JP5140035B2 - Colloidal solution containing metal nanoparticles - Google Patents

Colloidal solution containing metal nanoparticles Download PDF

Info

Publication number
JP5140035B2
JP5140035B2 JP2009125794A JP2009125794A JP5140035B2 JP 5140035 B2 JP5140035 B2 JP 5140035B2 JP 2009125794 A JP2009125794 A JP 2009125794A JP 2009125794 A JP2009125794 A JP 2009125794A JP 5140035 B2 JP5140035 B2 JP 5140035B2
Authority
JP
Japan
Prior art keywords
metal
colloidal solution
metal nanoparticles
resin
organometallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009125794A
Other languages
Japanese (ja)
Other versions
JP2010269290A (en
Inventor
拓也 細井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2009125794A priority Critical patent/JP5140035B2/en
Publication of JP2010269290A publication Critical patent/JP2010269290A/en
Application granted granted Critical
Publication of JP5140035B2 publication Critical patent/JP5140035B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、めっき膜の核付け用途、触媒担体への触媒金属担持用途等に適用されるコロイド溶液に関する。詳しくは、金属ナノ粒子を含有し、塗布後に加熱しても金属ナノ粒子の凝集が少ないコロイド溶液に関する。   The present invention relates to a colloid solution applied to a plating film nucleation application, a catalyst metal support application to a catalyst carrier, and the like. Specifically, the present invention relates to a colloidal solution containing metal nanoparticles and having little aggregation of metal nanoparticles even when heated after coating.

ナノオーダーの微小金属粒子が分散するコロイド溶液は、予め微小粒径に調整された金属を、分散性良好な状態で各種の基材に塗布、固定することができ、各種用途への応用が検討されている。   Colloidal solution in which nano-order fine metal particles are dispersed can apply and fix metal preliminarily adjusted to a fine particle size to various substrates with good dispersibility. Has been.

例えば、回路基板上の電極パターンや各種センサーの電極膜等の形成において、これらの電極はメッキにより形成されることが多いが、そのメッキ膜を成長させるための核付けのためにコロイド溶液の適用が検討される(特許文献1)。これは、メッキ膜形成前にコロイドにより核形成しておくことで、均質なメッキ膜を形成できることを期待するものである。   For example, in the formation of electrode patterns on circuit boards, electrode films for various sensors, etc., these electrodes are often formed by plating, but a colloid solution is applied for nucleation to grow the plating film. (Patent Document 1). It is expected that a homogeneous plating film can be formed by nucleating with a colloid before forming the plating film.

また、コロイドは触媒等の機能性材料の製造にも好適である(特許文献2)。触媒の特性は、担体に担持された触媒金属の粒径や分散性に影響されるが、コロイドは担持段階から適切な粒径の金属粒子を良好に分散させることができる。   Colloids are also suitable for the production of functional materials such as catalysts (Patent Document 2). Although the characteristics of the catalyst are affected by the particle size and dispersibility of the catalyst metal supported on the carrier, the colloid can satisfactorily disperse the metal particles having an appropriate particle size from the supporting step.

特開2006−270118号公報JP 2006-270118 A 特開2002−001095号公報JP 2002-001095 A

ところで、コロイド溶液を上記のような用途に適用する際、コロイド塗布後の基材に対して熱が加えられることが多い。これは、例えば、メッキ膜形成のための核付けにおいては、コロイド塗布後に300〜1600℃で加熱処理して金属粒子(核)を活性化してこれによりその後のメッキ膜の形成を促進している。   By the way, when the colloid solution is applied to the above-described uses, heat is often applied to the base material after the colloid coating. For example, in nucleation for forming a plating film, heat treatment is performed at 300 to 1600 ° C. after colloid coating to activate metal particles (nuclei), thereby promoting the subsequent formation of the plating film. .

しかしながら、この加熱処理により、基材上の金属粒子が凝集し粗大粒子を形成することがある。かかる粗大粒子の形成は、メッキ膜の核としては不適当であり、また、触媒金属としても、意図した粒径を外れることとなり所望の特性を発揮し得ない。   However, the heat treatment may cause the metal particles on the base material to aggregate and form coarse particles. The formation of such coarse particles is unsuitable as the core of the plating film, and even the catalyst metal deviates from the intended particle size and cannot exhibit desired characteristics.

本発明は、以上のような背景のもとになされたものであり、上記の各種用途に供されるコロイド溶液について、基材への塗布後に熱処理を受けても凝集を生じさせ難いものを提供することを課題とする。   The present invention has been made based on the background as described above, and provides a colloid solution for various uses as described above, which is less likely to cause agglomeration even if it is subjected to heat treatment after application to a substrate. The task is to do.

上記課題を解決するため、本発明者等は鋭意検討を行い、コロイド溶液中に加熱時の金属ナノ粒子の凝集を抑制する効果を有する添加物を加えることを検討した。そして、その結果、凝集抑制剤として所定の金属の有機金属化合物を含むコロイド溶液に想到した。   In order to solve the above-mentioned problems, the present inventors have intensively studied and studied to add an additive having an effect of suppressing aggregation of metal nanoparticles during heating to the colloidal solution. As a result, the inventors have conceived a colloidal solution containing an organometallic compound of a predetermined metal as an aggregation inhibitor.

即ち、本発明は、金属ナノ粒子を有機溶剤に分散させてなるコロイド溶液において、凝集抑制剤として、ジルコニウム、アルミニウム、チタン、マグネシウムのいずれかの有機金属化合物とレジンを含有することを特徴とするコロイド溶液である。   That is, the present invention is characterized in that a colloidal solution in which metal nanoparticles are dispersed in an organic solvent contains an organometallic compound of any one of zirconium, aluminum, titanium, and magnesium and a resin as an aggregation inhibitor. It is a colloidal solution.

上記の通り、本発明は、加熱時の金属ナノ粒子の凝集抑制剤として、所定の金属の有機金属化合物とレジンを共に添加するものである。ここで、凝集抑制剤としてジルコニウム、アルミニウム、チタン、マグネシウムの有機金属化合物を選択するのは、これらが金属ナノ粒子の凝集抑制効果を発揮するからであり、他の金属ではこのような作用が見られないからである。ジルコニウム等に限定し効果が見られる理由は定かではないが、これらの有機金属化合物が、コロイド状金属が熱により移動・凝集する際に、その間隙に介在し易いためと推察している。また、これら有機金属化合物が加熱中に酸化物を形成し、融点が高くなっていることも起因していると考えている。   As described above, the present invention adds a predetermined metal organometallic compound and a resin together as an aggregation inhibitor for metal nanoparticles during heating. Here, the reason why the organometallic compounds of zirconium, aluminum, titanium, and magnesium are selected as the aggregation inhibitor is that these exhibit the aggregation suppression effect of the metal nanoparticles, and other metals have such an action. Because it is not possible. The reason why the effect is limited to zirconium or the like is not clear, but it is presumed that these organometallic compounds are likely to intervene in the gap when the colloidal metal moves and aggregates due to heat. It is also considered that these organometallic compounds form oxides during heating and have a high melting point.

そして、有機金属化合物は、上記金属の脂肪族カルボン酸化合物が好ましく、より好ましくはエチルヘキサン酸化合物、ナフテン酸化合物のいずれかの形態のものが好ましい。これらは、ペースト全体に均一に分散し易いためであるからである。   The organometallic compound is preferably an aliphatic carboxylic acid compound of the above metal, more preferably an ethylhexanoic acid compound or a naphthenic acid compound. This is because these are easily dispersed uniformly throughout the paste.

そして、加熱時の凝集抑制剤として、更にレジンを含有するのは、その追加添加により凝集抑制効果がより向上する。即ち、本発明者等の検討では、上記の有機金属化合物は、それのみの添加であっても凝集抑制効果を発揮ずるが、その効果は不十分である。そこで、凝集抑制効果をより確実なものとするためにレジンを同時添加する。この点、レジンも凝集抑制効果を有するが、やはり単独では不十分な効果しか得られない。このレジンとしては、セルロース系樹脂、ビニル系樹脂のいずれかが好ましく、具体的には、エチルセルロース、ニトロセルロース、ポリビニルアセタール、ポリビニルアルコールが好ましい。   And as a coagulation inhibitor at the time of heating, a resin is further contained, and the cohesion inhibitory effect improves more by the additional addition. That is, according to the study by the present inventors, the above-mentioned organometallic compound exhibits an aggregation suppressing effect even if it is added alone, but the effect is insufficient. Therefore, a resin is added at the same time in order to make the aggregation suppressing effect more reliable. In this respect, the resin also has an aggregation-inhibiting effect, but it is possible to obtain only an insufficient effect by itself. As the resin, either a cellulose resin or a vinyl resin is preferable, and specifically, ethyl cellulose, nitrocellulose, polyvinyl acetal, and polyvinyl alcohol are preferable.

これらの凝集抑制剤の含有量としては、有機金属化合物は、金属ナノ粒子の量に対して、有機金属化合物中の金属換算で1〜20重量%含有するのが好ましい。1重量%未満では、焼結防止効果が殆ど認められないためであり、20重量%を超えると金属ナノ粒子独自の特性を劣化させるためである。また、レジンについては、コロイド溶液全体に対して0.1〜3.0重量%とするのが好ましい。   As content of these aggregation inhibitor, it is preferable to contain 1-20 weight% of organometallic compounds in conversion of the metal in an organometallic compound with respect to the quantity of a metal nanoparticle. This is because if it is less than 1% by weight, the sintering-preventing effect is hardly recognized, and if it exceeds 20% by weight, the unique properties of the metal nanoparticles are deteriorated. The resin is preferably 0.1 to 3.0% by weight based on the entire colloidal solution.

金属ナノ粒子の粒径は1〜50nmが好ましく、より好ましくは1〜10nmとする。メッキの核或いは触媒金属としての作用を考慮するものである。そして、その用途から、金属ナノ粒子は、Pt、Pd少なくともいずれかの貴金属からなるものが好ましい。また、コロイド溶液は、その製造工程に関連して金属ナノ粒子が保護剤で覆われている場合がある。保護剤とは、コロイドを製造する過程で形成したコロイド粒子間の凝集を防止するために添加される化合物であり、例えば、アルキルアミン、カルボン酸アミド、脂肪酸、アルコキシシリル等がある。   The particle size of the metal nanoparticles is preferably 1 to 50 nm, more preferably 1 to 10 nm. The action as a plating nucleus or catalytic metal is taken into consideration. In view of its use, the metal nanoparticles are preferably composed of at least one of Pt and Pd. Further, the colloidal solution may have metal nanoparticles covered with a protective agent in connection with the production process. The protective agent is a compound added to prevent aggregation between colloidal particles formed in the process of producing a colloid, and examples thereof include alkylamine, carboxylic acid amide, fatty acid, alkoxysilyl and the like.

金属ナノ粒子を分散させる有機溶媒は、その用途に応じて適宜に選択されるが、例えば、トルエン、クロロホルム、ヘキサン、ターピネオール等が挙げられる。そして、溶媒中の金属ナノ粒子は、コロイド溶液全体に対して0.1〜5.0重量%とするのが好ましい。   The organic solvent in which the metal nanoparticles are dispersed is appropriately selected according to the application, and examples thereof include toluene, chloroform, hexane, terpineol, and the like. And it is preferable that the metal nanoparticle in a solvent shall be 0.1-5.0 weight% with respect to the whole colloid solution.

本発明に係るコロイド溶液の製造方法としては、金属ナノ粒子を製造し、これを有機溶媒に分散させる。金属ナノ粒子の製造方法は、従来から知られる方法で製造可能である。一般的な製造方法は、目的とする金属の金属塩溶液に還元剤と適宜に保護剤を添加し、金属イオンを還元して金属ナノ粒子にするものがある。そして、製造した金属ナノ粒子を濾過等により分離し、有機溶媒に分散させると共に、凝集抑制剤を添加することで本発明に係るコロイド溶液とすることができる。   As a method for producing a colloidal solution according to the present invention, metal nanoparticles are produced and dispersed in an organic solvent. The method for producing metal nanoparticles can be produced by a conventionally known method. As a general production method, there is a method in which a reducing agent and an appropriate protective agent are added to a metal salt solution of a target metal to reduce metal ions into metal nanoparticles. And the manufactured metal nanoparticle is isolate | separated by filtration etc., and it can be set as the colloidal solution which concerns on this invention by adding an aggregation inhibitor while being disperse | distributed to an organic solvent.

以上説明した本発明に係るコロイド溶液は、基材に塗布後の熱処理によっても金属微粒子が凝集することなくその分散性を維持することができる。本発明は、めっき膜の核付け処理、触媒担体への加熱処理を用いる触媒金属担持に有用である。   The colloidal solution according to the present invention described above can maintain its dispersibility without agglomeration of metal fine particles even by heat treatment after coating on a substrate. INDUSTRIAL APPLICABILITY The present invention is useful for catalyst metal loading using a nucleation process for a plating film and a heat treatment for a catalyst carrier.

実施例、比較例のコロイド溶液の塗布加熱後の外観(SEM)を示す図。The figure which shows the external appearance (SEM) after application | coating heating of the colloidal solution of an Example and a comparative example.

以下、本発明の好適な実施形態を説明する。本実施形態では、白金、パラジウム、白金−パラジウムの金属ナノ粒子が分散するコロイド溶液を製造し、その分散性の維持特性を検討した。   Hereinafter, preferred embodiments of the present invention will be described. In the present embodiment, a colloidal solution in which metal nanoparticles of platinum, palladium, and platinum-palladium are dispersed was manufactured, and the dispersibility maintenance characteristics were examined.

金属ナノ粒子(コロイド粒子)の作成
0.1Mのジニトロアンミン白金塩水溶液10mLとトルエン200mLとを混合し、これに保護剤として40mmolのデシルアミンを添加し攪拌した。そして、この混合溶液に還元剤として0.2Mの水素化ホウ素ナトリウムを10mL添加して、完全に還元するまで攪拌した。これにより、トルエン相の白金イオンは白金粒子へ還元されると共に、保護剤が白金粒子と結合し、金属ナノ粒子(白金コロイド)が形成される。上記製造工程において製造される白金コロイドは、白金粒子の粒径が5nmである。本実施形態では、金属イオンと保護剤と還元剤の濃度比率を調整しつつ白金粒子径を変化させて複数の白金コロイドを製造した。
Preparation of Metal Nanoparticles (Colloid Particles) 10 mL of 0.1 M dinitroammine platinum salt solution and 200 mL of toluene were mixed, and 40 mmol of decylamine was added as a protective agent and stirred. Then, 10 mL of 0.2 M sodium borohydride as a reducing agent was added to the mixed solution, and the mixture was stirred until it was completely reduced. As a result, platinum ions in the toluene phase are reduced to platinum particles, and the protective agent is combined with the platinum particles to form metal nanoparticles (platinum colloid). The platinum colloid produced in the production process has a platinum particle diameter of 5 nm. In the present embodiment, a plurality of platinum colloids were produced by changing the platinum particle diameter while adjusting the concentration ratio of the metal ions, the protective agent, and the reducing agent.

また、本実施形態では、白金コロイドの他、パラジウム、白金−パラジウム混合粒子のコロイドも製造した。この場合の製造方法は、基本的に上記に準じ、パラジウム塩としてジニトロアンミンパラジウムを使用した。   Moreover, in this embodiment, the colloid of palladium and the platinum-palladium mixed particle was manufactured besides the platinum colloid. The production method in this case was basically the same as described above, and dinitroammine palladium was used as the palladium salt.

コロイド溶液の作成
製造した金属ナノ粒子を用いて、コロイド溶液を製造した。本実施形態では、金属ナノ粒子の含有量、凝集抑制剤の種類、添加量を変化させ複数のコロイド溶液を製造した。コロイド溶液の製造は、金属ナノ粒子を、有機溶媒であるターピネオールに分散させ、凝集抑制剤となる有機金属化合物及びレジンを添加してコロイド溶液を製造した。また、比較のため、凝集抑制剤の一方、又は、双方を添加しないコロイド溶液も製造した。
Production of colloidal solution A colloidal solution was produced using the produced metal nanoparticles. In the present embodiment, a plurality of colloidal solutions were manufactured by changing the content of metal nanoparticles, the type of aggregation inhibitor, and the amount added. The colloid solution was prepared by dispersing metal nanoparticles in terpineol, which is an organic solvent, and adding an organometallic compound and a resin that serve as an aggregation inhibitor. For comparison, a colloidal solution in which one or both of the aggregation inhibitors was not added was also produced.

そして、製造した各コロイド溶液について、それらを基材に塗布し、加熱処理して凝集抑制の効果を確認した。この評価は、コロイド溶液10μLをマイクロピペットで採取し、アルミナ基板に滴下し塗布した。その後、120℃で10分乾燥し、500℃で30分加熱処理した。そして、熱処理された基板をSEMにて観察し、金属ナノ粒子の粒径及び塗布面の表面形態を評価した。また、この評価において、金属ナノ粒子の粒径が300nm以下となったもの「◎」、300〜500nmとなったものを「○」、500nmを超えたものを「×」と判定した。この評価結果を表1〜表3に示す。また、一部の実施例(実施例3、9)及び比較例(比較例1〜3)のSEM写真を図1に示す。   And about each manufactured colloid solution, they were apply | coated to the base material and it heat-processed and confirmed the effect of aggregation suppression. In this evaluation, 10 μL of a colloidal solution was collected with a micropipette and dropped onto an alumina substrate and applied. Then, it dried at 120 degreeC for 10 minutes, and heat-processed at 500 degreeC for 30 minutes. And the heat-processed board | substrate was observed by SEM, and the particle size of the metal nanoparticle and the surface form of the coating surface were evaluated. Further, in this evaluation, the metal nanoparticle having a particle size of 300 nm or less was evaluated as “◎”, the metal nanoparticle having a particle size of 300 to 500 nm as “◯”, and the metal nanoparticle exceeding 500 nm as “x”. The evaluation results are shown in Tables 1 to 3. In addition, SEM photographs of some examples (Examples 3 and 9) and comparative examples (Comparative Examples 1 to 3) are shown in FIG.

Figure 0005140035
Figure 0005140035

Figure 0005140035
Figure 0005140035

Figure 0005140035
Figure 0005140035

表1〜3、図1から、各実施例においては、金属ナノ粒子は微細な粒子状態を維持しており(粒径500nm以下)、良好な分散状態を維持している。これに対し、比較例1の凝集抑制剤を全く添加しない場合、金属微粒子が凝集し、膜状のものとなってしまう。   From Tables 1-3 and FIG. 1, in each Example, the metal nanoparticle is maintaining the fine particle state (particle diameter of 500 nm or less), and is maintaining the favorable dispersion state. On the other hand, when the aggregation inhibitor of Comparative Example 1 is not added at all, the metal fine particles aggregate to form a film.

また、比較例2のエチルヘキサン酸ジルコニウムのみを添加した場合、膜の形成はなく、凝集も若干抑制されているものの、微細な担持はできていない。また、比較例3のエチルセルロースのみ添加したものに関しては、均一な白金粒子が担持されているものの、未だ凝集が生じており、白金粒子も1μmを超えるものが多い。このことから、凝集抑制剤としては、有機金属化合物とレジンの双方を添加することが必要である。   When only the zirconium ethylhexanoate of Comparative Example 2 was added, no film was formed and aggregation was slightly suppressed, but fine support was not achieved. Further, in the case of adding only ethylcellulose of Comparative Example 3, although uniform platinum particles are supported, aggregation is still occurring, and many platinum particles exceed 1 μm. For this reason, it is necessary to add both an organometallic compound and a resin as an aggregation inhibitor.

但し、有機金属化合物とレジンの双方を添加するとしても、金属ナノ粒子の粒径、含有率が過大な場合(比較例5、6、8)、有機金属化合物の添加量が多い場合(比較例7)においては、加熱後の粒径が大きくなる傾向がある。また、有機金属化合物といっても、錫の有機金属化合物を添加した場合(比較例4)、加熱時の凝集抑制効果がないことがわかる。   However, even when both the organometallic compound and the resin are added, when the particle size and content of the metal nanoparticles are excessive (Comparative Examples 5, 6, and 8), the addition amount of the organometallic compound is large (Comparative Example). In 7), the particle size after heating tends to increase. Moreover, even if it says an organometallic compound, when the organometallic compound of tin is added (comparative example 4), it turns out that there is no aggregation inhibitory effect at the time of a heating.

本発明に係るコロイド溶液は、加熱による金属微粒子の凝集が少ないことから、メッキ膜の核形成に有用である。従って、センサー電極、各種電気回路のパターン電極の製造に有用である。また、燃料電池、酸素センサー、燃焼触媒、VOC等の貴金属微粒子を触媒金属とする触媒の製造において、微小な触媒金属を好適な分散性をもって担持させることができる。   The colloidal solution according to the present invention is useful for the nucleation of the plating film because the metal fine particles are less aggregated by heating. Therefore, it is useful for manufacturing sensor electrodes and pattern electrodes of various electric circuits. Further, in the production of a catalyst using noble metal fine particles such as a fuel cell, an oxygen sensor, a combustion catalyst, and VOC as a catalyst metal, a fine catalyst metal can be supported with suitable dispersibility.

Claims (5)

金属ナノ粒子を有機溶剤に分散させてなるコロイド溶液において、
加熱時の凝集抑制剤として、ジルコニウム、アルミニウム、チタン、マグネシウムのいずれかの有機金属化合物とレジンを含有し、
前記有機金属化合物は、脂肪族カルボン酸化合物であり、その含有量は、金属ナノ粒子量に対して1〜20重量%(有機金属化合物中の金属換算)であり、
前記レジンの含有量は、コロイド溶液全体に対して0.1〜3.0重量%であり、
前記金属ナノ粒子は、その粒径が1〜50nmであり、その含有量がコロイド溶液全体に対して0.1〜5.0重量%であること、を特徴とするコロイド溶液。
In a colloidal solution in which metal nanoparticles are dispersed in an organic solvent,
As an aggregation inhibitor at the time of heating, it contains an organometallic compound of either zirconium, aluminum, titanium, or magnesium and a resin,
The organometallic compound is an aliphatic carboxylic acid compound, and the content thereof is 1 to 20% by weight (in terms of metal in the organometallic compound) based on the amount of metal nanoparticles,
The content of the resin is 0.1 to 3.0% by weight with respect to the entire colloidal solution,
The metal nanoparticles have a particle size of 1 to 50 nm and a content of 0.1 to 5.0% by weight with respect to the entire colloid solution.
有機金属化合物は、エチルヘキシル酸化合物、ナフテン酸化合物のいずれかである請求項1記載のコロイド溶液。 The colloidal solution according to claim 1 , wherein the organometallic compound is one of an ethylhexyl acid compound and a naphthenic acid compound. レジンは、セルロース系樹脂、ビニル系樹脂のいずれかである請求項1又は請求項2のいずれかに記載のコロイド溶液。 The colloidal solution according to claim 1 , wherein the resin is either a cellulose resin or a vinyl resin. 金属ナノ粒子の粒径は1〜10nmである請求項1〜請求項3のいずれかに記載のコロイド溶液。 The colloidal solution according to any one of claims 1 to 3 , wherein the metal nanoparticles have a particle size of 1 to 10 nm. 金属ナノ粒子は、Pt、Pdの少なくとも1の貴金属からなる請求項1〜請求項4のいずれかに記載のコロイド溶液。 The colloidal solution according to any one of claims 1 to 4 , wherein the metal nanoparticles comprise at least one noble metal of Pt and Pd.
JP2009125794A 2009-05-25 2009-05-25 Colloidal solution containing metal nanoparticles Expired - Fee Related JP5140035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009125794A JP5140035B2 (en) 2009-05-25 2009-05-25 Colloidal solution containing metal nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009125794A JP5140035B2 (en) 2009-05-25 2009-05-25 Colloidal solution containing metal nanoparticles

Publications (2)

Publication Number Publication Date
JP2010269290A JP2010269290A (en) 2010-12-02
JP5140035B2 true JP5140035B2 (en) 2013-02-06

Family

ID=43417764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009125794A Expired - Fee Related JP5140035B2 (en) 2009-05-25 2009-05-25 Colloidal solution containing metal nanoparticles

Country Status (1)

Country Link
JP (1) JP5140035B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6104137B2 (en) * 2013-02-14 2017-03-29 日本特殊陶業株式会社 Method for manufacturing gas sensor element
WO2015027031A1 (en) * 2013-08-23 2015-02-26 Basf Corporation Catalysts for oxidation of carbon monoxide and/or volatile organic compounds

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19821968A1 (en) * 1998-05-18 1999-11-25 Studiengesellschaft Kohle Mbh Production of transition metal colloid for use e.g. as coating, catalyst, fuel cell component and in ink jet printing, laser etching, information storage and cell labeling and cell separation
JP2000015097A (en) * 1998-06-30 2000-01-18 Toyota Motor Corp Production of catalyst
JP4145166B2 (en) * 2003-02-28 2008-09-03 田中貴金属工業株式会社 Method for producing one- or multi-component metal colloid and one- or multi-component metal colloid
US7569508B2 (en) * 2004-11-17 2009-08-04 Headwaters Technology Innovation, Llc Reforming nanocatalysts and method of making and using such catalysts
JP2008069374A (en) * 2006-09-12 2008-03-27 Nippon Shokubai Co Ltd Metallic nanoparticle dispersion and metallic film
JP5085372B2 (en) * 2007-03-13 2012-11-28 東海ゴム工業株式会社 Paste material
JP5368683B2 (en) * 2007-07-17 2013-12-18 株式会社日本触媒 Metal nanoparticle dispersion and metal coating
JP4865772B2 (en) * 2007-08-30 2012-02-01 三ツ星ベルト株式会社 Metal colloidal particles and dispersions thereof
JP5002478B2 (en) * 2007-09-27 2012-08-15 三ツ星ベルト株式会社 Metal nanoparticle paste and pattern forming method
CN101835557B (en) * 2007-10-24 2015-01-07 同和电子科技有限公司 Silver microparticle-containing composition, process for production of the composition, process for production of the silver microparticle, and paste containing the silver microparticle
JP5431073B2 (en) * 2008-09-01 2014-03-05 三ツ星ベルト株式会社 Method for producing a conductive substrate
JP5461134B2 (en) * 2008-11-20 2014-04-02 三ツ星ベルト株式会社 Bonding agent for inorganic material and bonded body of inorganic material

Also Published As

Publication number Publication date
JP2010269290A (en) 2010-12-02

Similar Documents

Publication Publication Date Title
JP5227828B2 (en) Method for producing oxidation-resistant copper fine particles and joining method using the same
KR101474040B1 (en) Dispersion solution of metal nanoparticle, method for production thereof, and method for synthesis of metal nanoparticle
JP5047864B2 (en) Conductive paste and cured film containing fine silver particles
US8951931B2 (en) Noble metal fine particle supported catalyst and method for producing the catalyst, and purifying catalyst
JP6653875B2 (en) Method for producing platinum catalyst and fuel cell using the same
JP2011034749A (en) Composition for conductive film formation and conductive film formation method
WO2006062186A1 (en) Nickel powder, process for producing the same, and conductive paste
WO2007004533A1 (en) Method for producing nickel particles and nickel particles produced by the method, and electroconductive paste using the nickel particles
JP4614101B2 (en) Silver powder, method for producing the same, and conductive paste containing the silver powder
JP5140035B2 (en) Colloidal solution containing metal nanoparticles
JP2012030149A (en) Method of manufacturing metal particle-supported catalyst, metal particle-supported catalyst, and reaction method
JP2006248959A (en) METHOD FOR PRODUCING pi CONJUGATED MOLECULE COMPOUND-METAL NANOCLUSTER
JP2010153184A (en) Electrode forming composition, method of manufacturing conductive base material, and the conductive base material
JP2020063487A (en) AgPd CORE-SHELL PARTICLE AND USE THEREOF
TW201615785A (en) Bonding composition
JP2012030178A (en) Method of manufacturing metal particle-supported catalyst, metal particle-supported catalyst, and reaction method
JP2014029845A (en) Method for producing conductive paste
JP2007145947A (en) Electroconductive ink composition and its manufacturing method
JP6102697B2 (en) Aqueous silver colloidal liquid, method for producing the same, and ink using aqueous silver colloidal liquid
JP4485174B2 (en) Composite metal fine particle dispersion and method for producing the same
JP5705150B2 (en) Metal fine particle dispersion and method for producing the same
WO2016143784A1 (en) Method for manufacturing platinum catalyst, and fuel cell using same
JP2005068508A (en) Metal powder coated with inorganic superfine particle and its production method
JPWO2004066319A1 (en) Platinum-coated powder, method for producing the same, and conductive paste
JP2004183060A (en) Polyaniline-based resin coated copper powder, its manufacturing method, and conductive paste obtained by using the powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121116

R150 Certificate of patent or registration of utility model

Ref document number: 5140035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees