JP5117033B2 - Silicone adhesive composition for optical semiconductor and optical semiconductor device using the same - Google Patents

Silicone adhesive composition for optical semiconductor and optical semiconductor device using the same Download PDF

Info

Publication number
JP5117033B2
JP5117033B2 JP2006302659A JP2006302659A JP5117033B2 JP 5117033 B2 JP5117033 B2 JP 5117033B2 JP 2006302659 A JP2006302659 A JP 2006302659A JP 2006302659 A JP2006302659 A JP 2006302659A JP 5117033 B2 JP5117033 B2 JP 5117033B2
Authority
JP
Japan
Prior art keywords
group
silicone adhesive
weight
adhesive composition
optical semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006302659A
Other languages
Japanese (ja)
Other versions
JP2008120844A (en
Inventor
信男 平井
ジョージ チイー ユー ロー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials Japan LLC
Original Assignee
Momentive Performance Materials Japan LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Momentive Performance Materials Japan LLC filed Critical Momentive Performance Materials Japan LLC
Priority to JP2006302659A priority Critical patent/JP5117033B2/en
Publication of JP2008120844A publication Critical patent/JP2008120844A/en
Application granted granted Critical
Publication of JP5117033B2 publication Critical patent/JP5117033B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Led Device Packages (AREA)

Description

本発明は、例えば発光ダイオード等の光半導体素子の接着剤として好適な光半導体用シリコーン接着剤組成物及びそれを用いた光半導体装置に関する。   The present invention relates to a silicone adhesive composition for optical semiconductors suitable as an adhesive for optical semiconductor elements such as light emitting diodes, and an optical semiconductor device using the same.

従来から、発光ダイオード等の光半導体素子用の接着剤、封止剤として、反射率の良好な白色の樹脂材料が使用されている。特に、充填剤として酸化チタンを配合したエポキシ樹脂ベースの組成物が汎用されている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, white resin materials having good reflectance have been used as adhesives and sealants for optical semiconductor elements such as light emitting diodes. In particular, an epoxy resin-based composition containing titanium oxide as a filler is widely used (see, for example, Patent Document 1).

しかし、従来のエポキシ樹脂ベースの接着剤や封止剤では、近年の発光ダイオード等の高輝度化にともなう発熱量の増大や光の短波長化によって、クラッキングや黄変が生じやすく、輝度低下の原因となっていた。   However, conventional epoxy resin-based adhesives and sealants are prone to cracking and yellowing due to an increase in the amount of heat generated due to the recent increase in brightness of light-emitting diodes and the like, and the shortening of the wavelength of light. It was the cause.

そこで、耐熱性や耐紫外線特性に優れた点から、シリコーン組成物が使用されている。特に、ヒドロシリル化反応を利用した付加反応硬化型のシリコーン組成物は、加熱することにより短時間で硬化するため、生産性が良い。   Therefore, silicone compositions are used from the viewpoint of excellent heat resistance and ultraviolet resistance. In particular, an addition reaction curable silicone composition utilizing a hydrosilylation reaction is cured in a short time by heating, and thus has high productivity.

しかしながら、近年、さらなる高反射率が要求されており、配合する酸化チタンの種類を特定するなどの様々な検討がなされているが、上記要求に十分応えられるものではない。
特開2000−169557号公報
However, in recent years, higher reflectivity has been demanded, and various studies have been made such as specifying the type of titanium oxide to be blended. However, the above demands cannot be sufficiently met.
JP 2000-169557 A

本発明の目的は、このような課題に対処するためになされたもので、反射性に優れた硬化物を与える光半導体用シリコーン接着剤組成物及びそれを用いた高信頼性の光半導体装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to cope with such problems, and is to provide a silicone adhesive composition for optical semiconductors that provides a cured product having excellent reflectivity, and a highly reliable optical semiconductor device using the same. It is to provide.

本発明者らは、上記目的を達成するために鋭意検討した結果、(E)酸化チタンを(A)ベースポリマーに対して特定量配合することで、反射性に優れた硬化物を与える光半導体用シリコーン接着剤組成物およびそれを用いた光半導体装置が得られることを見出し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventors have obtained an optical semiconductor that provides a cured product with excellent reflectivity by blending a specific amount of (E) titanium oxide with respect to (A) the base polymer. The present inventors have found that a silicone adhesive composition for use and an optical semiconductor device using the same can be obtained.

すなわち、本発明の光半導体用シリコーン接着剤組成物は、
(A)1分子中に2個以上のケイ素原子に結合したアルケニル基を有し、前記アルケニル基含有量が30〜600mmol/100gであるポリオルガノシロキサン 100重量部、
(B)1分子中に3個以上のSiH基を含有するポリオルガノハイドロジェンシロキサン (A)成分のケイ素原子結合アルケニル基1個に対して、SiH基が1.0〜5.0個となる量、
(C)白金系触媒 触媒量、
(D)接着性付与剤 0.3〜20重量部、及び
(E)平均粒径が0.1〜0.5μmの酸化チタン 60〜150重量部を含有し、前記(D)接着性付与剤は、ケイ素原子に結合したアルコキシ基及び/又はアルケニルオキシ基を有し、かつ、Si−H基、アルケニル基、アクリル基、メタクリル基、エポキシ基、メルカプト基、エステル基、無水カルボキシ基、アミノ基及びアミド基から選ばれる少なくとも1個の反応性官能基を有する、オルガノアルコキシシラン又はケイ素原子数2〜50のオルガノアルコキシシロキサンオリゴマーのうち異なる2種以上を含有することを特徴とする。
That is, the silicone adhesive composition for optical semiconductors of the present invention is
(A) 100 parts by weight of a polyorganosiloxane having an alkenyl group bonded to two or more silicon atoms in one molecule, and the alkenyl group content is 30 to 600 mmol / 100 g,
(B) Polyorganohydrogensiloxane containing 3 or more SiH groups in one molecule (A) One silicon atom-bonded alkenyl group of component (A) is 1.0 to 5.0 SiH groups. amount,
(C) platinum catalyst catalyst amount,
(D) adhesion promoter 0.3 to 20 parts by weight, and (E) an average particle diameter containing titanium oxide 60 to 150 parts by weight of 0.1 to 0.5 [mu] m, the (D) tackifier Has an alkoxy group and / or alkenyloxy group bonded to a silicon atom, and is a Si-H group, alkenyl group, acrylic group, methacryl group, epoxy group, mercapto group, ester group, anhydrous carboxy group, amino group And at least one reactive functional group selected from amide groups, and containing two or more different types of organoalkoxysilanes or organoalkoxysiloxane oligomers having 2 to 50 silicon atoms .

また、本発明の光半導体装置は、上記光半導体用シリコーン接着剤組成物を硬化してなる光半導体用シリコーン接着剤により、光半導体素子と支持部材とが接合されてなる。   The optical semiconductor device of the present invention is formed by bonding an optical semiconductor element and a support member with a silicone adhesive for optical semiconductors obtained by curing the silicone adhesive composition for optical semiconductors.

上記構成により、反射性に優れた硬化物を与える光半導体用シリコーン接着剤組成物及びそれを用いた高信頼性の光半導体装置を提供することができる。   By the said structure, the silicone adhesive composition for optical semiconductors which gives the hardened | cured material excellent in reflectivity, and the highly reliable optical semiconductor device using the same can be provided.

以下、本発明の光半導体用シリコーン接着剤組成物について詳細に説明する。   Hereinafter, the silicone adhesive composition for optical semiconductors of the present invention will be described in detail.

[(A)成分]
(A)成分はベースポリマーであり、得られた組成物を十分に硬化させる上で、1分子中に2個以上のケイ素原子に結合したアルケニル基を有する。
[(A) component]
The component (A) is a base polymer, and has an alkenyl group bonded to two or more silicon atoms in one molecule for sufficiently curing the obtained composition.

ケイ素原子に結合したアルケニル基としては、例えばビニル基、アリル基、ブテニル基、ペテニル基、ヘキセニル基等が挙げられ、好ましくはビニル基である。ケイ素原子結合アルケニル基(SiVi基)の含有量は、所望のダイシェア強度、接合強度を得る点から、(A)成分100g中のモル数が30〜600mmol、好ましくは40〜300mmolである。なお、SiVi基含有量は、(SiVi基の平均個数)/(理論平均分子構造の分子量)×1000で算出することによって求めることができる。ケイ素原子結合アルケニル基は、分子鎖末端のケイ素原子に結合していても、分子鎖途中のケイ素原子に結合していても、両者に結合していてもよいが、得られる組成物の硬化速度、硬化物の物性、特に接合強度の点から、少なくとも分子鎖末端のケイ素原子、特に分子鎖両末端のケイ素原子に結合していることが好ましい。   Examples of the alkenyl group bonded to the silicon atom include a vinyl group, an allyl group, a butenyl group, a petenyl group, and a hexenyl group, and a vinyl group is preferable. The content of the silicon atom-bonded alkenyl group (SiVi group) is such that the number of moles in 100 g of component (A) is 30 to 600 mmol, preferably 40 to 300 mmol, from the viewpoint of obtaining desired die shear strength and bonding strength. In addition, SiVi group content can be calculated | required by calculating by (average number of SiVi groups) / (molecular weight of a theoretical average molecular structure) x1000. The silicon-bonded alkenyl group may be bonded to the silicon atom at the end of the molecular chain, may be bonded to the silicon atom in the middle of the molecular chain, or may be bonded to both, but the curing rate of the resulting composition From the viewpoint of physical properties of the cured product, particularly bonding strength, it is preferably bonded to at least silicon atoms at the molecular chain terminals, particularly silicon atoms at both molecular chain terminals.

アルケニル基以外のケイ素原子に結合した有機基としては、例えばメチル基、エチル基、プロピル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、フェニル基、トリル基、キシリル基等のアリール基あるいはこれらの水素原子が部分的に塩素原子、フッ素原子などで置換されたハロゲン化炭化水素基等の炭素原子数1〜12個、好ましくは炭素原子数1〜8個程度のものが挙げられ、合成の容易さから、好ましくはアルキル基、アリール基であり、より好ましくはメチル基、フェニル基である。   Examples of the organic group bonded to the silicon atom other than the alkenyl group include an alkyl group such as a methyl group, an ethyl group, and a propyl group, a cycloalkyl group such as a cyclopentyl group and a cyclohexyl group, and an aryl group such as a phenyl group, a tolyl group, and a xylyl group. Or a group having 1 to 12 carbon atoms, preferably about 1 to 8 carbon atoms, such as a halogenated hydrocarbon group in which the hydrogen atom is partially substituted with a chlorine atom, a fluorine atom or the like. From the viewpoint of ease of synthesis, an alkyl group and an aryl group are preferable, and a methyl group and a phenyl group are more preferable.

(A)成分の23℃における粘度は、0.1〜500Pa・s、好ましくは0.2〜300Pa・sである。0.1Pa・s未満であると、硬化後、良好な物性が得られず、脆くなり易い。一方、500Pa・sを超えると、得られた組成物の流動性が低下して作業性が悪化し易い。   The viscosity of the component (A) at 23 ° C. is 0.1 to 500 Pa · s, preferably 0.2 to 300 Pa · s. If it is less than 0.1 Pa · s, good physical properties cannot be obtained after curing, and it tends to be brittle. On the other hand, when it exceeds 500 Pa · s, the fluidity of the obtained composition is lowered and workability is liable to deteriorate.

(A)成分の分子構造は、例えば直鎖状、分岐状、三次元網目状などが挙げられ、1種単独又は2種以上を混合して用いることができる。例えば(A)成分が固体の場合には、直鎖状のアルケニル基含有ポリオルガノシロキサンで希釈し、23℃における粘度を上記範囲(0.1〜500Pa・s)に調整して用いてもよい。   Examples of the molecular structure of the component (A) include linear, branched, and three-dimensional network, and these can be used alone or in combination of two or more. For example, when the component (A) is a solid, it may be diluted with a linear alkenyl group-containing polyorganosiloxane and the viscosity at 23 ° C. adjusted to the above range (0.1 to 500 Pa · s). .

[(B)成分]
(B)成分は架橋剤であり、1分子中に3個以上のケイ素原子に結合した水素原子(SiH基)を有している。SiH基は、分子鎖末端のケイ素原子に結合していても、分子鎖途中のケイ素原子に結合していても、両者に結合していてもよい。その分子構造は、直鎖状、分岐鎖状、環状あるいは三次元網目状構造のいずれでもよい。
[Component (B)]
The component (B) is a cross-linking agent, and has hydrogen atoms (SiH groups) bonded to three or more silicon atoms in one molecule. The SiH group may be bonded to the silicon atom at the end of the molecular chain, may be bonded to the silicon atom in the middle of the molecular chain, or may be bonded to both. The molecular structure may be any of linear, branched, cyclic or three-dimensional network structure.

(B)成分としては、平均組成式:
SiO[4−(a+b)]/2
で示されるものが用いられる。
上記式中、Rは、脂肪族不飽和炭化水素基を除く、置換または非置換の1価炭化水素基である。Rとしては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ヘキシル基、シクロヘキシル基、オクチル基等のアルキル基;フェニル基、トリル基等のアリール基;ベンジル基、フェニルエチル基等のアラルキル基;およびこれらの基の水素原子の一部または全部がフッ素、塩素、臭素等のハロゲン原子やシアノ基で置換されているもの、例えばクロロメチル基、ブロモエチル基、トリフルオロプロピル基、シアノエチル基等が挙げられ、なかでも、合成のし易さ、コストの点から、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基等の炭素原子数1〜4のアルキル基が好ましく、メチル基がより好ましい。
As the component (B), an average composition formula:
R 1 a H b SiO [4- (a + b)] / 2
What is shown by is used.
In the above formula, R 1 is a substituted or unsubstituted monovalent hydrocarbon group excluding an aliphatic unsaturated hydrocarbon group. Examples of R 1 include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, hexyl, cyclohexyl, and octyl; aryl such as phenyl and tolyl An aralkyl group such as a benzyl group or a phenylethyl group; and a group in which some or all of the hydrogen atoms are substituted with a halogen atom such as fluorine, chlorine or bromine or a cyano group, such as a chloromethyl group, Examples include bromoethyl group, trifluoropropyl group, cyanoethyl group, etc. Among them, carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, etc. from the viewpoint of ease of synthesis and cost. An alkyl group having 1 to 4 is preferable, and a methyl group is more preferable.

また、a、bはそれぞれ正数であり、0.5≦a≦2、0<b≦2、0.5<a+b≦3を満足する数であり、好ましくは0.6≦a≦1.9、0.01≦b≦1.0、0.6≦a+b≦2.8を満足する数である。   Moreover, a and b are positive numbers, respectively, and satisfy 0.5 ≦ a ≦ 2, 0 <b ≦ 2, 0.5 <a + b ≦ 3, and preferably 0.6 ≦ a ≦ 1. 9, 0.01 ≦ b ≦ 1.0 and 0.6 ≦ a + b ≦ 2.8.

(B)成分の23℃における粘度は、0.01〜0.5Pa・sであることが好ましい。   The viscosity of component (B) at 23 ° C. is preferably 0.01 to 0.5 Pa · s.

(B)成分の配合量は、(A)成分のケイ素原子結合アルケニル基1個に対して、SiH基の合計個数が1.0〜5.0個、好ましくは1.5〜4.0となる量である。1.0個未満であると、得られた組成物が十分に硬化し難くなり、硬化後、所望の反射率やダイシェア強度が得られ難くなる。一方、5.0個を越えると、硬化後の物性が経時で変化し易くなる。   The blending amount of the component (B) is 1.0 to 5.0, preferably 1.5 to 4.0, based on one silicon-bonded alkenyl group of the component (A). Is the amount. When the number is less than 1.0, the obtained composition is hardly cured, and it is difficult to obtain desired reflectance and die shear strength after curing. On the other hand, if it exceeds 5.0, the physical properties after curing tend to change with time.

[(C)成分]
(C)成分は、本組成物の硬化を促進させる成分である。
[Component (C)]
(C) component is a component which accelerates | stimulates hardening of this composition.

(C)成分としては、ヒドロシリル化反応に用いられる触媒として周知の触媒を用いることができ、例えば白金黒、塩化第2白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸とオレフィン類やビニルシロキサンとの錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒などの白金族金属触媒が挙げられる。   As the component (C), a known catalyst can be used as a catalyst used in the hydrosilylation reaction. For example, platinum black, platinum secondary chloride, chloroplatinic acid, a reaction product of chloroplatinic acid and a monohydric alcohol, chloride Platinum group metal catalysts such as complexes of platinum acid with olefins and vinyl siloxane, platinum-based catalysts such as platinum bisacetoacetate, palladium-based catalysts, rhodium-based catalysts, and the like can be mentioned.

(C)成分の配合量は、硬化に必要な量であればよく、所望の硬化速度などに応じて適宜調整することができる。通常、(A)成分100重量部に対し白金元素に換算して0.1〜1000ppm、好ましくは1〜200ppmの範囲である。   The blending amount of the component (C) may be an amount necessary for curing, and can be appropriately adjusted according to a desired curing rate. Usually, it is 0.1 to 1000 ppm, preferably 1 to 200 ppm in terms of platinum element with respect to 100 parts by weight of component (A).

[(D)成分]
(D)成分は、本組成物に接着性を付与する成分であり、公知のものが使用でき、本組成物の付加加硫を阻害しないものであればよい。
(D)成分は、オルガノシラン、またはケイ素原子数2〜50個、好ましくは4〜20個のオルガノシロキサンオリゴマー等の有機ケイ素化合物である。このような有機ケイ素化合物は、ケイ素原子に結合したアルコキシ基及び/又はアルケニルオキシ基を有し、かつ、Si−H基、アルケニル基、アクリル基、メタクリル基、エポキシ基、メルカプト基、エステル基、無水カルボキシ基、アミノ基及びアミド基から選ばれる少なくとも1個の反応性官能基を有することが好ましい。これらは1種単独または2種以上を併用してもよい。
[(D) component]
(D) A component is a component which provides adhesiveness to this composition, A well-known thing can be used and should just not inhibit the addition vulcanization | cure of this composition.
Component (D) is an organosilicon compound such as organosilane or an organosiloxane oligomer having 2 to 50, preferably 4 to 20, silicon atoms. Such an organosilicon compound has an alkoxy group and / or an alkenyloxy group bonded to a silicon atom, and has a Si-H group, an alkenyl group, an acrylic group, a methacryl group, an epoxy group, a mercapto group, an ester group, It preferably has at least one reactive functional group selected from an anhydrous carboxy group, an amino group, and an amide group. These may be used alone or in combination of two or more.

(D)成分としては、例えば、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ官能性基含有アルコキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリ(メトキシエトキシ)シラン等のアルケニル基含有アルコキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノ基含有アルコキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルトリメトキシシラン等のアクリル基又はメタクリル基含有アルコキシシラン、メルカプトプロピルトリメトキシシラン等のメルカプト基含有アルコキシシランなどのアルコキシシランが挙げられる。また、オルガノシロキサンオリゴマーとしては、下記のような化合物が挙げられる。

Figure 0005117033
Figure 0005117033
Figure 0005117033
Examples of the component (D) include alkoxy-functional group-containing alkoxysilanes such as γ-glycidoxypropyltrimethoxysilane and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinyltrimethoxysilane, and vinyltrimethoxysilane. Alkenyl group-containing alkoxysilanes such as ethoxysilane and vinyltri (methoxyethoxy) silane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) -γ-aminopropyltrimethoxysilane, N -Β (aminoethyl) -γ-aminopropylmethyldimethoxysilane, amino group-containing alkoxysilanes such as N-phenyl-γ-aminopropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-acryloxypropyltrimethoxy Shi Examples include alkoxy silanes such as acrylic or methacrylic group-containing alkoxysilanes such as orchid and mercapto group-containing alkoxysilanes such as mercaptopropyltrimethoxysilane. In addition, examples of the organosiloxane oligomer include the following compounds.
Figure 0005117033
Figure 0005117033
Figure 0005117033

(D)成分の配合量は、(A)成分100重量部に対して0.3〜20重量部、好ましくは2.0〜15重量部である。0.3重量部未満では、十分な接着性が得られない。一方、20重量部を越えると、コストの点で不経済である。   (D) The compounding quantity of component is 0.3-20 weight part with respect to 100 weight part of (A) component, Preferably it is 2.0-15 weight part. If it is less than 0.3 part by weight, sufficient adhesion cannot be obtained. On the other hand, exceeding 20 parts by weight is uneconomical in terms of cost.

[(E)成分]
(E)成分の酸化チタンは、種類は特に限定されるものではなく、アナタース型、ルチル型のいずれであってもよい。また、周知の表面処理剤によって表面処理が施されていてもよい。
[(E) component]
(E) Titanium oxide of a component is not specifically limited, Either an anatase type or a rutile type may be sufficient. Further, the surface treatment may be performed by a known surface treatment agent.

(E)成分は、分散性と反射率を高める点から、その平均粒径が0.1〜0.5μm、好ましくは0.1〜0.3μmであり、粒径の異なるものを混合して用いてもよい。なお、平均粒径は、例えばレーザー光回折法による粒度分布測定により得ることができ、重量平均値(またはメジアン径)等として求めることができる。   The component (E) has an average particle size of 0.1 to 0.5 μm, preferably 0.1 to 0.3 μm, in order to increase dispersibility and reflectivity. It may be used. The average particle diameter can be obtained by, for example, particle size distribution measurement by a laser light diffraction method, and can be obtained as a weight average value (or median diameter) or the like.

(E)成分の配合量は、(A)成分100重量部に対して、60〜150重量部、好ましくは70〜120重量部である。60重量部未満であると、硬化後、所望の反射率が得られ難い。一方、150重量部を越えると、得られた組成物の流動性が低下して作業性が悪化し易くなる。   (E) The compounding quantity of a component is 60-150 weight part with respect to 100 weight part of (A) component, Preferably it is 70-120 weight part. If it is less than 60 parts by weight, it is difficult to obtain a desired reflectance after curing. On the other hand, when it exceeds 150 parts by weight, the fluidity of the obtained composition is lowered and workability is liable to deteriorate.

上記(A)〜(E)成分を基本成分とし、これらに必要に応じて、その他の任意成分として補強性シリカ、金属粉末などの導電性付与剤、反応抑制剤、難燃性付与剤、耐熱性向上剤、可塑剤、金型やセパレーターフィルムから型離れを良くするための内添離型剤等を本発明の目的を損なわない範囲で添加してもよい。   The above components (A) to (E) are used as basic components, and as necessary, other optional components such as reinforcing silica, metal powder and other conductivity imparting agents, reaction inhibitors, flame retardancy imparting agents, heat resistance A property improver, a plasticizer, an internal mold release agent for improving mold release from a mold or a separator film, and the like may be added as long as the object of the present invention is not impaired.

本発明の光半導体用シリコーン接着剤組成物の製造方法としては、例えば(A)〜(E)成分及びその他任意成分をプラネタリーミキサー、ニーダー、品川ミキサー等の混合機で混合する方法等が挙げられる。なお、各成分の添加順序は特に限定されるものではない。   As a manufacturing method of the silicone adhesive composition for optical semiconductors of this invention, the method etc. which mix (A)-(E) component and other arbitrary components with mixers, such as a planetary mixer, a kneader, and a Shinagawa mixer, etc. are mentioned, for example. It is done. In addition, the addition order of each component is not specifically limited.

得られた組成物を硬化させる方法は限定されず、例えば、本組成物で光半導体素子を支持部材に接着した後、室温で放置する方法、又は100〜150℃で30〜60分程度加熱する方法等が挙げられる。硬化物は、ゴム状で、白色であることが好ましい。   The method of curing the obtained composition is not limited. For example, after bonding the optical semiconductor element to the support member with the present composition, the method is allowed to stand at room temperature, or is heated at 100 to 150 ° C. for about 30 to 60 minutes. Methods and the like. The cured product is preferably rubbery and white.

硬化後の反射率は、十分な反射性を得る上で、80μm厚の硬化物において、波長800nmで85%以上、好ましくは85〜100%である。よって、硬化物は80μmといった薄い厚みであっても、光半導体素子から照射される光を優れた反射率で反射させることで、光を外部に効率よく取り出させる機能を有する。   The reflectivity after curing is 85% or more, preferably 85 to 100% at a wavelength of 800 nm in a cured product having a thickness of 80 μm in order to obtain sufficient reflectivity. Therefore, even if the cured product is as thin as 80 μm, it has a function of efficiently extracting light to the outside by reflecting light irradiated from the optical semiconductor element with an excellent reflectance.

また、硬化後のダイシェア強度は0.05MPa以上、好ましくは0.05〜100MPaである。0.05MPa未満であると、光半導体素子と支持部材をワイヤボンディングする際に、光半導体素子が振動する恐れがある。なお、ダイシェア強度は、例えば図2に示すように、光半導体用シリコーン接着剤組成物を半導体チップ22とアルミナ板23等との間に介在させて加熱硬化させ、シリコーン接着剤21を形成した後、接触工具24により半導体チップ22に対して横方向に力を加え、アルミナ板23から半導体チップ22が剥がれる時の強度を測定することによって求められる。   Further, the die shear strength after curing is 0.05 MPa or more, preferably 0.05 to 100 MPa. If the pressure is less than 0.05 MPa, the optical semiconductor element may vibrate when wire bonding the optical semiconductor element and the support member. For example, as shown in FIG. 2, the die shear strength is obtained after the silicone adhesive composition for optical semiconductors is interposed between the semiconductor chip 22 and the alumina plate 23 and cured by heating to form the silicone adhesive 21. This is obtained by applying a force in the lateral direction to the semiconductor chip 22 with the contact tool 24 and measuring the strength when the semiconductor chip 22 is peeled off from the alumina plate 23.

したがって、本発明の光半導体用シリコーン接着剤組成物は、80μm厚の硬化物において、800nmの反射率が85%以上であり、硬化後のダイシェア強度が0.05MPa以上であるため、光半導体素子から照射された光を反射させることで、外部への光取り出し効率を従来と比べて著しく高めることができ、例えば発光ダイオード等の光半導体素子の接着剤として好適である。   Therefore, since the silicone adhesive composition for optical semiconductors of the present invention has a cured product with a thickness of 80 μm, the reflectance at 800 nm is 85% or more, and the die shear strength after curing is 0.05 MPa or more. By reflecting the light irradiated from the outside, the light extraction efficiency to the outside can be remarkably increased as compared with the conventional case, and it is suitable as an adhesive for an optical semiconductor element such as a light emitting diode.

次に、図1を用いて、本発明の光半導体装置の一例について説明する。   Next, an example of the optical semiconductor device of the present invention will be described with reference to FIG.

光半導体装置1は、略中央にテーパー状の開口部を有する支持部材2と、光半導体素子3とを備える。支持部材2は、一対のリード電極4を有し、これらリード電極4の一端部が支持部材2の底部に露出され、他端部が支持部材2外に延設されるように設けられている。光半導体素子3としては、例えば発光ダイオード、トランジスタ、サイリスタ、固体撮像素子、モノリシックIC等が挙げられる。   The optical semiconductor device 1 includes a support member 2 having a tapered opening at substantially the center and an optical semiconductor element 3. The support member 2 has a pair of lead electrodes 4. One end of each of the lead electrodes 4 is exposed at the bottom of the support member 2, and the other end is provided to extend outside the support member 2. . Examples of the optical semiconductor element 3 include a light emitting diode, a transistor, a thyristor, a solid-state imaging element, and a monolithic IC.

光半導体素子3は、支持部材2に設けられたリード電極4に、本組成物の硬化物であるシリコーン接着剤5によって固定されている。また、光半導体素子3に設けられたボンディングパッド(不図示)とリード電極4とがボンディングワイヤ6で電気的に接続されており、これらの一体化物が封止樹脂7で封止されている。   The optical semiconductor element 3 is fixed to a lead electrode 4 provided on the support member 2 with a silicone adhesive 5 that is a cured product of the present composition. Also, a bonding pad (not shown) provided on the optical semiconductor element 3 and the lead electrode 4 are electrically connected by a bonding wire 6, and an integrated product thereof is sealed with a sealing resin 7.

シリコーン接着剤5は、図1に示すように、光半導体素子3の底部からはみ出してその周囲を囲むように塗布されても、または、光半導体素子3からはみ出さないように塗布されてもよく、任意である。シリコーン接着剤5の膜厚は、10〜100μmの範囲であることが好ましい。   As shown in FIG. 1, the silicone adhesive 5 may be applied so as to protrude from the bottom of the optical semiconductor element 3 and surround the periphery thereof, or may be applied so as not to protrude from the optical semiconductor element 3. Is optional. The film thickness of the silicone adhesive 5 is preferably in the range of 10 to 100 μm.

本発明を実施例により詳細に説明するが、本発明は実施例に限定されるものではない。実施例及び比較例中、粘度は23℃において測定した値であり、平均粒径はレーザー光回折法により測定した値である。また、実施例及び比較例で得られた光半導体用シリコーン接着剤組成物は、以下のようにして特性を評価し、結果を表1に示した。表1に示した特性は、23℃において測定した値である。   The present invention will be described in detail with reference to examples, but the present invention is not limited to the examples. In Examples and Comparative Examples, the viscosity is a value measured at 23 ° C., and the average particle size is a value measured by a laser light diffraction method. Moreover, the characteristics of the silicone adhesive compositions for optical semiconductors obtained in Examples and Comparative Examples were evaluated as follows, and the results are shown in Table 1. The characteristics shown in Table 1 are values measured at 23 ° C.

[反射率]
得られた組成物を150℃、1時間の硬化条件で、25×80×2mmのテストピースを作製し、分光光度計(UV3600、島津社製)により800nmの反射率を測定した。同様にして、80μm厚のテストピースを作製し、800nmの反射率を測定した。
[Reflectance]
A test piece of 25 × 80 × 2 mm was produced from the obtained composition under curing conditions at 150 ° C. for 1 hour, and the reflectance at 800 nm was measured with a spectrophotometer (UV3600, manufactured by Shimadzu Corporation). Similarly, a test piece having a thickness of 80 μm was prepared, and the reflectance at 800 nm was measured.

[ダイシェア強度]
得られた組成物を4mm×4mmの半導体チップとアルミナ板との間に厚さ10μmで介在させ、150℃で1時間加熱硬化させた。次に、ダイシェア強度測定装置(デイジ社製)により、接触工具によって半導体チップに横方向に力を加え、アルミナ板から半導体チップが剥がれる時の強度を測定した。
[Die shear strength]
The obtained composition was interposed between a 4 mm × 4 mm semiconductor chip and an alumina plate at a thickness of 10 μm and cured by heating at 150 ° C. for 1 hour. Next, a die shear strength measuring device (manufactured by Daisy) applied a force in the lateral direction to the semiconductor chip with a contact tool, and measured the strength when the semiconductor chip peeled from the alumina plate.

[実施例1]
(A)粘度が300Pa・sであり、両末端がジメチルビニルシロキシ基で封鎖されたポリジメチルシロキサン(SiVi基含有量1.9mmol/g)100重量部、(B)粘度が0.02Pa・sであるポリオルガノハイドロジェンシロキサン(SiH基含有量10mmol/g)22重量部、(C)塩化白金酸のビニルシロキサン錯体化合物0.05重量部(白金元素に換算して20ppm)、(D−1)γ−グリシドキシプロピルトリメトキシシラン0.2重量部、(D−2)β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン0.4重量部、(E−1)平均粒径0.15μmの酸化チタン110重量部を万能混錬器で均一に混合して、光半導体用シリコーン接着剤組成物を得た。
この組成物の特性を測定し、結果を表1に示した。
[Example 1]
(A) The viscosity is 300 Pa · s, 100 parts by weight of polydimethylsiloxane (SiVi group content 1.9 mmol / g) blocked at both ends with dimethylvinylsiloxy groups, (B) the viscosity is 0.02 Pa · s. 22 parts by weight of polyorganohydrogensiloxane (SiH group content: 10 mmol / g), (C) 0.05 part by weight of vinyl siloxane complex compound of chloroplatinic acid (20 ppm in terms of platinum element), (D-1 ) 0.2 part by weight of γ-glycidoxypropyltrimethoxysilane, (D-2) 0.4 part by weight of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, (E-1) average particle size 0 110 parts by weight of 15 μm titanium oxide was uniformly mixed with a universal kneader to obtain a silicone adhesive composition for optical semiconductors.
The properties of this composition were measured and the results are shown in Table 1.

[実施例2]
(A)粘度が300Pa・sであり、両末端がジメチルビニルシロキシ基で封鎖されたポリジメチルシロキサン(SiVi基含有量1.9mmol/g)100重量部、(B)粘度が0.02Pa・sであるポリオルガノハイドロジェンシロキサン(SiH基含有量10mmol/g)22重量部、(C)塩化白金酸のビニルシロキサン錯体化合物0.05重量部(白金元素に換算して20ppm)、(D−1)γ−グリシドキシプロピルトリメトキシシラン0.2重量部、(D−2)β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン0.4重量部、(E−1)平均粒径0.15μmの酸化チタン70重量部を万能混錬器で均一に混合して、光半導体用シリコーン接着剤組成物を得た。
この組成物の特性を測定し、結果を表1に示した。
[Example 2]
(A) The viscosity is 300 Pa · s, 100 parts by weight of polydimethylsiloxane (SiVi group content 1.9 mmol / g) blocked at both ends with dimethylvinylsiloxy groups, (B) the viscosity is 0.02 Pa · s. 22 parts by weight of polyorganohydrogensiloxane (SiH group content: 10 mmol / g), (C) 0.05 part by weight of vinyl siloxane complex compound of chloroplatinic acid (20 ppm in terms of platinum element), (D-1 ) 0.2 part by weight of γ-glycidoxypropyltrimethoxysilane, (D-2) 0.4 part by weight of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, (E-1) average particle size 0 70 parts by weight of titanium oxide having a thickness of 15 μm was uniformly mixed with a universal kneader to obtain a silicone adhesive composition for optical semiconductors.
The properties of this composition were measured and the results are shown in Table 1.

[比較例1]
(A)粘度が300Pa・sであり、両末端がジメチルビニルシロキシ基で封鎖されたポリジメチルシロキサン(SiVi基含有量1.9mmol/g)100重量部、(B)粘度が0.02Pa・sであるポリオルガノハイドロジェンシロキサン(SiH基含有量10mmol/g)22重量部、(C)塩化白金酸のビニルシロキサン錯体化合物0.05重量部(白金元素に換算して20ppm)、(D−1)γ−グリシドキシプロピルトリメトキシシラン0.3重量部、(D−2)β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン0.6重量部、(E−1)平均粒径0.15μmの酸化チタン40重量部を万能混錬器で均一に混合して、光半導体用シリコーン接着剤組成物を得た。
この組成物の特性を測定し、結果を表1に示した。
[Comparative Example 1]
(A) The viscosity is 300 Pa · s, 100 parts by weight of polydimethylsiloxane (SiVi group content 1.9 mmol / g) blocked at both ends with dimethylvinylsiloxy groups, (B) the viscosity is 0.02 Pa · s. 22 parts by weight of polyorganohydrogensiloxane (SiH group content: 10 mmol / g), (C) 0.05 part by weight of vinyl siloxane complex compound of chloroplatinic acid (20 ppm in terms of platinum element), (D-1 ) 0.3 part by weight of γ-glycidoxypropyltrimethoxysilane, 0.6 part by weight of (D-2) β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, (E-1) 0 average particle size 40 parts by weight of titanium oxide having a thickness of 15 μm was uniformly mixed with a universal kneader to obtain a silicone adhesive composition for optical semiconductors.
The properties of this composition were measured and the results are shown in Table 1.

[比較例2]
(A)粘度が300Pa・sであり、両末端がジメチルビニルシロキシ基で封鎖されたポリジメチルシロキサン(SiVi基含有量1.9mmol/g)100重量部、(B)粘度が0.02Pa・sであるポリオルガノハイドロジェンシロキサン(SiH基含有量10mmol/g)22重量部、(C)塩化白金酸のビニルシロキサン錯体化合物0.05重量部(白金元素に換算して20ppm)、(D−1)γ−グリシドキシプロピルトリメトキシシラン0.3重量部、(D−2)β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン0.6重量部、(E−1)平均粒径0.15μmの酸化チタン10重量部を万能混錬器で均一に混合して、光半導体用シリコーン接着剤組成物を得た。
この組成物の特性を測定し、結果を表1に示した。
[Comparative Example 2]
(A) The viscosity is 300 Pa · s, 100 parts by weight of polydimethylsiloxane (SiVi group content 1.9 mmol / g) blocked at both ends with dimethylvinylsiloxy groups, (B) the viscosity is 0.02 Pa · s. 22 parts by weight of polyorganohydrogensiloxane (SiH group content: 10 mmol / g), (C) 0.05 part by weight of vinyl siloxane complex compound of chloroplatinic acid (20 ppm in terms of platinum element), (D-1 ) 0.3 part by weight of γ-glycidoxypropyltrimethoxysilane, 0.6 part by weight of (D-2) β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, (E-1) 0 average particle size 10 parts by weight of titanium oxide having a thickness of 15 μm was uniformly mixed with a universal kneader to obtain a silicone adhesive composition for optical semiconductors.
The properties of this composition were measured and the results are shown in Table 1.

[比較例3]
(A)粘度が300Pa・sであり、両末端がジメチルビニルシロキシ基で封鎖されたポリジメチルシロキサン(SiVi基含有量1.9mmol/g)100重量部、(B)粘度が0.02Pa・sであるポリオルガノハイドロジェンシロキサン(SiH基含有量10mmol/g)22重量部、(C)塩化白金酸のビニルシロキサン錯体化合物0.05重量部(白金元素に換算して20ppm)、(D−1)γ−グリシドキシプロピルトリメトキシシラン0.2重量部、(D−2)β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン0.4重量部、(E−2)平均粒径5μmの粉砕シリカ120重量部を万能混錬器で均一に混合して、光半導体用シリコーン接着剤組成物を得た。
この組成物の特性を測定し、結果を表1に示した。

Figure 0005117033
[Comparative Example 3]
(A) The viscosity is 300 Pa · s, 100 parts by weight of polydimethylsiloxane (SiVi group content 1.9 mmol / g) blocked at both ends with dimethylvinylsiloxy groups, (B) the viscosity is 0.02 Pa · s. 22 parts by weight of polyorganohydrogensiloxane (SiH group content: 10 mmol / g), (C) 0.05 part by weight of vinyl siloxane complex compound of chloroplatinic acid (20 ppm in terms of platinum element), (D-1 ) 0.2 part by weight of γ-glycidoxypropyltrimethoxysilane, (D-2) 0.4 part by weight of β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, (E-2) average particle size 5 μm 120 parts by weight of the pulverized silica was uniformly mixed with a universal kneader to obtain a silicone adhesive composition for optical semiconductors.
The properties of this composition were measured and the results are shown in Table 1.
Figure 0005117033

表1から明らかなように、(E−1)酸化チタンを(A)成分100重量部に対して60〜150重量部の範囲で配合した各実施例は、硬化後の80μm厚における800nmでの反射率が85%以上である。   As is apparent from Table 1, each example in which (E-1) titanium oxide was blended in the range of 60 to 150 parts by weight with respect to 100 parts by weight of component (A) was obtained at 800 nm at 80 μm thickness after curing. The reflectance is 85% or more.

したがって、本発明の光半導体用シリコーン接着剤組成物を、例えば発光ダイオード等の光半導体素子の接着剤として使用した場合には、80μm厚といった極薄い硬化物であっても、光半導体素子から照射された光を高い反射率で反射させることができ、従来に比べてより多くの光を効率よく外部に取り出すことが可能となる。   Therefore, when the silicone adhesive composition for optical semiconductors of the present invention is used as an adhesive for optical semiconductor elements such as light-emitting diodes, even an extremely thin cured product having a thickness of 80 μm is irradiated from the optical semiconductor element. The reflected light can be reflected with a high reflectance, and more light can be efficiently extracted to the outside as compared with the conventional case.

本発明の光半導体装置の一例を模式的に示す断面図。Sectional drawing which shows an example of the optical semiconductor device of this invention typically. ダイシェア強度の試験条件を模式的に示す図。The figure which shows typically the test conditions of die shear strength.

符号の説明Explanation of symbols

1…光半導体装置、2…支持部材、3…光半導体素子、4…リード電極、5…シリコーン接着剤、6……ボンディングワイヤ、7…封止樹脂。   DESCRIPTION OF SYMBOLS 1 ... Optical semiconductor device, 2 ... Support member, 3 ... Optical semiconductor element, 4 ... Lead electrode, 5 ... Silicone adhesive, 6 ... Bonding wire, 7 ... Sealing resin.

Claims (5)

(A)1分子中に2個以上のケイ素原子に結合したアルケニル基を有し、前記アルケニル基含有量が30〜600mmol/100gであるポリオルガノシロキサン 100重量部、
(B)1分子中に3個以上のSiH基を含有するポリオルガノハイドロジェンシロキサン (A)成分のケイ素原子結合アルケニル基1個に対して、SiH基が1.0〜5.0個となる量、
(C)白金系触媒 触媒量、
(D)接着性付与剤 0.3〜20重量部、
及び(E)平均粒径が0.1〜0.5μmの酸化チタン 60〜150重量部
を含有し、
前記(D)接着性付与剤は、ケイ素原子に結合したアルコキシ基及び/又はアルケニルオキシ基を有し、かつ、Si−H基、アルケニル基、アクリル基、メタクリル基、エポキシ基、メルカプト基、エステル基、無水カルボキシ基、アミノ基及びアミド基から選ばれる少なくとも1個の反応性官能基を有する、オルガノアルコキシシラン又はケイ素原子数2〜50のオルガノアルコキシシロキサンオリゴマーのうち異なる2種以上を含有することを特徴とする光半導体用シリコーン接着剤組成物。
(A) 100 parts by weight of a polyorganosiloxane having an alkenyl group bonded to two or more silicon atoms in one molecule, and the alkenyl group content is 30 to 600 mmol / 100 g,
(B) Polyorganohydrogensiloxane containing 3 or more SiH groups in one molecule (A) One silicon atom-bonded alkenyl group of component (A) is 1.0 to 5.0 SiH groups. amount,
(C) platinum catalyst catalyst amount,
(D) Adhesiveness imparting agent 0.3 to 20 parts by weight,
And (E) 60 to 150 parts by weight of titanium oxide having an average particle size of 0.1 to 0.5 μm,
The (D) adhesion-imparting agent has an alkoxy group and / or alkenyloxy group bonded to a silicon atom , and is a Si-H group, alkenyl group, acrylic group, methacryl group, epoxy group, mercapto group, ester. Containing at least one reactive functional group selected from a group, an anhydrous carboxy group, an amino group, and an amide group, and containing two or more different organoalkoxysilanes or organoalkoxysiloxane oligomers having 2 to 50 silicon atoms A silicone adhesive composition for optical semiconductors.
硬化後の80μm厚みでの反射率が、800nmで85%以上であることを特徴とする請求項1に記載の光半導体用シリコーン接着剤組成物。   2. The silicone adhesive composition for optical semiconductors according to claim 1, wherein the reflectance at 80 μm thickness after curing is 85% or more at 800 nm. 硬化後のダイシェア強度が、0.05MPa以上であることを特徴とする請求項1または2に記載の光半導体用シリコーン接着剤組成物。   3. The silicone adhesive composition for optical semiconductors according to claim 1 or 2, wherein the die shear strength after curing is 0.05 MPa or more. 前記(A)成分の23℃における粘度が、0.1〜500Pa・sであることを特徴とする請求項1乃至3のいずれか1項に記載の光半導体用シリコーン接着剤組成物。   The silicone adhesive composition for optical semiconductors according to any one of claims 1 to 3, wherein the viscosity of the component (A) at 23 ° C is 0.1 to 500 Pa · s. 請求項1乃至4のいずれか1項に記載の光半導体用シリコーン接着剤組成物を硬化してなる光半導体用シリコーン接着剤により、光半導体素子と支持部材とが接合されてなることを特徴とする光半導体装置。   An optical semiconductor element and a support member are joined by a silicone adhesive for optical semiconductors obtained by curing the silicone adhesive composition for optical semiconductors according to any one of claims 1 to 4. An optical semiconductor device.
JP2006302659A 2006-11-08 2006-11-08 Silicone adhesive composition for optical semiconductor and optical semiconductor device using the same Expired - Fee Related JP5117033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006302659A JP5117033B2 (en) 2006-11-08 2006-11-08 Silicone adhesive composition for optical semiconductor and optical semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006302659A JP5117033B2 (en) 2006-11-08 2006-11-08 Silicone adhesive composition for optical semiconductor and optical semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2008120844A JP2008120844A (en) 2008-05-29
JP5117033B2 true JP5117033B2 (en) 2013-01-09

Family

ID=39505949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006302659A Expired - Fee Related JP5117033B2 (en) 2006-11-08 2006-11-08 Silicone adhesive composition for optical semiconductor and optical semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP5117033B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9916937B2 (en) * 2013-10-18 2018-03-13 Kyocera Corporation All-solid-state capacitor
JP6001523B2 (en) * 2013-11-14 2016-10-05 信越化学工業株式会社 Silicone adhesive
JP6704189B2 (en) * 2015-08-03 2020-06-03 パナソニックIpマネジメント株式会社 LED module
JP7102899B2 (en) * 2018-04-24 2022-07-20 Agc株式会社 Manufacturing method of laminates and electronic devices
JP7475135B2 (en) 2019-12-25 2024-04-26 デュポン・東レ・スペシャルティ・マテリアル株式会社 Curable white silicone composition, reflector for optical semiconductor device, and optical semiconductor device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207162A (en) * 1994-01-21 1995-08-08 Toshiba Silicone Co Ltd Coating protection agent for semiconductor rectifier element
JP3855040B2 (en) * 1998-09-02 2006-12-06 東レ・ダウコーニング株式会社 Curable silicone composition
JP2000169557A (en) * 1998-12-03 2000-06-20 Toshiba Chem Corp Epoxy resin composition and semiconductor sealing device
JP3704286B2 (en) * 1999-11-17 2005-10-12 信越化学工業株式会社 Titanium oxide filled addition reaction curable silicone rubber composition and cured product thereof
JP2002173661A (en) * 2000-09-13 2002-06-21 Nippon Sheet Glass Co Ltd Adhesive composition and optical device by using the same
JP3915885B2 (en) * 2001-07-24 2007-05-16 信越化学工業株式会社 Silicone adhesive for semiconductor parts
JP2004002784A (en) * 2002-04-04 2004-01-08 Kanegafuchi Chem Ind Co Ltd Composition for electronic material, electronic material and electronic product produced by using the same
JP4455218B2 (en) * 2004-08-12 2010-04-21 信越化学工業株式会社 Self-adhesive addition reaction curable silicone composition
JP4648099B2 (en) * 2005-06-07 2011-03-09 信越化学工業株式会社 Silicone resin composition for die bonding

Also Published As

Publication number Publication date
JP2008120844A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
JP5638714B2 (en) Silicone composition for sealing light emitting device and light emitting device
JP5149022B2 (en) Silicone composition for optical semiconductor sealing and optical semiconductor device using the same
JP5138924B2 (en) Silicone rubber composition for optical semiconductor sealing and optical semiconductor device
TWI756250B (en) Curable granulated silicone composition, semiconductor article thereof, and manufacturing process thereof
JP4586967B2 (en) Light emitting semiconductor coating protective material and light emitting semiconductor device
TWI504683B (en) A hardened silicon oxide composition, a hardened product thereof, and an optical semiconductor device
US20150183960A1 (en) Reactive Silicone Composition, Reactive Thermoplastic Article, Cured Product, And Optical Semiconductor Device
JP6057503B2 (en) Curable silicone composition for encapsulating optical semiconductor element, method for producing resin-encapsulated optical semiconductor element, and resin-encapsulated optical semiconductor element
JP5992666B2 (en) Crosslinkable silicone composition and crosslinked product thereof
JP2010174250A (en) Protective coating material for light-emitting semiconductor and light-emitting semiconductor device
KR102282547B1 (en) Curable silicone composition for die bonding
JP4766222B2 (en) Light emitting semiconductor coating protective material and light emitting semiconductor device
KR20160104559A (en) Addition-curable silicone resin composition and die attach material for optical semiconductor device
TWI654255B (en) Heat-curable polysilicon composition, chip soldering material, and optical semiconductor device
JP2009114365A (en) Silicone adhesive composition for optical semiconductor and optical semiconductor device using it
JP2016047928A (en) Curable resin composition, cured product, sealing material and semiconductor device
JP5117033B2 (en) Silicone adhesive composition for optical semiconductor and optical semiconductor device using the same
KR20170057330A (en) Curable silicone resin composition, and cured product thereof
JP2007180284A (en) Light emitting device
JP2010003848A (en) Light emitting device
JP2008156460A (en) Silicone composition for sealing semiconductor and semiconductor device using it
JP2012049519A (en) Package for semiconductor light-emitting device, and light-emitting device
JP2007154099A (en) Silicone rubber adhesive composition and semiconductor device using the same
JP2007191514A (en) Silicone rubber composition for sealing electric/electronic part
JP2007154036A (en) Low-tackiness curable composition for coating electric/electronic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5117033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees