、D相交流電流値及びQ相交流電流値を用いて鉄損を推定する場合について説明したが、巻線を流れる交流電流の振幅及び周波数と、可動子の位相とを用いて鉄損を推定することもでき、磁気解析を用いて鉄損を推定することもできる。   In the above embodiment, the case where the iron loss is estimated using the frequency of the alternating current flowing through the winding, the D-phase alternating current value, and the Q-phase alternating current value has been described. The amplitude and frequency of the alternating current flowing through the winding And the phase of the mover can be used to estimate the iron loss, and magnetic analysis can be used to estimate the iron loss.

また、電動機に入力される電力が電動機の銅損、電動機の鉄損、電動機の機械損及び電動機の出力の和になるというエネルギー保存則を用いて鉄損を推定することもできる。電動機に入力される電力は、電動機に供給される電流と電動機に印加される電圧の積になる。電動機に印加される電圧を直接測定することができるが、電動機に印加される電圧を、電動機の逆起電力、電動機の抵抗値、電動機のインダクタンス値及び電動機に流れる電流(例えば、D相交流電流及びQ相交流電流)を用いて推定することもできる。なお、機械損として、機械損の理論値、機械損の実験値又は既知の機械損を用いる。この場合に推定される鉄損は、固定子の鉄損と可動子の鉄損との和になるが、推定される鉄損に対する可動子に生じる鉄損の割合が一定であると考えられるので、推定される鉄損にこの割合を乗算することによって、可動子の鉄損を推定することができる。なお、この割合は、理論的又は実験的に求めることができるが、既知の割合を用いることもできる。   It is also possible to estimate the iron loss using an energy conservation law in which the electric power input to the motor is the sum of the copper loss of the motor, the iron loss of the motor, the mechanical loss of the motor, and the output of the motor. The electric power input to the electric motor is the product of the current supplied to the electric motor and the voltage applied to the electric motor. Although the voltage applied to the motor can be directly measured, the voltage applied to the motor is determined based on the back electromotive force of the motor, the resistance value of the motor, the inductance value of the motor, and the current flowing through the motor (for example, D-phase AC current). And Q-phase alternating current). As the mechanical loss, a theoretical value of mechanical loss, an experimental value of mechanical loss, or a known mechanical loss is used. The estimated iron loss in this case is the sum of the iron loss of the stator and the iron loss of the mover, but the ratio of the iron loss generated in the mover to the estimated iron loss is considered to be constant. By multiplying the estimated iron loss by this ratio, the iron loss of the mover can be estimated. In addition, although this ratio can be calculated | required theoretically or experimentally, a known ratio can also be used.

また、可動子の鉄損を推定するに際し、式(1)の代わりに、式(1)から容易に想到できる近似式を用いることもできる。例えば、可動子の鉄損を、式

Figure 0005149431
に基づいて推定することができる。 Moreover, when estimating the iron loss of a needle | mover, the approximate expression which can be easily considered from Formula (1) can also be used instead of Formula (1). For example, the iron loss of the mover
Figure 0005149431
Can be estimated.

上記第3の実施の形態において、可動子の温度を用いて巻線の温度を推定する場合について説明したが、可動子の温度を用いることなく巻線の温度を推定することもできる。この場合、巻線の温度を、式

Figure 0005149431
に基づいて推定する。 Although the case where the temperature of the winding is estimated using the temperature of the mover has been described in the third embodiment, the temperature of the winding can also be estimated without using the temperature of the mover. In this case, the temperature of the winding
Figure 0005149431
Estimate based on

さらに、上記第1〜3の実施の形態において、上記第4の実施の形態のようにアラームを生成することもできる。   Furthermore, in the first to third embodiments, an alarm can be generated as in the fourth embodiment.

1 三相交流電源
2 コンバータ
3 平滑用コンデンサ
4 インバータ
5 永久磁石同期電動機
6 被駆動体
7 エンコーダ
10,10’,10”,100 温度検出器
11 電流検出部
12 鉄損推定部
13,13’,13” 可動子温度推定部
14,14’ 巻線温度推定部
15 アラーム生成部
21 ディスプレイ
22 メモリ
23 上位制御装置
51 回転軸
52 ロータ
53 ステータ
54a,54b,54c,54d 永久磁石
55u,55v,55w 巻線
u U相交流電流値
v V相交流電流値
w W相交流電流値
ω U相交流電流、V相交流電流及びW相交流電流の周波数
|Id| D相交流電流の振幅値(D相直流電流値)
|Iq| Q相交流電流の振幅値(Q相直流電流値)
p 鉄損
a アラーム信号
t 映像信号
c 巻線の温度
r 可動子の温度
t 基準値
DESCRIPTION OF SYMBOLS 1 Three-phase AC power source 2 Converter 3 Smoothing capacitor 4 Inverter 5 Permanent magnet synchronous motor 6 Driven body 7 Encoder 10, 10 ', 10 ", 100 Temperature detector 11 Current detection part 12 Iron loss estimation part 13, 13', 13 "mover temperature estimation unit 14, 14 'winding temperature estimation unit 15 alarm generation unit 21 display 22 memory 23 host controller 51 rotating shaft 52 rotor 53 stator 54a, 54b, 54c, 54d permanent magnet 55u, 55v, 55w winding Line Iu U-phase AC current value
I v V phase AC current value I w W phase AC current value ω Frequency of U phase AC current, V phase AC current and W phase AC current | I d | Amplitude value of D phase AC current (D phase DC current value)
| I q | Q-phase AC current amplitude value (Q-phase DC current value)
p iron loss S a alarm signal S t image signal T the temperature of the c winding T r temperature T t reference value of the movable element

Claims (7)

電動機の可動子の温度を検出する温度検出装置であって、
前記電動機の固定子と可動子のうちのいずれか一方に設けられた巻線の電流値を検出する電流検出部と、
前記電流値を用いて前記可動子の鉄損を推定する鉄損推定部と、
前記巻線の温度を推定する巻線温度推定部と、
前記鉄損及び前記巻線の温度を用いて前記可動子の温度を推定する可動子温度推定部と、
を有する温度検出装置。
A temperature detection device for detecting a temperature of a mover of an electric motor,
A current detection unit for detecting a current value of a winding provided in any one of the stator and the mover of the electric motor;
An iron loss estimation unit that estimates the iron loss of the mover using the current value;
A winding temperature estimation unit for estimating the temperature of the winding;
A mover temperature estimation unit that estimates the temperature of the mover using the iron loss and the temperature of the winding;
A temperature detecting device.
電動機の可動子の温度を検出する温度検出装置であって、
三相交流電流のうちのU相、V相及びW相の交流電流がそれぞれ供給される三つの巻線が、前記電動機の固定子に設けられ、
前記温度検出装置は、
各交流電流の電流値を検出する電流検出部と、

Figure 0005149431
に基づいて前記可動子の鉄損を推定する鉄損推定部と、
前記鉄損を用いて前記可動子の温度を推定する可動子温度推定部と、
を有する温度検出装置。
A temperature detection device for detecting a temperature of a mover of an electric motor,
Three windings to which the U-phase, V-phase, and W-phase AC currents of the three-phase AC currents are respectively supplied are provided on the stator of the electric motor,
The temperature detector is
A current detector for detecting the current value of each alternating current;
formula
Figure 0005149431
An iron loss estimation unit for estimating the iron loss of the mover based on
A mover temperature estimator that estimates the temperature of the mover using the iron loss;
A temperature detecting device.
前記巻線が前記固定子に設けられ、前記巻線温度推定部は、前記巻線の周辺に配置された温度検出素子である請求項に記載の温度検出装置。 The winding is provided in said stator, said winding temperature estimation unit, the temperature detection device according to claim 1 which is a temperature detecting element disposed on the periphery of the winding. 前記巻線温度推定部は、前記電流値から前記巻線の銅損を推定し、前記銅損から前記巻線の温度の上昇分を算出する請求項に記載の温度検出装置。 The temperature detection device according to claim 1 , wherein the winding temperature estimation unit estimates a copper loss of the winding from the current value, and calculates an increase in temperature of the winding from the copper loss. 三相交流電流のうちのU相、V相及びW相の交流電流がそれぞれ供給される三つの巻線が、前記固定子に設けられ、前記鉄損推定部は、式
Figure 0005149431
に基づいて前記可動子の鉄損を推定し、前記可動子温度推定部は、前記鉄損、前記巻線の温度及び前記可動子の温度を用いて前記可動子の温度の上昇分を推定する請求項1,3,4のうちのいずれか1項に記載の温度検出装置。
Three windings to which U-phase, V-phase, and W-phase AC currents among the three-phase AC currents are respectively supplied are provided in the stator, and the iron loss estimation unit is represented by the formula
Figure 0005149431
The mover temperature estimation unit estimates an increase in temperature of the mover using the iron loss, the temperature of the winding, and the temperature of the mover. The temperature detection apparatus of any one of Claim 1,3,4 .
前記可動子温度推定部によって推定された温度が所定の温度を超えた場合にアラームを生成するアラーム生成部を更に有する請求項1からのうちのいずれか1項に記載の温度検出装置。 An assembly as claimed in any one of claims 1-5, further comprising an alarm generator for generating an alarm when the temperature estimated by the mover temperature estimation unit exceeds a predetermined temperature. 前記電動機が同期電動機である請求項1からのうちのいずれか1項に記載の温度検出装置。 The temperature detection device according to any one of claims 1 to 6 , wherein the electric motor is a synchronous motor.
JP2011167677A 2011-07-29 2011-07-29 Temperature detection device that detects the temperature of the mover of the motor Active JP5149431B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011167677A JP5149431B2 (en) 2011-07-29 2011-07-29 Temperature detection device that detects the temperature of the mover of the motor
US13/524,114 US8967857B2 (en) 2011-07-29 2012-06-15 Temperature detection device that detects temperature of rotor of motor
DE102012014320.6A DE102012014320B4 (en) 2011-07-29 2012-07-19 A temperature detection device that detects a temperature of a rotor of a motor
CN201210262697.0A CN102901584B (en) 2011-07-29 2012-07-26 Temperature detection device for detecting temperature of rotor of motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011167677A JP5149431B2 (en) 2011-07-29 2011-07-29 Temperature detection device that detects the temperature of the mover of the motor

Publications (2)

Publication Number Publication Date
JP2013029483A JP2013029483A (en) 2013-02-07
JP5149431B2 true JP5149431B2 (en) 2013-02-20

Family

ID=47503199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011167677A Active JP5149431B2 (en) 2011-07-29 2011-07-29 Temperature detection device that detects the temperature of the mover of the motor

Country Status (4)

Country Link
US (1) US8967857B2 (en)
JP (1) JP5149431B2 (en)
CN (1) CN102901584B (en)
DE (1) DE102012014320B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015103175A1 (en) 2014-03-12 2015-09-17 Fanuc Corporation Rotor temperature determination device for an electric motor and overheat protection device for an electric motor

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2551982B1 (en) * 2011-07-27 2013-09-25 Siemens Aktiengesellschaft Thermal monitoring of a converter
JP5276700B2 (en) * 2011-09-21 2013-08-28 ファナック株式会社 Motor overheat prevention device for motor and motor control device
JP2014057385A (en) * 2012-09-11 2014-03-27 Toyota Motor Corp Controller of dynamo-electric machine and dynamo-electric machine drive system including the same
FR3006125B1 (en) * 2013-05-21 2015-05-15 Ifp Energies Now METHOD AND SYSTEM FOR DETERMINING INTERNAL TEMPERATURES OF A SYNCHRONOUS ELECTRIC MACHINE USING STATE OBSERVERS
JP5959772B2 (en) * 2014-02-17 2016-08-02 三菱電機株式会社 Control device
KR101542994B1 (en) * 2014-04-14 2015-08-07 현대자동차 주식회사 Method of estimating temperature of rotor of motor
KR101664039B1 (en) * 2014-11-17 2016-10-10 현대자동차 주식회사 System for estimating temperature of motor and method thereof
JP6399912B2 (en) * 2014-12-02 2018-10-03 オークマ株式会社 Motor control device
KR101856431B1 (en) * 2015-03-30 2018-05-09 미쓰비시덴키 가부시키가이샤 Protective Devices and Servo Motors
CN106610454B (en) * 2015-08-11 2023-08-29 上海鸣志电器股份有限公司 Motor iron loss quantitative detection device and method based on heat derivation
US20170115168A1 (en) * 2015-10-23 2017-04-27 Hyundai Motor Company Method of estimating a temperature of a permanent magnet in a motor
AT518513A1 (en) 2016-03-24 2017-10-15 Ge Jenbacher Gmbh & Co Og Electric generator
CN105953944B (en) * 2016-04-21 2019-06-11 同济大学 The estimation method of the temperature of rotor of motor
CN107783038B (en) * 2016-08-26 2020-11-27 中国船舶重工集团海装风电股份有限公司 Method, device and system for testing efficiency of doubly-fed wind generator
CA3042156C (en) * 2016-11-01 2021-06-01 Nissan Motor Co., Ltd. Method of controlling motor and device of controlling motor
EP3540937A4 (en) * 2016-11-10 2020-06-03 NSK Ltd. Electric power steering device
US10903776B2 (en) * 2017-05-31 2021-01-26 Abb Schweiz Ag Industrial electrical machine
KR102618388B1 (en) * 2018-03-27 2023-12-27 히다치 아스테모 가부시키가이샤 Control and brake devices for electric motors
JP6973311B2 (en) * 2018-07-03 2021-11-24 オムロン株式会社 Processing equipment
CN109212414A (en) * 2018-09-13 2019-01-15 福建浦汇科技发展有限公司 Measure the method and apparatus of stator iron loss
CN111211719B (en) * 2018-11-06 2021-09-24 株洲中车时代电气股份有限公司 Method and system for estimating temperature of rotor magnetic steel of permanent magnet synchronous motor
CN113872496B (en) * 2021-09-27 2023-07-21 深蓝汽车科技有限公司 Motor control method and system for automobile electric drive system and vehicle

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2803786A (en) * 1952-10-29 1957-08-20 Chase Shawmut Co Cable protection
US3357807A (en) * 1961-12-08 1967-12-12 Owens Corning Fiberglass Corp Method and apparatus for forming and processing continuous filaments
JPS6036716B2 (en) * 1980-11-10 1985-08-22 富士電機株式会社 Magnetic flux vector calculator for induction motor
JPH0360359A (en) * 1989-07-28 1991-03-15 Fanuc Ltd Variable reluctance motor
US5594670A (en) * 1993-09-03 1997-01-14 Kabushiki Kaisha Meidensha Apparatus for measuring circuit constant of induction motor with vector control system and method therefor
JP2943657B2 (en) 1994-08-02 1999-08-30 トヨタ自動車株式会社 Control device for salient pole type permanent magnet motor
JPH08275442A (en) * 1995-03-31 1996-10-18 Hitachi Ltd Ac generator for vehicle
JP3865157B2 (en) * 1996-06-05 2007-01-10 株式会社デンソー AC generator for vehicles
JP2000205972A (en) * 1999-01-11 2000-07-28 Okuma Corp Apparatus for measuring temperature of rotor
JP3502040B2 (en) * 2000-12-27 2004-03-02 本田技研工業株式会社 Brushless DC motor constant detection device, brushless DC motor control device, and brushless DC motor constant detection program
US6573745B2 (en) 2001-05-04 2003-06-03 Ford Global Technologies, Inc. Permanent magnet degradation monitoring for hybrid and electric vehicles
EP1458080B1 (en) * 2001-12-20 2017-03-01 Mitsubishi Denki Kabushiki Kaisha Permanent magnet type dynamo-electric machine and wind power generation-use permanent magnet type synchronous generator
DE10212751A1 (en) 2002-03-22 2003-10-02 Bosch Gmbh Robert Method and device for determining the rotor temperature in a PM synchronous machine
JP4045869B2 (en) * 2002-06-18 2008-02-13 住友金属工業株式会社 Rotor temperature estimation method, braking control device and eddy current type speed reducer for eddy current type speed reducer
US7242166B2 (en) 2002-07-31 2007-07-10 Sydkraft Ab Electric machine
JP4223880B2 (en) 2003-07-31 2009-02-12 トヨタ自動車株式会社 Motor drive device
WO2005093942A1 (en) 2004-03-24 2005-10-06 Mitsubishi Denki Kabushiki Kaisha Controller of permanent magnet synchronous motor
JP2006094576A (en) * 2004-09-21 2006-04-06 Mitsubishi Motors Corp Motor internal temperature measuring instrument
JP4412166B2 (en) * 2004-12-15 2010-02-10 日立工機株式会社 Electric motor and electric tool including the same
DE102005026439A1 (en) 2005-06-08 2006-12-14 Siemens Ag Method and apparatus for controlling a brushless DC motor
JP4557165B2 (en) * 2005-07-29 2010-10-06 株式会社デンソー Calculation method of power generation torque of synchronous generator
JP4191715B2 (en) 2005-10-03 2008-12-03 三菱電機株式会社 In-vehicle motor controller
WO2007055192A1 (en) * 2005-11-09 2007-05-18 Kabushiki Kaisha Toshiba Rotor for electric rotating machine and electric rotating machine
JP4853124B2 (en) * 2006-06-15 2012-01-11 日産自動車株式会社 Permanent magnet temperature detector for permanent magnet type rotating machine
CN101055294A (en) 2007-05-31 2007-10-17 王鹏 Dynamotor rotor voltage and current measuring method and its device
PL2006545T3 (en) * 2007-06-20 2010-11-30 Grundfos Management As Method for recording the temperature of the carrier liquid of a rotary pump
JP2009011054A (en) * 2007-06-27 2009-01-15 Toshiba Corp Apparatus for measuring physical value information of motor
JP2009261078A (en) 2008-04-15 2009-11-05 Yaskawa Electric Corp Motor controller and temperature estimation method
CN100573078C (en) * 2008-05-09 2009-12-23 山东电力研究院 Pump storage plant generator/motor rotor rotational inertia test method
US7759966B2 (en) 2008-08-25 2010-07-20 Gm Global Technology Operations, Inc. Methods and systems for evaluating permanent magnet motors
US7960928B2 (en) * 2008-10-15 2011-06-14 Tesla Motors, Inc. Flux controlled motor management
JP4762299B2 (en) 2008-12-10 2011-08-31 株式会社東芝 Drum washing machine
CN101769797A (en) * 2009-01-06 2010-07-07 李虎 Temperature rise analytical method for predicting temperature of permanent magnet in permanent magnet synchronous motor
JP2010268644A (en) * 2009-05-18 2010-11-25 Nissan Motor Co Ltd Apparatus for detecting abnormal motor temperature
US8358095B2 (en) 2009-07-31 2013-01-22 GM Global Technology Operations LLC Method and system for testing electric motors
CN102484438B (en) * 2009-08-28 2015-04-01 日产自动车株式会社 Anomaly detection device for a permanent magnet synchronous electric motor
AU2009353365B2 (en) * 2009-09-29 2016-03-03 Husqvarna Ab Electric motor and method for controlling the same
CN201629618U (en) * 2009-12-14 2010-11-10 江苏航天动力机电有限公司 Novel ventilation slot board structure for motor rotor
FR2959361B1 (en) * 2010-04-27 2015-11-13 Valeo Equip Electr Moteur ROTATING ELECTRIC MACHINE PARTICULARLY FOR A MOTOR VEHICLE STARTER
US8421391B2 (en) * 2010-05-12 2013-04-16 GM Global Technology Operations LLC Electric motor stator winding temperature estimation systems and methods
KR101128128B1 (en) * 2010-12-15 2012-03-22 엘지전자 주식회사 Electric motor and electric vehicle having the same
EP2680410A4 (en) * 2011-02-21 2018-03-07 Hitachi, Ltd. Motor
US8762116B2 (en) * 2011-04-20 2014-06-24 GM Global Technology Operations LLC Vehicle motor temperature determination
US8565954B2 (en) * 2011-10-06 2013-10-22 GM Global Technology Operations LLC Vehicle motor temperature determination

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015103175A1 (en) 2014-03-12 2015-09-17 Fanuc Corporation Rotor temperature determination device for an electric motor and overheat protection device for an electric motor
JP2015173572A (en) * 2014-03-12 2015-10-01 ファナック株式会社 Temperature detector for movable element of motor, and overheat protector for motor
US9528882B2 (en) 2014-03-12 2016-12-27 Fanuc Corporation Rotor temperature detecting device in an electric motor and overheat protection device of an electric motor
DE102015103175B4 (en) 2014-03-12 2019-06-27 Fanuc Corporation Overheat protection device for an electric motor

Also Published As

Publication number Publication date
JP2013029483A (en) 2013-02-07
CN102901584B (en) 2014-02-12
CN102901584A (en) 2013-01-30
DE102012014320A1 (en) 2013-01-31
DE102012014320B4 (en) 2023-06-07
US20130028292A1 (en) 2013-01-31
US8967857B2 (en) 2015-03-03

Similar Documents

Publication Publication Date Title
JP5149431B2 (en) Temperature detection device that detects the temperature of the mover of the motor
JP5616409B2 (en) Control device for permanent magnet synchronous motor for preventing irreversible demagnetization of permanent magnet and control system provided with such control device
JP5243651B2 (en) Motor control device for controlling d-axis current of permanent magnet synchronous motor
CN106208855B (en) Temperature estimation device for synchronous motor
JP5877860B2 (en) Temperature detector for motor mover and overheat protection device for motor
JP5607698B2 (en) Temperature estimation device for estimating the temperature of an electric motor
KR101961106B1 (en) Sensorless control method and apparatus thereof
US8716965B2 (en) Synchronous motor control device for controlling synchronous motor to carry out power regenerative operation and stop synchronous motor at the time of power failure
JP4854993B2 (en) Control device for permanent magnet type rotating electrical machine and temperature estimation method for permanent magnet type rotating electrical machine
Cham et al. Brushless dc motor electromagnetic torque estimation with single-phase current sensing
JP6002643B2 (en) Control device and AC motor system using the same
JP2019033582A (en) Control device and control method
US20140358458A1 (en) Systems and methods for estimating input power of an electric motor
JP2012095415A (en) Overload protection device for motors
JP6129260B2 (en) Energizing device, electric motor control device, energizing method
JP6544105B2 (en) Magnet temperature estimation system, motor, and magnet temperature estimation method
JP2013532936A (en) Method and apparatus for identifying the position of an electronic rectifying motor without using a sensor
JP2009254191A (en) Motor controller, compressor, refrigerating apparatus, and air conditioner
JP2021090334A (en) Power conversion device, diagnostic device, and diagnostic method
TWI474607B (en) Synchronous motor control method and control device and synchronous motor using same
JP7205306B2 (en) Rotating machine system and magnetic flux linkage estimation method
WO2019159629A1 (en) Motor control circuit, motor system, and step-out detection method
CN101834553A (en) The control device of no sensor alternative-current motor
KR20110118502A (en) Method for estimating rotar position of synchronous motor and motor driver using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121129

R150 Certificate of patent or registration of utility model

Ref document number: 5149431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3