KR102533760B1 - Method for preparing lithiated amorphous silicon oxide, lithiated amorphous silicon oxide prepared thereby, and lithium sulfur battery comprising the same - Google Patents

Method for preparing lithiated amorphous silicon oxide, lithiated amorphous silicon oxide prepared thereby, and lithium sulfur battery comprising the same Download PDF

Info

Publication number
KR102533760B1
KR102533760B1 KR1020150013087A KR20150013087A KR102533760B1 KR 102533760 B1 KR102533760 B1 KR 102533760B1 KR 1020150013087 A KR1020150013087 A KR 1020150013087A KR 20150013087 A KR20150013087 A KR 20150013087A KR 102533760 B1 KR102533760 B1 KR 102533760B1
Authority
KR
South Korea
Prior art keywords
silicon oxide
amorphous silicon
lithium
lithiated
solvent
Prior art date
Application number
KR1020150013087A
Other languages
Korean (ko)
Other versions
KR20150089966A (en
Inventor
선양국
김한수
김영준
Original Assignee
한양대학교 산학협력단
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단, 한국전자기술연구원 filed Critical 한양대학교 산학협력단
Publication of KR20150089966A publication Critical patent/KR20150089966A/en
Application granted granted Critical
Publication of KR102533760B1 publication Critical patent/KR102533760B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬화된 비정질 규소산화물 전극을 제조하는 방법, 이에 의하여 제조된 리튬화된 비정질 규소산화물 전극 및 이를 포함하는 전기화학소자에 관한 것 것이다.The present invention relates to a method for manufacturing a lithiated amorphous silicon oxide electrode, a lithiated amorphous silicon oxide electrode prepared thereby, and an electrochemical device including the same.

Description

리튬화된 비정질 규소산화물 전극의 제조방법, 이에 의하여 제조된 리튬화된 비정질 규소산화물 전극 및 이를 포함하는 리튬황전지{Method for preparing lithiated amorphous silicon oxide, lithiated amorphous silicon oxide prepared thereby, and lithium sulfur battery comprising the same}A method for preparing a lithiated amorphous silicon oxide electrode, a lithiated amorphous silicon oxide electrode prepared thereby, and a lithium sulfur battery comprising the same the same}

본 발명은 리튬화된 비정질 규소산화물 전극의 제조 방법, 이에 의하여 제조된 리튬화된 비정질 규소산화물 전극 및 이를 포함하는 전기화학소자에 관한 것으로서, 더욱 상세하게는 우수한 수명특성 및 고에너지 밀도를 가지는 리튬화된 비정질 규소산화물 전극을 제조하는 방법, 이에 의하여 제조된 리튬화된 비정질 규소산화물 전극 및 이를 포함하는 리튬황전지에 관한 것이다.
The present invention relates to a method for producing a lithiated amorphous silicon oxide electrode, a lithiated amorphous silicon oxide electrode prepared thereby, and an electrochemical device including the same, and more particularly, lithium having excellent lifespan characteristics and high energy density It relates to a method for manufacturing an amorphous silicon oxide electrode, a lithiated amorphous silicon oxide electrode prepared thereby, and a lithium-sulfur battery including the same.

리튬전지는 에너지 밀도가 높고 무게가 가벼운 장점을 갖고 있기 때문에 이차 전지 가운데에서도 가장 주목을 받고 있다. 특히, 리튬이차전지는 휴대폰 및 노트북과 같은 휴대용 전자제품에 많이 이용되고 있다. Lithium batteries are attracting the most attention among secondary batteries because of their high energy density and light weight. In particular, lithium secondary batteries are widely used in portable electronic products such as mobile phones and laptops.

리튬이차전지의 음극 활물질로는 리튬의 삽입 및 탈리가 가능한 인조 흑연, 천연 흑연 및 하드 카본을 포함한 다양한 형태의 탄소계 재료가 적용되어 왔다. 상기 탄소계 재료중 인조 흑연 또는 천연 흑연과 같은 흑연은 리튬 대비 방전 전압이 0.1V로 낮아, 흑연을 음극 활물질로 사용한 전지는 3.6V의 높은 방전 전압을 나타내어, 리튬 전지의 에너지 밀도면에서 이점을 제공하며, 또한 뛰어난 가역성으로 리튬 이차 전지의 장수명을 보장하기 때문에 가장 널리 사용되고 있다. Various types of carbon-based materials, including artificial graphite capable of intercalating and deintercalating lithium, natural graphite, and hard carbon, have been applied as negative electrode active materials for lithium secondary batteries. Among the carbon-based materials, graphite such as artificial graphite or natural graphite has a discharge voltage as low as 0.1V compared to lithium, and a battery using graphite as an anode active material exhibits a high discharge voltage of 3.6V, which is advantageous in terms of energy density of a lithium battery. It is also the most widely used because it guarantees long lifespan of lithium secondary batteries with excellent reversibility.

그러나 흑연을 활물질로 극판을 제조할 경우 극판 밀도가 낮아져 극판의 단위 부피당 에너지 밀도 측면에서 용량이 낮은 문제점이 있다. 또한, 높은 방전 전압에서는 흑연과 유기 전해액과의 부반응이 일어나기 쉬워, 전지의 오동작, 및 과충전 등에 의한 발화 혹은 폭발의 위험성이 있다.However, when the electrode plate is manufactured using graphite as an active material, the density of the electrode plate is lowered, resulting in low capacity in terms of energy density per unit volume of the electrode plate. In addition, at a high discharge voltage, a side reaction between graphite and an organic electrolyte easily occurs, and there is a risk of malfunction of the battery and ignition or explosion due to overcharging.

이러한 문제를 해결하기 위하여, 산화물의 음극 활물질이 최근 개발되고 있다. 고용량을 나타내고 리튬 금속을 대체할 수 있는 물질로서 Si, Sn 등의 금속계 활물질이 제안되었다. 그 중 Si는 4000mAh/g의 이론적 최대용량을 나타낸다. 그러나, 실리콘은 리튬 이차전지의 충방전 반복 시, 리튬이 음극 활물질에 삽입/탈리됨에 따라 팽창 및 수축이 반복되어, 실리콘의 결정 구조가 붕괴되고, 그로 인해 결국 전지의 방전 용량이 저하된다는 문제점이 있었다. 실제, 충전시 리튬이 실리콘에 삽입되면 Li4 .4Si의 합금이 생성되는데, 이는 충전 전의 실리콘 부피의 약 2.7 배로서, 흑연의 부피 팽창율에 비해 약 2.4배 이상 크다. In order to solve this problem, an oxide negative electrode active material has been recently developed. Metal-based active materials such as Si and Sn have been proposed as materials that exhibit high capacity and can replace lithium metal. Among them, Si exhibits a theoretical maximum capacity of 4000 mAh/g. However, silicon expands and contracts repeatedly as lithium is intercalated/deintercalated from the negative electrode active material during repeated charge/discharge cycles of the lithium secondary battery, resulting in collapse of the crystal structure of silicon, which eventually lowers the discharge capacity of the battery. there was. In fact, when lithium is inserted into silicon during charging, an alloy of Li 4 .4 Si is generated, which is about 2.7 times the volume of silicon before charging and about 2.4 times larger than the volume expansion rate of graphite.

이러한 문제점을 극복하기 위해 다양한 방법을 통하여 기계적 열화로 인한 수명 악화를 해결하기 위해 많은 연구가 진행되었다. 그 중 리튬과 반응하는 물질과 반응하지 않는 물질로 이루어진 복합 활물질 구성을 통하여 전형적인 수명 열화 문제를 해결하고자 하는 연구가 있었다.In order to overcome this problem, many studies have been conducted to solve the life deterioration due to mechanical deterioration through various methods. Among them, there has been a study to solve the typical lifespan deterioration problem through the composition of a composite active material composed of a material that reacts with lithium and a material that does not react.

그 중 Si/SiO2의 나노결정립 복합체, 즉 SiO 물질은 기존의 Si계 합금 및 복합체에 비해 우수한 수명 특성을 나타내어 매우 유망한 음극 활물질로 평가되고 있다(Journal of the electrochemical Society, 153 (2) A425-A430 (2006)). 그러나, 상기 나노 결정립 복합체 역시 복합체 내에 포함된 SiO2 등의 실리콘 산화물과 리튬과의 반응으로 인하여 심각한 초기 비가역 문제점이 있다. 또한, 규소 산화물은 리튬과 반응하여 리튬-규소 합금상을 형성할 수 있어 리튬 이온 전지용 음극 소재로 활용 가능하나, 리튬을 포함하지 않기 때문에 리튬 금속을 음극으로 사용하는 리튬-황 전지, 리튬-공기 전지 등에는 활용이 어렵다.Among them, Si/SiO 2 nanocrystalline composites, that is, SiO materials, exhibit excellent lifespan characteristics compared to existing Si-based alloys and composites, and are evaluated as very promising negative electrode active materials (Journal of the electrochemical Society, 153 (2) A425- A430 (2006)). However, the nano-crystalline composite also has a serious initial irreversible problem due to the reaction between lithium and silicon oxide such as SiO 2 included in the composite. In addition, since silicon oxide can react with lithium to form a lithium-silicon alloy phase, it can be used as an anode material for lithium ion batteries, but since it does not contain lithium, lithium-sulfur batteries using lithium metal as a negative electrode, lithium-air It is difficult to use for batteries, etc.

이외 SiOx를 금속과 혼합하여 음극 활물질로 사용하는 방법이 알려져 있다(Journal of the electrochemical Society, 154 (4) A376-A380 2007). 상기 방법은 음극 집전체에 박막의 형태로 실리콘산화물 증착시 Ni, Fe, Ti 등의 금속을 함께 증착시킴으로써 초기 효율을 개선 시킨 것으로, 금속의 산화수 상태가 제로(zero), 즉 금속 상태(metallic state)이다. 이에 따라 증착되는 금속원소의 함량이 25 %이상으로 과량이기 때문에 음극의 무게당 용량 및 부피당 용량을 감소시키는 문제가 있다.
In addition, a method of mixing SiO x with metal and using it as an anode active material is known (Journal of the electrochemical Society, 154 (4) A376-A380 2007). The method improves the initial efficiency by depositing metals such as Ni, Fe, and Ti together when depositing silicon oxide in the form of a thin film on the negative current collector, and the oxidation state of the metal is zero, that is, the metallic state )am. Accordingly, since the content of the deposited metal element is excessive by 25% or more, there is a problem of reducing the capacity per weight and capacity per volume of the negative electrode.

본 발명은 종래 기술의 문제점을 개선하기 위하여 새로운 리튬화된 비정질 규소산화물 전극의 제조방법, 이에 의하여 제조된 리튬화된 비정질 규소산화물 전극 및 이를 포함하는 리튬황전지를 제공하는 것을 목적으로 한다.
An object of the present invention is to provide a new method for manufacturing a lithiated amorphous silicon oxide electrode, a lithiated amorphous silicon oxide electrode manufactured thereby, and a lithium-sulfur battery including the same in order to improve the problems of the prior art.

본 발명은 상기와 같은 과제를 해결하기 위하여 The present invention to solve the above problems

비정질 규소산화물을 준비하는 제 1 단계;A first step of preparing an amorphous silicon oxide;

상기 비정질 규소산화물, 도전재 및 바인더를 용매에 혼합하여 슬러리를 제조하고, 집전체에 도포하는 제 2 단계;a second step of preparing a slurry by mixing the amorphous silicon oxide, a conductive material, and a binder in a solvent, and applying the slurry to a current collector;

상기 비정질 규소산화물을 포함하는 슬러리가 도포된 집전체에 리튬을 적층시키는 제 3 단계; 및a third step of depositing lithium on the current collector coated with the slurry containing the amorphous silicon oxide; and

상기 리튬이 적층된 집전체에 제 1 용액을 첨가하면서 압력을 가하는 제 4 단계;로 구성되는 리튬화된 비정질 규소산화물 전극의 제조 방법을 제공한다.A fourth step of applying pressure while adding a first solution to the lithium-layered current collector; provides a method for manufacturing a lithiated amorphous silicon oxide electrode.

본 명세서에서 사용된 용어 제 1 용액은, 규소산화물 전극을 제조하는 lithiation 단계에서 사용되는 유기용매 또는 이온성 용매에 리튬염이 첨가된 용액을 지칭한다.The term first solution used herein refers to a solution in which a lithium salt is added to an organic solvent or an ionic solvent used in a lithiation step of manufacturing a silicon oxide electrode.

본 발명에 의한 리튬화된 비정질 규소산화물 전극의 제조 방법에 있어서, 상기 비정질 규소산화물은 SiOx(0<x≤2)로 표시되고, 입자의 직경은 200 내지 500 nm 인 것을 특징으로 한다. In the method for producing a lithiated amorphous silicon oxide electrode according to the present invention, the amorphous silicon oxide is represented by SiOx (0 < x ≤ 2), and the diameter of the particle is 200 to 500 nm.

본 발명에 의한 리튬화된 비정질 규소산화물 전극의 제조 방법에 있어서, 상기 리튬은 쉬트(sheet) 형태이고, 두께는 50㎛ 이상인 것을 특징으로 한다. In the method for manufacturing a lithiated amorphous silicon oxide electrode according to the present invention, the lithium is in the form of a sheet and has a thickness of 50 μm or more.

본 발명에 의한 리튬화된 비정질 규소산화물 전극의 제조 방법에 있어서, 상기 제 4 단계에서 리튬에 가하는 압력이 300 ~ 3500 N/㎡ 인 것을 특징으로 한다. In the method for manufacturing a lithiated amorphous silicon oxide electrode according to the present invention, the pressure applied to lithium in the fourth step is 300 to 3500 N/m 2 .

본 발명에 의한 리튬화된 비정질 규소산화물 전극의 제조 방법에 있어서, 상기 제 4 단계의 제 1 용액은 리튬염과 제 1 용매로 구성되는 것을 특징으로 한다. In the method for manufacturing a lithiated amorphous silicon oxide electrode according to the present invention, the first solution of the fourth step is characterized in that it consists of a lithium salt and a first solvent.

본 발명에 의한 리튬화된 비정질 규소산화물 전극의 제조 방법에 있어서, 상기 리튬염은 LiBF4, LiClO4, LiPF6, LiAsF6, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, Li(CF3SO2)3C, 및 LiBPh4 로 이루어진 그룹으로부터 선택되는 하나 이상이고,In the method for manufacturing a lithiated amorphous silicon oxide electrode according to the present invention, the lithium salt is LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , LiCF 3 SO 3 , Li(CF 3 SO 2 ) 2 N, LiC 4 At least one selected from the group consisting of F 9 SO 3 , Li(CF 3 SO 2 ) 3 C, and LiBPh 4 ;

상기 제 1 용매는 유기 용매 또는 이온성 용매로 구성되고,The first solvent is composed of an organic solvent or an ionic solvent,

상기 유기 용매는 1,2-디메톡시에탄 (DME), γ-부티로락톤 (GBL), 테트라하이드로푸란(THF), 1,3-디옥솔란 (DOXL), 디메틸에테르 (DEE), 메틸 프로피오네이트(MP), 설포란(sulfolane, S), 디메틸설폭사이드 (DMSO), 아세토니트릴 (AN), 및 테트라에틸렌글라이콜 디메틸에테르 (TEGDME)로 이루어진 그룹으로부터 선택되는 1종 이상이고,The organic solvent is 1,2-dimethoxyethane (DME), γ-butyrolactone (GBL), tetrahydrofuran (THF), 1,3-dioxolane (DOXL), dimethyl ether (DEE), methyl propio At least one member selected from the group consisting of nate (MP), sulfolane (S), dimethyl sulfoxide (DMSO), acetonitrile (AN), and tetraethylene glycol dimethyl ether (TEGDME),

상기 이온성 용매는 1-에틸-3-메틸이미다졸륨(EMI)-(CF3SO2)2N, 1-부틸-3-메틸이미다졸륨(BMI)-(CF3SO2)2N, 1-헥실-3-메틸이미다졸륨 (HMI)-(CF3SO2)2N, 1-에틸-3-메틸이미다졸륨(EMI)-PF6, 1-부틸-3-메틸이미다졸륨 (BMI)-PF6, 1-헥실-3-메틸이미다졸륨(HMI)-PF6, 1-에틸-3-메틸이미다졸륨(EMI)-BF4, 1-부틸-3-메틸이미다졸륨(BMI)-BF4, 1-헥실-3-메틸이미다졸륨(HMI)-BF4, 1-에틸-3-메틸이미다졸륨(EMI)-CF3SO3, 1-부틸-3-메틸이미다졸륨(BMI)-CF3SO3, 및 1-헥실-3-메틸이미다졸륨(HMI)-CF3SO3 로 이루어진 그룹으로부터 선택되는 하나 이상인 것을 특징으로 한다. The ionic solvent is 1-ethyl-3-methylimidazolium (EMI)-(CF 3 SO 2 ) 2 N, 1-butyl-3-methylimidazolium (BMI)-(CF 3 SO 2 ) 2 N , 1-hexyl-3-methylimidazolium (HMI)-(CF 3 SO 2 ) 2 N, 1-ethyl-3-methylimidazolium (EMI)-PF 6 , 1-butyl-3-methylimida Zolium (BMI)-PF 6 , 1-hexyl-3-methylimidazolium (HMI)-PF 6 , 1-ethyl-3-methylimidazolium (EMI)-BF 4 , 1-butyl-3-methyl Midazolium (BMI)-BF 4 , 1-hexyl-3-methylimidazolium (HMI)-BF 4 , 1-ethyl-3-methylimidazolium (EMI)-CF 3 SO 3 , 1-butyl-3 -Methylimidazolium (BMI)-CF 3 SO 3 , and 1-hexyl-3-methylimidazolium (HMI)-CF 3 SO 3 Characterized in that at least one selected from the group consisting of.

본 발명에 의한 리튬화된 비정질 규소산화물 전극의 제조 방법에 있어서, 상기 유기 용매는 1,2-디메톡시에탄 (DME)과 1,3-디옥솔란 (DOXL)을 포함하는 것을 특징으로 한다. In the method for producing a lithiated amorphous silicon oxide electrode according to the present invention, the organic solvent is characterized in that it includes 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOXL).

본 발명에 의한 리튬화된 비정질 규소산화물 전극의 제조 방법은 상기 리튬이 적층된 집전체에 압력을 가한 이후 상기 적층된 리튬을 제거하는 제 5 단계를 더 포함하는 것을 특징으로 한다. The manufacturing method of the lithiated amorphous silicon oxide electrode according to the present invention is characterized in that it further comprises a fifth step of removing the stacked lithium after applying pressure to the current collector on which the lithium is stacked.

본 발명은 또한, 본 발명에 의한 리튬화된 비정질 규소산화물 전극을 제공한다. The present invention also provides a lithiated amorphous silicon oxide electrode according to the present invention.

본 발명은 또한, 본 발명에 의한 리튬화된 비정질 규소산화물 전극을 포함하는 전기화학소자를 제공한다. The present invention also provides an electrochemical device including the lithiated amorphous silicon oxide electrode according to the present invention.

본 발명에 의한 전기화학소자는 유황 또는 황화합물을 포함하는 리튬황전지인 것을 특징으로 한다. The electrochemical device according to the present invention is characterized in that it is a lithium sulfur battery containing sulfur or a sulfur compound.

본 발명에 의한 전기화학소자는 전해질로 리튬염과 제 2 용매로 구성되는 제 2 용액을 포함하는 것을 특징으로 한다.The electrochemical device according to the present invention is characterized by including a second solution composed of a lithium salt and a second solvent as an electrolyte.

본 명세서에서 사용된 용어 제 2 용액은, 전해질 제조 단계에서 사용되는 유기용매 또는 이온성 용매에 리튬염이 첨가된 용액을 지칭한다.As used herein, the term second solution refers to a solution in which a lithium salt is added to an organic solvent or an ionic solvent used in the electrolyte preparation step.

본 발명에 의한 전기화학소자에 있어서, 상기 제 2 용매는 상기 제 1 용매와 같은 것을 특징으로 한다.
In the electrochemical device according to the present invention, the second solvent is the same as the first solvent.

본 발명에 의한 리튬화된 비정질 규소산화물 전극의 제조 방법은 간단한 방법에 의해 비정질 규소산화물과 리튬을 복합화할 수 있으며, 본 발명의 제조 방법에 의하여 제조된 리튬화된 비정질 규소산화물 전극은 리튬황전지에 사용시 우수한 충방전 특성 및 수명 특성을 나타낸다.
The manufacturing method of the lithiated amorphous silicon oxide electrode according to the present invention can combine amorphous silicon oxide and lithium by a simple method, and the lithiated amorphous silicon oxide electrode manufactured by the manufacturing method of the present invention is a lithium sulfur battery shows excellent charge and discharge characteristics and lifespan characteristics when used in

도 1은 본 발명의 제조예에 의하여 제조된 비정질 규소산화물의 형태를 측정한 결과를 나타낸다.
도 2 내지 도 7은 본 발명의 실시예 및 비교예에 의하여 제조된 규소산화물 전극을 이용한 반전지와 리튬황전지의 충방전 특성 및 수명특성을 측정한 결과를 나타낸다.
1 shows the results of measuring the shape of an amorphous silicon oxide prepared according to a preparation example of the present invention.
2 to 7 show the results of measuring the charge/discharge characteristics and lifespan characteristics of a half cell and a lithium sulfur battery using a silicon oxide electrode manufactured according to Examples and Comparative Examples of the present invention.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by examples. However, the present invention is not limited by the following examples.

<< 제조예manufacturing example > > 비정질amorphous 규소산화물의 제조 Production of silicon oxide

SiO 규소 산화물을 제조하기 위해 먼저 0.1 M HCl 용액에 Triethoxysilane ((C2H5O)3SiH, 99.8 %)를 떨어뜨리며 500~1000 rpm으로 약 10~30분간 교반하였다. 반응후의 용액을 여과하여 걸러진 침전물을 탈염수로 수회 세척하고, 침전물을 80~120 ℃에서 약 10시간 동안 진공건조하여 남아있는 수분을 제거하였다. 건조된 파우더를 전기로에 넣고 4 ~ 10 % H2/Ar 분위기에서 5 ~ 20 ℃/min의 가열 속도로 800 ~ 1,200 ℃로 승온시키고, 상기 온도에서 1 ~ 3 시간 동안 열처리하여 입경이 200 nm인 비정질 규소산화물을 제조하였다.To prepare SiO silicon oxide, Triethoxysilane ((C 2 H 5 O) 3 SiH, 99.8 %) was dropped into a 0.1 M HCl solution and stirred at 500 to 1000 rpm for about 10 to 30 minutes. After the reaction, the solution was filtered, and the precipitate was washed with demineralized water several times, and the precipitate was vacuum-dried at 80-120 ° C. for about 10 hours to remove remaining moisture. The dried powder was put into an electric furnace and heated to 800 ~ 1,200 ℃ at a heating rate of 5 ~ 20 ℃ / min in a 4 ~ 10% H 2 /Ar atmosphere, and heat-treated at the temperature for 1 ~ 3 hours to obtain a particle size of 200 nm. Amorphous silicon oxide was prepared.

이와 같이 제조된 비정질 규소산화물의 FESEM 사진을 측정하고 그 결과를 도 1에 나타내었다. 도 1에서 입자가 비정질이며, 입자의 직경은 200 내지 500 nm 인 것을 확인할 수 있다.
FESEM pictures of the amorphous silicon oxide thus prepared were measured, and the results are shown in FIG. 1 . 1, it can be seen that the particles are amorphous and have a diameter of 200 to 500 nm.

<< 실시예Example 1> 1> 리튬화된lithiated 비정질amorphous 규소산화물 전극의 제조 Manufacture of silicon oxide electrode

상기 제조예에서 제조한 입경이 200nm 인 비정질 규소산화물과 카본 블랙, 바인더로 폴리아크릴산(Polyacrylate acid)를 8:1:1의 무게비로 혼합하여 수용액에 분산시켜 전극 형성용 슬러리를 만든 후, 18 마이크론 두께의 구리 막(Cu foil)에 도포하였다. 도포 후 120°C, 진공하에서 전극 건조를 실시하였으며 만들어진 전극은 반경 16 mm의 원판으로 펀칭하여 사용하였다.After mixing the amorphous silicon oxide having a particle size of 200 nm prepared in the preparation example, carbon black, and polyacrylate acid as a binder in a weight ratio of 8: 1: 1 and dispersing in an aqueous solution to form a slurry for electrode formation, 18 microns It was applied to a thick copper film (Cu foil). After coating, the electrode was dried under vacuum at 120°C, and the prepared electrode was punched into a disc with a radius of 16 mm and used.

전극보다 넓은 넓이의 Li 금속 쉬트에 DME : DOXL 5:5 혼합 용매에 1M LiTFSI 및 0.4 몰 농도의 LiNO3과 용해된 전해액을 도포하고, 제조된 전극을 전극의 활물질이 도포된 면이 접촉하도록 적층한 후에 460 N/m2의 압력을 6시간 동안 가한 후 전극을 리튬 금속 쉬트에서 분리하여 리튬화된 비정질 규소산화물 전극을 제조하였다.
1M LiTFSI and 0.4 mol LiNO 3 dissolved in a mixed solvent of DME:DOXL 5:5 were applied to an electrolyte solution on a Li metal sheet wider than the electrode, and the prepared electrode was laminated so that the active material-coated surface of the electrode came into contact with it. After applying a pressure of 460 N/m 2 for 6 hours, the electrode was separated from the lithium metal sheet to prepare a lithiated amorphous silicon oxide electrode.

<< 실시예Example 2> 2> 반전지half battery 제조 manufacturing

2032 규격의 코인 셀 내부에 상기 실시예 1에서 제조된 전극을 배치한 후 1몰 농도의 LiTFSI 염을 용해한 DME/DOXL 혼합 용매를 전해질로 사용하고, 0.4 몰 농도의 LiNO3과 0.05 몰 농도의 Li2S8을 전해질에 첨가하고, 리튬 금속을 상대 전극으로 사용하여 반전지를 제조하였다. 리튬화된비정질 규소산화물 전극을 이용한 반전지의 충방전 시험은 0.005 내지 1.5V 전압 범위로 하여 방전 용량에 따른 용량 유지 특성을 평가하였다. 이때, 전류밀도는 200 mA g- 1 로 하였다.
After placing the electrode prepared in Example 1 inside a 2032 standard coin cell, a DME/DOXL mixed solvent in which 1 mol of LiTFSI salt was dissolved was used as an electrolyte, 0.4 mol of LiNO 3 and 0.05 mol of Li 2 S 8 was added to the electrolyte, and a half cell was fabricated using lithium metal as a counter electrode. In the charge/discharge test of the half cell using the lithiated amorphous silicon oxide electrode, the capacity retention characteristics according to the discharge capacity were evaluated in the voltage range of 0.005 to 1.5V. At this time, the current density was 200 mA g -1 .

<< 실험예Experimental example > 전지의 > battery 충방전charge and discharge 특성 측정 characteristic measurement

상기 실시예 2에서 제조한 반전지에 대해 충방전 특성을 평가하고 이를 도 2The charge and discharge characteristics of the half-cell prepared in Example 2 were evaluated, and FIG. 2

에 나타내었다.
shown in

<< 실험예Experimental example > 전지의 수명 특성 측정> Measurement of battery life characteristics

상기 실시예 2에서 제조한 반전지에 대해 수명 특성을 측정하고 이를 도 3에 나타내었다.
Life characteristics of the half-cell prepared in Example 2 were measured and shown in FIG. 3 .

<< 실시예Example 3> 3> 리튬황전지lithium sulfur battery 제조 manufacturing

상기 실시예 1에서 제조된 음극과 유황 전극을 양극으로 사용하여 리튬황전지를 제조하였다. A lithium-sulfur battery was manufactured using the negative electrode and the sulfur electrode prepared in Example 1 as a positive electrode.

유황 전극 내 탄소-유황 복합체, 카본 블랙, 바인더(폴리에틸렌 옥사이드)의 무게비는 6:2:2이며, 바인더를 용매에 녹여 카본 블랙과 탄소-유황 복합체를 넣고 분산하여 gas diffusion layer(GDL) 위에 피복 후 진공 건조하여 전극을 사용하였다. 리튬황전지 시험에 사용된 전해액은 실시예 2와 같다. 충방전 시험은 0.8-2.8V 전압 범위로 하여 방전 용량에 따른 용량 유지 특성을 평가하였다. 이때, 첫번째 사이클은은 0.1 C, 두번째 사이클은 0.2 C, 세번째 사이클은 0.5C, 이후 사이클은 1 C로 진행하였으며, 1 C의 전류밀도는 황의 무게 대비 1,675 mA g-1이다.
The weight ratio of the carbon-sulfur complex, carbon black, and binder (polyethylene oxide) in the sulfur electrode is 6:2:2. The binder is dissolved in a solvent, and carbon black and carbon-sulfur complex are dispersed and coated on the gas diffusion layer (GDL). After vacuum drying, the electrode was used. The electrolyte solution used in the lithium-sulfur battery test was the same as in Example 2. The charge/discharge test was performed in the voltage range of 0.8-2.8V to evaluate capacity retention characteristics according to discharge capacity. At this time, the first cycle was 0.1 C, the second cycle was 0.2 C, the third cycle was 0.5 C, and the subsequent cycles proceeded at 1 C, and the current density of 1 C was 1,675 mA g -1 relative to the weight of sulfur.

< < 실험예Experimental example > 전지 평가> Battery evaluation

상기 실시예 3에서 제조한 리튬황전지의 첫 번째, 두 번째, 세 번째 사이클의 충방전 특성을 평가하고, 그 결과를 도 4에 나타내었다.
The charge and discharge characteristics of the first, second, and third cycles of the lithium-sulfur battery prepared in Example 3 were evaluated, and the results are shown in FIG. 4 .

<< 실험예Experimental example > 전지의 수명 특성 측정> Measurement of battery life characteristics

상기 실시예 3에서 제조한 리튬황전지에 대해 수명 특성을 측정하고 이를 도 5에 나타내었다.
Life characteristics of the lithium-sulfur battery prepared in Example 3 were measured and are shown in FIG. 5 .

<< 비교예comparative example > > 카보네이트계carbonate type 전해질을 이용한 using electrolytes 리튬화된lithiated 비정질amorphous 규소산화물 전극의 제조 Manufacture of silicon oxide electrode

상기 실시예 1에서 전해액을 Li 금속 쉬트에 전해액을 도포하는 과정에서 EC(ethylene carbonate):EMC(ethylmethyl carbonate)를 3:7로 혼합한 용매에 LiPF6가 용해된 전해액을 도포한 것을 제외하고 동일한 방법으로 리튬화된 비정질 규소산화물을 제조하고, 상기 실시예 2와 같이 하여 리튬황전지를 제조하였다.
In the process of applying the electrolyte to the Li metal sheet in Example 1, the electrolyte solution in which LiPF 6 was dissolved in a solvent in which EC (ethylene carbonate): EMC (ethylmethyl carbonate) was mixed in a ratio of 3: 7 was applied, except that the electrolyte solution was applied. A lithiated amorphous silicon oxide was prepared by the method, and a lithium sulfur battery was manufactured in the same manner as in Example 2.

<< 실험예Experimental example > 전지 평가> Battery evaluation

상기 비교예에서 제조한 반전이데 대한 충방전특성을 평가하고, 그 결과를 도 6에 나타내었다.
The charge and discharge characteristics of the inverted electrode prepared in the comparative example were evaluated, and the results are shown in FIG. 6 .

<< 실험예Experimental example > 전지의 수명 특성 측정> Measurement of battery life characteristics

상기 비교예에서 제조한 반전지에 대해 수명 특성을 측정하고 이를 도 7에 나타내었다. 도 7에서 비교예의 반전지의 경우 수명 특성 및 충방전 특성이 실시예의 리튬황전지에 비해 성능이 나쁘다는 것을 확인할 수 있다.
Life characteristics of the half-cell prepared in the comparative example were measured and shown in FIG. 7 . In FIG. 7 , it can be seen that the lifespan characteristics and charge/discharge characteristics of the half cell of Comparative Example are inferior to those of the lithium-sulfur battery of Example.

Claims (12)

비정질 규소산화물을 준비하는 제 1 단계;
상기 비정질 규소산화물, 도전재 및 바인더를 용매에 혼합하여 슬러리를 제조하고, 집전체에 도포하는 제 2 단계;
상기 비정질 규소산화물을 포함하는 슬러리가 도포된 집전체에 리튬금속을 적층시키는 제 3 단계;
상기 리튬금속이 적층된 집전체에 리튬염과 제 1 용매를 함유하는 제 1 용액을 첨가하면서 압력을 가하는 제 4 단계; 및
상기 4 단계 후, 상기 리튬 금속을 제거하는 제 5 단계를 포함하되,
상기 제1 용매는 1,2-디메톡시에탄 (DME)과 1,3-디옥솔란 (DOXL)을 포함하고,
상기 리튬염은 Li(CF3SO2)2N이고, 상기 제1 용액은 LiNO3를 더 포함하는 리튬화된 비정질 규소산화물 전극의 제조 방법.
A first step of preparing an amorphous silicon oxide;
a second step of preparing a slurry by mixing the amorphous silicon oxide, a conductive material, and a binder in a solvent, and applying the slurry to a current collector;
a third step of laminating lithium metal on the current collector coated with the slurry containing the amorphous silicon oxide;
a fourth step of applying pressure while adding a first solution containing a lithium salt and a first solvent to the current collector in which the lithium metal is stacked; and
After the fourth step, a fifth step of removing the lithium metal,
The first solvent includes 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOXL),
The lithium salt is Li(CF 3 SO 2 ) 2 N, and the first solution further comprises LiNO 3 Method of manufacturing a lithiated amorphous silicon oxide electrode.
제 1 항에 있어서,
상기 비정질 규소산화물은 SiOx(0<x≤2)로 표시되고,
입자의 직경은 200 내지 500 nm 인 것을 특징으로 하는 리튬화된 비정질 규소산화물 전극의 제조 방법.
According to claim 1,
The amorphous silicon oxide is represented by SiO x (0 < x ≤ 2),
Method for producing a lithiated amorphous silicon oxide electrode, characterized in that the particle diameter is 200 to 500 nm.
제 1 항에 있어서,
상기 리튬금속은 쉬트(sheet) 형태이고, 두께는 50㎛ 이상인 것을 특징으로 하는 리튬화된 비정질 규소산화물 전극의 제조 방법.
According to claim 1,
The method of manufacturing a lithiated amorphous silicon oxide electrode, characterized in that the lithium metal is in the form of a sheet and has a thickness of 50 μm or more.
제 1 항에 있어서,
상기 제 4 단계에서 리튬금속에 가하는 압력이 300 내지 3500 N/㎡ 인 것을 특징으로 하는 리튬화된 비정질 규소산화물 전극의 제조 방법.
According to claim 1,
Method for producing a lithiated amorphous silicon oxide electrode, characterized in that the pressure applied to the lithium metal in the fourth step is 300 to 3500 N / m 2.
삭제delete 삭제delete 삭제delete 삭제delete 제 1 항 내지 제 4 항 중 어느 한 항의 제조 방법에 의해 제조된 리튬화된 비정질 규소산화물 전극.
A lithiated amorphous silicon oxide electrode manufactured by the method of any one of claims 1 to 4.
제 9 항의 리튬화된 비정질 규소산화물 전극을 포함하는 리튬황전지.
A lithium sulfur battery comprising the lithiated amorphous silicon oxide electrode of claim 9.
제 10 항에 있어서,
상기 전지는 전해질로 리튬염과 제 2 용매를 함유하는 제 2 용액을 포함하는 것인 리튬황전지.
According to claim 10,
The lithium-sulfur battery comprising a second solution containing a lithium salt and a second solvent as an electrolyte.
제 11 항에 있어서,
상기 제 2 용매는 상기 제 1 용매와 동일한 것인 리튬황전지.
According to claim 11,
The second solvent is the same as the first solvent lithium-sulfur battery.
KR1020150013087A 2014-01-27 2015-01-27 Method for preparing lithiated amorphous silicon oxide, lithiated amorphous silicon oxide prepared thereby, and lithium sulfur battery comprising the same KR102533760B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140009446 2014-01-27
KR20140009446 2014-01-27

Publications (2)

Publication Number Publication Date
KR20150089966A KR20150089966A (en) 2015-08-05
KR102533760B1 true KR102533760B1 (en) 2023-05-17

Family

ID=53886258

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150013087A KR102533760B1 (en) 2014-01-27 2015-01-27 Method for preparing lithiated amorphous silicon oxide, lithiated amorphous silicon oxide prepared thereby, and lithium sulfur battery comprising the same

Country Status (1)

Country Link
KR (1) KR102533760B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101925499B1 (en) * 2016-01-14 2019-02-27 한양대학교 산학협력단 Nano Sheet Containing Amorphous SiOx, Manufacturing Method Thereof and Secondary Battery Using the Same
CN108123101B (en) * 2016-11-29 2020-09-04 中国科学院大连化学物理研究所 Lithium-sulfur battery adopting pre-lithiated carbon material as negative electrode and preparation method thereof
KR102268077B1 (en) * 2017-07-12 2021-06-23 주식회사 엘지에너지솔루션 Lithium secondary battery and preparing method thereof
KR102261504B1 (en) 2017-08-10 2021-06-07 주식회사 엘지에너지솔루션 Pre-lithiation Method of Anode Electrodes for secondary battery
KR102509113B1 (en) * 2018-03-20 2023-03-09 주식회사 엘지에너지솔루션 Method for Preparing Anode and Anode Prepared Therefrom
EP4099438A4 (en) * 2020-02-17 2023-09-13 LG Energy Solution, Ltd. Method for pre-lithiation of negative electrode, pre-lithiated negative electrode, and lithium secondary battery comprising same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109423A (en) * 2005-10-11 2007-04-26 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery, and its anode
KR101201807B1 (en) 2011-08-31 2012-11-15 삼성에스디아이 주식회사 Lithium secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3608904B2 (en) * 1997-04-17 2005-01-12 日立マクセル株式会社 Method for manufacturing electrode of lithium secondary battery
US9985326B2 (en) * 2011-02-11 2018-05-29 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Method for manufacturing a lithiated metal-carbon composite electrode, lithiated metal-carbon composite electrode manufactured thereby, and electrochemical device including the electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109423A (en) * 2005-10-11 2007-04-26 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolyte secondary battery, and its anode
KR101201807B1 (en) 2011-08-31 2012-11-15 삼성에스디아이 주식회사 Lithium secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ACS NANO

Also Published As

Publication number Publication date
KR20150089966A (en) 2015-08-05

Similar Documents

Publication Publication Date Title
KR101397415B1 (en) Lithiated metal carbon composite, method for preparing the same, and electrochemical device comprising the same
CN108780884B (en) Prelithiated electrode materials and batteries using same
JP7111468B2 (en) Prelithiation of electrode materials in semi-solid electrodes
CN109390622B (en) Lithium solid-state battery
TWI654787B (en) All-solid battery and manufacturing method of electrode active material
KR102533760B1 (en) Method for preparing lithiated amorphous silicon oxide, lithiated amorphous silicon oxide prepared thereby, and lithium sulfur battery comprising the same
KR101329905B1 (en) Separator for non-aqueous secondary battery and method for manufacturing the same, and non-aqueous electrolyte secondary battery
KR101023354B1 (en) Lithium titanate with increased electronic conductivity
WO2015125800A1 (en) Solid electrolyte composition, production method for same, electrode sheet for battery using same, and all-solid secondary cell
KR101972621B1 (en) Active material for batteries
JP6524610B2 (en) Positive electrode active material for non-aqueous secondary battery and method for producing the same
JP7269571B2 (en) Method for manufacturing all-solid-state battery
JP5714283B2 (en) Pre-doped electrode manufacturing method and power storage device
KR101166281B1 (en) Surface-coated lithium titanate powder, electrode, and secondary battery comprising the same
KR20080023831A (en) Lithium titanate powder, preparation method thereof, electrode and secondary battery comprising the same
JP2017152294A (en) Positive electrode active material and lithium ion secondary battery
CN103137965A (en) Multi-metal sulfide composite negative electrode material, preparation method and uses thereof
KR20170024862A (en) Organic-inorganic composite solid battery
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
KR102297945B1 (en) Vinyl sulfone compound, electrolyte for lithium ion battery and lithium ion battery
KR101278832B1 (en) Surface-coated lithium titanate powder, electrode, and secondary battery comprising the same
CN111247673A (en) Composition for forming active material layer, method for producing same, electrode sheet for all-solid-state secondary battery, and method for producing all-solid-state secondary battery
TW201932419A (en) Manganese phosphate coated lithium nickel oxide materials
JP2016076332A (en) Stabilized lithium powder and lithium ion secondary battery using the same
JP2018133284A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X701 Decision to grant (after re-examination)