JP2004100132A - Precursor fiber bundle for carbon fiber, method for producing the same, apparatus for producing the same, and method for producing the carbon fiber from the fiber bundle - Google Patents

Precursor fiber bundle for carbon fiber, method for producing the same, apparatus for producing the same, and method for producing the carbon fiber from the fiber bundle Download PDF

Info

Publication number
JP2004100132A
JP2004100132A JP2003168259A JP2003168259A JP2004100132A JP 2004100132 A JP2004100132 A JP 2004100132A JP 2003168259 A JP2003168259 A JP 2003168259A JP 2003168259 A JP2003168259 A JP 2003168259A JP 2004100132 A JP2004100132 A JP 2004100132A
Authority
JP
Japan
Prior art keywords
tow
small
fiber bundle
carbon fiber
entanglement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003168259A
Other languages
Japanese (ja)
Other versions
JP4192041B2 (en
Inventor
Atsushi Kawamura
川村 篤志
Hiroshi Inagaki
稲垣 博司
Masaji Okamoto
岡本 正司
Katsuhiko Ikeda
池田 勝彦
Masashi Masuyama
増山 正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2003168259A priority Critical patent/JP4192041B2/en
Publication of JP2004100132A publication Critical patent/JP2004100132A/en
Application granted granted Critical
Publication of JP4192041B2 publication Critical patent/JP4192041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a precursor fiber bundle for a carbon fiber, capable of bundling two or more small tows into one piece of an aggregated fiber bundle by a simple operation and having division properties of being naturally divided into the original small tows in a baking process, to provide a method for producing the precursor fiber bundle, to provide an apparatus for the same, and to provide a method for producing the carbon fiber, capable of stably producing the carbon fiber of high quality by using the fiber bundle. <P>SOLUTION: In this method for producing the fiber bundle, the small tows (4) travelling in parall with each other in a divided state are subjected to fluid entanglement by injecting a liquid or air from openings of slits or air injection holes extendedly arranged in the transverse direction of the tows to be furnished with entanglement within the small tows (4) and bundling properties between the small tows (4), so that a shape of the one piece of the aggregated tow (1) is maintained. Therefore, the aggregated tow (1) which is formed out of substantially straight fibers not subjected to shrinkage processing, keeps the shape of one piece of the aggregated tow (1), when the tow is stored in a container (21) and introduced into a baking process by pulling the tow out of the container (21), and has the division properties of being divided into the small tows (4) in the transverse direction in the baking process by tension generated in the baking process, is obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、炭素繊維用前駆体繊維束及びその製造方法と炭素繊維の製造方法に関する。さらに詳しくは、製造コストが低く、生産性に優れ、糸切れ、毛羽の発生が少なく、焼成工程において、容器から送り出される太いトウ形態をもつ繊維束が自ずと各工程に応じた複数のトウとなることを可能にした炭素繊維用前駆体繊維束及びその製造方法と同繊維束を用いた炭素繊維の製造方法に関する。
【0002】
【従来の技術】
従来、炭素繊維用のアクリル系前駆体繊維としては、高強度、高弾性率の炭素繊維を得るために、糸切れや毛羽の発生の少ない、品質に優れた3,000フィラメントから20,000フィラメントの原糸(繊維束)が製造され、この原糸から製造された炭素繊維が航空・宇宙、スポーツ分野等の多くの分野に用いられてきた。これらの炭素繊維の開発には、高強度、高弾性率化の検討が主として行われ、具体的には、分子の配向度、緻密性、フィラメントの糸切れや毛羽の発生、接着性、耐炎化促進等について検討がなされてきた。
【0003】
炭素繊維製造用の前駆体繊維は、炭化処理に先立って、200〜350℃の酸化性雰囲気中で加熱する耐炎化処理がなされる。耐炎化処理は反応熱を伴うことから繊維トウの内部に蓄熱されやすい。繊維トウの内部に余剰の蓄熱がなされると、フィラメント切れやフィラメント間の融着が発生しやすくなる。そのため、なるべくこの反応熱による蓄熱を抑える必要がある。この蓄熱を抑えようとするには、耐炎化炉に供給する繊維トウの太さを所定の太さ以下とせざるを得ず、繊維トウの太さに制約を受けるため、生産性を低下させると同時に製造コストの高騰にもつながっている。
【0004】
こうした問題を解決するため、例えば特開平10−121325号公報によれば、容器への収容時には1本のトウの形態を保ちながら、容器から引き出して使用するときに、複数の小トウに分割可能な幅方向に分割能を有する炭素繊維用前駆体繊維トウが開示されている。そして、この分割能を有する繊維トウを製造するには、紡糸された複数本の糸(繊維)を、各群が所定の糸本数となるように複数の群に分割し、その分割状態にて複数並列して走行させ、製糸工程、仕上油剤付与工程を通過させたのち、クリンパを備えた捲縮付与工程に供される。この捲縮付与により所定数の複数の群を1本のトウの形態に集束させる。前記捲縮付与工程を通さないときは、各小トウに10%以上50%以下の水分を含ませる。
【0005】
前記集束形態にあっては、小トウ形態を有する各糸条群の耳部における糸条同士を1mm程度斜交させて互いに弱く交絡させ、複数の糸条群から構成する1本のトウ形態を保持させる。各糸条群の耳部における糸条の斜交による交絡は弱いため、1本のトウ形態に保持された後に、炭素繊維製造工程に供されて使用される際にも、容易に耳部から各糸条群毎に分割可能となっており、この集束された繊維束を小トウに分割可能な形態で容器に収容する。
【0006】
容器に収容された分割能を有する炭素繊維用の前駆体繊維束は、耐炎化炉への導入前の分割工程にて、前述の小トウ毎に分割される。この分割は、たとえば溝付ロールや分割用ガイドバーを用いて行うとしている。小トウ同士は、それらの耳部で弱い交絡によって集束されているため、この分割は極めて容易に行うことができ、分割に際しても毛羽の発生や糸切れが殆ど生じないというものである。
【0007】
こうした所定サイズ以下の小トウ形態に分割された各小トウは、耐炎化工程に導入されて耐炎化処理がなされる。このとき、分割された状態で小トウに耐炎化処理がなされるため、過剰蓄熱が発生せず、糸切れやフィラメント間の融着も防止されるとある。
【0008】
【特許文献1】
特開平10−121325号公報
【0009】
【発明が解決しようとする課題】
しかしながら、上記特許文献1による集束繊維束に対する小トウへの分割能の付与機構は、小トウにおける耳部に存在する繊維単位の斜行による交絡であるとされているが、小トウ分割部における交絡度が1〜10−1mでは、耐炎化工程に導入される以前に分割手段によって小トウに分割すると、単糸切れを生じてしまい炭素繊維の品質に影響を与える可能性がある。さらに同特許文献1には、小トウ同士を交絡手段としては、各小トウの耳部における糸条同士が斜行されて互いに弱く交絡し1本のトウ形態に維持される捲縮付与による方法しか示されていない。こうした捲縮トウの場合は、炭素繊維製造工程において耐炎化工程へそのまま供給すると、トウ全域に渡って均等に捲縮を引き伸ばして所定の伸張を付与することが難しい。その結果、得られる炭素繊維の目付け(単位長さあたりの重量)、繊度に斑が生じ、得られる炭素繊維の品質に影響を及ぼす可能性がある。そのため耐炎化工程以前に捲縮除去手段が必要となるが、設備空間が増大するとともに省力化が難しく、生産性にも大きな影響を与える。
【0010】
一方、上記特許文献1では捲縮が付与されていないストレートトウの形態の場合、その水分率が10〜50%であるとのみ記載している。すなわち、水分による表面張力によって小トウが集束され1本のトウ形態を保持する機構のみが記載されていることになる。この水分率ではトウ内の水による表面張力で、ケンスに収納された際の折り返し部の折癖などは元に戻らず、結果として炭素繊維の製造工程に供給する際に折癖やそれに起因するトウ内のフィラメントの斜行などがそのままの状態で供給され、得られる炭素繊維の品位が損なわれ、或いは場合によっては折癖が捩れとなって、その部分に耐炎化工程での過剰な蓄熱が発生する恐れがある。
【0011】
更に、クリンパを通すかどうかは別にして、集束繊維束を容器から引き出して、焼成工程に導入する前に、同集束繊維束を所要の太さをもつ小トウに分割する必要があり、そのための分割装置をわざわざ設置する必要があり、設備空間が増大し、或いは省力化が難しく、生産性にも大きな影響を与える。
【0012】
本発明は、かかる従来の課題を解決すべく開発されたものであり、具体的には簡単な操作で複数本の小トウを1本の集束繊維束に集束させることが可能であって、且つ焼成工程では自然にもとの小トウに分割可能な分割能を備えた炭素繊維用の前駆体繊維束及び同繊維束の製造方法と、同繊維束を使った生産性に優れ、高品質の炭素繊維を安定して製造できる炭素繊維の製造方法を提供することを目的としている。
【0013】
【課題を解決するための手段及び作用効果】
上記課題は、本発明の基本的構成である捲縮が付与されない実質的にストレートな繊維からなり、容器への収納時及び前記容器から引き出して焼成工程に導入する際には1本の集合トウの形態を保持し、焼成工程にて同工程で発生する張力により小トウに分割可能な幅方向の分割能を有することを特徴とする炭素繊維用前駆体繊維束によって解決される。
【0014】
本発明の炭素繊維用前駆体繊維束は、複数の小トウ同士の集合体としての1本のトウ形態を、品位を損なうことなく維持され、容器からの引き出し時には1本のトウ形態を維持しながら、分割ガイドなどを設置しないでも、焼成の際に発生する張力をもって小トウ間のもつれをまったく生じることなく分割が可能となる。
【0015】
この炭素繊維用前駆体繊維束は、総フィラメント数が48000〜600000であって、小トウのフィラメント数が24000〜150000であることが好ましい。炭素繊維用前駆体繊維束の総フィラメント数が48000より少ないと、焼成工程にて実際に焼成される小トウの数が少なすぎて、生産性の向上につながらず、600000を越えると、所望の長さの炭素繊維用前駆体繊維束を容器に収容することができなくなる。また、小トウのフィラメント数が24000より少ないと、分割数が増えて焼成工程における分割能が発揮されにくくなるばかりでなく、小トウが細すぎて以降の成形効率が低下する。小トウのフィラメント数が150000を越えると、特に耐炎化工程では反応熱に基づく蓄熱が過剰となりやすく、糸切れや溶着などが発生しやすくなる。
【0016】
このような分割能を有する炭素繊維用前駆体繊維束は、分割状態で並走する小トウに、その幅方向に延設されたスリット開口部から水を噴出させて水流交絡を行うことにより、小トウ内のフィラメント同士の交絡及び小トウ間同士の集束性を付与して1本の集合トウの形態を保持する繊維束が得られる。このときの炭素繊維用前駆体繊維束の分割能は、水流交絡の水量及びスリットの開口面積を調整することにより、ガイドなどの分割工程を特に設けなくても、焼成工程中の耐炎化工程において反応の進行に伴い自然に小トウに分割する。
【0017】
また液流交絡の液量,吹き出し開口面積を調整することで、ガイドなどの分割工程を特に設けなくとも焼成工程中の耐炎化工程において反応の進行に伴い発生する張力により、自然に小トウに分割するようにうなる。
【0018】
前記液流交絡工程において、前記スリット開口部の面積が5万フィラメントあたり60〜450(mm2 )であり、噴出する液の流量が1〜5(m3 /h)であることが好ましい。スリット開口部の面積が5万フィラメントあたり60mm2 より少ないと、交絡が局部的に分散するため、噴出する液体の流量に関わらず、円滑な分割能が発揮されず、450mm2 を越えると液体の噴出力が得にくくなり、所望の交絡がなされなくなる。また、噴出する液体の流量が1m3 /hより少ないと、液体の付与量が少なすぎて交絡された繊維形態を保持することが難しくなり、5m3 /hを越えると含液量が多すぎて、以降の焼成工程における焼成条件をの制御が難しくなる。
【0019】
ここで、液流交絡に使われる液体としては水又は油剤であることが好ましい。前記液流交絡は、分割状態で並走する小トウの幅方向の端部が小トウの幅に対して5〜50%の幅でオーバーラップさせて行うことが望ましく、小トウ内のフィラメント同士の交絡及び隣接する小トウ間の集束性を付与させて、1本の集合トウ形態を確実に保持させることが可能となる。オーバーラップの量が5%より少ないと、交絡量が少なすぎて炭素繊維用前駆体繊維束を容器に収容するときに分割してしまうことがある。一方、オーバーラップの量が50%を越えると、焼成工程に導入したあとでも円滑に小トウに分割せず、反応熱に伴う蓄熱が過剰となりやすく、糸切れや融着などが多発するようになる。
【0020】
また、上記炭素繊維用の前駆体繊維束は、液流交絡された複数本の小トウからなる1本の集合トウをギヤーロールへ供給した後、容器へ収納することが望ましい。ここでいうギヤーロールとは、通常の一対の噛合歯車と同様の歯形状を有するロールからなり、複数本の小トウからなる1本の集合トウの形態を安定化させるためのロールである。上述のごとく、水流交絡を受けて複数本の小トウを1本の集合トウとしたのち、これを前記ギヤーロールに通すと容器に収容されるときは波状に屈曲しているものの、容器から取り出し焼成工程に送り出すときには屈曲形態はなくなり、実質的にストレートな繊維からなる1本の集束繊維束の形態を保持しており、焼成工程に導入されたのちには、同工程により発生する張力により複数本の小トウに分割される。
【0021】
また、本発明では前記複数本の小トウに対して液流交絡を行って1本の集合トウとしたのち、前記ギヤーロールに代えて表面平滑なニップロール間に供給することもできる。このニップロール間に複数の小トウからなる1本の集合トウが供給されると、ニップロール間で小トウ同士が押圧変形して偏平化する。このときより偏平化された各小トウの耳部同士が僅かに重なり合い押圧によって、さらに一体化される。これにより、ストレートな繊維からなる1本の集束繊維束の形態が安定して保持され、容器にも安定して収納することが可能となる。
【0022】
さらに本発明では、炭素繊維前駆体繊維束の製造方法において、小トウのフィラメント同士の交絡と小トウ間の交絡とを、前記液流交絡工程に代えてエアの噴出による交絡付与工程とすることも可能である。この際、各小トウの幅方向の端部同士が交絡して1本のトウ形態を保つようにすることが望ましい。また、小トウ間の交絡は小トウ内のフィラメント同士の交絡よりも弱い交絡であることが望ましい。更にこのとき、小トウ同士は必ずしもその幅方向の端部がオーバーラップしている必要はなく、小トウの幅方向の端部同士が互いに隣接してその端部を接する状態であることが好ましい。
【0023】
また本発明にあっては、集束前の各小トウに10%以下の水分が付与されていることが望ましく、より望ましくは0.5〜5%である。この水分の付与により、静電気の発生を抑制して取扱い性を良好にするとともに、収納時のトウの自重やプレスにより押圧された状態で容器に収納されることにより、トウの折り返し部が折り癖となってトウ幅が不安定になる現象をなくすこともできるし、同時に輸送効率が上がり経済性が高まる。
【0024】
ここで、水分率とはウエット状態にある炭素繊維前駆体の繊維束の重量wと、これを105℃×2時間の熱風乾燥機で乾燥した後の重量wo とから、(w−wo )×100/wo によって得られる値(%)である。
【0025】
また、前述のような炭素繊維前駆体は、本発明の複数本の小トウがエアの噴出により並列状態で結合される炭素繊維前駆体繊維束の製造方法によって製造できる。すなわち、その基本的な構成は、分割状態にて製糸された複数本の小トウを、小トウの幅方向の端部同士が緩やかに交絡させたのち容器へ収納することを特徴とする炭素繊維前駆体繊維束の製造方法にある。容器へ収納する際にはギヤロール、ニップロール等で引き取りそのまま容器へ収納すれば、繊維束の形態がより安定化するため好ましい。
【0026】
隣接する小トウ間に交絡を付与するには、偏平矩形断面形状を有する糸道に同矩形断面の長辺方向に所定の間隔をおいて複数のエア噴出孔が配された交絡付与装置の前記糸道に複数の小トウを隣接させて並列して供給し、前記エア噴出孔からエアを噴出させることにより行うことができる。
【0027】
また、予め第1の交絡付与装置を通して小トウ自体のトウ幅の制御と集束性を付与することができ、この場合には円形断面の糸道と該円形断面の糸道内に開口するエア噴出孔とを有するエア交絡付与装置や、偏平矩形断面の糸道と該偏平矩形断面の長辺方向に所定の間隔をおいて糸道内に開口する複数のエア噴出孔とを有するエア交絡付与装置によって所望のトウ幅と集束性とを付与することができる。
【0028】
この場合、必要に応じて予め第1の交絡付与装置にて小トウの幅制御と集束性の確保とを小トウ専用に行い、続いて小トウ同士を集束一体化するために、前記第1の交絡付与装置に隣接して配された偏平矩形断面糸道を有する第2の交絡付与装置に小トウ同士を隣接して並列させて供給し、予め交絡を終えた隣接する複数の小トウ同士を一体に集束させる。
【0029】
また、本発明は小トウ自体に予め特別な交絡付与を行わずに、隣接する小トウ内のフィラメント同士と隣接する小トウ間を同時に交絡を付与することもでき、この場合には偏平矩形糸道断面形状を有する糸道の前記偏平矩形断面の長辺方向に所定の間隔をおいて複数のエア噴出孔を有する交絡付与装置に、複数の交絡前の小トウを隣接して並列させて供給することにより、小トウ内の交絡と隣接する小トウ間の交絡とを同時に付与することができる。
【0030】
小トウ内のフィラメント同士の交絡に用いる偏平矩形断面の上記糸道形状は、小トウのトータルの繊度によってその寸法は異なるが、偏平矩形断面の短辺である高さ方向は1〜5mm、好ましくは2〜4mmである。この高さが小さい、すなわちトウの厚みが規制されると、エアの流れによってフィラメントが充分に動くことが出来ず、交絡が不足しがちである。また、逆にこの寸法が大きいと、長辺寸法との関係にも依るもののトウの厚みが大きくなるため絡合が不十分になりがちである。
【0031】
偏平矩形の断面形状を有する糸道であって、該糸道に前記偏平矩形断面形状の長辺方向に所定の間隔をおいて複数配されてなるエア噴出孔を有する交絡付与装置とは、例えば図4に示す構造を有している。長辺の寸法に対しては、小トウ総繊度とそのトウ幅の制御の点から好適な範囲が存在する。この好適な範囲を示す数値とは、小トウの総繊度D(dTex)と偏平断面の長辺寸法L(mm)との比D/ Lの値であり、その値が2000〜12000であることが好ましい。この際のエア噴出孔の各孔口径は0.3〜1.2mmであることが好ましく、0.5〜1.0mmがより好ましい。
【0032】
さらに、そのエア噴出口の配列は、等ピッチで0.8〜1.6mmの範囲で配列するのが、均一な交絡を得るには好ましい。糸道の長さ、すなわち交絡付与装置の長さは、10〜40mmとすることが好ましい。この長さが40mm以上であると、その理由は定かでないがそれぞれの糸道の両端部において噴射エアの流れの乱れに起因すると考えられるトウの乱れ、バタツキが発生し、交絡が不均一になりやすくなる。
【0033】
隣接する小トウ間に交絡を付与するには、図5に示す偏平矩形糸道断面形状を有し該糸道に前記偏平矩形状の長辺方向に所定の間隔をおいて複数配されてなるエア噴出孔を有する交絡付与装置へ複数の小トウを隣接して供給することにより得られる。長辺の寸法に対しては、小トウ総繊度と集合させるフィラメント(繊維)の本数により、すなわち集合トウの総繊度に対してトウ幅を制御しようとすれば自ずと好適な範囲が存在する。
【0034】
すなわち、小トウの総繊度D(dTex)と集合させるフィラメントの本数nとの積で表される集合トウの総繊度nD(dTex)と長辺寸法L(mm)との比n・D/ Lの値がそれであり、その値が2000〜8000であることが好ましい。この際のエア噴出孔の各孔口径は0.3〜1.2mmであることが好ましく、0.5〜1.0mmがより好ましい。
【0035】
さらに、そのエア噴出口の配列は、等ピッチで0.8〜1.6mmの範囲で配列するのが、均一な交絡を得るには好ましい。糸道の長さすなわち交絡付与装置の長さは、10〜40mmとすることが好ましい。特にこの長さが40mm以上であると、その理由は定かでないがそれぞれの糸道の両端部において噴射エアの流れの乱れに起因すると考えられるトウの乱れ、バタツキが発生し、交絡が不均一になりやすくなる。
【0036】
さらに、本発明における隣接する小トウ間に交絡を付与する偏平矩形糸道断面形状を有する糸道に、その偏平矩形状の長辺方向に所定の間隔をおいて複数配されてなるエア噴出孔を形成した交絡付与装置にあって、図6に示す通り、集合しようとする小トウ間の隣接端部の位置において糸道の長手方向に延在する溝を形成してことも可能である。このうよな溝を有することにより、偏平矩形断面糸道内でトウの交絡を得ようとする小トウの隣接端部において、フィラメントが自由同が許容される空間が形成されるため、隣接する小トウ同士の交絡を効率的に付与することができる。
【0037】
この溝の寸法形状は、図6に示すような半円形、台形形状などが用いられるが、半円形の溝の場合は、フィラメントに接する部分に角ができるためトウにダメージを与える可能性があり、これを避けるため、トウ入り側の溝の角部にアールを設ける。円形溝に代えて台形溝を用いることがより好ましい。溝の大きさは半円形または円の一部である場合は、直径2〜10mm、より好ましくは3〜8mm、溝の深さは、1.5〜4mm程度が好ましい。また、台形溝の場合も偏平糸道の長辺部分に設けられる台形溝長辺の寸法として2〜10mm、より好ましくは3〜8mm、溝底に相当する短辺寸法は1.5〜6mm程度が好ましい。溝内において隣接するトウの端部同士に交絡を付与するものであるため、溝内エア噴出孔が存在する。その配置は溝形状内において左右均等配置かもしくは溝底の中心線上に存在することが小トウの安定走行と均一交絡の観点から望ましい。糸道上に溝を設けることにより、恐らくは噴射エアの交絡付与装置からの排出がスムースになることによると考えられるが、交絡付与装置への入り側において隣接して走行する小トウの形態と走行が安定になる効果も得られる。
【0038】
さらに、本発明においては上述したような溝を有したノズルにおいて、図7のようにエア噴出口が溝部のみに設けられたノズルとすることも可能である。このことにより、小トウの端部同士を交絡により集合トウとする際に、小トウ内に交絡が入るのを防ぐことができる。
【0039】
上述のようにして得られた炭素繊維前駆体繊維束は、フックドロップ法による小トウ間の繊維交絡度が1m−1以下であることが好ましい。繊維交絡度が1m−1より大きいと炭素繊維製造工程の耐炎化工程中あるいは炭素化工程中で発生する張力のみで小トウに分割する事が難しくなり、分割用ガイドバーなどが必要となり、擦過に伴うトウのダメージ、フィラメント切れを誘発し得られる炭素繊維の品位を低下させる原因となる。ここでフックドロップ法における交絡度の評価は、トウをその形態を崩さないようにして、その先端に10g/ 3000デニールの荷重を掛け吊す。先から20mm直角に折り曲げられた直径1mmの針金に10gの重りを吊り下げ、重りをトウ間に引っ掛け自由落下させたときの落下長をXmとするとき、
交絡度=1/X
とする。測定は30回繰り返して行い、得られた30個の数値のうち中20点の平均値を用いる。
【0040】
また、本発明においては、小トウ内のフィラメント同士に交絡を付与した後、湾曲ガイドなどを用いて隣接する小トウ同士の側端部が接するように複数の小トウの糸道を規制して、小トウ間の交絡付与装置へと供給するようにしてもよい。上述のようにして集束された炭素繊維用前駆体繊維束を、既述したように一旦容器内に収納して、改めて容器から取り出し、耐炎化工程や炭素化工程などに導入するが、この取り出すときにも1本の集合トウ形態が崩れることなく、更にはそれらの焼成工程の間に発生する張力によって、前記炭素繊維用前駆体繊維束は複数本の小トウに自然に分割していき、安定した焼成を行うことができ、高品質の炭素繊維が得られる。
【0041】
【発明の実施形態】
以下、本発明の実施形態を代表的な実施例に基づいて具体的に説明する。そのため、次の手順で本発明の対象となる炭素繊維前駆体繊維の小トウを予め製造する。
【0042】
アクリロニトリル、アクリルアミド、メタクリル酸を過硫酸アンモニウム−亜硫酸水素アンモニウム、硫酸鉄を使用して水系懸濁重合により共重合し、アクリロニトリル単位/アクリルアミド単位/メタクリル酸単位=95/4/1(重量)からなるアクリロニトリル系共重合体を得た後、該共重合体をジメチルアセトアミドに溶解し、濃度21重量%の紡糸原液を調製した。
【0043】
この紡糸原液を孔数50,000、孔径60μmの紡糸口金を通して、温度35℃、濃度60重量%のジメチルアセトアミド水溶液からなる第1凝固浴中に吐出させて凝固糸にすると共に、該第1凝固浴中からこの凝固糸を、紡糸原液の吐出線速度の0.4倍の引き取り速度で引き取った後、引き続いて温度35℃、濃度60重量%のジメチルアセトアミド水溶液からなる第2凝固浴中にて1.2倍に延伸し、次いで水洗と同時に2.0倍の延伸を行ない、更に沸水中にて2.5倍の延伸を行なった。
【0044】
しかる後に、オイリングしてから、熱ロールによる乾燥を行ない、単繊維繊度1.0デニール(1.1dtex)のアクリロニトリル系繊維の小トウを得た。このときの最終紡糸速度は80m/分であった。
【0045】
次に、本発明の典型的な実施形態を詳述する。
上述のようにして得られた小トウを緩和状況下のもとで複数本並走させて、水流交絡を行った。図1は、このときの水流交絡装置の概略構成例を示している。符号1は、並走する複数本の小トウ4を水流交絡させることにより1本に集束した炭素繊維用の前駆体繊維束を示している。前記複数本の小トウ4は前記水流交絡装置2のトウ交絡面上を矢印方向に送られる。水流交絡装置2の水流交絡面は多孔のシート面から構成されており、そのトウ交絡面のトウ幅方向両側部にトウ幅規制ガイド3が配されている。このトウ幅規制ガイド3により、走行中の複数本の小トウの幅が規制され、同トウ幅規制ガイド3間の間隔を調整することにより、各小トウ4同士の重なる割合が全体として調整される。前記トウ幅規制ガイド5の間には、トウの走行方向に直交してトウ走行面に向けて水を噴出するための水噴出管5が横架されている。この水噴出管5には、その長さ方向に水噴出口である図示せぬ多数のスリット(小孔を含む。)が開口している。
【0046】
本実施形態によると、水にはイオン交換水が使われ、前記水噴出管5から並走する複数本の小トウ4に直接噴出させ、小トウ内の交絡付与及び小トウ間同士の収束付与を行い、収束された1本の集合トウからなる炭素繊維用前駆体繊維束1を得て、図示せぬ容器に所定のトラバース幅をもって振り落としながら収容する。
【0047】
また、本発明の他の実施形態によれば、図2及び図3に示すように、上述のごとく紡糸されたのち、上述のごとく水流交絡を行ったのちに、複数本の小トウ4から1本に集束された集合トウ1をギヤーロール6又はニップロール7に供給する。このように、水流交絡を受けた集合トウを、ギヤーロール6又はニップロール7を通すことにより、更にその集束して偏平化された集合トウ1の形態保持性が更に増し、得られる炭素繊維用の前駆体繊維束は分割能を有しながらも、焼成工程に導入されるまで1本の完全なトウ形態を保持する。
【0048】
以下に、本発明の液流噴出による炭素繊維用前駆体繊維束の交絡にについて、実施例を挙げて比較例と共に更に具体的に説明する。
【0049】
(実施例1)
隣接する小トウの幅方向の側縁同士を小トウの幅に対して30%の幅でオーバーラップさせて、紡糸速度よりも1%減じた79.2m/minの走行速度で走行させ、スリット開口面積を2000mm2 として、噴出水量3m3 /hのイオン交換水をトウに直接噴出させ、小トウ内の交絡付与及び小トウ間同士の収束付与を行い、6本の小トウを1本に収束した集合トウを容器内に振り落としながら収納した。このときの前駆体繊維トウの水分率は13%であった。
このようにして得た炭素繊維前駆体繊維束を70分耐炎化処理し、さらに3分間の炭化処理を行った。
【0050】
(実施例2)
水流交絡処理を乾燥緻密化前の膨潤糸条で交絡、収束を行い、イオン交換水の代わりに油剤を噴出させ、交絡、収束と同時に添油処理を実施した。
【0051】
(実施例3)
隣接する小トウの幅方向の側縁同士が小トウの幅に対して10%の幅でオーバーラップさせて、79.2m/minの走行速度で走行させ、スリット開口面積を2000mm2 として、噴出水量3m3 /hのイオン交換水をトウに直接噴出させ、小トウ内の交絡付与及び小トウ間同士の収束付与を行い、6本の小トウを1本に収束した集合トウを容器内に振り落としながら収納した。
【0052】
(実施例4)
隣接する小トウの幅方向の側縁同士が小トウの幅に対して30%の幅でオーバーラップさせて、79.2m/minの走行速度で走行させ、スリット開口面積を2000mm2 として、噴出水量5m3 /hのイオン交換水をトウに直接噴出させ、小トウ内の交絡付与及び小トウ間同士の収束付与を行い、6本の小トウを1本に収束した集合トウを容器内に振り落としながら収納した。
【0053】
(実施例5)
隣接する小トウの幅方向の側縁同士が小トウの幅に対して30%の幅でオーバーラップさせて、79.2m/minの走行速度で走行させ、スリット開口面積を1000mm2 として、噴出水量3m3 /hのイオン交換水をトウに直接噴出させ、小トウ内の交絡付与及び小トウ間同士の収束付与を行い、6本の小トウを1本に収束した集合トウを容器内に振り落としながら収納した。
【0054】
(比較例1)
隣接する小トウの幅方向の側縁同士が小トウの幅に対して2%の幅でオーバーラップさせて、79.2m/minの走行速度で走行させ、スリット開口面積を2000mm2 として、噴出水量3m3 /hのイオン交換水をトウに直接噴出させ、小トウ内の交絡付与及び小トウ間同士の収束付与を行い、6本の小トウを1本に収束した集合トウを容器内に振り落としながら収納した。
【0055】
(比較例2)
隣接する小トウの幅方向の側縁同士が小トウの幅に対して30%の幅でオーバーラップさせて、79.2m/minの走行速度で走行させ、スリット開口面積を2000mm2 として、噴出水量0.5m3 /hのイオン交換水をトウに直接噴出させ、小トウ内の交絡付与及び小トウ間同士の収束付与を行い、6本の小トウを1本に収束した集合トウを容器内に振り落としながら収納した。
【0056】
(比較例3)
隣接する小トウの幅方向の側縁同士が小トウの幅に対して30%の幅でオーバーラップさせて、79.2m/minの走行速度で走行させ、スリット開口面積を4000mm2 として、噴出水量3m3 /hのイオン交換水をトウに直接噴出させ、小トウ内の交絡付与及び小トウ間同士の収束付与を行い、6本の小トウを1本に収束した集合トウを容器内に振り落としながら収納した。
【0057】
(比較例4)
隣接する小トウの幅方向の側縁同士が小トウの幅に対して30%の幅でオーバーラップさせて、79.2m/minの走行速度で走行させ、スリット開口面積を2000mm2 として、噴出水量8m3 /hのイオン交換水をトウに直接噴出させ、小トウ内の交絡付与及び小トウ間同士の収束付与を行い、6本の小トウを1本に収束した集合トウを容器内に振り落としながら収納した。
【0058】
以上の実施例1〜5及び比較例1〜4により得られた集合トウを、それぞれ耐炎化工程及び炭化工程を通して炭素繊維を得た。このとき、6本の小トウが引き揃えられて1本に集束された各トウを、小トウに分割することなく耐炎化工程へ給糸したのち、炭化工程を経て炭素繊維を得た。
【0059】
その紡糸及び焼成工程の状況を表1にまとめた。
【0060】
【表1】

Figure 2004100132
【0061】
実施例1〜5により得られた集合トウは、耐炎化工程中では反応の進行に伴い、特に分割ガイドなどを用いることなく自然に小トウに分割された。炭化処理後に得られた炭素繊維は毛羽がなく品位の優れるものであった。また得られた炭素繊維のストランド強度は450kg/ mm2 であった。
【0062】
一方、比較例1〜4により得られた集合トウにあっては、表1から理解できるとおり、比較例4では6本の小トウが集束はされたものの、焼成工程で分割せず、耐炎化工程では反応熱に基づく蓄熱のため、多くの毛羽が発生するだけでなく、一部に溶着部分も見受けられた。他の比較例1〜3は、全て安定した形態が得られるほどには集束されなかった。
【0063】
次に、本発明の他の実施形態であるエア噴出による炭素繊維用前駆体繊維束の交絡について、図面を参照しながら実施例を挙げて比較例と共に具体的に説明する。
以下の実施例及び比較例は、最終紡糸速度を40m/minとした他は上記実施形態と同様の手順により得られた単繊維繊度が1.0デニール(1.1dTex)のアクリロニトリル系繊維からなる小トウである。
【0064】
(実施例6)
本実施例にあっては、前述のようにして得られたフィラメント数50,000のアクリロニトリル系の小トウ4を乾燥ロールで乾燥したのち、図8に示すように小トウ4にスプレー9でイオン交換水を付与した後、給糸される3本の小トウ4を、図4に示す小トウ単位で交絡を付与する第1の交絡付与装置10へそれぞれ供給した。
【0065】
このとき小トウ4に付与した張力は800cNであり、小トウ4 への交絡付与装置10は図4に示す構造を備えている。すなわち、この第1の交絡付与装置10は、中央部にトウ走行方向に貫通する偏平矩形状の糸道11を有する上下ノズル12,13を備えている。この上下ノズル12,13は前記糸道11を挟んで上下に対称な構造を有しており、小トウ4の走行方向に直交する円筒盲孔状の圧縮エア導入部12a,13aと、両圧縮エア導入部12a,13aに連通し、そのエア導入方向に沿った対向面に開口する多数のエア噴出孔12b,13bとを有している。前記糸道11の糸道幅は8mm、糸道高さは3mm、糸道長さは20mmであり、前記エア噴出孔12b,13bの噴出開口径は1mm、その配置ピッチは1.75mmとされ、供給エア圧力を50kPaとした。
【0066】
第1の交絡付与装置10にて交絡された3本の小トウ4を引き揃え、一旦駆動ロール14を介して隣接する小トウ4間に交絡を付与する第2の交絡付与装置15に供給した。この第2の交絡付与装置15は図5に示す構造を備えている。その基本構造は、上記小トウ専用の第1の交絡付与装置10と同様であるが、小トウ4が予め交絡されているため、糸道16の道幅が第1交絡装置の3倍以上に幅広く形成するとともに、糸道高さを第1交絡付与装置10よりも僅かに低く設定している。
【0067】
因みに、この第2交絡付与装置15にあっては、糸道幅を32mm、糸道高さを2.5mm、糸道長さを20mm、エア噴出孔17b,18bの開口径は0.5mm、その配置ピッチを0.8mm、エア供給圧力を300kPaとした。また、このときの各小トウ4に付加した張力は130cNであった。
【0068】
このようにして得られた1本の炭素繊維前駆体繊維束1をギヤロール19に給糸して引き取り、そのままシュート20を介して容器21に振り込んだ。容器20に収納される際の炭素繊維前駆体繊維束1は、3本の小トウ4が集合して1本のトウ形態を有している。このときの前駆体繊維束1の水分率は2%であった。得られたトウには容器21に振り込む際に用いたギヤロール19によりウエーブが付与されたが、ウエーブの山と隣接する山との間隔は25mmであった。またこのようにして得られた炭素繊維前駆体繊維束1の交絡度を評価したが、1m−1以下となった。(試長1mで実施したため10gの荷重はいずれも1m以上落下し、測定不可能であった。)得られた炭素繊維前駆体繊維束1を容器21から引き出し、小トウに分割することなく耐炎化工程へ給糸し、70分間耐炎化処理し、さらに3分間の炭化処理を行った。
【0069】
この間、トウの走行に用いたすべてのロールはフラットなロールであり、表面に溝を有するロールなどで小トウに分割したり、或いはその形態の制御はまったく行わなかった。耐炎化工程中では反応の進行に伴い、特に分割ガイドなどを用いずとも自然に小トウへ分割した。炭化処理後に得られた炭素繊維束は毛羽がなく品位の優れるものであった。また、得られた炭素繊維のストランド強度は450kg/mm2 であった。
【0070】
(実施例7)
実施例1と同様にして得られたフィラメント数50,000の小トウ4に、図9に示すようにタッチロール22にてイオン交換水を付与した後、各小トウ4をそれぞれ単独で図4に示した第1交絡付与装置10に供給した。このときの小トウ4の含水率は2wt%であった。小トウ専用の第1交絡付与装置10の基本構造は、実施例6と同様のものであるが、糸道幅は実施例6の2倍である16mm、糸道高さは僅かに小さい2.5mm、糸道長さは同じ20mm、エア噴出孔12b,13bの開口径も同じ1mm、その配置ピッチを僅かに大きくした2.0mmとし、このときの供給エア圧力は第6実施例の1/8である100kPaとした。
【0071】
続いて、得られた3本の小トウ4を、引き揃えて隣接する小トウ4間を交絡させる図6に示す構造を備えた第2の交絡付与装置25に供給した。この第2の交絡付与装置25にあって図5に示した交絡付与装置15と異なるところは、上記糸道16が単なる偏平矩形断面を有しているのに対して、この実施例に適用される第2の交絡付与装置25の糸道26は、3本の隣接する各小トウ4の隣接位置に対応する部位の前記偏平矩形断面の上下に、更に台形断面をもつ溝部を形成している点である。その他の構造は上記実施例6と実質的に変わるところがない。この各溝部の中央にはそれぞれ1つのエア噴出孔27b,28bが形成されている。
【0072】
本実施例にあって、前記第2交絡付与装置25の糸道幅は上記第6実施例よりも13mm広い45mm、糸道高さは同じ2.5mm、エア噴出孔27b,28bの開口径も同じく1.0mm、その配置ピッチは僅かに大きい2mmであり、エア供給圧力は実施例6の2/3である200kPaとした。図6においてトウに付与した張力は実施例6の5.4倍である700cNと大きくしており、この張力下で小トウ4への交絡付与と小トウ4間の交絡とを同時に行った。このようにして得られた炭素繊維前駆体繊維束1を駆動によって引き取り、そのまま容器21への振込機に付属するギヤロール19に給糸し、シュート20を介して容器21に振り込んだ。
【0073】
第2交絡付与装置25を出た際の炭素繊維前駆体繊維束1は、3本の小トウ4が集合して1本のトウ形態を有している。容器21に振り込んだ際の炭素繊維前駆体繊維束1は振込機に併設されるギアロール19によってウエーブが付与されており、ウエーブの山と隣接する山の間隔は25mmであった。また、またこのようにして得られた炭素繊維前駆体繊維束の交絡度を評価したが、1m−1以下となった。(試長1mで実施したため10gの荷重はいずれも1m以上落下し、測定不可能であった。)
【0074】
得られた炭素繊維前駆体繊維束1を容器21から引き出し、小トウに分割することなく耐炎化工程へ給糸し、70分間耐炎化処理し、さらに3分間の炭化処理を行った。この間、炭素繊維前駆体繊維束1の走行に用いたロールはすべてフラットなロールであり、表面に溝を有するロールなどにより小トウに分割したり、その形態の制御はまったく行わなかった。耐炎化工程中では反応の進行に伴い、特に分割ガイドなどを用いずとも自然に小トウへと分割した。炭化処理後に得られた炭素繊維は毛羽がなく品位の優れるものであった。また、得られた炭素繊維のストランド強度は450kg/mm2 であった。
【0075】
(実施例8)
隣接する小トウ間の交絡を付与する第2交絡付与装置30として、図6に示す構造とした以外は実施例7と同様の交絡手順にて炭素繊維前駆体繊維束1を容器21に振り込んだ。前記第2交絡付与装置30は、糸道幅が上記実施例7のそれより10mm小さい32mm、糸道高さ2.5mmとしてあり、更には偏平矩形断面の糸道31の3本の小トウ4が隣接する部位の上下に断面が台形状の溝部が形成され、その溝深さ2mm、下底寸法7mm、上底寸法2mmとした。また、本実施例にあっては、隣接する溝部の配置間隔を12mmとしており、エア噴出孔32b,33bを溝部の中央に1つ形成し、他の糸道31には上記実施例6と同様に複数のエア噴出孔32b,33bを形成した。
【0076】
得られた炭素繊維前駆体繊維束の交絡度を評価したが、1m−1以下となった。(試長1mで実施したため10gの荷重はいずれも1m以上落下し、測定不可能であった。)
【0077】
このようにして得られた炭素繊維前駆体繊維束1を容器21から引き出し、小トウに分割することなく耐炎化工程へ給糸し、70分間耐炎化処理し、さらに3分間の炭化処理を行った。この間、トウの走行に用いたロールはすべてフラットなロールであり、表面に溝を有するロールなど分割したり、形態の制御はまったく行わなかった。耐炎化工程中では反応の進行に伴い、特に分割ガイドなどを用いずとも自然に小トウへ分割しはじめ、炭化処理後に得られた炭素繊維は小トウに完全に分割され毛羽がなく品位の優れるものであった。また、得られた炭素繊維のストランド強度は450kg/mm2 であった。
【0078】
(実施例9)
糸道36の溝部に複数のエア噴出孔37b,38bを形成するとともに、溝部以外の部分にはエア噴出孔37b,38bが形成されていない以外は実施例8と同様の構造を備えた小トウ4間に交絡を付与する第2交絡付与装置35を使い、3本の小トウが集合して1本のトウ形態を有した炭素繊維前駆体を得た。これを図9に示すギヤロール19の代わりにフラットな表面を持つニップロールを介して容器に振り込んだ。こうして得られた炭素繊維前駆体繊維束1を、70分耐炎化処理し、さらに3分間の炭化処理を行った。容器21からの炭素繊維前駆体繊維束1の引出しは一旦炭素繊維前駆体繊維束1を上方へ引き上げてガイドバーを複数回通過させてトウを引き揃えた。
【0079】
このようにエア噴出孔37b,38bを糸道36の溝部だけに形成すると、エアが小トウ4自体の交絡には関与せず、隣接する小トウ4の隣接部に主に交絡を付与するため、小トウ4自体に対する交絡の増加を抑制している。また、このようにして得られた炭素繊維前駆体繊維束の交絡度を評価したが、1m−1以下となった。(試長1mで実施したため10gの荷重はいずれも1m以上落下し、測定不可能であった。)
【0080】
引き揃えられた炭素繊維前駆体繊維束1を小トウに分割することなく耐炎化工程へ給糸し、70分間耐炎化処理し、さらに3分間の炭化処理を行った。この間トウの走行に用いたのはすべてフラットなロールであり、表面に溝を有するロール等でトウの分割や形態の制御はまったく行わなかった。耐炎化工程中では反応の進行に伴い特に分割ガイド等を用いずとも自然に小トウへ分割した。炭化処理後に得られた炭素繊維は毛羽がなく品位の優れるものであった。また、得られた炭素繊維のストランド強度は450kg/mm2 であった。
【0081】
(比較例5)
実施例6と同様に、小トウにイオン交換水を付与した後、小トウに交絡を付与し、このようにして得られた小トウ3本を図示せぬ捲縮付与装置に供給し、捲縮により集束した。集束したトウは実施例1と同様に容器の中に収納した。
【0082】
このようにして得られた炭素繊維前駆体繊維束を容器から引き出し、70分間耐炎化処理し、さらに3分間の炭化処理を行った。容器からの炭素繊維前駆体繊維束の引出しは実施例9と同様に一旦炭素繊維前駆体繊維束を上方へ引き上げてガイドバーを複数回通過させて小トウを引き揃えた。引き揃えられた炭素繊維前駆体繊維束を小トウに分割することなく耐炎化工程へ給糸し、70分間耐炎化処理し、さらに3分間の炭化処理を行った。この間トウの走行に用いたロールはべてフラットなロールであり、表面に溝を有するロール等で等の分割や形態の制御はまったく行わなかった。耐炎化工程中では反応の進行に伴い特に分割ガイド等を用いずとも自然に小トウに分割されていた。ただし、炭化処理後に得られた炭素繊維は毛羽が多く品位に優れるものではなかった。また、毛羽に起因すると思われる耐炎化工程でのロールへの巻きつきが多発した。さらに、得られた炭素繊維のストランド強度は350kg/mm2 であった。
【0083】
(比較例6)
小トウにスプレーでイオン交換水を水分率が30wt%となるように付与した他は実施例6と同様にして集束したトウを容器に振り込んだ。
【0084】
このようにして得られた炭素繊維前駆体繊維束を容器から引き出し、70分間耐炎化処理し、さらに3分間の炭化処理を行った。容器からの炭素繊維前駆体繊維束の引出しは実施例9と同様に一旦炭素繊維前駆体繊維束を上方へ引き上げてガイドバーを複数回通過させて小トウを引き揃えた。耐炎化工程へ給糸する際に、水分による表面張力の作用でトウの折り返し部の変形が維持され、耐炎化工程に撚れがフィードされ耐炎化工程で撚れの部分が蓄熱して切断に至り工程を停止した。
【0085】
(比較例7)
隣接する小トウ間に交絡を付与する第2交絡付与装置のエア供給圧力を500kPaとする他は実施例6と同様にして得られた前駆体繊維束を容器に振り込んだ。このとき小トウ間の繊維交絡度は12m−1であった。このようにして得られた炭素繊維前駆体繊維束を容器から引き出し、70分間耐炎化処理し、さらに3分間の炭化処理を行った。容器からの炭素繊維前駆体繊維束の引出しは実施例9と同様に一旦炭素繊維前駆体繊維束を上方へ引き上げてガイドバーを複数回通過させて小トウを引き揃えた。耐炎化工程通過後も小トウ間に交絡が残り、さらに炭素化工程通過後も小トウ間に交絡が残り、小トウ単位の炭素繊維が得られなかった。また炭素化工程通過後に分割ガイドを設けて小トウへの分割を実施したが、得られた炭素繊維は毛羽が多く、品位に優れるものではなかった。
【図面の簡単な説明】
【図1】本発明に係る液流により交絡を付与する炭素繊維用前駆体繊維束の製造装置の一例を概略で示す立体図である。
【図2】他の製造装置の一例を概略で示す立体図である。
【図3】更に他の製造装置の一例を概略で示す立体図である。
【図4】エア噴出により小トウに交絡を付与する第1交絡付与装置の構造例を示す説明図である。
【図5】エア噴出により小トウ間に交絡を付与する第2交絡付与装置の構造例を示す説明図である。
【図6】溝を有する小トウ間に交絡を付与する第2交絡付与装置の構造例を示す説明図である。
【図7】溝内部のみにエア噴出孔を有する小トウ間に交絡を付与する第2交絡付与装置の構造例を示す説明図である。
【図8】エア噴出により交絡を付与する炭素繊維用前駆体繊維束の製造工程の一例を概略で示す工程図である。
【図9】エア噴出により交絡を付与する炭素繊維用前駆体繊維束の製造工程の他の一例を概略で示す工程図である。
【符号の説明】
1          集合トウ(炭素繊維用前駆体繊維束)
2          水流交絡装置
3          トウ幅規制ガイド
4          小トウ
5          水噴出管
6          ギヤーロール
7          ニップロール
9          スプレー
10          第1交絡付与装置
14          駆動ロール
15,25,30,35            第2交絡付与装置
11,16,26,31,36          糸道
12,13       上下ノズル
12a,13a         圧縮エア導入部
12b,13b,17b,18b,27b,
28b,32b,33b,37b,38b  エア噴出孔
19          ギヤロール
20          シュート
21          容器
22          タッチロール[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a precursor fiber bundle for carbon fibers, a method for producing the same, and a method for producing carbon fibers. More specifically, the manufacturing cost is low, the productivity is excellent, the occurrence of yarn breakage and fluff is small, and in the firing step, the fiber bundle having a thick tow form sent out from the container naturally becomes a plurality of tows corresponding to each step. The present invention relates to a precursor fiber bundle for carbon fiber and a method for producing the same, and a method for producing carbon fiber using the same fiber bundle.
[0002]
[Prior art]
Conventionally, as an acrylic precursor fiber for a carbon fiber, in order to obtain a carbon fiber having a high strength and a high elastic modulus, from 3,000 filaments to 20,000 filaments, which are less likely to cause thread breakage and fluff and have excellent quality. (A fiber bundle) has been produced, and carbon fibers produced from this yarn have been used in many fields such as aerospace, sports, and the like. In the development of these carbon fibers, studies on high strength and high elastic modulus are mainly conducted. Specifically, the degree of molecular orientation, denseness, generation of filament breakage and fluff, adhesion, flame resistance Discussions have been made on promotion.
[0003]
Prior to the carbonization treatment, the precursor fiber for producing carbon fiber is subjected to a flame-resistant treatment in which the precursor fiber is heated in an oxidizing atmosphere at 200 to 350 ° C. Since the oxidation treatment involves reaction heat, heat is easily stored inside the fiber tow. When excess heat is stored inside the fiber tow, filament breakage and fusion between filaments are likely to occur. Therefore, it is necessary to suppress the heat storage due to the reaction heat as much as possible. In order to suppress this heat storage, the thickness of the fiber tow to be supplied to the flameproof furnace must be equal to or smaller than a predetermined thickness, and the thickness of the fiber tow is restricted, so that the productivity is reduced. At the same time, manufacturing costs have risen.
[0004]
In order to solve such a problem, for example, according to Japanese Patent Application Laid-Open No. Hei 10-121325, while being stored in a container, it can be divided into a plurality of small tows when pulled out from the container and used while maintaining the form of one tow. A precursor fiber tow for a carbon fiber having a dividing ability in a width direction is disclosed. Then, in order to produce a fiber tow having this dividing ability, a plurality of spun yarns (fibers) are divided into a plurality of groups so that each group has a predetermined number of yarns, and the divided state is obtained. After running in parallel and passing through a thread-making step and a finishing oil agent applying step, it is subjected to a crimp applying step provided with a crimper. By this crimping, a predetermined number of plural groups are converged into a single tow form. When not passing through the crimping step, each small tow is made to contain 10% or more and 50% or less of water.
[0005]
In the bundle form, the yarns at the ears of each yarn group having a small tow form are obliquely intersected about 1 mm and weakly entangled with each other, so that one tow form composed of a plurality of yarn groups is formed. Hold. Since the entanglement of the yarn at the ear of each yarn group is weak, it is easy to remove the yarn from the ear even when it is used in the carbon fiber manufacturing process after being held in one tow form. Each of the yarn groups can be divided, and the collected fiber bundle is stored in a container in a form that can be divided into small tows.
[0006]
The precursor fiber bundle for the carbon fiber having the dividing ability stored in the container is divided for each of the small tows in the dividing step before being introduced into the oxidization furnace. This division is performed using, for example, a grooved roll or a division guide bar. Since the small tows are converged by weak confounding at their ears, this division can be performed very easily, and even during the division, generation of fluff and breakage of the yarn hardly occur.
[0007]
Each of the small tows divided into the small tow forms having a size equal to or smaller than the predetermined size is introduced into a flame-proofing step and subjected to a flame-proofing process. At this time, since the small tow is subjected to the flameproofing treatment in the divided state, excessive heat storage does not occur, and yarn breakage and fusion between filaments are prevented.
[0008]
[Patent Document 1]
JP-A-10-121325
[0009]
[Problems to be solved by the invention]
However, the mechanism for imparting the splitting ability to the small tow with respect to the bundle of bundles according to Patent Document 1 is said to be entanglement due to skew of the fiber unit present in the ear portion of the small tow. Confounding degree is 1 to 10 -1 In the case of m, splitting into small tows by the splitting means before being introduced into the flame-proofing step may cause breakage of single yarn, which may affect the quality of the carbon fiber. Further, Patent Document 1 discloses a method in which small tows are entangled by crimping in which the yarns at the ears of each small tow are skewed and weakly entangled with each other and maintained in a single tow form. Only shown. In the case of such a crimped tow, if it is supplied as it is to the flame-proofing step in the carbon fiber manufacturing process, it is difficult to stretch the crimp evenly over the entire area of the tow to impart a predetermined elongation. As a result, there is a possibility that unevenness occurs in the basis weight (weight per unit length) and fineness of the obtained carbon fiber, which may affect the quality of the obtained carbon fiber. Therefore, a crimp removing means is required before the flame-proofing step, but the equipment space is increased, labor is not easily saved, and the productivity is greatly affected.
[0010]
On the other hand, Patent Literature 1 only describes that, in the case of a straight tow having no crimp, the moisture content is 10 to 50%. In other words, only a mechanism for holding a single tow form by focusing small tows by surface tension due to moisture is described. At this moisture percentage, due to the surface tension due to the water in the tow, the kinks of the folded portion when stored in the can do not return to the original, and as a result, the kinks and the origin due to the kinks when supplied to the carbon fiber manufacturing process The skew of the filaments in the tow is supplied as is, and the quality of the obtained carbon fiber is impaired, or in some cases, the kinks become twisted, and excessive heat storage in the oxidization resistance process occurs in that part. May occur.
[0011]
Furthermore, whether or not the crimper is passed, it is necessary to extract the bundled fiber bundle from the container and divide the bundled fiber bundle into small tows having a required thickness before introducing the bundle into the baking process. It is necessary to install the dividing device separately, which increases the equipment space or makes it difficult to save labor, and greatly affects productivity.
[0012]
The present invention has been developed to solve such a conventional problem. Specifically, it is possible to bundle a plurality of small tows into a single bundle fiber bundle by a simple operation, and In the sintering process, a precursor fiber bundle for carbon fiber and a method for producing the same, which has a dividing ability that can be naturally divided into small tows, and an excellent productivity using the same fiber bundle, high quality It is an object of the present invention to provide a method for producing carbon fiber which can produce carbon fiber stably.
[0013]
Means for Solving the Problems and Functions and Effects
The object is to provide a single-piece tow made of a substantially straight fiber that is not crimped, which is a basic structure of the present invention, when it is stored in a container and when it is drawn out of the container and introduced into a firing step. And a carbon fiber precursor fiber bundle characterized by having a width direction dividing ability that can be divided into small tows by the tension generated in the baking step in the baking step.
[0014]
The precursor fiber bundle for carbon fiber of the present invention maintains one tow form as an aggregate of a plurality of small tows without deteriorating the quality, and maintains one tow form when pulled out from the container. However, even if a division guide or the like is not provided, the division can be performed without causing any tangling between the small tows due to the tension generated during firing.
[0015]
This precursor fiber bundle for carbon fibers preferably has a total filament count of 48,000 to 600,000 and a small tow filament count of 24,000 to 150,000. When the total number of filaments of the precursor fiber bundle for carbon fiber is less than 48,000, the number of small tows actually fired in the firing step is too small, which does not lead to an improvement in productivity. The length of the precursor fiber bundle for carbon fiber cannot be stored in the container. On the other hand, if the number of filaments of the small tow is less than 24,000, not only the number of divisions increases, it becomes difficult to exhibit the dividing ability in the firing step, but also the small tow becomes too thin, and the molding efficiency thereafter decreases. When the number of filaments of the small tow exceeds 150,000, the heat storage based on the reaction heat tends to be excessive, particularly in the flame-proofing step, and the yarn breakage and welding are likely to occur.
[0016]
Precursor fiber bundles for carbon fibers having such splitting ability, the small tows running in parallel in the split state, by jetting water from the slit opening extending in the width direction to perform hydroentanglement, A fiber bundle that retains the form of one aggregated tow by imparting entanglement between filaments in the small tow and convergence between the small tows is obtained. The dividing ability of the precursor fiber bundle for carbon fiber at this time is adjusted by adjusting the amount of water of the water entanglement and the opening area of the slit, so that a dividing step such as a guide is not particularly provided. The reaction spontaneously splits into small tows.
[0017]
In addition, by adjusting the liquid volume of the liquid entanglement and the area of the blow-out opening, the tension generated as the reaction progresses in the flame-proofing process during the firing process can naturally reduce Growl to split.
[0018]
In the liquid entangling step, the area of the slit opening is 60 to 450 (mm) per 50,000 filaments. 2 ), And the flow rate of the ejected liquid is 1 to 5 (m 3 / H). Slit opening area is 60mm per 50,000 filaments 2 If it is smaller, the confounding is locally dispersed, so that the smooth splitting ability is not exhibited regardless of the flow rate of the ejected liquid, and 450 mm 2 When it exceeds, it becomes difficult to obtain the ejection power of the liquid, and desired confounding cannot be performed. Also, the flow rate of the ejected liquid is 1 m 3 / H, the applied amount of the liquid is too small to maintain the entangled fiber form, and the 3 If it exceeds / h, the liquid content is too large, and it becomes difficult to control the firing conditions in the subsequent firing step.
[0019]
Here, the liquid used for liquid entangling is preferably water or an oil agent. It is desirable that the liquid entangling is performed such that the widthwise ends of the small tows running in parallel in the divided state overlap with each other by a width of 5 to 50% of the width of the small tows. And the convergence between adjacent small tows is imparted, and the form of one set of tows can be reliably maintained. If the amount of overlap is less than 5%, the amount of entanglement is too small and the precursor fiber bundle for carbon fiber may be divided when it is accommodated in a container. On the other hand, if the amount of overlap exceeds 50%, even after being introduced into the firing step, the tow is not smoothly divided into small tows, the heat storage accompanying the reaction heat tends to be excessive, and yarn breakage or fusion occurs frequently. Become.
[0020]
In addition, it is desirable that the precursor fiber bundle for the carbon fiber be stored in a container after a single tow composed of a plurality of liquid-entangled small tows is supplied to a gear roll. Here, the gear roll is a roll having a tooth shape similar to that of a pair of normal meshing gears, and is a roll for stabilizing the form of one collective tow including a plurality of small tows. As described above, after a plurality of small tows are made into one collective tow after being subjected to the hydroentanglement, when this tow is passed through the gear roll, when it is accommodated in the container, it is bent in a wave shape, but is taken out from the container. When sent out to the baking step, the bent form is lost, and the form of one bundle of bundles of substantially straight fibers is maintained, and after being introduced into the baking step, a plurality of bundles are formed by the tension generated in the baking step. The book is divided into small tows.
[0021]
Further, in the present invention, after a plurality of small tows are subjected to liquid entanglement to form a single aggregated tow, the tow may be supplied between nip rolls having a smooth surface instead of the gear roll. When one set of tows composed of a plurality of small tows is supplied between the nip rolls, the small tows are pressed and deformed between the nip rolls and flattened. At this time, the flattened ears of the small tows slightly overlap each other and are further integrated by pressing. Thereby, the form of one bundled fiber bundle made of straight fibers is stably held and can be stably stored in the container.
[0022]
Further, in the present invention, in the method for producing a carbon fiber precursor fiber bundle, the entanglement between the filaments of the small tow and the entanglement between the small tows are replaced with the liquid flow entanglement step, which is a entanglement providing step by jetting air. Is also possible. At this time, it is desirable that the ends in the width direction of the small tows are entangled to keep one tow form. Further, it is desirable that the confounding between the small tows is weaker than the confounding between the filaments in the small tow. Further, at this time, the small tows do not necessarily have to overlap at their widthwise ends, and it is preferable that the widthwise ends of the small tows are adjacent to each other and in contact with each other. .
[0023]
In the present invention, it is desirable that 10% or less of water is imparted to each small tow before convergence, and more preferably 0.5 to 5%. By providing the water, the generation of static electricity is suppressed to improve the handleability, and the weight of the tow at the time of storage is stored in the container while being pressed by the press. As a result, the phenomenon that the tow width becomes unstable can be eliminated, and at the same time, the transportation efficiency increases and the economic efficiency increases.
[0024]
Here, the water content is (w-wo) .times. Based on the weight w of the fiber bundle of the carbon fiber precursor in a wet state and the weight wo after drying the fiber bundle with a hot air dryer at 105.degree. C. for 2 hours. It is a value (%) obtained by 100 / wo.
[0025]
Further, the carbon fiber precursor as described above can be manufactured by the method of manufacturing a carbon fiber precursor fiber bundle in which a plurality of small tows according to the present invention are joined in parallel by jetting air. That is, the basic structure is such that a plurality of small tows made in a split state are stored in a container after the ends of the small tows in the width direction are entangled gently. A method for producing a precursor fiber bundle. When the fiber bundle is stored in a container, it is preferable that the fiber bundle be taken up with a gear roll, a nip roll, or the like and stored in the container as it is because the form of the fiber bundle is further stabilized.
[0026]
In order to impart entanglement between adjacent small tows, the entanglement imparting device in which a plurality of air ejection holes are arranged at predetermined intervals in a long side direction of the rectangular cross section on a yarn path having a flat rectangular cross section, This can be performed by supplying a plurality of small tows adjacent to and in parallel with the yarn path and ejecting air from the air ejection holes.
[0027]
In addition, the tow width control and convergence of the small tow itself can be imparted through the first entanglement imparting device in advance. In this case, the yarn path having a circular cross section and the air ejection hole opened in the yarn path having the circular cross section can be provided. Or an air entanglement device having a flat rectangular cross-section yarn path and a plurality of air ejection holes opened in the yarn path at predetermined intervals in the long side direction of the flat rectangular cross section. Tow width and convergence can be imparted.
[0028]
In this case, if necessary, the first confounding device first controls the width of the small tows and secures the convergence of the small tows exclusively for the small tows. A plurality of small tows are supplied side by side adjacent to each other to a second entanglement providing apparatus having a flat rectangular cross-section yarn path arranged adjacent to the entanglement providing apparatus, and a plurality of adjacent small tows are entangled in advance. Are focused together.
[0029]
In addition, the present invention can also apply entanglement between filaments in adjacent small tows and adjacent small tows simultaneously without performing special entanglement beforehand on the small tow itself. A plurality of small tows before entanglement are supplied side by side to a confounding device having a plurality of air ejection holes at predetermined intervals in the long side direction of the flat rectangular cross section of the yarn path having a cross section. By doing so, confounding within the small tow and confounding between adjacent small tows can be simultaneously provided.
[0030]
The thread path shape of the flat rectangular cross section used for entanglement of the filaments in the small tow has different dimensions depending on the total fineness of the small tow, but the height direction which is the short side of the flat rectangular cross section is 1 to 5 mm, preferably. Is 2 to 4 mm. If the height is small, that is, if the thickness of the tow is regulated, the filament cannot move sufficiently due to the flow of air, and confounding tends to be insufficient. On the other hand, if the dimension is large, the entanglement tends to be insufficient because the thickness of the tow is increased although it depends on the relationship with the long side dimension.
[0031]
A yarn path having a flat rectangular cross-sectional shape, and a entanglement imparting device having a plurality of air ejection holes arranged at predetermined intervals in a long side direction of the flat rectangular cross-sectional shape on the yarn path, for example, It has the structure shown in FIG. Regarding the dimension of the long side, there is a suitable range from the viewpoint of controlling the total fineness of the small tow and the width of the tow. The numerical value indicating the preferable range is a value of a ratio D / L between the total fineness D (dTex) of the small tow and the long side dimension L (mm) of the flat cross section, and the value is 2000 to 12000. Is preferred. At this time, the diameter of each of the air ejection holes is preferably 0.3 to 1.2 mm, more preferably 0.5 to 1.0 mm.
[0032]
Further, it is preferable to arrange the air outlets at an equal pitch in a range of 0.8 to 1.6 mm in order to obtain uniform confounding. It is preferable that the length of the yarn path, that is, the length of the entanglement applying device is 10 to 40 mm. If the length is more than 40 mm, the reason is not clear, but tow turbulence and flapping at both ends of each yarn path, which are considered to be caused by turbulence of the flow of jet air, occur, and confounding becomes uneven. It will be easier.
[0033]
In order to impart confounding between adjacent small tows, a plurality of flat rectangular yarn path cross-sectional shapes shown in FIG. 5 are provided at predetermined intervals in the long side direction of the flat rectangular yarn path. It is obtained by supplying a plurality of small tows adjacent to an entangling device having an air ejection hole. Regarding the dimension of the long side, there is naturally an appropriate range depending on the total fineness of the small tow and the number of filaments (fibers) to be aggregated, that is, if the tow width is to be controlled with respect to the total fineness of the aggregated tow.
[0034]
That is, the ratio n · D / L between the total fineness nD (dTex) of the aggregated tow and the long-side dimension L (mm) expressed by the product of the total fineness D of the small tow D (dTex) and the number n of the filaments to be aggregated. And it is preferable that the value be 2000 to 8000. At this time, the diameter of each of the air ejection holes is preferably 0.3 to 1.2 mm, more preferably 0.5 to 1.0 mm.
[0035]
Further, it is preferable to arrange the air outlets at an equal pitch in a range of 0.8 to 1.6 mm in order to obtain uniform confounding. The length of the yarn path, that is, the length of the entanglement imparting device, is preferably 10 to 40 mm. In particular, when the length is 40 mm or more, the reason is not clear, but tow turbulence and flapping which are considered to be caused by turbulence of the jet air flow at both ends of each yarn path occur, and confounding becomes uneven. Become easier.
[0036]
Furthermore, in the present invention, a plurality of air ejection holes are arranged at predetermined intervals in the long side direction of the flat rectangular yarn path on the yarn path having a cross section of a flat rectangular yarn path that imparts confounding between adjacent small tows. In the entanglement imparting device formed as shown in FIG. 6, it is also possible to form a groove extending in the longitudinal direction of the yarn path at the position of the adjacent end between the small tows to be assembled as shown in FIG. By having such a groove, a space is formed at the adjacent end of the small tow in which the tow is to be entangled in the flat rectangular cross section yarn path, in which the filament is allowed to freely flow. Entanglement between tows can be efficiently imparted.
[0037]
As the dimensions and shape of the groove, a semicircular shape or a trapezoidal shape as shown in FIG. 6 is used. In the case of the semicircular groove, there is a possibility that the toe may be damaged because a corner is formed at a portion in contact with the filament. In order to avoid this, a radius is provided at the corner of the groove on the toe entry side. It is more preferable to use trapezoidal grooves instead of circular grooves. When the size of the groove is a semicircle or a part of a circle, the diameter is preferably 2 to 10 mm, more preferably 3 to 8 mm, and the depth of the groove is preferably about 1.5 to 4 mm. In the case of a trapezoidal groove, the dimension of the long side of the trapezoidal groove provided on the long side of the flat yarn path is 2 to 10 mm, more preferably 3 to 8 mm, and the short side corresponding to the groove bottom is about 1.5 to 6 mm. Is preferred. Since the entanglement is imparted to the ends of adjacent tows in the groove, there is an air ejection hole in the groove. The arrangement is desirably left and right evenly within the groove shape or present on the center line of the groove bottom from the viewpoint of stable running of the small tow and uniform confounding. Probably due to the provision of the groove on the yarn path, the discharge of the jet air from the entanglement device becomes smooth, but the form and traveling of the small tow running adjacently on the entrance side to the entanglement device are considered to be An effect of stabilizing is also obtained.
[0038]
Further, in the present invention, in the nozzle having the above-mentioned groove, it is also possible to use a nozzle in which the air ejection port is provided only in the groove as shown in FIG. Accordingly, when the ends of the small tows are made to be the tow by confounding, it is possible to prevent the small tows from being entangled.
[0039]
The carbon fiber precursor fiber bundle obtained as described above has a fiber entanglement between small tows of 1 m by the hook drop method. -1 The following is preferred. Fiber entanglement degree is 1m -1 If it is larger, it is difficult to divide into small tows only by the tension generated during the flame resistance process or carbonization process of the carbon fiber manufacturing process, and a guide bar for division is required, tow damage due to abrasion, filament It may cause cutting and lower the quality of the obtained carbon fiber. Here, the evaluation of the degree of confounding in the hook drop method is such that a load of 10 g / 3000 denier is hung on the tip of the toe without breaking its form. When a weight of 10 g is hung on a wire with a diameter of 1 mm bent from a point to a right angle of 20 mm, and the weight is freely dropped by hanging the weight between tows, and the drop length is Xm,
Confounding degree = 1 / X
And The measurement is repeated 30 times, and an average value of 20 points out of 30 obtained numerical values is used.
[0040]
Further, in the present invention, after imparting entanglement to the filaments in the small tow, the yarn path of the plurality of small tows is regulated using a curved guide or the like so that the side ends of the adjacent small tows are in contact with each other. May be supplied to a confounding device between small tows. The precursor fiber bundle for carbon fiber bundled as described above is once stored in the container as described above, taken out of the container again, and introduced into the flameproofing step, the carbonization step, and the like. Sometimes, the form of one tow does not collapse, and furthermore, due to the tension generated during the firing step, the precursor fiber bundle for carbon fibers naturally splits into a plurality of small tows, Stable firing can be performed, and high quality carbon fibers can be obtained.
[0041]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described based on typical examples. Therefore, a small tow of the carbon fiber precursor fiber which is an object of the present invention is manufactured in advance by the following procedure.
[0042]
Acrylonitrile, acrylamide, and methacrylic acid are copolymerized by aqueous suspension polymerization using ammonium persulfate-ammonium bisulfite and iron sulfate, and acrylonitrile of acrylonitrile unit / acrylamide unit / methacrylic acid unit = 95/4/1 (weight) After obtaining the system copolymer, the copolymer was dissolved in dimethylacetamide to prepare a spinning stock solution having a concentration of 21% by weight.
[0043]
The spinning stock solution is discharged through a spinneret having 50,000 holes and a hole diameter of 60 μm into a first coagulation bath comprising a dimethylacetamide aqueous solution having a temperature of 35 ° C. and a concentration of 60% by weight to form a coagulated yarn. The coagulated yarn is taken out of the bath at a drawing speed of 0.4 times the linear speed of discharge of the spinning solution, and subsequently in a second coagulation bath consisting of a dimethylacetamide aqueous solution having a temperature of 35 ° C. and a concentration of 60% by weight. The film was stretched by a factor of 1.2, then stretched by a factor of 2.0 simultaneously with washing with water, and further stretched by a factor of 2.5 in boiling water.
[0044]
Thereafter, after oiling, drying with a hot roll was performed to obtain a small tow of acrylonitrile fiber having a single fiber fineness of 1.0 denier (1.1 dtex). The final spinning speed at this time was 80 m / min.
[0045]
Next, a typical embodiment of the present invention will be described in detail.
A plurality of small tows obtained as described above were run side by side under a relaxed condition, and hydroentanglement was performed. FIG. 1 shows a schematic configuration example of a water entanglement device at this time. Reference numeral 1 denotes a precursor fiber bundle for carbon fibers that is bundled into one by hydroentanglement of a plurality of small tows 4 running in parallel. The plurality of small tows 4 are sent in the direction of the arrow on the tow entangled surface of the water entanglement device 2. The water entanglement surface of the water entanglement device 2 is composed of a porous sheet surface, and tow width regulating guides 3 are arranged on both sides in the toe width direction of the tow entanglement surface. The width of the plurality of small tows during traveling is regulated by the tow width regulating guide 3, and the overlapping ratio between the small tows 4 is adjusted as a whole by adjusting the interval between the tow width regulating guides 3. You. Between the tow width regulating guides 5, a water jet pipe 5 for jetting water toward the tow running surface orthogonally to the running direction of the tow is bridged. The water jet pipe 5 has a number of slits (including small holes) (not shown), which are water jet ports, open in the longitudinal direction thereof.
[0046]
According to the present embodiment, ion-exchanged water is used as water, and the water is jetted directly from the water jetting pipe 5 to the plurality of small tows 4 running in parallel, and confounding within the small tows and converging between the small tows are provided. Is performed to obtain a carbon fiber precursor fiber bundle 1 composed of one converged aggregated tow, and housed in a container (not shown) while shaking it down with a predetermined traverse width.
[0047]
Further, according to another embodiment of the present invention, as shown in FIGS. 2 and 3, after being spun as described above, and then subjected to hydroentanglement as described above, a plurality of small tows 4 to 1 are formed. The collected tow 1 focused on the book is supplied to a gear roll 6 or a nip roll 7. In this way, the collected tow subjected to the hydroentanglement is passed through the gear roll 6 or the nip roll 7, whereby the shape retention of the collected and flattened collected tow 1 is further increased. The precursor fiber bundle retains one complete tow configuration until it is introduced into the firing step, while having the ability to split.
[0048]
Hereinafter, the entanglement of the precursor fiber bundle for carbon fibers by the jetting of the liquid stream of the present invention will be described more specifically with reference to examples and comparative examples.
[0049]
(Example 1)
The widthwise side edges of adjacent small tows are overlapped with each other by 30% of the width of the small tows, and run at a running speed of 79.2 m / min, which is 1% less than the spinning speed. 2000mm opening area 2 The amount of gushing water is 3m 3 / H of ion-exchanged water is spouted directly onto the tow to impart entanglement in the small tows and convergence between the small tows, while shaking the aggregated tow, which has converged six small tows into one, into the container. Stowed. At this time, the moisture content of the precursor fiber tow was 13%.
The carbon fiber precursor fiber bundle thus obtained was subjected to a flameproofing treatment for 70 minutes, and further subjected to a carbonization treatment for 3 minutes.
[0050]
(Example 2)
The hydroentanglement treatment was performed by entanglement and convergence with the swollen yarn before drying and densification, and an oil agent was jetted instead of ion-exchanged water.
[0051]
(Example 3)
The side edges of the adjacent small tows in the width direction overlap with each other at a width of 10% of the width of the small tows, and are run at a running speed of 79.2 m / min, and the slit opening area is 2000 mm. 2 The amount of gushing water is 3m 3 / H of ion-exchanged water is jetted directly onto the tow, and confounding within the small tow and convergence between the small tows are performed, and the collected tow which has converged six small tows into one is shaken down into the container. Stowed.
[0052]
(Example 4)
The side edges of the adjacent small tows in the width direction overlap with each other at a width of 30% of the width of the small tows, and are run at a running speed of 79.2 m / min. 2 The amount of spouted water is 5m 3 / H of ion-exchanged water is spouted directly onto the tow to impart entanglement in the small tows and convergence between the small tows, while shaking the aggregated tow, which has converged six small tows into one, into the container. Stowed.
[0053]
(Example 5)
The side edges of the adjacent small tows in the width direction overlap with each other at a width of 30% of the width of the small tows, and are run at a running speed of 79.2 m / min, and the slit opening area is 1000 mm. 2 The amount of gushing water is 3m 3 / H of ion-exchanged water is spouted directly onto the tow to impart entanglement in the small tows and convergence between the small tows, while shaking the aggregated tow, which has converged six small tows into one, into the container. Stowed.
[0054]
(Comparative Example 1)
The side edges of the adjacent small tows in the width direction overlap each other at a width of 2% of the width of the small tows, and run at a running speed of 79.2 m / min. 2 The amount of gushing water is 3m 3 / H of ion-exchanged water is jetted directly onto the tow, and confounding within the small tow and convergence between the small tows are performed, and the collected tow which has converged six small tows into one is shaken down into the container. Stowed.
[0055]
(Comparative Example 2)
The side edges of the adjacent small tows in the width direction overlap with each other at a width of 30% of the width of the small tows, and are run at a running speed of 79.2 m / min. 2 The amount of spouted water is 0.5m 3 / H of ion-exchanged water is jetted directly onto the tow, and confounding within the small tow and convergence between the small tows are performed, and the collected tow which has converged six small tows into one is shaken down into the container. Stowed.
[0056]
(Comparative Example 3)
The side edges of the adjacent small tows in the width direction overlap with each other at a width of 30% of the width of the small tows, and are run at a running speed of 79.2 m / min, and the slit opening area is 4000 mm. 2 The amount of gushing water is 3m 3 / H of ion-exchanged water is jetted directly onto the tow, and confounding within the small tow and convergence between the small tows are performed, and the collected tow which has converged six small tows into one is shaken down into the container. Stowed.
[0057]
(Comparative Example 4)
The side edges of the adjacent small tows in the width direction overlap with each other at a width of 30% of the width of the small tows, and are run at a running speed of 79.2 m / min. 2 The amount of gushing water is 8m 3 / H of ion-exchanged water is spouted directly onto the tow to impart entanglement in the small tows and convergence between the small tows, while shaking the aggregated tow, which has converged six small tows into one, into the container. Stowed.
[0058]
Each of the aggregated tows obtained in Examples 1 to 5 and Comparative Examples 1 to 4 was subjected to a flame-proofing step and a carbonizing step to obtain carbon fibers. At this time, each of the six tows that had been aligned and bundled into one piece were fed to the flameproofing step without being divided into small tows, and then carbon fibers were obtained through a carbonization step.
[0059]
Table 1 summarizes the state of the spinning and baking steps.
[0060]
[Table 1]
Figure 2004100132
[0061]
The collected tow obtained in Examples 1 to 5 was spontaneously divided into small tows without using a division guide or the like as the reaction progressed during the flameproofing step. The carbon fiber obtained after the carbonization treatment had no fluff and was of excellent quality. The strand strength of the obtained carbon fiber was 450 kg / mm. 2 Met.
[0062]
On the other hand, in the aggregated tow obtained in Comparative Examples 1 to 4, as can be understood from Table 1, in Comparative Example 4, although six small tows were bundled, they were not divided in the sintering step, and the flame resistance was improved. In the process, due to heat storage based on the heat of reaction, not only many fluffs were generated, but also some welded portions were found. All of the other Comparative Examples 1 to 3 were not focused so as to obtain a stable form.
[0063]
Next, the entanglement of the precursor fiber bundle for carbon fiber by air ejection, which is another embodiment of the present invention, will be described specifically with reference to the drawings and examples along with comparative examples.
The following Examples and Comparative Examples consist of acrylonitrile fibers having a single fiber fineness of 1.0 denier (1.1 dTex) obtained by the same procedure as in the above embodiment except that the final spinning speed was 40 m / min. It is a small tow.
[0064]
(Example 6)
In this embodiment, the acrylonitrile-based small tow 4 having 50,000 filaments obtained as described above is dried with a drying roll, and then, as shown in FIG. After applying the exchange water, the three small tows 4 to be supplied were supplied to the first entanglement imparting device 10 for imparting entanglement in small tow units shown in FIG.
[0065]
At this time, the tension applied to the small tow 4 is 800 cN, and the entanglement applying device 10 for the small tow 4 has a structure shown in FIG. That is, the first confounding device 10 includes upper and lower nozzles 12 and 13 having a flat rectangular yarn path 11 penetrating in the toe running direction at the center. The upper and lower nozzles 12 and 13 have a vertically symmetrical structure with the yarn path 11 interposed therebetween, and have cylindrical blind hole-shaped compressed air introduction portions 12 a and 13 a orthogonal to the running direction of the small tow 4. It has a large number of air ejection holes 12b and 13b communicating with the air introduction portions 12a and 13a and opening on opposing surfaces along the air introduction direction. The width of the yarn path 11 is 8 mm, the height of the yarn path is 3 mm, the length of the yarn path is 20 mm, the ejection opening diameter of the air ejection holes 12b and 13b is 1 mm, and the arrangement pitch is 1.75 mm. The air pressure was 50 kPa.
[0066]
The three small tows 4 entangled by the first entanglement device 10 are aligned and supplied to a second entanglement device 15 that once entangles the adjacent small tows 4 via the drive roll 14. . This second confounding device 15 has the structure shown in FIG. Its basic structure is the same as that of the first entanglement device 10 dedicated to the small tow, but since the small tow 4 is entangled in advance, the width of the yarn path 16 is three times or more as wide as the first entanglement device. At the same time, the yarn path height is set slightly lower than that of the first entanglement applying device 10.
[0067]
Incidentally, in the second entanglement imparting device 15, the yarn path width is 32 mm, the yarn path height is 2.5 mm, the yarn path length is 20 mm, and the opening diameter of the air ejection holes 17b and 18b is 0.5 mm. The pitch was 0.8 mm, and the air supply pressure was 300 kPa. At this time, the tension applied to each small tow 4 was 130 cN.
[0068]
The single carbon fiber precursor fiber bundle 1 thus obtained was fed to a gear roll 19 and taken out, and was directly transferred to a container 21 via a chute 20. The carbon fiber precursor fiber bundle 1 when housed in the container 20 has three tows 4 gathered to form one tow. At this time, the moisture content of the precursor fiber bundle 1 was 2%. The obtained tow was given a wave by the gear roll 19 used when it was transferred to the container 21, and the interval between the wave peak and the adjacent peak was 25 mm. The degree of entanglement of the carbon fiber precursor fiber bundle 1 thus obtained was evaluated. -1 It was as follows. (Each load of 10 g fell by 1 m or more and the measurement was impossible because the test length was 1 m.) The obtained carbon fiber precursor fiber bundle 1 was pulled out of the container 21 and was flame resistant without being divided into small tows. The yarn was supplied to the oxidizing step, subjected to a flame-proofing treatment for 70 minutes, and further subjected to a carbonization treatment for 3 minutes.
[0069]
During this time, all the rolls used for running the tow were flat rolls, and were not divided into small tows by a roll having a groove on the surface, or the form was not controlled at all. During the flame-proofing step, as the reaction progressed, the sponge was spontaneously divided into small tows without using a dividing guide or the like. The carbon fiber bundle obtained after the carbonization treatment had no fluff and was of excellent quality. The strand strength of the obtained carbon fiber was 450 kg / mm. 2 Met.
[0070]
(Example 7)
After ion-exchanged water was applied to the small tows 4 having the number of filaments of 50,000 obtained in the same manner as in Example 1 using the touch roll 22 as shown in FIG. 9, each of the small tows 4 was used alone as shown in FIG. Was supplied to the first confounding device 10 shown in FIG. At this time, the water content of the small tow 4 was 2% by weight. The basic structure of the first entanglement device 10 dedicated to small tows is the same as that of the sixth embodiment, but the yarn path width is 16 mm, which is twice as large as that of the sixth embodiment, and the yarn path height is slightly smaller, 2.5 mm. The yarn path length is the same 20 mm, the opening diameters of the air ejection holes 12b and 13b are also the same 1 mm, and the arrangement pitch is slightly increased to 2.0 mm, and the supply air pressure at this time is 1/8 of the sixth embodiment. It was set to a certain 100 kPa.
[0071]
Subsequently, the obtained three small tows 4 were supplied to a second entanglement imparting device 25 having a structure shown in FIG. 6 in which adjacent small tows 4 were aligned and entangled. The second entanglement device 25 differs from the entanglement device 15 shown in FIG. 5 in that the yarn path 16 has a mere flat rectangular cross section, but is applied to this embodiment. The yarn path 26 of the second entanglement applying device 25 forms grooves having a trapezoidal cross section above and below the flat rectangular cross section of the portion corresponding to the adjacent positions of the three adjacent small tows 4. Is a point. Other structures are substantially the same as those of the sixth embodiment. One air ejection hole 27b, 28b is formed at the center of each groove.
[0072]
In this embodiment, the yarn path width of the second entanglement imparting device 25 is 45 mm, which is 13 mm wider than that of the sixth embodiment, the yarn path height is the same 2.5 mm, and the opening diameters of the air ejection holes 27b and 28b are also the same. 1.0 mm, the arrangement pitch was 2 mm, which was slightly larger, and the air supply pressure was 200 kPa, which was 2/3 of Example 6. In FIG. 6, the tension applied to the tow is increased to 700 cN, which is 5.4 times that of Example 6, and under this tension, the entanglement to the small tows 4 and the entanglement between the small tows 4 are simultaneously performed. The carbon fiber precursor fiber bundle 1 obtained in this manner was taken out by driving, fed to a gear roll 19 attached to a machine for transferring to a container 21 as it was, and transferred to the container 21 via a chute 20.
[0073]
When the carbon fiber precursor fiber bundle 1 exits the second entanglement imparting device 25, the three small tows 4 are gathered to form one tow. The carbon fiber precursor fiber bundle 1 when transferred into the container 21 was given a wave by the gear roll 19 attached to the transfer machine, and the interval between the wave peak and the adjacent peak was 25 mm. In addition, the degree of entanglement of the carbon fiber precursor fiber bundle thus obtained was evaluated. -1 It was as follows. (Since the test was performed with a test length of 1 m, a load of 10 g dropped by 1 m or more, and measurement was impossible.)
[0074]
The obtained carbon fiber precursor fiber bundle 1 was drawn out of the container 21 and fed to the flameproofing step without dividing into small tows, subjected to a flameproofing treatment for 70 minutes, and further subjected to a carbonization treatment for 3 minutes. During this time, the rolls used for running the carbon fiber precursor fiber bundle 1 were all flat rolls, and were not divided into small tows by a roll having a groove on the surface or the like, and the form was not controlled at all. During the flame-proofing step, as the reaction progressed, it was naturally divided into small tows without using a division guide or the like. The carbon fiber obtained after the carbonization treatment had no fluff and was of excellent quality. The strand strength of the obtained carbon fiber was 450 kg / mm. 2 Met.
[0075]
(Example 8)
As a second entanglement imparting device 30 for imparting entanglement between adjacent small tows, the carbon fiber precursor fiber bundle 1 was transferred to the container 21 by the same entanglement procedure as in Example 7, except that the structure shown in FIG. . The second entanglement imparting device 30 has a yarn path width of 32 mm and a yarn path height of 2.5 mm, which is 10 mm smaller than that of the seventh embodiment, and further has three small tows 4 of a flat rectangular cross-section yarn path 31. A groove having a trapezoidal cross section was formed above and below the adjacent part, and the groove had a depth of 2 mm, a lower base of 7 mm, and an upper base of 2 mm. In this embodiment, the interval between adjacent grooves is set to 12 mm, one air ejection hole 32b, 33b is formed in the center of the groove, and the other yarn path 31 is the same as in the sixth embodiment. A plurality of air ejection holes 32b and 33b were formed in the nozzle.
[0076]
The degree of entanglement of the obtained carbon fiber precursor fiber bundle was evaluated. -1 It was as follows. (Since the test was performed with a test length of 1 m, a load of 10 g dropped by 1 m or more, and measurement was impossible.)
[0077]
The carbon fiber precursor fiber bundle 1 thus obtained is drawn out of the container 21 and fed to the flame-proofing step without dividing into small tows, subjected to a flame-proofing treatment for 70 minutes, and further subjected to a carbonization treatment for 3 minutes. Was. During this time, the rolls used for running the tow were all flat rolls, and were not divided or controlled at all, such as rolls having grooves on the surface. During the flame-proofing process, as the reaction progresses, it begins to split naturally into small tows without using a splitting guide, etc., and the carbon fibers obtained after carbonization are completely split into small tows and have no fluff and excellent quality Was something. The strand strength of the obtained carbon fiber was 450 kg / mm. 2 Met.
[0078]
(Example 9)
A small tow having the same structure as that of the eighth embodiment except that a plurality of air ejection holes 37b and 38b are formed in the groove of the yarn path 36, and the air ejection holes 37b and 38b are not formed in portions other than the groove. Using the second entanglement imparting device 35 for imparting entanglement between the four, three small tows were gathered to obtain a carbon fiber precursor having one tow form. This was transferred to a container via a nip roll having a flat surface instead of the gear roll 19 shown in FIG. The carbon fiber precursor fiber bundle 1 thus obtained was subjected to a flameproofing treatment for 70 minutes, and further subjected to a carbonization treatment for 3 minutes. In drawing out the carbon fiber precursor fiber bundle 1 from the container 21, the carbon fiber precursor fiber bundle 1 was once pulled up and passed through the guide bar a plurality of times to align the tows.
[0079]
When the air ejection holes 37b and 38b are formed only in the groove of the yarn path 36 in this way, the air does not contribute to the entanglement of the small tow 4 itself, but mainly imparts entanglement to the adjacent portion of the adjacent small tow 4. In addition, an increase in confounding with the small tow 4 itself is suppressed. Further, the degree of entanglement of the carbon fiber precursor fiber bundle thus obtained was evaluated. -1 It was as follows. (Since the test was performed with a test length of 1 m, a load of 10 g dropped by 1 m or more, and measurement was impossible.)
[0080]
The aligned carbon fiber precursor fiber bundle 1 was supplied to the flameproofing step without splitting into small tows, subjected to a flameproofing treatment for 70 minutes, and further subjected to a carbonization treatment for 3 minutes. All the rolls used for running the tow were flat rolls, and no control of the tow division or form was made at all with a roll having grooves on the surface. During the flame-proofing step, as the reaction progressed, it was naturally divided into small tows without using a division guide or the like. The carbon fiber obtained after the carbonization treatment had no fluff and was of excellent quality. The strand strength of the obtained carbon fiber was 450 kg / mm. 2 Met.
[0081]
(Comparative Example 5)
As in Example 6, after ion-exchanged water was applied to the small tow, confounding was applied to the small tow, and the three small tows thus obtained were supplied to a crimping device (not shown). Focused by shrinkage. The focused tow was housed in a container as in Example 1.
[0082]
The carbon fiber precursor fiber bundle thus obtained was pulled out of the container, subjected to a flame-proof treatment for 70 minutes, and further subjected to a carbonization treatment for 3 minutes. As in the case of Example 9, the carbon fiber precursor fiber bundle was pulled out from the container, and the carbon fiber precursor fiber bundle was once pulled up and passed through the guide bar a plurality of times to align small tows. The aligned carbon fiber precursor fiber bundle was fed to the flameproofing step without splitting into small tows, subjected to a flameproofing treatment for 70 minutes, and further subjected to a carbonization treatment for 3 minutes. During this time, the rolls used for running the tow were all flat rolls, and no division or form control was performed at all with a roll having grooves on the surface. During the flame-proofing step, the tow was spontaneously divided into small tows as the reaction progressed without using a division guide or the like. However, the carbon fibers obtained after the carbonization treatment had many fluffs and were not excellent in quality. In addition, wrapping around the roll in the flameproofing process, which is considered to be caused by fluff, occurred frequently. Further, the strand strength of the obtained carbon fiber was 350 kg / mm. 2 Met.
[0083]
(Comparative Example 6)
Except that ion exchange water was applied to the small tow by spraying so that the water content became 30 wt%, the focused tow was transferred to the container in the same manner as in Example 6.
[0084]
The carbon fiber precursor fiber bundle thus obtained was pulled out of the container, subjected to a flame-proof treatment for 70 minutes, and further subjected to a carbonization treatment for 3 minutes. As in the case of Example 9, the carbon fiber precursor fiber bundle was pulled out from the container, and the carbon fiber precursor fiber bundle was once pulled up and passed through the guide bar a plurality of times to align small tows. When feeding to the flameproofing process, the deformation of the folded part of the tow is maintained by the action of surface tension due to moisture, the twist is fed to the flameproofing process, and the twisted portion stores heat in the flameproofing process and cuts. The reaching process was stopped.
[0085]
(Comparative Example 7)
A precursor fiber bundle obtained in the same manner as in Example 6 except that the air supply pressure of the second entanglement imparting device for imparting entanglement between adjacent small tows was set to 500 kPa, was transferred to a container. At this time, the fiber entanglement between the small tows is 12 m. -1 Met. The carbon fiber precursor fiber bundle thus obtained was pulled out of the container, subjected to a flame-proof treatment for 70 minutes, and further subjected to a carbonization treatment for 3 minutes. As in the case of Example 9, the carbon fiber precursor fiber bundle was pulled out from the container, and the carbon fiber precursor fiber bundle was once pulled up and passed through the guide bar a plurality of times to align small tows. Entanglement remained between the small tows even after passing through the flameproofing step, and entanglement remained between the small tows even after passing through the carbonization step, and carbon fibers in small tow units could not be obtained. Further, after passing through the carbonization step, division into small tows was performed by providing a division guide, but the obtained carbon fibers had many fluffs and were not excellent in quality.
[Brief description of the drawings]
FIG. 1 is a three-dimensional view schematically showing an example of an apparatus for producing a precursor fiber bundle for carbon fibers to be entangled by a liquid flow according to the present invention.
FIG. 2 is a perspective view schematically showing an example of another manufacturing apparatus.
FIG. 3 is a three-dimensional view schematically showing an example of still another manufacturing apparatus.
FIG. 4 is an explanatory view showing a structural example of a first entanglement imparting device for imparting entanglement to small tows by air ejection.
FIG. 5 is an explanatory view showing a structural example of a second entanglement imparting device for imparting entanglement between small tows by air ejection.
FIG. 6 is an explanatory view showing a structural example of a second entanglement imparting device for imparting entanglement between small tows having grooves.
FIG. 7 is an explanatory view showing a structural example of a second entanglement imparting device for imparting entanglement between small tows having an air ejection hole only inside a groove.
FIG. 8 is a process diagram schematically illustrating an example of a manufacturing process of a precursor fiber bundle for carbon fibers to be entangled by air ejection.
FIG. 9 is a process diagram schematically showing another example of a process of manufacturing a precursor fiber bundle for carbon fibers to be entangled by air ejection.
[Explanation of symbols]
1 aggregate tow (precursor fiber bundle for carbon fiber)
2 Water entanglement device
3 Toe width regulation guide
4 small toe
5 Water spout pipe
6 Gear roll
7 Nip roll
9 spray
10 1st confounding device
14 Drive Roll
15, 25, 30, 35 Second confounding device
11,16,26,31,36
12,13 upper and lower nozzle
12a, 13a Compressed air introduction section
12b, 13b, 17b, 18b, 27b,
28b, 32b, 33b, 37b, 38b Air outlet
19 Gear Roll
20 Shoots
21 containers
22 Touch Roll

Claims (30)

捲縮が付与されない実質的にストレートな繊維からなり、
容器への収納時及び前記容器から引き出して焼成工程に導入する際には1本の集合トウの形態を保持し、
焼成工程にて同工程で発生する張力により小トウに分割可能な幅方向の分割能を有してなる、
ことを特徴とする炭素繊維用前駆体繊維束。
Consist of substantially straight fibers that are not crimped,
At the time of storage in a container and when being pulled out of the container and introduced into the baking process, the form of one aggregated tow is maintained,
In the firing step, it has a dividing ability in the width direction that can be divided into small tows by the tension generated in the same step,
A precursor fiber bundle for a carbon fiber, characterized in that:
小トウのフィラメント数が24000〜150000、集合トウの総フィラメント数が48000〜600000である請求項1記載の炭素繊維用前駆体繊維束。The precursor fiber bundle for carbon fibers according to claim 1, wherein the number of filaments of the small tow is 24,000 to 150,000, and the total number of filaments of the aggregated tow is 48,000 to 600,000. 小トウの幅方向の端部が小トウの幅に対して5〜50%の幅でオーバーラップさせて、液流による交絡により、小トウ内のフィラメント同士の交絡と隣接する小トウ間同士の集束性とを付与して1本の集合トウ形態を保持してなる
請求項1または2記載の炭素繊維用前駆体繊維束。
The ends of the small tows in the width direction are overlapped with each other at a width of 5 to 50% of the width of the small tows. The precursor fiber bundle for a carbon fiber according to claim 1 or 2, wherein a bundle form is maintained by imparting bunching properties.
小トウの幅方向の端部が隣接する小トウの幅方向端部とフィラメントのエア流による交絡により1本の集合トウ形態を保持する請求項1または2記載の炭素繊維前駆体繊維束。3. The carbon fiber precursor fiber bundle according to claim 1, wherein the widthwise end of the small tow and the widthwise end of the adjacent small tow maintain one aggregated tow form by entanglement of the filaments by air flow. 4. フックドロップ法による小トウ間の交絡度が1m−1以下である請求項4記載の炭素繊維前駆体繊維束。The carbon fiber precursor fiber bundle according to claim 4, wherein the degree of entanglement between the small tows by the hook drop method is 1 m- 1 or less. 請求項1〜3のいずれかに記載の炭素繊維用前駆体繊維束の製造方法であって、分割状態で並走する小トウの幅方向に延設されたスリット開口部より液体を噴出させて液流交絡を行い、小トウ内のフィラメント同士の交絡及び小トウ間同士の集束性を付与して1本の集合トウの形態を保持させる液流交絡工程を含んでなることを特徴とする炭素繊維前駆体繊維束の製造方法。The method for producing a precursor fiber bundle for carbon fibers according to any one of claims 1 to 3, wherein a liquid is ejected from a slit opening extending in a width direction of the small tow running in parallel in a divided state. A liquid entangling step of performing liquid entangling to impart entanglement between filaments in the small tows and convergence between the small tows to maintain the form of one aggregated tow. A method for producing a fiber precursor fiber bundle. 前記液流交絡工程において、前記スリット開口部面積が5万フィラメントあたり60〜450(mm2 )であり、噴出する液の流量が1〜5(m3 /h)であることを含んでなることを特徴とする請求項6記載の炭素繊維前駆体繊維束の製造方法。In the liquid entangling step, the slit opening area is 60 to 450 (mm 2 ) per 50,000 filaments, and the flow rate of the ejected liquid is 1 to 5 (m 3 / h). The method for producing a carbon fiber precursor fiber bundle according to claim 6, wherein: 分割状態で並走する小トウを、該小トウの幅方向の端部が小トウの幅に対して5〜50%の幅でオーバーラップさせて液流交絡を行い、小トウ内のフィラメントの交絡及び隣接する小トウ間同士の集束性を付与して1本の集合トウ形態を保持させることを特徴とする請求項6または7に記載の炭素繊維用前駆体繊維束の製造方法。The small tows running in parallel in the divided state are overlapped with each other at a width direction end of the small tows with a width of 5 to 50% with respect to the width of the small tows to perform liquid entanglement. The method for producing a precursor fiber bundle for a carbon fiber according to claim 6 or 7, wherein the entanglement and the convergence between adjacent small tows are imparted to maintain one aggregate tow form. 液流交絡に使われる液体が水であることを特徴とする請求項6記載の炭素繊維用前駆体繊維束の製造方法。The method for producing a precursor fiber bundle for carbon fibers according to claim 6, wherein the liquid used for liquid entangling is water. 液流交絡に使われる液体が油剤であることを特徴とする請求項6記載の炭素繊維用前駆体繊維束の製造方法。The method for producing a precursor fiber bundle for carbon fibers according to claim 6, wherein the liquid used for the liquid entangling is an oil agent. 請求項1、2、4または5のいずれかに記載の炭素繊維用前駆体繊維束の製造方法であって、
複数の小トウを並列して隣接させ、偏平矩形糸道断面形状を有し、該糸道に偏平矩形断面の長辺方向に所定の間隔をおいてエア噴出孔が複数配されたエア交絡装置に供給し、前記エア噴出孔からエアを噴出させることにより隣接する小トウ間の交絡を行うことを特徴とする炭素繊維前駆体繊維束の製造方法。
It is a manufacturing method of the precursor fiber bundle for carbon fibers according to any one of claims 1, 2, 4, and 5,
An air entanglement device in which a plurality of small tows are arranged side by side and have a flat rectangular yarn path cross-sectional shape, and a plurality of air ejection holes are arranged on the yarn path at predetermined intervals in the long side direction of the flat rectangular cross section. And producing air entanglement between adjacent small tows by ejecting air from the air ejection holes.
交絡前の小トウに水分を水分率が10wt%以下となるように予め付与することを特徴とする請求項11記載の炭素繊維前駆体繊維束の製造方法。The method for producing a carbon fiber precursor fiber bundle according to claim 11, wherein water is previously applied to the small tow before the entanglement so that the water content is 10 wt% or less. 小トウ内のフィラメント同士の交絡を、円形断面糸道と該円形断面糸道へのエア噴出孔を有する交絡付与装置に小トウを通し、前記エア噴出孔からエアを噴出させることにより付与する請求項11または12記載の炭素繊維前駆体繊維束の製造方法。Claims: Entangling filaments in a small tow by passing a small tow through a confounding device having a circular section yarn path and an air ejection hole for the circular section yarn path, and ejecting air from the air ejection hole. Item 13. The method for producing a carbon fiber precursor fiber bundle according to Item 11 or 12. 小トウ内のフィラメント同士の交絡を、偏平矩形断面形状の糸道の偏平矩形状の長辺方向に所定の間隔をおいて複数のエア噴出孔が配されたエア交絡装置に小トウを通し、前記エア噴出孔からエアを噴出させることにより付与する請求項11または12記載の炭素繊維前駆体繊維束の製造方法。The entanglement of the filaments in the small tow is passed through an air entanglement device in which a plurality of air ejection holes are arranged at predetermined intervals in the long side direction of the flat rectangular cross section of the yarn path having a flat rectangular cross section, The method for producing a carbon fiber precursor fiber bundle according to claim 11 or 12, wherein the carbon fiber is applied by ejecting air from the air ejection holes. 小トウのフィラメント交絡と小トウ間の交絡とを、偏平矩形糸道断面を有する糸道に前記偏平矩形状の長辺方向に所定の間隔をおいて複数のエア噴出孔を有する交絡付与装置に複数の小トウを隣接して供給し、前記エア噴出孔からエアを噴出させることにより付与することを特徴とする請求項11または12記載の炭素繊維前駆体繊維束の製造方法。The filament entanglement of the small tows and the entanglement between the small tows are converted into a entanglement imparting device having a plurality of air ejection holes at predetermined intervals in the long side direction of the flat rectangular shape on a yarn path having a flat rectangular yarn path cross section. 13. The method for producing a carbon fiber precursor fiber bundle according to claim 11, wherein a plurality of small tows are supplied adjacent to each other, and the small tows are supplied by ejecting air from the air ejection holes. 小トウのフィラメント交絡と小トウ間の交絡とを、偏平矩形糸道断面を有する糸道に前記偏平矩形状の長辺方向に所定の間隔をおいて複数のエア噴出孔を有するとともに、小トウの隣接する位置に糸道の長手方向に延在する溝部を更に有する交絡付与装置に複数の小トウを隣接して供給し、前記エア噴出孔からエアを噴出させることにより付与することを特徴とする請求項11または12記載の炭素繊維前駆体繊維方法。The filament entanglement of the small tows and the entanglement between the small tows are performed by providing a plurality of air ejection holes at predetermined intervals in the long side direction of the flat rectangular shape on the yarn path having a flat rectangular yarn path cross section. A plurality of small tows are supplied adjacently to a entanglement imparting device further having a groove extending in the longitudinal direction of the yarn path at a position adjacent to the yarn path, and is imparted by ejecting air from the air ejection hole. The carbon fiber precursor fiber method according to claim 11 or 12, wherein フィラメント同士の交絡が予め付与された複数の小トウ間の交絡を、偏平矩形糸道断面を有する糸道の小トウの隣接する位置に糸道の長手方向に延在する溝部を有し、その溝内にのみ前記偏平矩形状の長辺方向に所定の間隔をおいて複数配されてなるエア噴出孔を有する交絡付与装置に複数の小トウを隣接させて供給し、前記エア噴出孔からエアを噴出させることにより付与することを特徴とする請求項14記載の炭素繊維前駆体繊維方法。The entanglement between the plurality of small tows to which the entanglement of the filaments is given in advance has a groove extending in the longitudinal direction of the yarn path at a position adjacent to the small tow of the yarn path having a flat rectangular yarn path cross section. A plurality of small tows are supplied adjacently to an entangling device having a plurality of air ejection holes arranged at predetermined intervals in the long side direction of the flat rectangular shape only in the grooves, and air is supplied from the air ejection holes. The carbon fiber precursor fiber method according to claim 14, wherein the carbon fiber precursor is applied by jetting. 交絡を付与された複数の小トウからなる前記1本の集合トウをギヤーロールへ供給した後、容器へ収納することを含んでなることを特徴とする請求項6〜17のいずれかに記載の炭素繊維前駆体繊維束の製造方法。The method according to any one of claims 6 to 17, wherein the method comprises supplying the one set of tow composed of a plurality of small tows to which confound has been given to a gear roll, and then storing the collected tow in a container. A method for producing a carbon fiber precursor fiber bundle. 交絡を付与されたの小トウからなる前記1本の集合トウをニップロールに供給した後、容器へ収納することを含んでなることを特徴とする請求項6〜17のいずれかに記載の炭素繊維用前駆体繊維束の製造方法。The carbon fiber according to any one of claims 6 to 17, comprising supplying the single aggregated tow made of the entangled small tow to a nip roll and then storing it in a container. Of producing precursor fiber bundles for use 複数の小トウを隣接して供給可能な偏平矩形断面を有する糸道を備え、
同糸道が前記偏平矩形断面の長辺方向に所定の間隔をおいて開口する複数のエア噴出孔を有してなる、
ことを特徴とする請求項与装置へ供給することにより得られてなる複数の小トウ間の交絡を請求項1、2、4または5のいずれかに記載の炭素繊維前駆体繊維束の製造装置。
A yarn path having a flat rectangular cross section capable of supplying a plurality of small tows adjacent to each other,
The yarn path has a plurality of air ejection holes opened at predetermined intervals in the long side direction of the flat rectangular cross section,
The apparatus for producing a carbon fiber precursor fiber bundle according to any one of claims 1, 2, 4 and 5, wherein the entanglement between a plurality of small tows obtained by supplying the small tow is supplied to the supply device. .
小トウが通過可能な円形断面からなる糸道内にエアを噴出する1以上のエア噴出孔が配された第1のエア交絡付与装置と、
複数の小トウを隣接して供給可能な偏平矩形断面を有する糸道と、同糸道内に前記偏平矩形状の長辺方向に所定の間隔をおいて複数配されてなるエア噴出孔を有する第2の交絡付与装置とを備えてなることを特徴とする請求項1、2、4または5のいずれかに記載の炭素繊維前駆体繊維束の製造装置。
A first air entanglement device in which one or more air ejection holes for ejecting air into a yarn path having a circular cross section through which a small tow can pass are arranged;
A yarn path having a flat rectangular cross section capable of supplying a plurality of small tows adjacent to each other, and an air ejection hole having a plurality of air ejection holes arranged at predetermined intervals in the long side direction of the flat rectangular shape in the yarn path. The apparatus for producing a carbon fiber precursor fiber bundle according to any one of claims 1, 2, 4, and 5, further comprising:
小トウが通過可能な偏平矩形断面からなる糸道内にエアを噴出する1以上のエア噴出孔が配された第1のエア交絡付与装置と、
複数の小トウを隣接して並列に供給可能な偏平矩形断面を有する糸道と、同糸道内に前記偏平矩形状の長辺方向に所定の間隔をおいて複数配されてなるエア噴出孔を有する第2の交絡付与装置と、
を備えてなることを特徴とする請求項1、2、4または5のいずれかに記載の炭素繊維前駆体繊維束の製造装置。
A first air entangling device in which one or more air ejection holes for ejecting air are arranged in a yarn path having a flat rectangular cross section through which a small tow can pass;
A yarn path having a flat rectangular cross section capable of supplying a plurality of small tows adjacently in parallel, and a plurality of air ejection holes arranged at predetermined intervals in the long side direction of the flat rectangular shape in the yarn path. A second confounding device having
The apparatus for producing a carbon fiber precursor fiber bundle according to any one of claims 1, 2, 4 and 5, characterized by comprising:
前記複数の小トウを隣接して供給可能な偏平矩形断面を有する糸道が、前記小トウの隣接する位置に糸道の長手方向に延在する複数の溝を更に有してなることを特徴とする請求項20〜22のいずれかに記載の炭素繊維前駆体繊維束の製造装置。The yarn path having a flat rectangular cross section capable of supplying the plurality of small tows adjacent to each other further comprises a plurality of grooves extending in the longitudinal direction of the yarn path at positions adjacent to the small tows. An apparatus for producing a carbon fiber precursor fiber bundle according to any one of claims 20 to 22. 前記エア噴出孔が前記複数の溝内にのみ形成されてなることを特徴とする請求項23記載の炭素繊維前駆体繊維束の製造装置。24. The apparatus for producing a carbon fiber precursor fiber bundle according to claim 23, wherein the air ejection holes are formed only in the plurality of grooves. 前記小トウの総繊度D(dTex)と集合させるフィラメントの本数nとの積で表される集合トウの総繊度nD(dTex)と前記偏平断面の長辺寸法L(mm)との比n・D/ Lの値が、2000〜8000であり、前記エア噴出孔の各孔口径は0.3〜1.2mmである請求項20記載の炭素繊維前駆体繊維束の製造装置。The ratio of the total fineness nD (dTex) of the aggregated tow expressed by the product of the total fineness D of the small tow D (dTex) and the number n of the filaments to be aggregated to the long side dimension L (mm) of the flat cross section n · 21. The apparatus for producing a carbon fiber precursor fiber bundle according to claim 20, wherein the value of D / ΔL is 2,000 to 8,000, and the diameter of each of the air ejection holes is 0.3 to 1.2 mm. 前記エア噴出口が等ピッチに配され、そのピッチが0.8〜1.6mmであり、前記糸道の長さが10〜40mmであることを特徴とする請求項20に記載の炭素繊維前駆体繊維束の製造装置。21. The carbon fiber precursor according to claim 20, wherein the air outlets are arranged at an equal pitch, the pitch is 0.8 to 1.6 mm, and the length of the yarn path is 10 to 40 mm. Body fiber bundle manufacturing equipment. 前記溝が半円形又は円の一部であって、その直径が2〜10mmであり、その溝の深さは1.5〜4mmであることを特徴とする請求項23に記載の炭素繊維前駆体繊維束の製造装置。The carbon fiber precursor according to claim 23, wherein the groove is a semicircle or a part of a circle, the diameter is 2 to 10 mm, and the depth of the groove is 1.5 to 4 mm. Body fiber bundle manufacturing equipment. 前記溝が台形溝であって、その台形溝断面の長辺の寸法が2〜10mmであり、溝底に相当する短辺寸法は1.5〜6mmであることを特徴とする請求項23に記載の炭素繊維前駆体繊維束の製造装置。The said groove | channel is a trapezoidal groove | channel, The dimension of the long side of the trapezoidal groove cross section is 2-10 mm, and the short side dimension corresponding to a groove bottom is 1.5-6 mm, The Claim 23 characterized by the above-mentioned. An apparatus for producing a carbon fiber precursor fiber bundle according to the above. 請求項1〜5のいずれかに記載の炭素繊維用前駆体繊維束を耐炎化工程に供給し、同耐炎化工程にて発生する張力により小トウに分割しながら焼成することを特徴とする炭素繊維の製造方法。A carbon fiber, comprising supplying the precursor fiber bundle for a carbon fiber according to any one of claims 1 to 5 to a flame-proofing step, and dividing the precursor fiber bundle into small tows by tension generated in the flame-proofing step. Fiber manufacturing method. 請求項1〜5のいずれかに記載の炭素繊維用前駆体繊維束を炭素化工程に供給し、同炭素化工程にて発生する張力により小トウに分割しながら焼成することを特徴とする炭素繊維の製造方法。A carbon, wherein the precursor fiber bundle for carbon fiber according to any one of claims 1 to 5 is supplied to a carbonization step, and baked while being divided into small tows by tension generated in the carbonization step. Fiber manufacturing method.
JP2003168259A 2002-07-15 2003-06-12 Method and apparatus for producing carbon fiber precursor fiber bundle Expired - Fee Related JP4192041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168259A JP4192041B2 (en) 2002-07-15 2003-06-12 Method and apparatus for producing carbon fiber precursor fiber bundle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002205508 2002-07-15
JP2003168259A JP4192041B2 (en) 2002-07-15 2003-06-12 Method and apparatus for producing carbon fiber precursor fiber bundle

Publications (2)

Publication Number Publication Date
JP2004100132A true JP2004100132A (en) 2004-04-02
JP4192041B2 JP4192041B2 (en) 2008-12-03

Family

ID=32300208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168259A Expired - Fee Related JP4192041B2 (en) 2002-07-15 2003-06-12 Method and apparatus for producing carbon fiber precursor fiber bundle

Country Status (1)

Country Link
JP (1) JP4192041B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176328A (en) * 2004-12-24 2006-07-06 Mitsubishi Rayon Co Ltd Package of carbon fiber precursor tow and flame resistant fiber precursor tow and those packing method
EP1719829A1 (en) * 2004-02-13 2006-11-08 Mitsubishi Rayon Co., Ltd. Carbon fiber precursor fiber bundle, production method and production device therefor, and carbon fiber and production method therefor
JP2007092218A (en) * 2005-09-28 2007-04-12 Mitsubishi Rayon Co Ltd Fiber bundle of carbon fiber precursor and method for producing the same
JP2007291580A (en) * 2006-04-27 2007-11-08 Mitsubishi Rayon Co Ltd Carbon fiber precursor acrylic fiber thread, and method and system for manufacturing the same
JP2009263817A (en) * 2008-04-25 2009-11-12 Mitsubishi Rayon Co Ltd Oil agent applying apparatus and oil agent applying method
JP2011042920A (en) * 2010-10-26 2011-03-03 Mitsubishi Rayon Co Ltd Fiber bundle of carbon fiber precursor
JP2012188773A (en) * 2011-03-09 2012-10-04 Mitsubishi Rayon Co Ltd Method for storing carbon fiber precursor tow
KR20170100558A (en) 2014-12-26 2017-09-04 도레이 카부시키가이샤 Method for manufacturing and manufacturing device for partial split-fiber fiber bundle and partial split-fiber fiber bundle
WO2017221658A1 (en) 2016-06-22 2017-12-28 東レ株式会社 Production method for partially separated fiber bundle, partially separated fiber bundle, fiber-reinforced resin molding material using partially separated fiber bundle, and production method for fiber-reinforced resin molding material using partially separated fiber bundle
WO2017221688A1 (en) 2016-06-22 2017-12-28 東レ株式会社 Production method for separated fiber bundle, separated fiber bundle, fiber-reinforced resin molding material using separated fiber bundle, and production method for fiber-reinforced resin molding material using separated fiber bundle
WO2017221657A1 (en) 2016-06-21 2017-12-28 東レ株式会社 Partially separated fiber bundle, production method for partially separated fiber bundle, fiber-reinforced resin molding material using partially separated fiber bundle, and production method for fiber-reinforced resin molding material using partially separated fiber bundle
JP2018031083A (en) * 2016-08-23 2018-03-01 三菱ケミカル株式会社 Carbon fiber precursor acryl fiber bundle, production method thereof, and production method of carbon fiber bundle
WO2018143067A1 (en) 2017-02-02 2018-08-09 東レ株式会社 Partially separated fiber bundle and method for manufacturing same, chopped-fiber bundle using same, and fiber-reinforced resin molding material
KR20190016977A (en) 2016-06-20 2019-02-19 도레이 카부시키가이샤 Partially Dispersed Fiber Bundle, Manufacturing Method Thereof, Fiber-Reinforced Resin Molding Material Using Partially Dispersed Fiber Bundle, and Manufacturing Method Thereof
KR20190017819A (en) 2016-06-21 2019-02-20 도레이 카부시키가이샤 Partially Dispersed Fiber Bundle, Manufacturing Method Thereof, Fiber-Reinforced Resin Molding Material Using Partially Dispersed Fiber Bundle, and Manufacturing Method Thereof
WO2019151076A1 (en) 2018-02-01 2019-08-08 東レ株式会社 Partially separated fiber bundle, intermediate base material, molding, and method for producing same
US10570536B1 (en) 2016-11-14 2020-02-25 CFA Mills, Inc. Filament count reduction for carbon fiber tow
WO2020066275A1 (en) 2018-09-28 2020-04-02 東レ株式会社 Partially split fiber bundle and production method therefor
WO2020203390A1 (en) * 2019-03-29 2020-10-08 東レ株式会社 Carbon-fiber-precursor fiber bundle and method for producing same
CN113474139A (en) * 2019-02-14 2021-10-01 仓敷纺绩株式会社 Fiber-reinforced resin molded article and method for producing carbon fiber sheet used for same
CN114457463A (en) * 2020-11-10 2022-05-10 中国石油化工股份有限公司 Large-tow carbon fiber pre-oxidation furnace and pre-oxidation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121325A (en) * 1996-10-14 1998-05-12 Toray Ind Inc Precursor fiber bundle for carbon fiber and its production and production of carbon fiber
JP2001355121A (en) * 2000-06-12 2001-12-26 Toho Tenax Co Ltd Large tow precursor and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121325A (en) * 1996-10-14 1998-05-12 Toray Ind Inc Precursor fiber bundle for carbon fiber and its production and production of carbon fiber
JP2001355121A (en) * 2000-06-12 2001-12-26 Toho Tenax Co Ltd Large tow precursor and method for producing the same

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7941903B2 (en) 2004-02-13 2011-05-17 Mitsubishi Rayon Co., Ltd. Carbon fiber precursor fiber bundle, production method and production device therefor, and carbon fiber and production method therefor
EP1719829A1 (en) * 2004-02-13 2006-11-08 Mitsubishi Rayon Co., Ltd. Carbon fiber precursor fiber bundle, production method and production device therefor, and carbon fiber and production method therefor
US10308472B2 (en) 2004-02-13 2019-06-04 Mitsubishi Chemical Corporation Carbon fiber precursor fiber bundle, production method and production device therefor, and carbon fiber and production method therefor
EP1719829A4 (en) * 2004-02-13 2007-12-05 Mitsubishi Rayon Co Carbon fiber precursor fiber bundle, production method and production device therefor, and carbon fiber and production method therefor
US8801985B2 (en) 2004-02-13 2014-08-12 Mitsubishi Rayon Co., Ltd. Process of making a carbon fiber precursor fiber bundle
JP2006176328A (en) * 2004-12-24 2006-07-06 Mitsubishi Rayon Co Ltd Package of carbon fiber precursor tow and flame resistant fiber precursor tow and those packing method
JP4709625B2 (en) * 2005-09-28 2011-06-22 三菱レイヨン株式会社 Method for producing carbon fiber precursor fiber bundle
JP2007092218A (en) * 2005-09-28 2007-04-12 Mitsubishi Rayon Co Ltd Fiber bundle of carbon fiber precursor and method for producing the same
JP2007291580A (en) * 2006-04-27 2007-11-08 Mitsubishi Rayon Co Ltd Carbon fiber precursor acrylic fiber thread, and method and system for manufacturing the same
JP2009263817A (en) * 2008-04-25 2009-11-12 Mitsubishi Rayon Co Ltd Oil agent applying apparatus and oil agent applying method
JP2011042920A (en) * 2010-10-26 2011-03-03 Mitsubishi Rayon Co Ltd Fiber bundle of carbon fiber precursor
JP2012188773A (en) * 2011-03-09 2012-10-04 Mitsubishi Rayon Co Ltd Method for storing carbon fiber precursor tow
KR20170100558A (en) 2014-12-26 2017-09-04 도레이 카부시키가이샤 Method for manufacturing and manufacturing device for partial split-fiber fiber bundle and partial split-fiber fiber bundle
US10676311B2 (en) 2014-12-26 2020-06-09 Toray Industries, Inc. Method of manufacturing and manufacturing device for partial split-fiber fiber bundle and partial split-fiber fiber bundle
KR20190016977A (en) 2016-06-20 2019-02-19 도레이 카부시키가이샤 Partially Dispersed Fiber Bundle, Manufacturing Method Thereof, Fiber-Reinforced Resin Molding Material Using Partially Dispersed Fiber Bundle, and Manufacturing Method Thereof
US11492731B2 (en) 2016-06-20 2022-11-08 Toray Industries, Inc. Partially separated fiber bundle, production method of partially separated fiber bundle, fiber-reinforced resin molding material using partially separated fiber bundle, and production method of fiber-reinforced resin molding material using partially separated fiber bundle
KR20190017819A (en) 2016-06-21 2019-02-20 도레이 카부시키가이샤 Partially Dispersed Fiber Bundle, Manufacturing Method Thereof, Fiber-Reinforced Resin Molding Material Using Partially Dispersed Fiber Bundle, and Manufacturing Method Thereof
KR20190017820A (en) 2016-06-21 2019-02-20 도레이 카부시키가이샤 Partially Dispersed Fiber Bundle, Manufacturing Method Thereof, Fiber-Reinforced Resin Molding Material Using Partially Dispersed Fiber Bundle, and Manufacturing Method Thereof
US11162196B2 (en) 2016-06-21 2021-11-02 Toray Industries, Inc. Partially separated fiber bundle, production method of partially separated fiber bundle, fiber-reinforced resin molding material using partially separated fiber bundle, and production method of fiber-reinforced resin molding material using partially separated fiber bundle
WO2017221657A1 (en) 2016-06-21 2017-12-28 東レ株式会社 Partially separated fiber bundle, production method for partially separated fiber bundle, fiber-reinforced resin molding material using partially separated fiber bundle, and production method for fiber-reinforced resin molding material using partially separated fiber bundle
US10569986B2 (en) 2016-06-21 2020-02-25 Toray Industries, Inc. Partially separated fiber bundle, production method for partially separated fiber bundle, fiber-reinforced resin molding material using partially separated fiber bundle, and production method for fiber-reinforced resin molding material using partially separated fiber bundle
WO2017221658A1 (en) 2016-06-22 2017-12-28 東レ株式会社 Production method for partially separated fiber bundle, partially separated fiber bundle, fiber-reinforced resin molding material using partially separated fiber bundle, and production method for fiber-reinforced resin molding material using partially separated fiber bundle
KR20190017821A (en) 2016-06-22 2019-02-20 도레이 카부시키가이샤 METHOD FOR MANUFACTURING FIBER FIBER FIBERS, FIBER-REINFORCED RESIN MOLDING MATERIALS USING SUB-FIBER FIBER BUNDLE, AND SEPARATED FIBER BUNDLE
US10907280B2 (en) 2016-06-22 2021-02-02 Toray Industries, Inc. Production method for partially separated fiber bundle, partially separated fiber bundle, fiber-reinforced resin molding material using partially separated fiber bundle, and production method for fiber-reinforced resin molding material using partially separated fiber bundle
US11371171B2 (en) 2016-06-22 2022-06-28 Toray Industries, Inc. Production method for separated fiber bundle, separated fiber bundle, fiber-reinforced resin molding material using separated fiber bundle, and production method for fiber-reinforced resin molding material using separated fiber bundle
WO2017221688A1 (en) 2016-06-22 2017-12-28 東レ株式会社 Production method for separated fiber bundle, separated fiber bundle, fiber-reinforced resin molding material using separated fiber bundle, and production method for fiber-reinforced resin molding material using separated fiber bundle
JP2018031083A (en) * 2016-08-23 2018-03-01 三菱ケミカル株式会社 Carbon fiber precursor acryl fiber bundle, production method thereof, and production method of carbon fiber bundle
US10570536B1 (en) 2016-11-14 2020-02-25 CFA Mills, Inc. Filament count reduction for carbon fiber tow
KR20190107675A (en) 2017-02-02 2019-09-20 도레이 카부시키가이샤 Partially divided fiber bundles and their manufacturing method, and chopped fiber bundles and fiber reinforced resin molding materials using the same
US11230630B2 (en) 2017-02-02 2022-01-25 Toray Industries, Inc. Partially separated fiber bundle and method of manufacturing same, chopped fiber bundle using same, and fiber-reinforced resin forming material
WO2018143067A1 (en) 2017-02-02 2018-08-09 東レ株式会社 Partially separated fiber bundle and method for manufacturing same, chopped-fiber bundle using same, and fiber-reinforced resin molding material
WO2019151076A1 (en) 2018-02-01 2019-08-08 東レ株式会社 Partially separated fiber bundle, intermediate base material, molding, and method for producing same
KR20200112842A (en) 2018-02-01 2020-10-05 도레이 카부시키가이샤 Partially branched fiber bundles, intermediate substrates, molded articles and their manufacturing method
KR20210066806A (en) 2018-09-28 2021-06-07 도레이 카부시키가이샤 Partially divided fiber bundles and method for producing the same
WO2020066275A1 (en) 2018-09-28 2020-04-02 東レ株式会社 Partially split fiber bundle and production method therefor
US11845629B2 (en) 2018-09-28 2023-12-19 Toray Industries, Inc. Partially separated fiber bundle and method of manufacturing same
CN113474139A (en) * 2019-02-14 2021-10-01 仓敷纺绩株式会社 Fiber-reinforced resin molded article and method for producing carbon fiber sheet used for same
WO2020203390A1 (en) * 2019-03-29 2020-10-08 東レ株式会社 Carbon-fiber-precursor fiber bundle and method for producing same
CN114457463A (en) * 2020-11-10 2022-05-10 中国石油化工股份有限公司 Large-tow carbon fiber pre-oxidation furnace and pre-oxidation method
CN114457463B (en) * 2020-11-10 2024-02-02 中国石油化工股份有限公司 Large-tow carbon fiber preoxidation furnace and preoxidation method

Also Published As

Publication number Publication date
JP4192041B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
JP2004100132A (en) Precursor fiber bundle for carbon fiber, method for producing the same, apparatus for producing the same, and method for producing the carbon fiber from the fiber bundle
JP5362627B2 (en) Carbon fiber precursor fiber bundle, carbon fiber and method for producing the same
JP3722323B2 (en) Carbon fiber, manufacturing method and manufacturing apparatus thereof
US4069565A (en) Process and apparatus for producing textured multifilament yarn
JPH10121325A (en) Precursor fiber bundle for carbon fiber and its production and production of carbon fiber
JP5048988B2 (en) Yarn splicing device and yarn splicing method
TW201704574A (en) Method for manufacturing coalesced strand bundle and method for manufacturing carbon fiber using the resulting coalesced strand bundle continuously and stably obtaining high-quality strands of carbon-fiber precursor having an extremely small number of defects in filament breakage
JP4801621B2 (en) Method for producing carbon fiber precursor tow
JP6776723B2 (en) Carbon fiber precursor acrylic fiber bundle, its manufacturing method and carbon fiber bundle manufacturing method
JPS63303129A (en) Production of twisted yarn and twisting feed bobbin
JP2012188768A (en) Method for manufacturing carbon fiber precursor fiber bundle, and carbon fiber precursor fiber bundle obtained by the same
JP4592208B2 (en) Method for connecting fiber yarn and method for producing carbon fiber
JP4043875B2 (en) Carbon fiber precursor yarn, manufacturing method and manufacturing apparatus thereof
JP2018031091A (en) Production method of carbon fiber bundle
JPH11200159A (en) Production of carbon fiber and device therefor
JP4408324B2 (en) Method for producing carbon fiber precursor fiber bundle and method for producing carbon fiber bundle
JPS6227168B2 (en)
JP2009249086A (en) Guide device, and manufacturing method of carbon fiber using the same
CN117120676A (en) Carbon fiber bundle
JP4385100B2 (en) Ink holder and method for manufacturing the same
JPH0518936B2 (en)
JP2003321160A (en) Fiber tow package, carbon fiber using the package, and manufacturing method for chopped fiber
JPH0429770B2 (en)
JP2006283230A (en) Method for producing polyester staple
JPH08158179A (en) Crimp processing apparatus of forced heated-fluid type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4192041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees