JP4045869B2 - Rotor temperature estimation method, braking control device and eddy current type speed reducer for eddy current type speed reducer - Google Patents

Rotor temperature estimation method, braking control device and eddy current type speed reducer for eddy current type speed reducer Download PDF

Info

Publication number
JP4045869B2
JP4045869B2 JP2002177657A JP2002177657A JP4045869B2 JP 4045869 B2 JP4045869 B2 JP 4045869B2 JP 2002177657 A JP2002177657 A JP 2002177657A JP 2002177657 A JP2002177657 A JP 2002177657A JP 4045869 B2 JP4045869 B2 JP 4045869B2
Authority
JP
Japan
Prior art keywords
temperature
rotor
change rate
braking
temperature change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002177657A
Other languages
Japanese (ja)
Other versions
JP2004023930A (en
Inventor
博行 山口
誠均 田坂
泰隆 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002177657A priority Critical patent/JP4045869B2/en
Publication of JP2004023930A publication Critical patent/JP2004023930A/en
Application granted granted Critical
Publication of JP4045869B2 publication Critical patent/JP4045869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Braking Arrangements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、渦電流式減速装置におけるロータの温度変化を精度よく推定できる渦電流式減速装置のロータ温度推定方法、及び、このロータ温度推定方法を用い、例えば連続使用の際にもロータの温度上昇を抑えて長時間制動効果を発揮させることのできる制動制御装置、並びに、この制動制御装置を備えた渦電流式減速装置に関するものである。
【0002】
【従来の技術】
近年、バスやトラック等の大型自動車には、長い降坂時等において、安定した減速を行い、フットブレーキの使用回数を減少させて、ライニングの異常摩耗やフェード現象を防止すると共に、制動停止距離の短縮を目的として、主ブレーキであるフットブレーキや補助ブレーキである排気ブレーキの他に渦電流式減速装置が取付けられるようになってきた。
【0003】
この渦電流式減速装置は、現在では永久磁石式のものが主流となっており、以下の4つの方式がある。
(1) 例えば図に示すような、回転軸1に取付けられたドラム状のロータ2の内周面側に、非磁性体の支持体3間にその周方向に所定の間隔を存して配置した強磁性体のスイッチ板4群を介して、前記スイッチ板4と同じ間隔でN極、S極を周方向に交互に配置した永久磁石5群をその外周面に取付けた強磁性体の支持リング6を配置し、この支持リング6を前記永久磁石5群がスイッチ板4群と全面対向する位置から全面離脱する位置までアクチュエータ7によって密閉ケース8内を進退可能に設けた軸スライド方式(例えば特開平1−234043号)。
【0004】
(2) 例えば図に示すような、ロータ2の内周面側にこれに対向して配置した支持リング6を、スイッチ板4と支持リング6の外周面に取付けた永久磁石5とが重なり合うと位置と、一つの永久磁石5が隣接するスイッチ板4を跨いで半分ずつ重なり合う位置とを、選択できるように旋回移動可能に設けた単列旋回方式(例えば特開平1−298948号)。
【0005】
(3) 例えば図に示すような、外周面にその周方向に沿って所定の間隔でN極、S極を交互に配置した永久磁石群を有する支持リングを2個並列に配置し、一方の支持リングは固定で(以下、「固定支持リング6a」という。)、他方の支持リングは所定角度回動可能に構成し(以下、「可動支持リング6b」という。)、可動支持リング6bの旋回移動によって、可動支持リング6bの永久磁石5bと隣合う固定支持リング6aの永久磁石5aが同極になる位置と、隣合う可動支持リング6bの永久磁石5bと固定支持リング6aの永久磁石5aが異極になる位置とを選択できるように構成した複列旋回方式(例えば特開平4−12659号)。
【0006】
(4) 図はドラム型ロータを使用した場合の例であるが、これらと異なり、例えば図1に示すような、回転軸1に取り付けられたディスク型のロータ2と対向する位置に、非磁性支持体3の間にその周方向に所定の間隔を存して配置した強磁性体のスイッチ板4群を介して、前記スイッチ板4と同じ間隔でN極、S極を周方向に交互に配置した永久磁石5群を側面に取り付けた強磁性体の支持リング6を配置し、この支持リング6を前記永久磁石5群がスイッチ板4群と全面対向する位置から全面離脱する位置までアクチュエータ7によって密閉ケース内を進退可能に設けたディスク型ロータによる軸スライド方式。
【0007】
ところで、上記したような渦電流式減速装置にあっては、いずれの方式であっても、例えば長い下り坂で使用する場合にはロータ2の温度が高温になる。そして、ロータ2の許容上限温度を超えた状態が長く続くと、ロータ2が熱変形を起こしたり、熱亀裂が発生する虞がある。従って、ロータ2が熱変形を起こしたり、熱亀裂が発生しないように、ロータ2の温度を検知し、ロータ2が許容上限温度に達する直前に、渦電流式減速装置の制動動作を中断させるように制御する必要がある。
【0008】
そこで、上記したロータの温度を監視するための技術として、例えば特開平4−251600号では、ロータの内表面に面した固定側に温度センサを固定配置し、ロータ近傍の雰囲気温度を監視することで、間接的にロータの温度を推定するものが提案されている。
【0009】
【発明が解決しようとする課題】
しかしながら、渦電流式減速装置は、その特性上、車速が変化すると制動トルクが変化するため、ロータの発熱量も変化する。通常、車速が増加するとロータの発熱量も高くなり、短時間でロータの温度が許容上限温度に達する。従って、特開平4−251600号で開示された技術のように、ロータと温度センサとの間に空気層が介在すると、ロータの急激な温度上昇が、空気層の熱抵抗によって妨げられ、温度センサの温度上昇がロータの温度上昇に対して遅れるといった問題が生じ、高速時のロータの急激な温度上昇を考慮して、例えば温度センサの温度上限温度を低く設定するといった配慮が必要であった。
【0010】
ところが、高速時と低速時とでは、温度センサの測定温度とロータ温度との相関関係が異なるので、温度センサの温度上限温度を低く設定すると、低速時にはロータの温度が許容上限温度よりかなり低い温度であるにも拘わらず、温度センサの測定温度が上限温度に達して制動が中断され、その結果、渦電流式減速装置の本来の能力を十分に発揮できないという問題が生じる。
【0011】
本発明は、上記した従来の問題点に鑑みてなされたものであり、ロータの温度変化を精度よく推定できる渦電流式減速装置のロータ温度推定方法、及び、このロータ温度推定方法を用い、例えば連続使用の際にもロータの温度上昇を抑えて長時間制動効果を発揮させることのできる制動制御装置、並びに、この制動制御装置を備えた渦電流式減速装置を提供することを目的としている。
【0012】
【課題を解決するための手段】
上記した目的を達成するために、本発明に係る渦電流式減速装置のロータ温度推定方法は、前の制動状態において計算によって求めたロータ推定温度である、動切替え時のロータ初期温度実際の制動切替え時の初期温度変化率の分布に近似するように予め求めておいた、ロータ初期温度と初期温度変化率近似式との相関式を用いて、初期温度変化率k 0 を求め、この求めた初期温度変化率k 0 と、制動切替え時のロータ温度毎の実際の制動切替え前期の温度変化率の分布に近似するように予め求めておいた、制動切替え時のロータ温度毎の第1温度変化率近似式との相関式から、採用する第1温度変化率近似式を決定し、
この決定した第1温度変化率近似式と前記求めた初期温度変化率k 0 とから、当該時のロータ温度に応じた制動切替え前期の温度変化率k i1 を求め、さらに実際の制動切替え後期の温度変化率の分布に近似するように予め定めておいた第2温度変化率近似式を用いて、当該時のロータ温度に応じた制動切替え後期の温度変化率k i2 を求め、動切替え時から異なる制動状態に切替えるまでのロータ推定温度を、前記ロータ初期温度、初期温度変化率k 0 、制動切替え前期の温度変化率k i1 、制動切替え後期の温度変化率k i2 と下記の (1)(2) 式を用いて繰返し算出することとしている。このようにすることで、ロータ温度を精度良く推定できるようになる。
i =T i 1 +ΔT i 1 (1)
但し、ΔT i 1 =K i 1 ×(t i −t i 1 ) … (2)
i :渦電流式減速装置のある時刻
i 1 :ひとつ前の時刻
i :時刻t i のロータ温度
i 1 :時刻t i 1 のロータ温度
i 1 :時刻t i 1 の時の温度変化率(℃/秒)
初期時刻 i =0の時は、K i 1 は初期温度変化率k 0 (K i 1 =k 0
i =2以降は、制動切替え前期の温度変化率k i1 と制動切り替え後期の温度
変化率k i2 を比較し、大きい値をK i 1 として採用する。
【0013】
そして、ロータ温度を求めるのに必要な全ての計算(初期温度変化率近似式、第1温度変化率近似式、第2温度変化率近似式、及び (1)(2) 式)を記憶した記憶部と、この記憶部の前記計算式と制動切替え時のロータ初期温度を用いてロータ推定温度を求める演算部と、この演算部で算出したロータ推定温度が予め設定した許容温度を超える直前に制動をオフ制御する制御部を備えた本発明に係る制動制御装置を用いて、上記の本発明に係るロータ温度推定方法によりロータ温度を推定すれば、予め設定した許容温度を超える直前に精度良く制動をオフ制御することができる。
【0014】
従って、上記の本発明に係る制動制御装置を備えた渦電流式減速装置では、制動オン、制動オフが最適のタイミングで行えるようになって、本来の能力を十分に発揮できるようになる。
【0015】
【発明の実施の形態】
渦電流式減速装置のある時刻ti のロータ温度Ti は、ひとつ前の時刻ti-1 のロータ温度をTi-1 、時刻ti よりひとつ前の時刻ti-1 間の温度変化量をΔTi-1 とした場合、下記▲1▼、▲2▼式の温度演算基本式で求めることができる。
Ti =Ti-1 +ΔTi-1 …▲1▼
但し、ΔTi-1 =Ki-1 ×(ti −ti-1 ) …▲2▼
Ki-1 :時刻ti-1 の時の温度変化率(℃/秒)
【0016】
ところで、渦電流式減速装置のロータ温度は、制動オン時と同様、制動オフ時も常に変化するため、渦電流式減速装置の運転中は、常時、上記▲1▼、▲2▼式を用いてロータ温度を求めている。そして、計算によって求めた値が、設定値に達した場合に、ロータの制動を自動で切替える制御を行っている。なお、前記Ki-1 は、試験や解析結果をもとに、事前に計算機に値を記憶させておき、ロータ温度に対応する値を常に選択するようにしている。
【0017】
図1は、図に示した複列旋回方式の渦電流式減速装置を用いたベンチ試験において、制動状態がLow(制動力低減制動)、回転数が1800rpmの一定の条件で制動実験を行った結果を示したもので、ロータ温度を横軸、温度変化率を縦軸にプロットした図である。また、図1中の直線は実測値を一次関数で近似したものである。
【0018】
このベンチ試験では、制動切替え温度を50℃(◆印と太い実線)、100℃(■印と細い実線)、300℃(▲印と細い破線)、500℃(○印と太い破線)の4通り変化させ、ロータ温度が耐熱限界温度である650℃に達するまでの温度変化率の変化を求めた。例えば、制動切替え温度が50℃の時は、図1中の◆印に沿って、温度上昇に伴い温度変化率が低下し、その後、250℃付近から*印に沿って温度変化率は低下していく。
【0019】
以上のベンチ試験より、制動を切替えた時の温度が異なると、ロータ温度が同じであっても、温度変化率は全く異なる値をとることが判明した。例えば図1では、ロータ温度が300℃のときで比べると、切替え温度が100℃の時(■印と細い実線)の温度変化率は7℃/秒であるが、切替え温度が300℃の時(▲印と細い破線)は温度変化率は14℃/秒であった。
【0020】
以上より、本発明者等は、回転数が一定であり、かつ、制動状態が一定であれば、図1の温度変化率の分布を、制動切替え時の初期温度変化率近似式(図1の近似式(1):図1における細い一点鎖線)と、制動切替え前期の第1温度変化率近似式(図1の近似式(2):図1における前記の実線及び破線)と、制動切替え後期の第2温度変化率近似式(図1の近似式(3):図1における太い二点鎖線)の3種類の一次関数近似式で表現することができることを知見した。
【0021】
すなわち、制動切替え(オン)時の温度変化率は、図1の近似式▲1▼上を通ることから、制動を切替えた時のロータ温度が判明していれば、その時の温度変化率(初期温度変化率)は図1の近似式▲1▼(K0 =A1 ・T0 +B1 )から求めることができる。
【0022】
また、制動開始直後の温度変化率は、切替え温度によって異なった値をとり、このとき、図1の近似式(2)の傾きは、切替え温度が高いほど絶対値が大きくなることから、第1温度変化率近似式(図1の近似式(2))は前記初期温度変化率近似式(図1の近似式(1))によって求めた初期値(T0、K0)を通り、傾きA2の直線で表すことで、制動切替え前期の温度変化率(図1の近似式(2) Ki1 =A2・(Ti−T0)+K0、A2=A2a・T0+A2b)を求めることができる。
【0023】
また、温度変化率は、ロータが高温になるにつれて徐々に同じ値(図1の近似式▲3▼)に近づくことから、ロータ温度が上昇し図1の近似式▲3▼が近似式▲2▼より大きくなった場合には、温度変化率は図1の近似式▲3▼(Ki =A3 ・Ti +B3 )をとることで、実測値に近い温度変化率を計算で求めることができるようになる。
【0024】
つまり、上記の近似式▲1▼〜近似式▲3▼を使用することで、制動状態と回転数が一定の時の温度変化率を図2に示したようなフローにより計算で求めることができるようになる。
【0025】
以上は制動状態と回転数が一定の場合における温度変化率についての知見であるが、温度変化率は制動切替え温度のみならず、ロータの回転数の影響を強く受ける。従って、ロータ温度の計算に使用する温度変化率をより実際の値に近づけるためには、温度変化率を、制動切替え温度の影響のみならず、ロータの回転数の影響をも考慮して補正する必要がある。
【0026】
そして、温度変化率のロータ回転数による影響は、図3に示したように、ロータの回転数に比例することが判明しているので、時々刻々変化するロータの回転数を考慮して温度変化率を補正するには、例えばある高回転数(例えば3000rpm)とある低回転数(例えば2000rpm)での近似式▲1▼〜近似式▲3▼を構成する定数(A1 、B1 、A2a、A12b 、A3 、B3 )をベンチ試験によって求め、予め演算装置に記憶させておき、これらの定数から線形補間によってその時のロータ回転数での近似式▲1▼〜近似式▲3▼を構成する定数を決定する方法が最も簡単である。
【0027】
本発明は、上記の知見等に基づいてなされたものであり、本発明に係る第1の渦電流式減速装置のロータ温度推定方法は、
ロータが許容上限温度に達する直前に制動をオフ制御する渦電流式減速装置のロータ温度推定方法であって、
前の制動状態において計算によって求めたロータ推定温度である、動切替え時のロータ初期温度
実際の制動切替え時の初期温度変化率の分布(制動切替え時のロータ温度と、このロータ温度で制動を切替えた時の温度変化率との関係を表した近似式 (1) )に近似するように予め求めておいた、ロータ初期温度と初期温度変化率近似式との相関式を用いて、初期温度変化率k 0 を求め、
この求めた初期温度変化率k 0 と、制動切替え時のロータ温度毎の実際の制動切替え前期の温度変化率の分布に近似するように予め求めておいた、制動切替え時のロータ温度毎の第1温度変化率近似式との相関式から、採用する第1温度変化率近似式を決定し、
この決定した第1温度変化率近似式と前記求めた初期温度変化率k 0 とから、当該時のロータ温度に応じた制動切替え前期の温度変化率k i1 を求め、
さらに実際の制動切替え後期の温度変化率の分布に近似するように予め定めておいた第2温度変化率近似式を用いて、当該時のロータ温度に応じた制動切替え後期の温度変化率k i2 を求め、
動切替え時から異なる制動状態に切替えるまでのロータ推定温度を、前記ロータ初期温度、初期温度変化率k 0 、制動切替え前期の温度変化率k i1 、制動切替え後期の温度変化率k i2 と前記の (1)(2) 式を用いて繰返し算出するものである。
この第1の渦電流式減速装置のロータ温度推定方法では、例えば初期温度変化率k 0 、制動切替え前期の温度変化率k i1 、制動切替え後期の温度変化率k i2 のうち、少なくとも一つがロータ温度の一次関数で表されるものとする。
【0028】
そして、上記の本発明に係る第1のロータ温度推定方法を用い、ロータ推定温度が予め設定した許容温度を超える直前に制動をオフする制御は
ロータ温度を求めるのに必要な全ての計算(初期温度変化率近似式、第1温度変化率近似式、第2温度変化率近似式、及び (1)(2) 式)を記憶した記憶部と、
この記憶部の前記計算式と制動切替え時のロータ初期温度を用いてロータ推定温度を求める演算部と、
この演算部で算出したロータ推定温度が予め設定した許容温度を超える直前に制動をオフ制御する制御部を備えた本発明に係る第1の渦電流式減速装置の制動制御装置によって実施可能である。
【0029】
また、上記の本発明に係る第1のロータ温度推定方法において、
制動切替え時のロータ初期温度を、前の制動状態において計算によって求めたロータ推定温度に代えて、制動切替え時の渦電流式減速装置或いはその近傍の雰囲気温度(以下、「実測温度」と言う。)を検出し、この実測温度とロータ温度の相関関係に基づいて算出した値としても良い。
これが本発明に係る第2の渦電流式減速装置のロータ温度推定方法である。
【0030】
そして、上記の本発明に係る第2のロータ温度推定方法を用い、ロータ推定温度が予め設定した許容温度を超える直前に制動をオフする制御は、図に示すように、
渦電流式減速装置或いはその近傍に設けた温度センサ11と、
ロータ温度を求めるのに必要な全ての前記計算式を記憶した記憶部12と、
この記憶部12の前記計算式と温度センサ11の測温値を用いてロータ推定温度を求める演算部13と、
この演算部13で算出したロータ推定温度が予め設定した許容温度を超える直前に制動をオフ制御する制御部14を備えた本発明に係る第2の渦電流式減速装置の制動制御装置によって実施可能である。
【0031】
また、本発明に係る第3の渦電流式減速装置のロータ温度推定方法は、
上記の本発明に係る第1又は第2のロータ温度推定方法において、
初期温度変化率k 0 を、
ロータ初期温度と、実際の制動切替え時の初期温度変化率の分布に近似するように予め定めておいた、ロータ初期温度と初期温度変化率近似式との相関式を用いて求めるのに代えて、
ロータ初期温度と、実際の制動切替え時の初期温度変化率の分布に近似するように予め定めておいた、ロータ初期温度と検出したロータ初期回転数と初期温度変化率近似式との相関式より決定し、
第1温度変化率近似式を、
前記求めた初期温度変化率k 0 と、制動切替え時のロータ温度毎の実際の制動切替え前期の温度変化率の分布に近似するように予め求めておいた、制動切替え時のロータ温度毎の第1温度変化率近似式との相関式から、採用する第1温度変化率近似式を決定するのに代えて、
前記求めた初期温度変化率k 0 と、制動切替え時のロータ温度毎の実際の制動切替え前期の温度変化率の分布に近似するように予め求めておいた、制動切替え時のロータ温度毎の第1温度変化率近似式と検出したロータ回転数との相関式から、採用する第1温度変化率近似式を決定すると共に、
第2温度変化率近似式を、
実際の制動切替え後期の温度変化率の分布に近似するように予め定めておくのに代えて、
実際の制動切替え後期の温度変化率の分布に近似するように、前記検出したロータ回転数に応じて決定するものである。
【0032】
そして、上記の本発明に係る第3のロータ温度推定方法を用い、ロータ推定温度が第1許容温度に達する直前に制動力低減制御を行い、許容上限温度に達する直前に制動をオフする制御は、図に示すように、
渦電流式減速装置或いはその近傍に設けた温度センサ11と、
ロータの回転数を検出する回転センサ15と、
ロータ温度を求めるのに必要な全ての前記計算式を記憶した記憶部1と、
この記憶部1前記計算式と制動切替え時のロータ初期温度と回転センサ15の検出値を用いて、ロータ推定温度を求める演算部1と、
この演算部1で算出したロータ推定温度が予め設定した容温を超える直前に制動をオフ制御する制御部14を備えた本発明に係る第3の渦電流式減速装置の制動制御装置によって実施可能である。
【0035】
上記の本発明に係るロータ温度推定方法は、制動オン切替え時のロータ温度を推定するものに限らず、制動オフ切替え時のロータ温度(実測値、推定値を問わない)から初期温度変化率と第1温度変化率近似式を決定し、前記の制動オフ切替え時のロータ温度及び第1温度変化率近似式と予め定めた第2温度変化率近似式を用いて、制動オフ切替え時から制動オフ状態にある所期時間経過後のロータ推定温度を算出することも可能である
【0042】
上記の本発明に係るロータ温度推定方法では、制動切替え時における温度の影響や、回転数の影響を考慮して温度変化率を適切に補正することができるので、この適切に補正した温度変化率を用いてロータ温度を精度良く推定できるようになる。そして、この本発明に係るロータ温度推定方法によりロータ温度を推定すれば、予め設定した温度を超える直前に精度良く制動制御することができるようになって、例えば連続使用の際にもロータの温度上昇を抑えて長時間制動効果を発揮させることができるようになる。
【0043】
また、上記の本発明に係る制動制御装置を備えた本発明に係る渦電流式減速装置では、制動オン、制動オフが最適のタイミングで行えるようになって、本来の能力を十分に発揮できるようになる。なお、本発明に係る渦電流式減速装置は、軸スライド方式、単列旋回方式、複列旋回方式を問わないことは言うまでもない。
【0044】
【実施例】
以下、本発明の効果を確認するために行なった実験結果について説明する。
実験は図1に示した結果を得たベンチ試験に供したものと同じ複列旋回方式の渦電流式減速装置を使用し、以下の実験条件で本発明に係るロータ温度推定方法によりロータ温度を推定することにより行った。
【0045】
実験条件:
▲1▼ 制動パターン
ロータの回転数、制動オン・オフの切替え温度をランダムに変化させて行った。
▲2▼ 雰囲気温度
室温(20℃)
▲3▼ 回転数の切替え
手動
▲4▼ 制動オン・オフの切替え
計算値650℃にて自動的に制動オフ。
ランダムに手動で制動オフの状態を解除し、制動復帰。
【0046】
に上記実験の結果を示すが、本発明方法による推定値(破線)は、ロータ温度の実測値(実線)に極めて良く一致しており、本発明方法が渦電流式減速装置のロータ温度の推定に極めて有効であることが確認された。
【0047】
このことから、この本発明方法を使用する本発明制御装置では、予め設定した温度を超える直前に精度良く制動制御できるようになること、また、本発明制御装置を備えた本発明渦電流式減速装置では、本来の能力を十分に発揮できるようになることは言うまでもない。
【0049】
【発明の効果】
以上説明したように、本発明では、制動切替え時における温度の影響や、回転数の影響を考慮して温度変化率を適切に補正することで、ロータ温度を精度良く推定できるようになり、制動オン、制動オフが最適のタイミングで行えるようになって、本来の能力を十分に発揮できるようになる。
【図面の簡単な説明】
【図1】 渦電流式減速装置を用いたベンチ試験において、制動状態及び回転数が一定の条件で制動実験を行った結果を示したもので、横軸にロータ温度を、縦軸に温度変化率を示した図である。
【図2】 制動状態と回転数が一定の時の温度変化率を求める際のフロー図である。
【図3】 温度変化率のロータ回転数による影響を示した図である。
【図4】 請求項の本発明に係る渦電流式減速装置の制御装置の概略構成を示すブロック図である。
【図5】 請求項の本発明に係る渦電流式減速装置の制御装置の概略構成を示すブロック図である。
【図】 渦電流式減速装置を使用し、本発明に係るロータ温度推定方法によりロータ温度を推定した結果とロータの実測温度を示した図である。
【図】 軸スライド方式の渦電流式減速装置の回転軸方向の断面図である。
【図】 単列旋回方式の渦電流式減速装置の回転軸方向の断面図である。
【図】 複列旋回方式の渦電流式減速装置の回転軸方向の断面図である。
【図1】 ディスク型ロータによる軸スライド方式の渦電流式減速装置の回転軸方向の断面図である。
【符号の説明】
2 ロータ
11 温度センサ
12、1 記憶部
13、1 演算部
制御部
回転センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rotor temperature estimation method for an eddy current speed reducer that can accurately estimate the temperature change of the rotor in the eddy current speed reducer, and the rotor temperature estimation method. The present invention relates to a braking control device capable of suppressing a rise and exhibiting a braking effect for a long time, and an eddy current reduction device including the braking control device.
[0002]
[Prior art]
In recent years, for large vehicles such as buses and trucks, stable deceleration on long downhills, etc., reducing the number of times the foot brake is used, preventing abnormal lining wear and fading, and braking stop distance For the purpose of shortening, an eddy current type speed reducer has been installed in addition to a foot brake as a main brake and an exhaust brake as an auxiliary brake.
[0003]
At present, the eddy current type reduction gears are mainly of a permanent magnet type, and there are the following four types.
(1) For example, as shown in FIG. 7, there is a predetermined interval in the circumferential direction between the nonmagnetic support bodies 3 on the inner peripheral surface side of the drum-like rotor 2 attached to the rotary shaft 1. A ferromagnetic body in which a group of permanent magnets 5 in which N poles and S poles are alternately arranged in the circumferential direction at the same interval as the switch board 4 is attached to the outer peripheral surface of the ferromagnetic switch board 4 group. A shaft slide system in which a support ring 6 is disposed and the support ring 6 is provided so that the inside of the sealed case 8 can be advanced and retracted by an actuator 7 from a position where the permanent magnet 5 group completely faces the switch plate 4 group to a position where the permanent magnet 5 group is completely separated. For example, Unexamined-Japanese-Patent No. 1-234043).
[0004]
(2) For example, as shown in FIG. 8 , a support ring 6 arranged on the inner peripheral surface side of the rotor 2 so as to face the rotor ring 4 overlaps with a switch plate 4 and a permanent magnet 5 attached to the outer peripheral surface of the support ring 6. And a position where one permanent magnet 5 overlaps half of the adjacent switch plate 4 so as to be able to select a single row turning system (for example, JP-A-1-298948).
[0005]
(3) For example, as shown in FIG. 9 , two support rings having permanent magnet groups in which N poles and S poles are alternately arranged at predetermined intervals along the circumferential direction are arranged in parallel on the outer circumferential surface, The support ring is fixed (hereinafter referred to as “fixed support ring 6a”), and the other support ring is configured to be rotatable by a predetermined angle (hereinafter referred to as “movable support ring 6b”). The position of the permanent magnet 5a of the fixed support ring 6a adjacent to the permanent magnet 5b of the movable support ring 6b and the permanent magnet 5a of the adjacent movable support ring 6b and the permanent magnet 5a of the fixed support ring 6a by the turning movement are the same. A double-row swivel system (for example, Japanese Patent Laid-Open No. 4-12659) configured to be able to select a position where the poles are different from each other.
[0006]
(4) 7-9 is an example using the drum rotor, these unlike, for example, as shown in FIG. 1 0, the rotor 2 facing the position of the disc type mounted on the rotary shaft 1 In addition, the N pole and the S pole are arranged at the same interval as the switch plate 4 through a group of ferromagnetic switch plates 4 arranged between the nonmagnetic supports 3 at a predetermined interval in the circumferential direction. A ferromagnetic support ring 6 having a group of permanent magnets 5 arranged alternately in the direction is mounted on the side surface. The support ring 6 is completely separated from a position where the permanent magnets 5 group completely faces the switch plate 4 group. A shaft slide system with a disk-type rotor that can be moved back and forth inside the sealed case by the actuator 7 to the position.
[0007]
By the way, in the eddy current type speed reducer as described above, the temperature of the rotor 2 becomes high when used in, for example, a long downhill. And if the state exceeding the allowable upper limit temperature of the rotor 2 continues for a long time, the rotor 2 may be thermally deformed or a thermal crack may occur. Therefore, the temperature of the rotor 2 is detected so that the rotor 2 does not undergo thermal deformation or thermal cracks, and the braking operation of the eddy current reduction device is interrupted immediately before the rotor 2 reaches the allowable upper limit temperature. Need to control.
[0008]
Therefore, as a technique for monitoring the temperature of the rotor described above, for example, in JP-A-4-251600, a temperature sensor is fixedly arranged on the fixed side facing the inner surface of the rotor, and the ambient temperature in the vicinity of the rotor is monitored. Thus, an indirect estimation of the rotor temperature has been proposed.
[0009]
[Problems to be solved by the invention]
However, because of the characteristics of the eddy current type speed reducer, the braking torque changes when the vehicle speed changes, so the amount of heat generated by the rotor also changes. Normally, as the vehicle speed increases, the amount of heat generated by the rotor increases, and the rotor temperature reaches the allowable upper limit temperature in a short time. Accordingly, when an air layer is interposed between the rotor and the temperature sensor as in the technique disclosed in Japanese Patent Laid-Open No. 4-251600, a rapid temperature rise of the rotor is hindered by the thermal resistance of the air layer, and the temperature sensor This causes a problem that the temperature rise is delayed with respect to the temperature rise of the rotor, and in consideration of the rapid temperature rise of the rotor at high speed, it is necessary to consider, for example, setting the temperature upper limit temperature of the temperature sensor low.
[0010]
However, the correlation between the measured temperature of the temperature sensor and the rotor temperature differs between high speed and low speed, so if the upper temperature limit of the temperature sensor is set low, the rotor temperature is much lower than the allowable upper limit temperature at low speed. Nevertheless, the temperature measured by the temperature sensor reaches the upper limit temperature and the braking is interrupted. As a result, there arises a problem that the original ability of the eddy current type reduction gear cannot be fully exhibited.
[0011]
The present invention has been made in view of the above-described conventional problems, and uses the rotor temperature estimation method of an eddy current type reduction gear capable of accurately estimating the temperature change of the rotor, and the rotor temperature estimation method. It is an object of the present invention to provide a braking control device capable of suppressing the temperature rise of the rotor even during continuous use and exhibiting a braking effect for a long time, and an eddy current reduction device provided with the braking control device.
[0012]
[Means for Solving the Problems]
To achieve the above object, a rotor temperature estimation method of the eddy current type reduction gear according to the present invention is the rotor estimated temperature obtained by the calculation in the preceding braking state, b over data early during braking Dosetsu replacement and temperature, obtained in advance to approximate to the distribution of the initial temperature change rate at the time of switching the actual braking, using the correlation equation between the rotor initial temperature and initial temperature change rate approximate expression, the initial temperature change rate k 0 The rotor temperature at the time of braking switching is obtained in advance so as to approximate the obtained initial temperature change rate k 0 and the distribution of the actual temperature change rate at the previous period of braking switching for each rotor temperature at the time of braking switching. The first temperature change rate approximation formula to be adopted is determined from the correlation formula with each first temperature change rate approximation formula ,
From this determined first temperature change rate approximate expression and the obtained initial temperature change rate k 0 , the temperature change rate k i1 of the first brake switching period according to the rotor temperature at that time is obtained, and further, the actual second brake change period is calculated . using the second temperature change rate approximate expression determined in advance so as to approximate the temperature change rate distribution, brake switch obtains the temperature change rate k i2 late depending on the rotor temperature of the time, braking Dosetsu replacement The estimated rotor temperature from the time until switching to a different braking state is the rotor initial temperature, the initial temperature change rate k 0 , the temperature change rate k i1 in the first brake switching period, the temperature change rate k i2 in the second brake switching period, and the following (1 ) (2) It is supposed to calculate repeatedly using the formula . By doing so, the rotor temperature can be accurately estimated.
T i = T i - 1 + ΔT i - 1 ... (1)
However, ΔT i - 1 = K i - 1 × (t i -t i - 1) ... (2)
t i : Time at which the eddy current reduction device is located
t i - 1: one before the time
T i : rotor temperature at time t i
T i - 1: Time t i - 1 of the rotor temperature
K i - 1: Time t i - the rate of temperature change at the time of 1 (℃ / sec.)
At initial time i = 0 is, K i - 1 is the initial temperature change rate k 0 (K i - 1 = k 0)
After i = 2, the rate of temperature change k i1 in the first half of the brake switching and the temperature in the second half of the brake switching
Comparing the rate of change k i2, the larger the value K i - adopted as one.
[0013]
And all the calculation formulas (initial temperature change rate approximation formula, first temperature change rate approximation formula, second temperature change rate approximation formula, and formulas (1) and (2) ) necessary for obtaining the rotor temperature were stored. immediately before exceeding a storage unit, a calculation unit asking you to rotor estimated temperature using a rotor initial temperature when switching brake and the formula for the storage unit, an allowable temperature of the rotor estimated temperature calculated by the arithmetic unit is set in advance If the rotor temperature is estimated by the rotor temperature estimation method according to the present invention described above using the braking control device according to the present invention provided with a control unit for controlling the braking to be turned off, the accuracy is increased immediately before exceeding the preset allowable temperature. The braking can be well controlled off.
[0014]
Therefore, in the eddy current type speed reducer provided with the above-described braking control device according to the present invention, braking on and braking off can be performed at the optimum timing, so that the original ability can be sufficiently exhibited.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The rotor temperature Ti at a time ti with an eddy current reduction gear is expressed as follows: the rotor temperature at the previous time ti-1 is Ti-1, and the temperature change between the previous time ti-1 is ΔTi-1. In this case, it can be obtained by the following temperature calculation basic formulas (1) and (2).
Ti = Ti-1 + ΔTi-1 (1)
However, ΔTi-1 = Ki-1 * (ti-ti-1) (2)
Ki-1: Rate of temperature change at time ti-1 (° C / sec)
[0016]
By the way, since the rotor temperature of the eddy current type reduction gear always changes when braking is off as well as when braking is on, the above formulas (1) and (2) are always used during operation of the eddy current type reduction gear. To find the rotor temperature. And when the value calculated | required by calculation reaches a setting value, control which switches the braking of a rotor automatically is performed. The Ki-1 is stored in advance in a computer based on the test and analysis results, and a value corresponding to the rotor temperature is always selected.
[0017]
FIG. 1 is a bench test using the double-row swirl type eddy current reduction device shown in FIG. 9 and a braking experiment was performed under the constant conditions of a braking state of Low (braking force reduction braking) and a rotational speed of 1800 rpm. FIG. 6 is a diagram in which the rotor temperature is plotted on the horizontal axis and the temperature change rate is plotted on the vertical axis. Further, the straight line in FIG. 1 is obtained by approximating the actual measurement value with a linear function.
[0018]
In this bench test, the braking switching temperature was 4 ° C. (50 ° C. (♦ mark and thick solid line), 100 ° C. (■ mark and thin solid line), 300 ° C. (▲ mark and thin broken line), 500 ° C. (○ mark and thick broken line). Thus, the change in temperature change rate until the rotor temperature reached 650 ° C., which is the heat resistant limit temperature, was determined. For example, when the braking switching temperature is 50 ° C., the temperature change rate decreases as the temperature rises along the ♦ mark in FIG. 1, and then the temperature change rate decreases from around 250 ° C. along the * mark. To go.
[0019]
From the bench test described above, it has been found that if the temperature at the time of switching the braking is different, even if the rotor temperature is the same, the temperature change rate takes a completely different value. For example, in FIG. 1, when the rotor temperature is 300 ° C., the temperature change rate is 7 ° C./second when the switching temperature is 100 ° C. (■ mark and thin solid line), but when the switching temperature is 300 ° C. The rate of change in temperature was 14 ° C./sec.
[0020]
From the above, the present inventors have found that the temperature change rate distribution of FIG. 1 is represented by the initial temperature change rate approximation equation (FIG. 1) when the rotational speed is constant and the braking state is constant. approximate expression (1): a thin one-dot chain line) in FIG. 1, the first temperature change rate approximate expression of the braking switching year (approximate expression shown in FIG. 1 (2): wherein the solid and broken in FIG. 1) and the brake switch late It has been found that it can be expressed by three types of linear function approximations of the second temperature change rate approximation formula (approximation formula (3) in FIG. 1: thick two-dot chain line in FIG. 1).
[0021]
That is, since the temperature change rate at the time of braking switching (ON) passes on the approximate expression (1) in FIG. 1, if the rotor temperature at the time of braking switching is known, the temperature changing rate at that time (initial (Temperature change rate) can be obtained from the approximate expression (1) in FIG. 1 (K 0 = A 1 · T 0 + B 1 ).
[0022]
Further, the temperature change rate immediately after the start of braking takes different values depending on the switching temperature. At this time, the slope of the approximate expression (2) in FIG. The temperature change rate approximate expression (approximate expression (2) in FIG. 1) passes through the initial values (T 0 , K 0 ) determined by the initial temperature change rate approximate expression (approximate expression (1) in FIG. 1), and the slope A 2 , the temperature change rate in the previous period of braking switching (approximate expression (2) in FIG. 1 K i 1 = A 2 · (T i −T 0 ) + K 0 , A 2 = A 2a · T 0 + A 2b ) can be obtained.
[0023]
Further, since the temperature change rate gradually approaches the same value (approximate expression (3) in FIG. 1) as the rotor becomes hot, the rotor temperature rises and approximate expression (3) in FIG. If it becomes larger than ▼, the temperature change rate is calculated by calculating the temperature change rate close to the actual measured value by taking the approximate expression ( 3 ) in FIG. 1 (K i = A 3 · T i + B 3 ). Will be able to.
[0024]
That is, by using the above approximate expression (1) to approximate expression (3), the rate of temperature change when the braking state and the rotation speed are constant can be calculated by the flow as shown in FIG. It becomes like this.
[0025]
The above is the knowledge about the temperature change rate when the braking state and the rotation speed are constant, but the temperature change rate is strongly influenced not only by the brake switching temperature but also by the rotor rotation speed. Therefore, in order to bring the temperature change rate used for the calculation of the rotor temperature closer to the actual value, the temperature change rate is corrected in consideration of not only the influence of the braking switching temperature but also the influence of the rotation speed of the rotor. There is a need.
[0026]
As shown in FIG. 3, it has been found that the influence of the temperature change rate on the rotor rotational speed is proportional to the rotor rotational speed, so that the temperature change takes into account the rotor rotational speed that changes from time to time. In order to correct the rate, for example, constants (A 1 , B 1 , A) constituting the approximate expression ( 1 ) to approximate expression (3) at a certain high rotation speed (for example, 3000 rpm) and a certain low rotation speed (for example, 2000 rpm). 2a , A 12b , A 3 , B 3 ) are obtained by a bench test, stored in advance in an arithmetic unit, and approximate expressions (1) to ( 3 ) at the rotor rotational speed at that time by linear interpolation from these constants. The simplest method is to determine the constants constituting ▼.
[0027]
The present invention has been made based on the above knowledge and the like, and the rotor temperature estimation method for the first eddy current type speed reducer according to the present invention includes:
A rotor temperature estimation method for an eddy current type speed reducer for controlling braking off immediately before the rotor reaches an allowable upper limit temperature,
A rotor estimated temperature obtained by the calculation in the preceding braking state, and b over data initial temperature at the time of braking Dosetsu replacement,
The actual initial temperature change rate of distribution (and rotor temperature at the time of braking switching approximate expression representing the relationship between the temperature change rate when switching the braking at the rotor temperature (1)) at the time of switching the braking to approximate the Using the correlation equation between the rotor initial temperature and the initial temperature change rate approximation formula obtained in advance, the initial temperature change rate k 0 is obtained,
The obtained initial temperature change rate k 0 and the first temperature change rate for each rotor temperature at the time of braking switching, which are obtained in advance so as to approximate the distribution of the temperature change rate in the previous period of brake switching for each rotor temperature at the time of brake switching. The first temperature change rate approximation formula to be adopted is determined from the correlation formula with the 1 temperature change rate approximation formula,
From this determined first temperature change rate approximate expression and the obtained initial temperature change rate k 0 , the temperature change rate k i1 of the first brake switching period according to the rotor temperature at that time is obtained,
Further using the actual braking switching the second temperature change rate approximate expression determined in advance to approximate to the distribution of the temperature change rate of late, the temperature change rate of the braking switch late depending on the rotor temperature of the time k i2 Seeking
The rotor estimated temperature from the time of braking Dosetsu sort to switch to different braking state, the rotor initial temperature, initial temperature change rate k 0, braking switching temperature change rate k i1 of year, the braking switching temperature change rate k i2 late is to repeatedly calculated by using the above (1) (2).
In this first eddy current type speed reducer rotor temperature estimation method, for example , at least one of an initial temperature change rate k 0 , a temperature change rate k i1 in the first brake switching period, and a temperature change rate k i2 in the second brake switch period is rotor. It is assumed that it is expressed by a linear function of temperature.
[0028]
Then, using the first rotor temperature estimation method according to the present invention described above, control for turning off braking immediately before the estimated rotor temperature exceeds a preset allowable temperature is as follows :
A storage unit that stores all the calculation formulas (initial temperature change rate approximation formula, first temperature change rate approximation formula, second temperature change rate approximation formula, and formulas (1) and (2) ) necessary to obtain the rotor temperature When,
A calculation unit asking you to rotor estimated temperature using a rotor initial temperature when switching brake and the formula for the storage unit,
This can be implemented by the braking control device for the first eddy current type speed reducer according to the present invention, which includes a control unit that controls braking off immediately before the estimated rotor temperature calculated by the calculation unit exceeds a preset allowable temperature. .
[0029]
In the first rotor temperature estimation method according to the present invention,
The initial rotor temperature at the time of braking switching is replaced with the estimated rotor temperature obtained by calculation in the previous braking state, and the ambient temperature (hereinafter referred to as “actually measured temperature”) in the vicinity of the eddy current type speed reducing device at the time of braking switching. ) detects may be a value calculated based on the correlation between the measured temperature and the rotor temperature.
This is the rotor temperature estimation method for the second eddy current type speed reducer according to the present invention.
[0030]
Then, using the second rotor temperature estimation method according to the invention described above, turns off the brake just before exceeding the allowable temperature of the rotor estimated temperature is preset control, as shown in FIG. 4,
A temperature sensor 11 provided in or near the eddy current type speed reducer;
A storage unit 12 that stores all the calculation formulas necessary to obtain the rotor temperature ;
An arithmetic unit 13 asking you to rotor estimated temperature using the temperature measuring values of said calculation formula and the temperature sensor 11 of the storage unit 12,
This can be implemented by the braking control device for the second eddy current type speed reducer according to the present invention, which includes a control unit 14 for controlling braking OFF immediately before the estimated rotor temperature calculated by the calculation unit 13 exceeds a preset allowable temperature. It is.
[0031]
Moreover, the rotor temperature estimation method of the third eddy current reduction device according to the present invention is:
In the first or second rotor temperature estimation method according to the present invention,
The initial temperature change rate k 0 is
Instead of using the correlation formula between the rotor initial temperature and the initial temperature change rate approximation formula, which was previously determined to approximate the rotor initial temperature and the distribution of the initial temperature change rate at the time of actual braking switching. ,
From the correlation equation between the rotor initial temperature, the rotor initial temperature, the detected rotor initial rotation speed, and the initial temperature change rate approximation formula, which was determined in advance to approximate the distribution of the initial temperature change rate at the time of actual braking switching. Decide
The first temperature change rate approximation formula is
The obtained initial temperature change rate k 0 and the first temperature change rate for each rotor temperature at the time of braking switching, which are obtained in advance to approximate the distribution of the temperature change rate in the previous period of brake switching for each rotor temperature at the time of brake switching. Instead of determining the first temperature change rate approximation formula to be adopted from the correlation formula with the 1 temperature change rate approximation formula,
The obtained initial temperature change rate k 0 and the first temperature change rate for each rotor temperature at the time of braking switching, which are obtained in advance to approximate the distribution of the temperature change rate in the previous period of brake switching for each rotor temperature at the time of brake switching. A first temperature change rate approximate expression to be adopted is determined from a correlation expression between the 1 temperature change rate approximate expression and the detected rotor rotational speed,
The second temperature change rate approximation formula is
Instead of pre-determining to approximate the distribution of temperature change rate in the late period of actual braking switching,
It is determined in accordance with the detected rotor rotational speed so as to approximate the distribution of the actual temperature change rate in the latter half of the braking switching .
[0032]
Then, using the third rotor temperature estimation method according to the present invention, the braking force reduction control is performed immediately before the estimated rotor temperature reaches the first allowable temperature, and the braking is turned off immediately before the allowable upper limit temperature is reached. as shown in FIG. 5,
A temperature sensor 11 provided in or near the eddy current type speed reducer;
A rotation sensor 15 for detecting the rotation speed of the rotor;
A storage unit 16 that stores all the calculation formulas necessary to determine the rotor temperature ;
The used rotor initial temperature at the time of the calculation formula and switching brake of the storage unit 1 6 and the detection value of the rotation sensor 15, an arithmetic unit 1 7 asking you to rotor estimated temperature,
The third eddy current type reduction gear according to the present invention having the operation section 1 7 off control to that control part 14 of the brake just before the rotor estimated temperature exceeds the permissible HiroshiAtsushi degree set in advance calculated in This can be implemented by a braking control device.
[0035]
Said engagement Carlo over data temperature estimation method in the present invention is not limited to estimating the rotor temperature during switching brake on, an initial temperature from the rotor temperature at the time of switching the braking-off (measured value, regardless estimates) The change rate and the first temperature change rate approximation formula are determined, and the brake temperature is switched by using the rotor temperature and the first temperature change rate approximation formula at the time of braking off switching and the predetermined second temperature change rate approximation formula. it is possible both calculation child rotor estimated temperature after the desired time in the braking-off state from.
[0042]
In the rotor temperature estimation method according to the present invention described above, the temperature change rate can be appropriately corrected in consideration of the influence of the temperature at the time of braking switching and the influence of the rotation speed. Can be used to accurately estimate the rotor temperature. Then, if the rotor temperature is estimated by the rotor temperature estimation method according to the present invention, the braking control can be accurately performed immediately before exceeding the preset temperature, for example, the temperature of the rotor even during continuous use. The braking effect can be exhibited for a long time while suppressing the increase.
[0043]
Further, in the eddy current type speed reducer according to the present invention provided with the above-described braking control apparatus according to the present invention, the braking on and the braking off can be performed at the optimum timing so that the original ability can be sufficiently exhibited. become. In addition, it cannot be overemphasized that the eddy current type speed reducer which concerns on this invention does not ask | require an axis | shaft slide system, a single row turning system, and a double row turning system.
[0044]
【Example】
Hereinafter, experimental results performed to confirm the effects of the present invention will be described.
The experiment uses the same double-row swirl type eddy current speed reducer as that used for the bench test that obtained the results shown in FIG. 1, and the rotor temperature was estimated by the rotor temperature estimation method according to the present invention under the following experimental conditions. This was done by estimation.
[0045]
Experimental conditions:
(1) Brake pattern The rotation speed of the rotor and the switching temperature for turning on / off the brake were changed randomly.
(2) Atmospheric temperature Room temperature (20 ° C)
(3) Manual switching of rotation speed (4) Automatic braking off at the calculated value of switching on / off of braking at 650 ° C.
Randomly manually release the brake off state and return to braking.
[0046]
FIG. 6 shows the result of the above experiment. The estimated value (broken line) according to the method of the present invention agrees very well with the actual measured value (solid line) of the rotor temperature. It was confirmed that it was extremely effective in estimating
[0047]
Therefore, in the control device of the present invention using the method of the present invention, it becomes possible to perform braking control with high accuracy immediately before exceeding a preset temperature, and the eddy current type deceleration provided with the control device of the present invention. It goes without saying that the device can fully demonstrate its original capabilities.
[0049]
【The invention's effect】
As described above, in the present invention, the temperature of the rotor can be accurately estimated by appropriately correcting the temperature change rate in consideration of the influence of the temperature at the time of braking switching and the influence of the rotation speed, and the braking can be accurately performed. On and braking off can be performed at the optimal timing, and the original ability can be fully demonstrated.
[Brief description of the drawings]
FIG. 1 shows a result of a braking test conducted under a constant braking state and a constant rotational speed in a bench test using an eddy current type speed reducer. The horizontal axis represents the rotor temperature and the vertical axis represents the temperature change. It is the figure which showed the rate.
FIG. 2 is a flowchart for obtaining a temperature change rate when the braking state and the rotation speed are constant.
FIG. 3 is a graph showing the influence of the temperature change rate due to the rotor rotational speed.
FIG. 4 is a block diagram showing a schematic configuration of a control device for an eddy current reduction device according to the present invention of claim 6 ;
FIG. 5 is a block diagram showing a schematic configuration of a control device for an eddy current type reduction gear according to the present invention according to claim 7 ;
FIG. 6 is a diagram showing the result of estimating the rotor temperature by the rotor temperature estimation method according to the present invention using the eddy current type speed reducer and the actual measured temperature of the rotor.
FIG. 7 is a cross-sectional view of the shaft slide type eddy current reduction device in the rotation axis direction.
FIG. 8 is a cross-sectional view in the direction of the rotation axis of a single-row swirl type eddy current type reduction gear.
FIG. 9 is a cross-sectional view in the direction of the rotation axis of a double row swirl type eddy current type reduction gear.
Figure 1 0 is a cross-sectional view of a rotation axis direction of the eddy current type reduction gear axis sliding manner by a disk-type rotor.
[Explanation of symbols]
2 Rotor 11 Temperature sensor 12, 16 Storage unit 13, 17 Calculation unit 1 4 Control unit 1 5 Rotation sensor

Claims (8)

ロータが許容上限温度に達する直前に制動をオフ制御する渦電流式減速装置のロータ温度推定方法であって、
前の制動状態において計算によって求めたロータ推定温度である、動切替え時のロータ初期温度
実際の制動切替え時の初期温度変化率の分布(制動切替え時のロータ温度と、このロータ温度で制動を切替えた時の温度変化率との関係を表した近似式 (1) )に近似するように予め求めておいた、ロータ初期温度と初期温度変化率近似式との相関式を用いて、初期温度変化率k 0 を求め、
この求めた初期温度変化率k 0 と、制動切替え時のロータ温度毎の実際の制動切替え前期の温度変化率の分布に近似するように予め求めておいた、制動切替え時のロータ温度毎の第1温度変化率近似式との相関式から、採用する第1温度変化率近似式を決定し、
この決定した第1温度変化率近似式と前記求めた初期温度変化率k 0 とから、当該時のロータ温度に応じた制動切替え前期の温度変化率k i1 を求め、
さらに実際の制動切替え後期の温度変化率の分布に近似するように予め定めておいた第2温度変化率近似式を用いて、当該時のロータ温度に応じた制動切替え後期の温度変化率k i2 を求め、
動切替え時から異なる制動状態に切替えるまでのロータ推定温度を、前記ロータ初期温度、初期温度変化率k 0 、制動切替え前期の温度変化率k i1 、制動切替え後期の温度変化率k i2 と下記の (1)(2) 式を用いて繰返し算出することを特徴とする渦電流式減速装置のロータ温度推定方法。
i =T i 1 +ΔT i 1 (1)
但し、ΔT i 1 =K i 1 ×(t i −t i 1 ) … (2)
i :渦電流式減速装置のある時刻
i 1 :ひとつ前の時刻
i :時刻t i のロータ温度
i 1 :時刻t i 1 のロータ温度
i 1 :時刻t i 1 の時の温度変化率(℃/秒)
初期時刻 i =0の時は、K i 1 は初期温度変化率k 0 (K i 1 =k 0
i =2以降は、制動切替え前期の温度変化率k i1 と制動切り替え後期の温度
変化率k i2 を比較し、大きい値をK i 1 として採用する。
A rotor temperature estimation method for an eddy current type speed reducer for controlling braking off immediately before the rotor reaches an allowable upper limit temperature,
A rotor estimated temperature obtained by the calculation in the preceding braking state, and b over data initial temperature at the time of braking Dosetsu replacement,
The actual initial temperature change rate of distribution (and rotor temperature at the time of braking switching approximate expression representing the relationship between the temperature change rate when switching the braking at the rotor temperature (1)) at the time of switching the braking to approximate the Using the correlation equation between the rotor initial temperature and the initial temperature change rate approximation formula obtained in advance, the initial temperature change rate k 0 is obtained,
The obtained initial temperature change rate k 0 and the first temperature change rate for each rotor temperature at the time of braking switching, which are obtained in advance so as to approximate the distribution of the temperature change rate in the previous period of brake switching for each rotor temperature at the time of brake switching. The first temperature change rate approximation formula to be adopted is determined from the correlation formula with the 1 temperature change rate approximation formula,
From this determined first temperature change rate approximate expression and the obtained initial temperature change rate k 0 , the temperature change rate k i1 of the first brake switching period according to the rotor temperature at that time is obtained,
Further using the actual braking switching the second temperature change rate approximate expression determined in advance to approximate to the distribution of the temperature change rate of late, the temperature change rate of the braking switch late depending on the rotor temperature of the time k i2 Seeking
The rotor estimated temperature from the time of braking Dosetsu sort to switch to different braking state, the rotor initial temperature, initial temperature change rate k 0, braking switching temperature change rate k i1 of year, the braking switching temperature change rate k i2 late the rotor temperature estimation method described below (1) (2) eddy current type reduction gear, characterized in that the repeatedly calculated using.
T i = T i - 1 + ΔT i - 1 ... (1)
However, ΔT i - 1 = K i - 1 × (t i -t i - 1) ... (2)
t i : Time at which the eddy current reduction device is located
t i - 1: one before the time
T i : rotor temperature at time t i
T i - 1: Time t i - 1 of the rotor temperature
K i - 1: Time t i - the rate of temperature change at the time of 1 (℃ / sec.)
At initial time i = 0 is, K i - 1 is the initial temperature change rate k 0 (K i - 1 = k 0)
After i = 2, the rate of temperature change k i1 in the first half of the brake switching and the temperature in the second half of the brake switching
Comparing the rate of change k i2, the larger the value K i - adopted as one.
請求項1に記載の渦電流式減速装置のロータ温度推定方法において、In the rotor temperature estimation method of the eddy current type reduction gear according to claim 1,
前記の初期温度変化率k  The initial temperature change rate k 00 、制動切替え前期の温度変化率k, The rate of temperature change k in the previous period of braking switching i1i1 、制動切替え後期の温度変化率k, The rate of temperature change in the second half of braking switching i2i2 のうち、少なくとも一つがロータ温度の一次関数で表されるものであることを特徴とする渦電流式減速装置のロータ温度推定方法。Of these, at least one is represented by a linear function of the rotor temperature, and the rotor temperature estimation method for an eddy current type speed reducer.
請求項1又は2に記載の渦電流式減速装置のロータ温度推定方法において、In the rotor temperature estimation method of the eddy current type speed reducer according to claim 1 or 2,
制動切替え時のロータ初期温度を、前の制動状態において計算によって求めたロータ推定温度に代えて、制動切替え時の渦電流式減速装置或いはその近傍の雰囲気温度(以下、「実測温度」と言う。)を検出し、この実測温度とロータ温度の相関関係に基づいて算出した値とすることを特徴とする渦電流式減速装置のロータ温度推定方法。  The initial rotor temperature at the time of braking switching is replaced with the estimated rotor temperature obtained by calculation in the previous braking state, and the ambient temperature (hereinafter referred to as “measured temperature”) in the vicinity of the eddy current type reduction gear at the time of braking switching. ) And a value calculated based on the correlation between the actually measured temperature and the rotor temperature, and a rotor temperature estimation method for an eddy current type speed reducer.
請求項1〜3の何れかに記載の渦電流式減速装置のロータ温度推定方法において、
初期温度変化率 0 を、
ロータ初期温度と、実際の制動切替え時の初期温度変化率の分布に近似するように予め定めておいた、ロータ初期温度と初期温度変化率近似式との相関式を用いて求めるのに代えて、
ロータ初期温度と、実際の制動切替え時の初期温度変化率の分布に近似するように予め定めておいた、ロータ初期温度と検出したロータ初期回転数と初期温度変化率近似式との相関式より決定し、
第1温度変化率近似式を
前記求めた初期温度変化率k 0 と、制動切替え時のロータ温度毎の実際の制動切替え前期の温度変化率の分布に近似するように予め求めておいた、制動切替え時のロータ温度毎の第1温度変化率近似式との相関式から、採用する第1温度変化率近似式を決定するのに代えて、
前記求めた初期温度変化率k 0 と、制動切替え時のロータ温度毎の実際の制動切替え前期の温度変化率の分布に近似するように予め求めておいた、制動切替え時のロータ温度毎の第1温度変化率近似式と検出したロータ回転数との相関式から、採用する第1温度変化率近似式を決定すると共に、
第2温度変化率近似式を、
実際の制動切替え後期の温度変化率の分布に近似するように予め定めておくのに代えて、
実際の制動切替え後期の温度変化率の分布に近似するように、前記検出したロータ回転数に応じて決定することを特徴とする渦電流式減速装置のロータ温度推定方法。
In the rotor temperature estimation method of the eddy current type reduction gear according to any one of claims 1 to 3 ,
The initial temperature change rate k 0 is
A rotor initial temperature, previously determined to approximate the distribution of the initial temperature change rate at the time of switching the actual braking, instead of seeking to have use a correlation equation between the rotor initial temperature and initial temperature rate of change approximate expression ,
From the correlation equation between the rotor initial temperature, the rotor initial temperature, the detected rotor initial rotation speed, and the initial temperature change rate approximation formula, which was determined in advance to approximate the distribution of the initial temperature change rate at the time of actual braking switching. Decide
The first temperature change rate approximation formula is
The obtained initial temperature change rate k 0 and the first temperature change rate for each rotor temperature at the time of braking switching, which are obtained in advance to approximate the distribution of the temperature change rate in the previous period of brake switching for each rotor temperature at the time of brake switching. Instead of determining the first temperature change rate approximation formula to be adopted from the correlation formula with the 1 temperature change rate approximation formula ,
The obtained initial temperature change rate k 0 and the first temperature change rate for each rotor temperature at the time of braking switching, which are obtained in advance to approximate the distribution of the temperature change rate in the previous period of brake switching for each rotor temperature at the time of brake switching. A first temperature change rate approximate expression to be adopted is determined from a correlation expression between the 1 temperature change rate approximate expression and the detected rotor rotational speed,
The second temperature change rate approximation formula is
Instead of pre-determining to approximate the distribution of temperature change rate in the late period of actual braking switching ,
A method for estimating a rotor temperature of an eddy current reduction device, wherein the rotor temperature is determined in accordance with the detected rotor rotational speed so as to approximate a distribution of a temperature change rate in an actual late braking switching period .
請求項1又は2に記載のロータ温度推定方法を用い、ロータ推定温度が予め設定した許容温度を超える直前に制動をオフする制御装置であって、
ロータ温度を求めるのに必要な全ての計算(初期温度変化率近似式、第1温度変化率近似式、第2温度変化率近似式、及び (1)(2) 式)を記憶した記憶部と、
この記憶部の前記計算式と制動切替え時のロータ初期温度を用いてロータ推定温度を求める演算部と、
この演算部で算出したロータ推定温度が予め設定した許容温度を超える直前に制動をオフ制御する制御部を備えたことを特徴とする渦電流式減速装置の制動制御装置。
A control device that uses the rotor temperature estimation method according to claim 1 or 2 to turn off braking immediately before the estimated rotor temperature exceeds a preset allowable temperature,
A storage unit that stores all the calculation formulas (initial temperature change rate approximation formula, first temperature change rate approximation formula, second temperature change rate approximation formula, and formulas (1) and (2) ) necessary to obtain the rotor temperature When,
A calculation unit asking you to rotor estimated temperature using a rotor initial temperature when switching brake and the formula for the storage unit,
A braking control device for an eddy current reduction device, comprising: a control unit that controls braking off immediately before the estimated rotor temperature calculated by the calculation unit exceeds a preset allowable temperature.
請求項3に記載のロータ温度推定方法を用い、ロータ推定温度が予め設定した許容温度を超える直前に制動をオフする制御装置であって、
渦電流式減速装置或いはその近傍に設けた温度センサと、
ロータ温度を求めるのに必要な全ての前記計算式を記憶した記憶部と、
この記憶部の前記計算式と温度センサの測温値を用いてロータ推定温度を求める演算部と、
この演算部で算出したロータ推定温度が予め設定した許容温度を超える直前に制動をオフ制御する制御部を備えたことを特徴とする渦電流式減速装置の制動制御装置。
A control device that uses the rotor temperature estimation method according to claim 3 to turn off braking immediately before the estimated rotor temperature exceeds a preset allowable temperature,
A temperature sensor provided in or near the eddy current type speed reducer;
A storage unit storing all of the calculation formulas necessary to obtain the rotor temperature ;
A calculation unit asking you to rotor estimated temperature using the temperature measuring values of said calculation formula and the temperature sensor of the storage unit,
A braking control device for an eddy current reduction device, comprising: a control unit that controls braking off immediately before the estimated rotor temperature calculated by the calculation unit exceeds a preset allowable temperature.
請求項4記載のロータ温度推定方法を用い、ロータ推定温度が予め設定した許容温度を超える直前に制動をオフする制御装置であって、
渦電流式減速装置或いはその近傍に設けた温度センサと、
ロータの回転数を検出する回転センサと、
ータ温度を求めるのに必要な全ての前記計算式を記憶した記憶部と、
この記憶部の前記計算式と動切替え時のロータ初期温度と回転センサの検出値を用いて、ロータ推定温度を求める演算部と、
この演算部で算出したロータ推定温度が予め設定した容温を超える直前に制動をオフ制御する制御部を備えたことを特徴とする渦電流式減速装置の制動制御装置。
With rotor temperature estimation method according to claim 4, there is provided a control apparatus for turning off the Braking just before exceeding the allowable temperature of the rotor estimated temperature is preset,
A temperature sensor provided in or near the eddy current type speed reducer;
A rotation sensor for detecting the rotational speed of the rotor;
A storage unit that stores all necessary of the calculation formula for obtaining the B over data temperature,
Using the detection value of the equation and the rotor initial temperature at the time of braking Dosetsu replacement of the storage unit and the rotation sensor, a calculating unit for obtaining the B over data estimated temperature,
Braking control of the eddy current type reduction gear, characterized in that it includes an off control to that control section a brake just before the calculated b over data estimated temperature exceeds the permissible HiroshiAtsushi degree set in advance in the calculation unit apparatus.
請求項の何れか記載の制動制御装置を備えたことを特徴とする渦電流式減速装置。An eddy current reduction device comprising the braking control device according to any one of claims 5 to 7 .
JP2002177657A 2002-06-18 2002-06-18 Rotor temperature estimation method, braking control device and eddy current type speed reducer for eddy current type speed reducer Expired - Fee Related JP4045869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177657A JP4045869B2 (en) 2002-06-18 2002-06-18 Rotor temperature estimation method, braking control device and eddy current type speed reducer for eddy current type speed reducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177657A JP4045869B2 (en) 2002-06-18 2002-06-18 Rotor temperature estimation method, braking control device and eddy current type speed reducer for eddy current type speed reducer

Publications (2)

Publication Number Publication Date
JP2004023930A JP2004023930A (en) 2004-01-22
JP4045869B2 true JP4045869B2 (en) 2008-02-13

Family

ID=31175634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177657A Expired - Fee Related JP4045869B2 (en) 2002-06-18 2002-06-18 Rotor temperature estimation method, braking control device and eddy current type speed reducer for eddy current type speed reducer

Country Status (1)

Country Link
JP (1) JP4045869B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023617B2 (en) * 2006-08-25 2012-09-12 住友金属工業株式会社 Braking force estimation method, estimated braking force calculation device, braking force control device, and eddy current reduction device for eddy current reduction device
JP5149431B2 (en) * 2011-07-29 2013-02-20 ファナック株式会社 Temperature detection device that detects the temperature of the mover of the motor
JP5607698B2 (en) * 2012-10-18 2014-10-15 ファナック株式会社 Temperature estimation device for estimating the temperature of an electric motor

Also Published As

Publication number Publication date
JP2004023930A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
US6909575B2 (en) Magnetic disk drive and control method thereof
US20130144478A1 (en) Shift range switcher
JP4045869B2 (en) Rotor temperature estimation method, braking control device and eddy current type speed reducer for eddy current type speed reducer
WO2018159645A1 (en) Temperature prediction device, compressor with magnetic bearing mounted thereon, and temperature prediction method and program
JP5023617B2 (en) Braking force estimation method, estimated braking force calculation device, braking force control device, and eddy current reduction device for eddy current reduction device
JP2002508708A (en) Method and apparatus for controlling ingot temperature during casting, especially at start-up
JP2010063286A (en) Train control system
JPH06304727A (en) Device for controlling casting velocity
JPS6353904B2 (en)
JP3697904B2 (en) Inter-vehicle distance control device
JP3760776B2 (en) Braking control method and braking control device for eddy current reduction device
JP2002266011A (en) Method for estimating furnace condition in blast furnace
AU738771B2 (en) Apparatus and method for measuring the temperature of a moving surface
ATE508916T1 (en) ARRANGEMENT AND METHOD FOR CONTROLLING THE ACTIVATION OF AN AUXILIARY BRAKE IN A VEHICLE
JPH06320245A (en) Heat extraction control device in mold
JP3135282B2 (en) Thin plate continuous casting method
JP2010026122A5 (en)
JP2007314171A (en) Vehicle braking method
JP2005069268A (en) Electric brake device
JP2006118775A (en) Heat treatment method and heat treatment device of aluminum alloy
JP3956210B2 (en) Eddy current reducer
JPS591012A (en) Method and device for restricting camber of material to be hot rolled
KR101059205B1 (en) Repulsive Force and Speed Control Method of Casting Roll in Twin Roll Type Sheet Casting Process
KR20140083487A (en) Electronic parking brake system
JP3369241B2 (en) Extraction billet temperature control method for rotary hearth heating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4045869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees