JP4586967B2 - Light emitting semiconductor coating protective material and light emitting semiconductor device - Google Patents

Light emitting semiconductor coating protective material and light emitting semiconductor device Download PDF

Info

Publication number
JP4586967B2
JP4586967B2 JP2004191266A JP2004191266A JP4586967B2 JP 4586967 B2 JP4586967 B2 JP 4586967B2 JP 2004191266 A JP2004191266 A JP 2004191266A JP 2004191266 A JP2004191266 A JP 2004191266A JP 4586967 B2 JP4586967 B2 JP 4586967B2
Authority
JP
Japan
Prior art keywords
group
emitting semiconductor
light emitting
sio
units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004191266A
Other languages
Japanese (ja)
Other versions
JP2005042099A (en
Inventor
努 柏木
利夫 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2004191266A priority Critical patent/JP4586967B2/en
Publication of JP2005042099A publication Critical patent/JP2005042099A/en
Application granted granted Critical
Publication of JP4586967B2 publication Critical patent/JP4586967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は、付加硬化型のシリコーンゴム組成物に関するものであり、特にゴム的性質と強度特性が良好であり、表面のタック性が殆どないシリコーンゴムを与え、硬化物表面における埃付着が全くなく、かつ低弾性で耐クラック性に優れた発光半導体被覆保護材及びこれを用いて発光半導体素子を被覆してなる発光半導体装置に関するものである。 The present invention relates to addition-curable silicone rubber composition, in particular a good rubber properties and strength properties, it gives little silicone rubber tackiness of the surface, completely without dust adhesion on cured product surface Further, the present invention relates to a light emitting semiconductor coating protective material having low elasticity and excellent crack resistance, and a light emitting semiconductor device in which a light emitting semiconductor element is coated using the same.

シリコーンゴム組成物は、耐候性、耐熱性等の特性や、硬度、伸び等のゴム的性質に優れた硬化物を形成することから、種々の用途に使用されているが、表面にタック性があり、電気電子部品のコート剤等では埃の付着が問題となっていた(特許文献1:特開2001−2922号公報)。   Silicone rubber compositions are used in various applications because they form cured products with excellent properties such as weather resistance and heat resistance, and rubber properties such as hardness and elongation. In addition, the adhesion of dust has been a problem with coating agents for electric and electronic parts (Patent Document 1: Japanese Patent Application Laid-Open No. 2001-2922).

また、これを解決したシリコーンワニスでは、クラックの発生が起こり、問題となっていた。このため、電気電子部品等のパッケージにおいて硬化物表面に埃の付着がなく、かつ耐クラック性に優れた硬化物を形成し得るようなシリコーンゴム組成物が望まれている。   Moreover, in the silicone varnish which solved this, generation | occurrence | production of a crack occurred and it was a problem. For this reason, there is a demand for a silicone rubber composition that can form a cured product that is free from dust adhesion on the surface of the cured product and has excellent crack resistance in packages such as electric and electronic parts.

この場合、一般に、付加硬化型のシリコーンゴム組成物においては、レジン状のオルガノポリシロキサンを配合することにより、硬化物の強度を向上させ得ることが、従来から知られている。しかしながら、レジン状のオルガノポリシロキサンにより硬化物の強度を高めた時でも、表面にタックが残り、埃の付着の問題があった。   In this case, it is conventionally known that, in addition-curable silicone rubber compositions, the strength of the cured product can be improved by adding a resinous organopolysiloxane. However, even when the strength of the cured product is increased by the resinous organopolysiloxane, tack remains on the surface and there is a problem of dust adhesion.

一方、発光ダイオード(LED)等の発光半導体装置には素子がリード電極上に配置され、その周囲を透明樹脂で覆われた砲弾型と称される図3のような発光半導体装置が使用されていたが、近年実装工程の簡略化から図1及び図2に示されるような「表面実装型」と称される発光半導体装置が主流になりつつある。   On the other hand, a light emitting semiconductor device such as a light emitting diode (LED) or the like, which is called a shell type in which an element is disposed on a lead electrode and the periphery thereof is covered with a transparent resin, is used. However, in recent years, light-emitting semiconductor devices called “surface mount type” as shown in FIGS. 1 and 2 are becoming mainstream due to simplification of the mounting process.

なお、図1〜3において、1はガラス繊維強化エポキシ樹脂製筐体、2は発光素子、3,4はリード電極、5はダイボンド材、6は金線、7は被覆保護材である。   1-3, 1 is a glass fiber reinforced epoxy resin housing, 2 is a light emitting element, 3 and 4 are lead electrodes, 5 is a die bond material, 6 is a gold wire, and 7 is a covering protective material.

発光ダイオード(LED)等の発光半導体素子の被覆保護用樹脂組成物としては、その硬化体が透明性を有することが要求されており、一般にビスフェノールA型エポキシ樹脂又は脂環式エポキシ樹脂等のエポキシ樹脂と酸無水物系硬化剤を用いて得られるものが用いられている(特許文献2:特許第3241338号公報、特許文献3:特開平7−25987号公報参照)。   As a resin composition for protecting a light-emitting semiconductor element such as a light-emitting diode (LED), the cured product is required to have transparency, and is generally an epoxy such as a bisphenol A type epoxy resin or an alicyclic epoxy resin. What is obtained using resin and an acid anhydride type hardening | curing agent is used (refer patent document 2: patent 3241338, patent document 3: Unexamined-Japanese-Patent No. 7-25987).

しかし、かかる透明エポキシ樹脂においても、樹脂の吸水率が高いために耐湿耐久性が低い、特に短波長の光に対する光線透過性が低いために耐光耐久性が低い、あるいは光劣化により着色するという欠点を有していた。   However, even in such a transparent epoxy resin, the moisture absorption resistance of the resin is high, so the moisture resistance durability is low, particularly the light resistance to low-wavelength light is low, so the light resistance is low, or it is colored due to light deterioration. Had.

そのため、SiH基と反応性を有する炭素−炭素二重結合を一分子中に少なくとも2個含有する有機化合物、及び一分子中に少なくとも2個のSiH基を含有するケイ素化合物、ヒドロシリル化触媒からなる光半導体素子の被覆保護用樹脂組成物も提案されている(特許文献4:特開2002−327126号公報、特許文献5:特開2002−338833号公報参照)。   Therefore, it consists of an organic compound containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule, a silicon compound containing at least two SiH groups in one molecule, and a hydrosilylation catalyst. A resin composition for protecting a coating of an optical semiconductor element has also been proposed (see Patent Document 4: JP 2002-327126 A, Patent Document 5: JP 2002-338833 A).

しかし、このようなシリコーン系の硬化物は耐クラック性を改良しようすると一般に硬化物表面にタックがのこり、埃が容易に付着し光の透過性を損なう欠点がある。そのため、高硬度シリコーン樹脂を保護被覆用に使用したものが提案されている(特許文献6:特開2002−314139号公報、特許文献7:特開2002−314143号公報参照)。   However, in order to improve the crack resistance, such a silicone-based cured product generally has a drawback that the surface of the cured product is tacky and dust easily adheres and impairs light transmission. Therefore, what uses the high hardness silicone resin for protective coating is proposed (refer patent document 6: Unexamined-Japanese-Patent No. 2002-314139, patent document 7: Unexamined-Japanese-Patent No. 2002-314143).

しかし、これらの高硬度シリコーン樹脂ではまだ接着性が乏しく、セラミック及び/又はプラスチック筐体内に発光素子が配置され、その筐体内部をシリコーン樹脂で充填したケース型の発光半導体装置では、−40℃〜120℃での熱衝撃試験で、シリコーン樹脂が筐体のセラミックやプラスチックから剥離してしまう問題点が生じていた。   However, these high-hardness silicone resins still have poor adhesion, and in case-type light-emitting semiconductor devices in which light-emitting elements are arranged in a ceramic and / or plastic housing and the inside of the housing is filled with silicone resin, −40 ° C. In the thermal shock test at ˜120 ° C., there was a problem that the silicone resin was peeled off from the ceramic or plastic of the housing.

また更に、発光素子に使用されるSiC、GaAs、GaP、GaAsP、GaAlAs、InAlGaP、InGaN、GaN等の各種の化合物半導体の光学結晶の屈折率が高いため、被覆保護樹脂の屈折率がジメチル系シリコーン樹脂のように低い場合、被覆樹脂と光学結晶との界面で反射して発光効率が低下する欠点があった。   Furthermore, since the refractive index of the optical crystal of various compound semiconductors such as SiC, GaAs, GaP, GaAsP, GaAlAs, InAlGaP, InGaN, and GaN used for the light emitting element is high, the refractive index of the coating protective resin is dimethyl silicone. When it is as low as a resin, there is a drawback in that the light emission efficiency decreases due to reflection at the interface between the coating resin and the optical crystal.

このため、出光率を高めるための手段として反射防止膜をつけるなどの手法が提案されている(特許文献8:特開2001−246236号公報、特許文献9:特開2001−217467号公報参照)。しかし、反射防止膜を作製するためには工程が増え、コスト高になってしまう。   For this reason, methods such as attaching an antireflection film have been proposed as means for increasing the light emission rate (see Patent Document 8: Japanese Patent Laid-Open No. 2001-246236, Patent Document 9: Japanese Patent Laid-Open No. 2001-217467). . However, the number of steps is increased to produce an antireflection film, resulting in an increase in cost.

特開2001−2922号公報JP 2001-2922 A 特許第3241338号公報Japanese Patent No. 3241338 特開平7−25987号公報JP 7-25987 A 特開2002−327126号公報JP 2002-327126 A 特開2002−338833号公報JP 2002-338833 A 特開2002−314139号公報JP 2002-314139 A 特開2002−314143号公報JP 2002-314143 A 特開2001−246236号公報JP 2001-246236 A 特開2001−217467号公報JP 2001-217467 A

従って、本発明の目的は、伸び等のゴム的性質が損なわれることなく、硬度や表面タック性が向上した硬化物を形成し得る付加硬化型のシリコーンゴム組成物からなり、表面タック性がなく、かつ接着性に優れ、しかも耐衝撃性、光透過性に優れた発光半導体被覆保護材及びこれを用いて被覆され、発光効率の高い発光半導体装置を提供することにある。 Accordingly, an object of the present invention is not impaired rubbery properties such as elongation, it consists hardness and surface tack silicone rubber composition of the addition curing type which can form a cured product with improved, no surface tackiness It is another object of the present invention to provide a light emitting semiconductor coating protective material excellent in adhesiveness, impact resistance and light transmittance, and a light emitting semiconductor device coated with the same and having high luminous efficiency.

本発明者らは、上記課題を解決するため鋭意検討を行った結果、付加硬化型のシリコーンゴム組成物に、SiO2単位、R3 n4 pSiO0.5単位及びR3 q4 rSiO0.5単位からなるレジン構造のオルガノポリシロキサン(但し、上記式において、R3はビニル基又はアリル基、R4は脂肪族不飽和結合を含まない一価炭化水素基であり、nは2又は3、pは0又は1で、n+p=3、qは0又は1、rは2又は3で、q+r=3である。)を特定量配合することにより、伸び等のゴム的性質を損なうことなく、硬度や表面タック性を向上させることができ、埃の付着も防止し得ることを知見した。 As a result of intensive studies to solve the above problems, the present inventors have found that an addition-curable silicone rubber composition has SiO 2 units, R 3 n R 4 p SiO 0.5 units, and R 3 q R 4 r SiO. Resin-structured organopolysiloxane composed of 0.5 units (wherein R 3 is a vinyl group or an allyl group, R 4 is a monovalent hydrocarbon group containing no aliphatic unsaturated bond, and n is 2 or 3) , P is 0 or 1, n + p = 3, q is 0 or 1, r is 2 or 3, and q + r = 3), by blending a specific amount without impairing rubber properties such as elongation. It has been found that hardness and surface tackiness can be improved and dust adhesion can be prevented.

また、下記一般式(1)で表され、粘度が25℃で10〜1,000,000mPa・sであるオルガノポリシロキサンと、上記レジン構造のオルガノポリシロキサンの特定量とを併用することにより得られた付加反応硬化型シリコーンゴム組成物の硬化物が、表面タック性もなく、低弾性及び透明性を兼ね備え、接着性も良好で、発光半導体被覆保護材として効果的に用いられることを知見し、本発明をなすに至った。   Moreover, it is obtained by using together an organopolysiloxane represented by the following general formula (1) and having a viscosity of 10 to 1,000,000 mPa · s at 25 ° C. and a specific amount of the organopolysiloxane having the above resin structure. It was found that the cured product of the addition reaction curable silicone rubber composition has no surface tackiness, has low elasticity and transparency, has good adhesion, and can be effectively used as a light-emitting semiconductor coating protective material. The present invention has been made.

従って、本発明は、
(A)下記一般式(1)

Figure 0004586967
(式中、R 1 は互いに同一又は異種の非置換又は置換一価炭化水素基、R 2 は互いに同一又は異種の脂肪族不飽和結合を有さない非置換又は置換一価炭化水素基であり、k,mは0又は正の整数であり、k+mがこのオルガノポリシロキサンの25℃の粘度を10〜1,000,000mPa・sとする数である。)
で表される一分子中に2個以上の脂肪族不飽和結合を有し、粘度が25℃で10〜1,000,000mPa・sであるオルガノポリシロキサン、
(B)SiO2単位、R3 n4 pSiO0.5単位及びR3 q4 rSiO0.5単位からなるレジン構造のオルガノポリシロキサン(但し、上記式において、R3はビニル基又はアリル基、R4は脂肪族不飽和結合を含まない一価炭化水素基であり、nは2又は3、pは0又は1で、n+p=3、qは0、rは3で、q+r=3である。)
(C)一分子中に2個以上のケイ素原子に結合する水素原子を有するオルガノハイドロジェンポリシロキサン、
(D)白金族金属系触媒
を含有してなり、前記(B)成分は、前記(A)及び(B)成分の合計量に対して20〜70質量%の量で配合されていると共に、(C)成分が、そのSiH基が(A)成分及び(B)成分中のアルケニル基の合計量当たり0.1〜4.0のモル比となる量で配合されているシリコーンゴム組成物からなる透明な発光半導体被覆保護材を提供する。 Therefore, the present invention
(A) The following general formula (1)
Figure 0004586967
(Wherein R 1 is the same or different unsubstituted or substituted monovalent hydrocarbon group, and R 2 is an unsubstituted or substituted monovalent hydrocarbon group not having the same or different aliphatic unsaturated bond. , K, m is 0 or a positive integer, and k + m is a number that makes the viscosity of this organopolysiloxane at 25 ° C. 10 to 1,000,000 mPa · s.)
An organopolysiloxane having two or more aliphatic unsaturated bonds in one molecule represented by the formula, and having a viscosity of 10 to 1,000,000 mPa · s at 25 ° C.,
(B) Resin-structured organopolysiloxane composed of SiO 2 units, R 3 n R 4 p SiO 0.5 units and R 3 q R 4 r SiO 0.5 units (wherein R 3 is a vinyl group or an allyl group, R 4 is a monovalent hydrocarbon group not containing an aliphatic unsaturated bond, n is 2 or 3, p is 0 or 1, n + p = 3, q is 0, r is 3, and q + r = 3 .)
(C) an organohydrogenpolysiloxane having hydrogen atoms bonded to two or more silicon atoms in one molecule;
(D) It contains a platinum group metal catalyst, and the component (B) is blended in an amount of 20 to 70% by mass with respect to the total amount of the components (A) and (B) . From the silicone rubber composition in which the component (C) is blended in such an amount that the SiH group has a molar ratio of 0.1 to 4.0 per the total amount of the alkenyl groups in the component (A) and the component (B). A transparent light-emitting semiconductor coating protective material is provided.

更に、本発明は、発光半導体素子が開口部を有するセラミック及び/又はプラスチック筐体内に配置された発光半導体装置で、その筐体内部が上記被覆保護材の硬化物で被覆保護された発光半導体装置、及び発光半導体素子が開口部を有するセラミック及び/又はプラスチック筐体内のリード電極上に配置された発光半導体装置で、その筐体内部が上記被覆保護材の硬化物で被覆保護された発光半導体装置を提供する。   Furthermore, the present invention is a light emitting semiconductor device in which a light emitting semiconductor element is disposed in a ceramic and / or plastic housing having an opening, and the inside of the housing is covered and protected with a cured product of the above covering protective material. , And a light emitting semiconductor device in which the light emitting semiconductor element is disposed on a lead electrode in a ceramic and / or plastic housing having an opening, and the inside of the housing is covered and protected with a cured product of the covering protective material. I will provide a.

本発明によれば、耐衝撃性に優れ、シリコーンエラストマーの欠点である表面タックによる埃の付着のない硬化物が得られる。また、本発明の発光半導体被覆保護材で被覆保護された発光半導体装置は、耐熱試験による変色も少なく、発光効率も高いため長寿命で省エネルギーに優れる発光半導体装置を提供することが可能となり、産業上のメリットは多大である。   According to the present invention, it is possible to obtain a cured product that is excellent in impact resistance and free from dust adhesion due to surface tack, which is a drawback of silicone elastomers. In addition, the light-emitting semiconductor device coated and protected with the light-emitting semiconductor coating protective material of the present invention can provide a light-emitting semiconductor device that has long life and excellent energy saving because of less discoloration due to a heat resistance test and high light emission efficiency. The above benefits are enormous.

(A)オルガノポリシロキサン
(A)成分のオルガノポリシロキサンとしては、一分子中に2個以上のビニル基、アリル基等の炭素数2〜8、特に2〜6のアルケニル基で代表される脂肪族不飽和結合を有し、粘度が25℃で10〜1,000,000mPa・s、特に100〜100,000mPa・sであれば、いずれのものでも使用することができるが、なかでも下記一般式(1)で表される分子鎖両末端のケイ素原子上にそれぞれ少なくとも1個のアルケニル基を有する直鎖状オルガノポリシロキサンで、上記でも述べた通り、25℃における粘度が10〜1,000,000mPa・sのものが作業性、硬化性などから望ましいものである。なお、この直鎖状オルガノポリシロキサンは少量の分岐状構造(三官能性シロキサン単位)を分子鎖中に含有するものであってもよい。
(A) Organopolysiloxane The organopolysiloxane of component (A) is a fat represented by an alkenyl group having 2 to 8 carbon atoms, particularly 2 to 6 carbon atoms such as two or more vinyl groups and allyl groups in one molecule. Any one can be used as long as it has a group unsaturated bond and has a viscosity of 10 to 1,000,000 mPa · s, particularly 100 to 100,000 mPa · s at 25 ° C. A linear organopolysiloxane having at least one alkenyl group on each of the silicon atoms at both ends of the molecular chain represented by the formula (1), having a viscosity at 25 ° C. of 10 to 1,000 as described above. 1,000 mPa · s is desirable from the viewpoint of workability and curability. The linear organopolysiloxane may contain a small amount of a branched structure (trifunctional siloxane unit) in the molecular chain.

Figure 0004586967
(式中、R1は互いに同一又は異種の非置換又は置換一価炭化水素基、R2は互いに同一又は異種の脂肪族不飽和結合を有さない非置換又は置換一価炭化水素基であり、k,mは0又は正の整数であり、k+mがこのオルガノポリシロキサンの25℃の粘度を10〜1,000,000mPa・sとする数である。)
Figure 0004586967
(Wherein R 1 is the same or different unsubstituted or substituted monovalent hydrocarbon group, and R 2 is an unsubstituted or substituted monovalent hydrocarbon group not having the same or different aliphatic unsaturated bond. , K, m is 0 or a positive integer, and k + m is a number that makes the viscosity of this organopolysiloxane at 25 ° C. 10 to 1,000,000 mPa · s.)

ここで、R1の一価炭化水素基としては、炭素数1〜10、特に1〜6のものが好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基、オクテニル基等のアルケニル基や、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基等のハロゲン置換アルキル基やシアノエチル基等が挙げられる。
また、R2の一価炭化水素基としても、炭素数1〜10、特に1〜6のものが好ましく、上記R1の具体例と同様のものが例示できるが、但しアルケニル基は含まない。
k,mは、一般的には5≦k+m≦10,000を満足する0又は正の整数であり、好ましくは10≦k+m≦2,000で、0<k/(k+m)≦0.2を満足する整数である。
Here, the monovalent hydrocarbon group for R 1 is preferably a group having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms, and specifically includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group. Group, alkyl group such as tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group, nonyl group, decyl group, aryl group such as phenyl group, tolyl group, xylyl group, naphthyl group, benzyl group , Aralkyl groups such as phenylethyl group and phenylpropyl group, alkenyl groups such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group, cyclohexenyl group and octenyl group, and hydrogen atoms of these groups Are substituted with a halogen atom such as fluorine, bromine or chlorine, a cyano group, etc., such as a chloromethyl group, Roropuropiru group, bromoethyl group, and a halogen-substituted alkyl group or cyanoethyl group such trifluoropropyl group.
Further, the monovalent hydrocarbon group for R 2 is preferably one having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms, and the same examples as the specific examples for R 1 described above can be exemplified, but an alkenyl group is not included.
k and m are generally 0 or a positive integer satisfying 5 ≦ k + m ≦ 10,000, preferably 10 ≦ k + m ≦ 2,000, and 0 <k / (k + m) ≦ 0.2. A satisfying integer.

(A)成分として具体的には、下記のものを例示することができる。

Figure 0004586967
(上記式において、tは8〜2,000の整数である。) Specific examples of the component (A) include the following.
Figure 0004586967
(In the above formula, t is an integer of 8 to 2,000.)

Figure 0004586967
Figure 0004586967

Figure 0004586967
(上記式において、k,mは上述した通りである。)
Figure 0004586967
(In the above formula, k and m are as described above.)

(B)レジン構造のオルガノポリシロキサン
本発明組成物の重要な構成成分であるレジン構造(即ち、三次元網状構造)のオルガノポリシロキサンは、SiO2単位、R3 n4 pSiO0.5単位及びR3 q4 rSiO0.5単位からなるレジン構造のオルガノポリシロキサン(但し、上記式において、R3はビニル基又はアリル基、R4は脂肪族不飽和結合を含まない一価炭化水素基であり、nは2又は3、pは0又は1で、n+p=3、qは0又は1、rは2又は3で、q+r=3である。)である。
なお、R4の一価炭化水素基としては、上記R2と同様の炭素数1〜10、特に1〜6のものが挙げられる。
(B) Resin-structured organopolysiloxane Resin-structured (ie, three-dimensional network) organopolysiloxane, which is an important component of the composition of the present invention, comprises SiO 2 units, R 3 n R 4 p SiO 0.5 units and Resin-structured organopolysiloxane composed of R 3 q R 4 r SiO 0.5 unit (in the above formula, R 3 is a vinyl group or an allyl group, R 4 is a monovalent hydrocarbon group containing no aliphatic unsaturated bond) And n is 2 or 3, p is 0 or 1, n + p = 3, q is 0 or 1, r is 2 or 3, and q + r = 3.
Examples of the monovalent hydrocarbon group for R 4 include those having 1 to 10 carbon atoms, particularly 1 to 6 carbon atoms, similar to R 2 above.

ここで、SiO2単位をa単位、R3 n4 pSiO0.5単位をb単位、R3 q4 rSiO0.5単位をc単位とした場合、モル比として、
(b+c)/a=0.3〜3、特に0.7〜1
c/a=0.01〜1、特に0.07〜0.15
であることが好ましく、またこの(B)成分のオルガノポリシロキサンは、GPCによるポリスチレン換算の重量平均分子量が500〜10,000の範囲であるものが好適である。
Here, when the SiO 2 unit is a unit, the R 3 n R 4 p SiO 0.5 unit is b unit, and the R 3 q R 4 r SiO 0.5 unit is c unit,
(B + c) /a=0.3-3, especially 0.7-1
c / a = 0.01 to 1, especially 0.07 to 0.15
It is preferable that the organopolysiloxane of component (B) has a polystyrene-equivalent weight average molecular weight in the range of 500 to 10,000 by GPC.

なお、この(B)成分のレジン構造のオルガノポリシロキサンは、上記a単位、b単位、c単位に加えて、更に、二官能性シロキサン単位や三官能性シロキサン単位(即ち、オルガノシルセスキオキサン単位)を本発明の目的を損なわない範囲で少量含有するものであってもよい。   In addition to the a unit, b unit, and c unit, the organopolysiloxane having a resin structure as the component (B) is further difunctional siloxane unit or trifunctional siloxane unit (that is, organosilsesquioxane). (Unit) may be contained in a small amount within a range not impairing the object of the present invention.

このようなレジン構造のオルガノポリシロキサンは、各単位源となる化合物を、上記モル割合となるように組み合わせ、例えば酸の存在下で共加水分解を行うことによって容易に合成することができる。   Such an organopolysiloxane having a resin structure can be easily synthesized by combining the compounds serving as the unit sources so as to have the above molar ratio, and performing cohydrolysis in the presence of an acid, for example.

ここで、前記a単位源としては、ケイ酸ソーダ、アルキルシリケート、ポリアルキルシリケート、四塩化ケイ素等を例示することができる。   Here, examples of the a unit source include sodium silicate, alkyl silicate, polyalkyl silicate, silicon tetrachloride and the like.

また、b単位源としては、下記のものを例示することができる。

Figure 0004586967
Moreover, as a b unit source, the following can be illustrated.
Figure 0004586967

更に、c単位源としては、下記のものを例示することができる。

Figure 0004586967
Further, examples of the c unit source include the following.
Figure 0004586967

上記(B)成分のレジン構造のオルガノポリシロキサンは、硬化物の物理的強度及び表面のタック性を改善するために配合されるものであり、先にも説明した通り、前記(A)成分との合計量当り、20〜70質量%の量で配合される。好ましくは30〜60質量%配合される。(B)成分の配合量が少なすぎると、上記効果が十分達成されず、多すぎると、組成物の粘度が著しく高くなったり、硬化物にクラックが発生し易くなるなどの不利が生ずる。   The (B) component resin-structured organopolysiloxane is blended to improve the physical strength and surface tack of the cured product, and as described above, It is blended in an amount of 20 to 70 mass% per total amount. Preferably 30-60 mass% is mix | blended. If the blending amount of the component (B) is too small, the above effect cannot be achieved sufficiently, and if it is too large, there are disadvantages such as the viscosity of the composition being remarkably increased and cracks being easily generated in the cured product.

(C)オルガノハイドロジェンポリシロキサン
(C)成分のオルガノハイドロジェンポリシロキサンは架橋剤として作用するものであり、該成分中のSiH基と(A)及び(B)成分中のビニル基とが付加反応することにより硬化物を形成するものである。かかるオルガノハイドロジェンポリシロキサンは、一分子中にケイ素原子に結合した水素原子(即ち、SiH基)を2個以上有するものであればいずれのものでもよいが、特に下記平均組成式(2)
a(R5bSiO(4-a-b)/2 (2)
(式中、R5は脂肪族不飽和結合を含有しない同一又は異種の非置換又は置換の一価炭化水素基であり、a及びbは、0.001≦a<2、0.7≦b≦2、かつ0.8≦a+b≦3を満たす数である。)
で表され、一分子中にケイ素原子に結合した水素原子(SiH基)を少なくとも2個、好ましくは3個以上有するものが挙げられる。
(C) Organohydrogenpolysiloxane The (C) component organohydrogenpolysiloxane acts as a crosslinking agent, and the SiH group in the component is added to the vinyl groups in the (A) and (B) components. A cured product is formed by reaction. The organohydrogenpolysiloxane may be any one as long as it has two or more hydrogen atoms (that is, SiH groups) bonded to a silicon atom in one molecule. In particular, the following average composition formula (2)
H a (R 5 ) b SiO (4-ab) / 2 (2)
Wherein R 5 is the same or different unsubstituted or substituted monovalent hydrocarbon group containing no aliphatic unsaturated bond, and a and b are 0.001 ≦ a <2, 0.7 ≦ b ≦ 2 and 0.8 ≦ a + b ≦ 3.)
And one having at least 2, preferably 3 or more hydrogen atoms (SiH groups) bonded to a silicon atom in one molecule.

ここで、上記式(2)中のR5は、脂肪族不飽和結合を含有しない同一又は異種の非置換又は置換の炭素数1〜10、特に炭素数1〜7の一価炭化水素基であることが好ましく、例えばメチル基等の低級アルキル基、フェニル基等のアリール基、前述の一般式(1)の置換基R2で例示したものが挙げられる。また、a及びbは、0.001≦a<2、0.7≦b≦2、かつ0.8≦a+b≦3を満たす数であり、好ましくは0.05≦a≦1、0.8≦b≦2、かつ1≦a+b≦2.7となる数である。ケイ素原子に結合した水素原子の位置は特に制約はなく、分子の末端でも途中でもよい。 Here, R 5 in the above formula (2) is the same or different unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, particularly 1 to 7 carbon atoms, which does not contain an aliphatic unsaturated bond. It is preferable that there are, for example, lower alkyl groups such as a methyl group, aryl groups such as a phenyl group, and those exemplified for the substituent R 2 in the above general formula (1). A and b are numbers satisfying 0.001 ≦ a <2, 0.7 ≦ b ≦ 2, and 0.8 ≦ a + b ≦ 3, preferably 0.05 ≦ a ≦ 1, 0.8 ≦ b ≦ 2 and 1 ≦ a + b ≦ 2.7. The position of the hydrogen atom bonded to the silicon atom is not particularly limited, and may be at the end of the molecule or in the middle.

上記オルガノハイドロジェンポリシロキサンとしては、1,1,3,3−テトラメチルジシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、(CH32HSiO1/2単位とSiO4/2単位とから成る共重合体、(CH32HSiO1/2単位とSiO4/2単位と(C653SiO3/2単位とから成る共重合体などが挙げられる。
また、下記構造で示されるような化合物も使用することができる。
Examples of the organohydrogenpolysiloxane include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, trimethylsiloxy group-blocked methylhydrogenpolysiloxane, both ends Trimethylsiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, both ends dimethylhydrogensiloxy group-blocked dimethylpolysiloxane, both ends dimethylhydrogensiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, both ends trimethylsiloxy Blocked methylhydrogensiloxane / diphenylsiloxane copolymer, trimethylsiloxy group-blocked methylhydrogensiloxane / diphenylsiloxane / dimethylsiloxane copolymer on both ends Body, (CH 3) 2 HSiO copolymer comprising a 1/2 units and SiO 4/2 units, and, (CH 3) 2 HSiO 1/2 units, and SiO 4/2 units (C 6 H 5) 3 SiO And a copolymer composed of 3/2 units.
Moreover, a compound as shown by the following structure can also be used.

Figure 0004586967
Figure 0004586967

このオルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、環状、分岐状、三次元網状構造のいずれであってもよいが、一分子中のケイ素原子の数(又は重合度)は3〜1,000、特に3〜300程度のものを使用することができる。   The molecular structure of the organohydrogenpolysiloxane may be any of linear, cyclic, branched, and three-dimensional network structures, but the number of silicon atoms in one molecule (or the degree of polymerization) is 3 to 1. , Especially about 3 to 300 can be used.

このようなオルガノハイドロジェンポリシロキサンは、通常、R5SiHCl2、(R53SiCl、(R52SiCl2、(R52SiHCl(R5は、前記の通りである)のようなクロロシランを加水分解するか、加水分解して得られたシロキサンを平衡化することにより得ることができる。 Such organohydrogenpolysiloxanes are usually R 5 SiHCl 2 , (R 5 ) 3 SiCl, (R 5 ) 2 SiCl 2 , (R 5 ) 2 SiHCl (R 5 is as described above). Such chlorosilanes can be hydrolyzed or siloxanes obtained by hydrolysis can be equilibrated.

なお、このオルガノハイドロジェンポリシロキサンの配合量は、上記(A)、(B)成分の硬化有効量であり、特にそのSiH基が(A)成分及び(B)成分中のアルケニル基(例えばビニル基)の合計量当たり0.1〜4.0、特に好ましくは1.0〜3.0、更に好ましくは1.2〜2.8のモル比で使用されることが好ましい。0.1未満では硬化反応が進行せずシリコーンゴム硬化物を得ることが困難であり、4.0を超えると、未反応のSiH基が硬化物中に多量に残存するため、ゴム物性が経時的に変化する原因となる場合が生じる。   The amount of the organohydrogenpolysiloxane is the effective curing amount of the above components (A) and (B). In particular, the SiH group is an alkenyl group (for example, vinyl) in the components (A) and (B). It is preferable to use at a molar ratio of 0.1 to 4.0, particularly preferably 1.0 to 3.0, and more preferably 1.2 to 2.8 per total amount of (base). If it is less than 0.1, the curing reaction does not proceed and it is difficult to obtain a cured silicone rubber. If it exceeds 4.0, a large amount of unreacted SiH groups remain in the cured product, so that the rubber physical properties are deteriorated over time. May cause a change.

(D)白金族金属系触媒
この触媒成分は、本発明の組成物の付加硬化反応を生じさせるために配合されるものであり、白金系、パラジウム系、ロジウム系のものがあるが、コスト等の見地から白金、白金黒、塩化白金酸などの白金系のもの、例えば、H2PtCl6・mH2O,K2PtCl6,KHPtCl6・mH2O,K2PtCl4,K2PtCl4・mH2O,PtO2・mH2O(mは、正の整数)等や、これらと、オレフィン等の炭化水素、アルコール又はビニル基含有オルガノポリシロキサンとの錯体等を例示することができ、これらは単独でも、2種以上の組み合わせでも使用することができる。これらの触媒成分の配合量は、所謂触媒量でよく、通常、前記(A)〜(C)成分の合計量に対して白金族金属換算(質量)で0.1〜1,000ppm、好ましくは0.5〜200ppmの範囲で使用される。
(D) Platinum group metal-based catalyst This catalyst component is blended in order to cause an addition curing reaction of the composition of the present invention, and there are platinum-based, palladium-based and rhodium-based ones. From the viewpoint of platinum, platinum-based materials such as platinum, platinum black, chloroplatinic acid, for example, H 2 PtCl 6 · mH 2 O, K 2 PtCl 6 , KHPtCl 6 · mH 2 O, K 2 PtCl 4 , K 2 PtCl 4 Examples include mH 2 O, PtO 2 .mH 2 O (m is a positive integer), and complexes thereof with hydrocarbons such as olefins, alcohols, or vinyl group-containing organopolysiloxanes. These can be used alone or in combination of two or more. The compounding amount of these catalyst components may be a so-called catalyst amount, and is usually 0.1 to 1,000 ppm in terms of platinum group metal (mass) with respect to the total amount of the components (A) to (C), preferably Used in the range of 0.5 to 200 ppm.

(E)接着助剤
本発明の組成物には、これを硬化して得られる硬化物の接着性を向上させるため、ケイ素原子結合アルコキシ基を有するオルガノシラン、オルガノポリシロキサン等の有機ケイ素化合物などの接着助剤を任意成分として必要に応じて添加配合してもよい。このような有機ケイ素化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、ジメチルジメトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、フェニルトリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン等のアルコキシシラン化合物及び一分子中にケイ素原子に結合した水素原子(SiH基)、ケイ素原子に結合したアルケニル基(例えばSi−CH=CH2基)、アルコキシシリル基(例えばトリメトキシシリル基等のトリアルコキシシリル基など)、エポキシ基(例えばグリシドキシプロピル基、3,4−エポキシシクロヘキシルエチル基)から選ばれる官能性基を少なくとも2種、好ましくは2又は3種含有する、通常、ケイ素原子数4〜30、特には4〜20程度の、直鎖状又は環状構造のシロキサン化合物(オルガノシロキサンオリゴマー)が挙げられる。
(E) Adhesion aid In the composition of the present invention, an organosilicon compound such as organosilane or organopolysiloxane having a silicon atom-bonded alkoxy group is used to improve the adhesion of a cured product obtained by curing the composition. These adhesion assistants may be added and blended as optional components as required. Examples of such organosilicon compounds include tetramethoxysilane, tetraethoxysilane, dimethyldimethoxysilane, methylphenyldimethoxysilane, methylphenyldiethoxysilane, phenyltrimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, and vinyl. Alkoxysilane compounds such as trimethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and hydrogen atoms bonded to silicon atoms in one molecule ( SiH group), alkenyl groups bonded to silicon atom (e.g., Si-CH = CH 2 groups), such as trialkoxysilyl groups alkoxysilyl group (e.g., such as trimethoxysilyl group), an epoxy group (eg Glycidoxypropyl group, 3,4-epoxycyclohexylethyl group) containing at least 2, preferably 2 or 3 functional groups, usually having 4 to 30 silicon atoms, particularly about 4 to 20 And a siloxane compound (organosiloxane oligomer) having a linear or cyclic structure.

この場合、接着助剤として、下記一般式(3)で示されるオルガノオキシシリル変性イソシアヌレート化合物及び/又はその加水分解縮合物(オルガノシロキサン変性イソシアヌレート化合物)が好適に使用される。

Figure 0004586967
(式中、R6は、下記式(4)
Figure 0004586967
で表される有機基又は脂肪族不飽和結合を含有する一価炭化水素基であるが、少なくとも1個は式(4)の有機基であり、R7は水素原子又は炭素数1〜6の一価炭化水素基、sは1〜6、特に1〜4の整数である。) In this case, an organooxysilyl-modified isocyanurate compound represented by the following general formula (3) and / or a hydrolysis condensate thereof (organosiloxane-modified isocyanurate compound) is preferably used as an adhesion assistant.
Figure 0004586967
(Wherein R 6 represents the following formula (4)
Figure 0004586967
Or a monovalent hydrocarbon group containing an aliphatic unsaturated bond, at least one of which is an organic group of the formula (4), and R 7 is a hydrogen atom or having 1 to 6 carbon atoms. A monovalent hydrocarbon group, s is an integer of 1-6, especially 1-4. )

この場合、R6の脂肪族不飽和結合を含有する一価炭化水素基としては、ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ペンテニル基、ヘキセニル基、シクロヘキセニル基等の炭素数2〜8、特に2〜6のアルケニル基が挙げられる。また、R7の一価炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基等のアルキル基、ビニル基、アリル基、プロペニル基、イソプロペニル基等の上記R6として例示したものと同様のアルケニル基、フェニル基等のアリール基などの炭素数1〜8、特に1〜6の一価炭化水素基が挙げられ、好ましくはアルキル基である。 In this case, the monovalent hydrocarbon group containing an aliphatic unsaturated bond represented by R 6 includes a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, an isobutenyl group, a pentenyl group, a hexenyl group, and a cyclohexenyl group. And alkenyl groups having 2 to 8 carbon atoms, particularly 2 to 6 carbon atoms. Examples of the monovalent hydrocarbon group for R 7 include methyl groups, ethyl groups, propyl groups, isopropyl groups, butyl groups, isobutyl groups, tert-butyl groups, pentyl groups, hexyl groups, cyclohexyl groups, and other alkyl groups, vinyl A monovalent hydrocarbon group having 1 to 8 carbon atoms, particularly 1 to 6 carbon atoms such as an alkenyl group and an aryl group such as a phenyl group, which are the same as those exemplified as R 6 such as a group, an allyl group, a propenyl group and an isopropenyl group. And preferably an alkyl group.

(E)成分の接着助剤として、下記式に示される化合物が例示される。

Figure 0004586967
(式中、m,nはそれぞれm+nが2〜50、好ましくは4〜20を満足する正の整数である。) (E) As an adhesion assistant of a component, the compound shown by a following formula is illustrated.
Figure 0004586967
(In the formula, m and n are each a positive integer satisfying m + n of 2 to 50, preferably 4 to 20.)

Figure 0004586967
Figure 0004586967

Figure 0004586967
Figure 0004586967

このような有機ケイ素化合物の内、得られる硬化物の接着性が特に優れている化合物としては、一分子中にケイ素原子結合アルコキシ基とアルケニル基もしくはケイ素原子結合水素原子(SiH基)を有する有機ケイ素化合物であることが好ましい。   Among such organosilicon compounds, compounds having particularly excellent adhesion of the resulting cured product include organic compounds having silicon-bonded alkoxy groups and alkenyl groups or silicon-bonded hydrogen atoms (SiH groups) in one molecule. A silicon compound is preferred.

本発明において、上記(E)成分(任意成分)の接着助剤の配合量は、(A)成分と(B)成分との合計100質量部に対して、通常10質量部以下(即ち、0〜10質量部)、好ましくは0.01〜5質量部、より好ましくは0.1〜1質量部程度配合することができる。(E)成分の配合量が少なすぎると基材に対する接着性に劣る場合があり、多すぎると硬化物の硬度や表面タック性に悪影響を及ぼす場合がある。   In the present invention, the blending amount of the above-mentioned (E) component (arbitrary component) adhesion assistant is usually 10 parts by mass or less (ie 0 10 parts by mass), preferably 0.01-5 parts by mass, more preferably about 0.1-1 part by mass. If the amount of component (E) is too small, the adhesion to the substrate may be inferior, and if too large, the hardness and surface tackiness of the cured product may be adversely affected.

なお、本発明のシリコーンゴム組成物は、発光半導体被覆保護材として使用することができるが、上記のように接着助剤を配合することにより、得られた被覆保護材は、接着力が強いため樹脂硬化や実装時のIRリフローによる剥離を起こすことはない。また、その硬化物はデュロメータタイプAで70以上の硬さをもち、硬化物の表面に対する埃の付着もなく、低弾性特性を有することからセラミックやプラスチックの筐体との熱膨張係数の違いによる応力を吸収できるため、低温側−40℃、高温側120℃の熱衝撃試験を1,000サイクル行ってもクラックが発生することはない。   In addition, although the silicone rubber composition of the present invention can be used as a light emitting semiconductor coating protective material, the coating protective material obtained by blending an adhesion assistant as described above has a strong adhesive force. No peeling due to IR reflow during resin curing or mounting. Further, the cured product is durometer type A, has a hardness of 70 or more, has no adhesion of dust to the surface of the cured product, and has a low elastic property, so it depends on a difference in thermal expansion coefficient from a ceramic or plastic casing. Since stress can be absorbed, cracks do not occur even when 1,000 cycles of the thermal shock test at −40 ° C. on the low temperature side and 120 ° C. on the high temperature side are performed.

本発明の組成物には、上述した(A)〜(E)成分以外にも、必要に応じて、それ自体公知の各種の添加剤を配合することができる。例えば、ヒュームドシリカ、ヒュームド二酸化チタン等の補強性無機充填剤、炭酸カルシウム、ケイ酸カルシウム、二酸化チタン、酸化第二鉄、カーボンブラック、酸化亜鉛等の非補強性無機充填剤を、(A)成分と(B)成分の合計量100質量部当り600質量部以下の範囲で適宜配合することができる。   In addition to the components (A) to (E) described above, various additives known per se can be blended with the composition of the present invention as necessary. For example, reinforcing inorganic fillers such as fumed silica and fumed titanium dioxide, non-reinforcing inorganic fillers such as calcium carbonate, calcium silicate, titanium dioxide, ferric oxide, carbon black, and zinc oxide, (A) It can mix | blend suitably in the range of 600 mass parts or less per 100 mass parts of total amounts of a component and (B) component.

本発明のシリコーンゴム組成物は、上述した各成分を均一に混合することによって調製されるが、通常は、硬化が進行しないように2液に分けて保存され、使用時に2液を混合して硬化を行う。勿論、作業可能時間を長くするためにアセチレンアルコール系化合物、トリアゾール類、ニトリル化合物、リン化合物などの反応抑制剤を微量添加して1液として用いることができる。また、本発明のシリコーンゴム組成物に波長変更するための蛍光体や酸化チタン微粉末(TiO2)などのような光散乱剤等を添加することもできる。この組成物は、必要により加熱することにより直ちに硬化して、高い硬度と表面タックのない弾性硬化物を形成し、電気電子部品等の保護コート剤や、ポッティング、キャスティング、モールド剤等をはじめシリコーンゴムキーボードの表面コートなどのシリコーンの粘着性が問題となる汎用用途として広く使用することができる。なお、硬化条件は特に制限されるものではないが、通常、60〜200℃、好ましくは80〜180℃で5分〜8時間、好ましくは10分〜4時間程度で硬化することができる。 The silicone rubber composition of the present invention is prepared by uniformly mixing the above-described components. Usually, the silicone rubber composition is stored in two liquids so that curing does not proceed. Curing is performed. Of course, in order to increase the workable time, a small amount of a reaction inhibitor such as an acetylene alcohol compound, a triazole, a nitrile compound, or a phosphorus compound can be added and used as one liquid. Further, a phosphor for changing the wavelength, a light scattering agent such as fine titanium oxide powder (TiO 2 ), etc. can be added to the silicone rubber composition of the present invention. This composition is cured immediately by heating as necessary to form an elastic cured product having high hardness and no surface tack. Silicone, including protective coating agents for electrical and electronic parts, potting, casting, molding agents, etc. It can be widely used as a general purpose application in which the adhesiveness of silicone such as a surface coat of a rubber keyboard is a problem. The curing conditions are not particularly limited, but are usually 60 to 200 ° C., preferably 80 to 180 ° C. for 5 minutes to 8 hours, preferably about 10 minutes to 4 hours.

なお、本発明の組成物は液状に調製することができ、特に発光半導体被覆保護材として用いる場合、液状であることが好ましく、25℃の粘度は10〜1,000,000mPa・s、特には100〜1,000,000mPa・s程度が好ましい。   In addition, the composition of the present invention can be prepared in a liquid state, and particularly when used as a light-emitting semiconductor coating protective material, it is preferably in a liquid state, and the viscosity at 25 ° C. is 10 to 1,000,000 mPa · s. About 100 to 1,000,000 mPa · s is preferable.

本発明の被覆保護材は、発光半導体を被覆保護するために使用される。この場合、発光半導体としては、発光ダイオード(LED)、有機電界発光素子(有機EL)、レーザーダイオード、LEDアレイ等を挙げることができる。発光半導体を被覆保護する態様は特に制限されるものではないが、図1,2に示されるように、開口部を有する筐体内に配置された発光半導体を覆って筐体内に被覆保護材を充填し、これを硬化させる等の方法を採用し得る。   The coating protective material of the present invention is used for coating protection of a light emitting semiconductor. In this case, examples of the light emitting semiconductor include a light emitting diode (LED), an organic electroluminescent element (organic EL), a laser diode, and an LED array. The mode of covering and protecting the light emitting semiconductor is not particularly limited, but as shown in FIGS. 1 and 2, the casing is filled with a covering protective material covering the light emitting semiconductor disposed in the housing having an opening. Then, a method such as curing it can be adopted.

なお、本発明の被覆保護材の硬化条件は、室温(25℃)で72時間から200℃で3分間と、その作業条件に合わせて任意であり、生産性と発光素子や筐体耐熱性とのバランスから適宜選定することができる。   In addition, the curing conditions of the coating protective material of the present invention are arbitrary depending on the working conditions from 72 hours to 200 ° C. for 3 minutes at room temperature (25 ° C.). It is possible to select appropriately from the balance.

以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記例で部は質量部を示し、粘度は25℃の値である。更に、Meはメチル基、Viはビニル基を示す。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In addition, a part shows a mass part by the following example, and a viscosity is a value of 25 degreeC. Further, Me represents a methyl group, and Vi represents a vinyl group.

[実施例1]
下記式(i)

Figure 0004586967
で示されるポリシロキサン(VF)50部に、SiO2単位50モル%、(CH33SiO0.5単位42.5モル%及びVi3SiO0.5単位7.5モル%からなるレジン構造のビニルメチルシロキサン(VMQ)50部、SiH基量が前記VF及びVMQ成分中のビニル基の合計量当り1.5倍モルとなる量の下記式(ii)
Figure 0004586967
で示されるオルガノハイドロジェンポリシロキサン及び塩化白金酸のオクチルアルコール変性溶液(Pt濃度2質量%、以下同様)0.05部を加え、よく撹拌し、シリコーンゴム組成物を調製した。 [Example 1]
Formula (i) below
Figure 0004586967
And 50 parts by weight of polysiloxane (VF) represented by the following formula: Resin-structure vinylmethyl consisting of 50 mol% of SiO 2 units, 42.5 mol% of (CH 3 ) 3 SiO 0.5 units and 7.5 mol% of Vi 3 SiO 0.5 units 50 parts by weight of siloxane (VMQ), and the amount of SiH group is 1.5 times mol per total amount of vinyl groups in the VF and VMQ components.
Figure 0004586967
An organohydrogenpolysiloxane represented by the above formula and 0.05 part of an octyl alcohol-modified solution of chloroplatinic acid (Pt concentration: 2% by mass, the same applies hereinafter) were added and stirred well to prepare a silicone rubber composition.

この組成物を150℃/4hrにて加熱成型して硬化物を形成し、JIS K 6301に準拠して、引張強度、硬度(A型スプリング試験機を用いて測定)及び伸び率を測定した。また表面のタック性を指触にて確認したほか、綿埃中に硬化物を置き、取り出し後、エアーにて表面の埃が取れるかを試験した。更に、アルミ皿(直径6cm,深さ0.6mm)に樹脂を封入し、硬化したサンプルを−50℃〜150℃の冷熱サイクルに投入し、クラックを確認した。各測定結果を表1に示した。   This composition was heat-molded at 150 ° C./4 hr to form a cured product, and the tensile strength, hardness (measured using an A-type spring tester) and elongation were measured according to JIS K 6301. In addition to confirming the tackiness of the surface with a finger, a cured product was placed in cotton dust, and after taking out, it was tested whether the surface dust could be removed with air. Further, the resin was sealed in an aluminum dish (diameter 6 cm, depth 0.6 mm), and the cured sample was put into a -50 ° C. to 150 ° C. cooling cycle to check for cracks. The measurement results are shown in Table 1.

[実施例2]
VFとして下記式(iii)

Figure 0004586967
を使用した以外は実施例1と同じ組成にてシリコーンゴム組成物を調製し、硬化物を形成し、実施例1と同様に測定した結果を表1に示した。 [Example 2]
As VF, the following formula (iii)
Figure 0004586967
Table 1 shows the results of preparing a silicone rubber composition with the same composition as in Example 1 except that was used, forming a cured product, and measuring the same as in Example 1.

[実施例3]
実施例1で用いたVF70部、実施例1で用いたVMQ30部(VFとVMQの合計量として、SiVi結合を0.043mol/100g含有)、実施例1で用いたオルガノハイドロジェンポリシロキサン(SiH結合を0.74mol/100g含有)4.3部、塩化白金酸のオクチルアルコール変性溶液0.05部を混合し、実施例1と同様にしてシリコーンゴム組成物を調製し、硬化物を形成し、実施例1と同様に測定した結果を表1に示した。
[Example 3]
70 parts of VF used in Example 1, 30 parts of VMQ used in Example 1 (containing 0.043 mol / 100 g of SiVi bond as the total amount of VF and VMQ), organohydrogenpolysiloxane used in Example 1 (SiH 4.3 parts of a bond (containing 0.74 mol / 100 g) and 0.05 part of an octyl alcohol-modified solution of chloroplatinic acid were mixed to prepare a silicone rubber composition in the same manner as in Example 1 to form a cured product. The results measured in the same manner as in Example 1 are shown in Table 1.

[実施例4]
実施例1において、使用したVMQレジンをSiO2単位50モル%、(CH33SiO0.5単位42.5モル%及びVi2MeSiO0.5単位7.5モル%からなるレジン構造のビニルメチルシロキサン(VMQ)50部、SiH基量が前記VF及びVMQ成分中のビニル基の合計量当り1.5倍モルとなる量の上記式(ii)のオルガノハイドロジェンポリシロキサンを使用した以外は、実施例1と同様にしてシリコーンゴム組成物を調製し、硬化物を形成し、実施例1と同様に測定した結果を表1に示した。
[Example 4]
In Example 1, the VMQ resin used was a vinylmethylsiloxane having a resin structure consisting of 50 mol% of SiO 2 units, 42.5 mol% of (CH 3 ) 3 SiO 0.5 units and 7.5 mol% of Vi 2 MeSiO 0.5 units ( VMQ) Examples except that the organohydrogenpolysiloxane of the above formula (ii) was used in an amount of 50 parts, and the amount of SiH groups was 1.5 times mol per the total amount of vinyl groups in the VF and VMQ components. A silicone rubber composition was prepared in the same manner as in Example 1 to form a cured product, and the results of measurement in the same manner as in Example 1 are shown in Table 1.

[実施例5]
上記式(i)で示されるポリシロキサン(VF)50部に、SiO2単位50モル%、(CH33SiO0.5単位40モル%及びVi3SiO0.5単位10モル%からなるレジン構造のビニルメチルシロキサン(VMQ)50部、SiH基量が前記VF及びVMQ成分中のビニル基の合計量当り1.5倍モルとなる量の上記式(ii)で示されるオルガノハイドロジェンポリシロキサン及び塩化白金酸のオクチルアルコール変性溶液0.05部を加え、よく撹拌し、シリコーンゴム組成物を調製した。この組成物を150℃/4hrにて加熱成型して硬化物を形成し、実施例1と同様に測定した結果を表1に示した。
[Example 5]
Resin-structured vinyl comprising 50 mol% of SiO 2 units, 40 mol% of (CH 3 ) 3 SiO 0.5 units and 10 mol% of Vi 3 SiO 0.5 units in 50 parts of polysiloxane (VF) represented by the above formula (i) 50 parts of methylsiloxane (VMQ), organohydrogenpolysiloxane represented by the above formula (ii) and platinum chloride in an amount such that the amount of SiH groups is 1.5 times mol per total amount of vinyl groups in the VF and VMQ components 0.05 parts of an acid octyl alcohol-modified solution was added and stirred well to prepare a silicone rubber composition. The composition was heat-molded at 150 ° C./4 hr to form a cured product, and the results measured in the same manner as in Example 1 are shown in Table 1.

[比較例1]
上記式(iii)で示されるポリシロキサン(VF)50部に、SiO2単位50モル%、(CH33SiO0.5単位42.5モル%及びViMe2SiO0.5単位7.5モル%からなるレジン構造のビニルメチルシロキサン(VMQ)50部、SiH基量が前記VF及びVMQ成分中のビニル基の合計量当り1.5倍モルとなる量の上記式(ii)で示されるオルガノハイドロジェンポリシロキサン及び塩化白金酸のオクチルアルコール変性溶液0.05部を加え、よく撹拌し、シリコーンゴム組成物を調製した。この組成物を150℃/4hrにて加熱成型して硬化物を形成し、実施例1と同様に測定した結果を表2に示した。
[Comparative Example 1]
50 parts by weight of polysiloxane (VF) represented by the above formula (iii) is composed of 50 mol% of SiO 2 units, 42.5 mol% of (CH 3 ) 3 SiO 0.5 units and 7.5 mol% of ViMe 2 SiO 0.5 units. 50 parts of vinyl methylsiloxane (VMQ) having a resin structure, and an organohydrogenpolypolyol represented by the above formula (ii) in an amount such that the amount of SiH groups is 1.5 times mol per total amount of vinyl groups in the VF and VMQ components 0.05 parts of octyl alcohol modified solution of siloxane and chloroplatinic acid was added and stirred well to prepare a silicone rubber composition. This composition was heat-molded at 150 ° C./4 hr to form a cured product, and the results of measurement in the same manner as in Example 1 are shown in Table 2.

[比較例2]
上記式(i)で示されるポリシロキサン(VF)50部に、SiO2単位50モル%、(CH33SiO0.5単位42.5モル%及びViMe2SiO0.5単位7.5モル%からなるレジン構造のビニルメチルシロキサン(VMQ)50部、SiH基量が前記VF及びVMQ成分中のビニル基の合計量当り1.5倍モルとなる量の上記式(ii)で示されるオルガノハイドロジェンポリシロキサン及び塩化白金酸のオクチルアルコール変性溶液0.05部を加え、よく撹拌し、シリコーンゴム組成物を調製した。この組成物を150℃/4hrにて加熱成型して硬化物を形成し、実施例1と同様に測定した結果を表2に示した。
[Comparative Example 2]
50 parts by weight of polysiloxane (VF) represented by the above formula (i) is composed of 50 mol% of SiO 2 units, 42.5 mol% of (CH 3 ) 3 SiO 0.5 units and 7.5 mol% of ViMe 2 SiO 0.5 units. 50 parts of vinyl methylsiloxane (VMQ) having a resin structure, and an organohydrogenpolypolyol represented by the above formula (ii) in an amount such that the amount of SiH groups is 1.5 times mol per total amount of vinyl groups in the VF and VMQ components 0.05 parts of octyl alcohol modified solution of siloxane and chloroplatinic acid was added and stirred well to prepare a silicone rubber composition. This composition was heat-molded at 150 ° C./4 hr to form a cured product, and the results of measurement in the same manner as in Example 1 are shown in Table 2.

[比較例3]
市販シリコーンワニスKJR−632(信越化学工業(株)製)を同様に硬化させて硬化物を形成し、実施例1と同様に測定した結果を表2に示した。

Figure 0004586967
[Comparative Example 3]
Commercially available silicone varnish KJR-632 (manufactured by Shin-Etsu Chemical Co., Ltd.) was cured in the same manner to form a cured product, and the results measured in the same manner as in Example 1 are shown in Table 2.
Figure 0004586967

Figure 0004586967
Figure 0004586967

[実施例6]
上記式(i)で示されるポリシロキサン(VF)50部に、SiO2単位50モル%、(CH33SiO0.5単位42.5モル%及びVi3SiO0.5単位7.5モル%からなるレジン構造のビニルメチルシロキサン(VMQ)50部、下記式(iv)

Figure 0004586967
で示されるオルガノハイドロジェンポリシロキサン8部、下記式(v)
Figure 0004586967
で示されるオルガノハイドロジェンポリシロキサン5部、下記式(vi)
Figure 0004586967
で示される接着助剤0.3部及び塩化白金酸のオクチルアルコール変性溶液0.05部を加え、よく撹拌し、シリコーンゴム組成物を調製した。 [Example 6]
50 parts by weight of polysiloxane (VF) represented by the above formula (i) is composed of 50 mol% of SiO 2 units, 42.5 mol% of (CH 3 ) 3 SiO 0.5 units and 7.5 mol% of Vi 3 SiO 0.5 units. Resin structure vinylmethylsiloxane (VMQ) 50 parts, the following formula (iv)
Figure 0004586967
8 parts of an organohydrogenpolysiloxane represented by the following formula (v)
Figure 0004586967
5 parts of an organohydrogenpolysiloxane represented by the following formula (vi)
Figure 0004586967
A silicone rubber composition was prepared by adding 0.3 part of an adhesion aid represented by the above and 0.05 part of an octyl alcohol-modified solution of chloroplatinic acid and stirring well.

この組成物を150℃/4hrにて加熱成型して硬化物を形成し、JIS K 6301に準拠して、アルミニウムに対する剪断接着強度、硬度(A型スプリング試験機を用いて測定)及び伸び率を測定した。また、表面のタック性を指触にて確認したほか、綿埃中に硬化物を置き、取り出した後、エアーにて表面の埃が取れるかを試験した。更に、アルミ皿(直径6cm,深さ0.6mm)に樹脂を封入し、硬化したサンプルを−50℃〜150℃の冷熱サイクルに投入し、クラックを確認した。各測定結果を表3に示した。   This composition is heat-molded at 150 ° C./4 hr to form a cured product, and in accordance with JIS K 6301, the shear bond strength, hardness (measured using an A-type spring tester) and elongation rate to aluminum are measured. It was measured. In addition to confirming the tackiness of the surface with a finger, a cured product was placed in cotton dust, and after taking out, it was tested whether the surface dust could be removed with air. Further, the resin was sealed in an aluminum dish (diameter 6 cm, depth 0.6 mm), and the cured sample was put into a -50 ° C. to 150 ° C. cooling cycle to check for cracks. Table 3 shows the measurement results.

[実施例7]
VFとして上記式(iii)を使用した以外は実施例6と同じ組成にてシリコーンゴム組成物を調製し、硬化物を形成し、実施例6と同様に測定した結果を表3に示した。
[Example 7]
A silicone rubber composition was prepared with the same composition as in Example 6 except that the above formula (iii) was used as VF, a cured product was formed, and the results measured in the same manner as in Example 6 are shown in Table 3.

[実施例8]
上記式(i)で示されるポリシロキサン50部に、SiO2単位50モル%、(CH33SiO0.5単位40モル%及びVi3SiO0.5単位10モル%からなるレジン構造のビニルメチルシロキサン(VMQ)50部、上記式(ii)で示されるオルガノハイドロジェンポリシロキサン3部、上記式(iv)で示されるオルガノハイドロジェンポリシロキサン5部、下記式(vii)

Figure 0004586967
で示される接着助剤0.2部及び塩化白金酸のオクチルアルコール変性溶液0.05部を加え、よく撹拌し、シリコーンゴム組成物を調製した。この組成物を150℃/4hrにて硬化物を形成し、実施例6と同様に測定した結果を表3に示した。 [Example 8]
50 parts by weight of the polysiloxane represented by the above formula (i) is added to a vinylmethylsiloxane having a resin structure consisting of 50 mol% of SiO 2 units, 40 mol% of (CH 3 ) 3 SiO 0.5 units and 10 mol% of Vi 3 SiO 0.5 units ( VMQ) 50 parts, 3 parts of an organohydrogenpolysiloxane represented by the above formula (ii), 5 parts of an organohydrogenpolysiloxane represented by the above formula (iv), and the following formula (vii)
Figure 0004586967
And 0.2 part of an adhesion assistant represented by the above and 0.05 part of chloroplatinic acid octyl alcohol-modified solution were added and stirred well to prepare a silicone rubber composition. Table 3 shows the results obtained by forming a cured product of this composition at 150 ° C./4 hr and measuring it in the same manner as in Example 6.

[比較例4]
上記式(iii)で示されるポリシロキサン50部に、SiO2単位50モル%、(CH33SiO0.5単位42.5モル%及びViMe2SiO0.5単位7.5モル%からなるレジン構造のビニルメチルシロキサン(VMQ)50部、上記式(iv)で示されるオルガノハイドロジェンポリシロキサン8部、上記式(v)で示されるオルガノハイドロジェンポリシロキサン5部、上記式(vi)で示される接着助剤0.3部及び塩化白金酸のオクチルアルコール変性溶液0.05部を加え、よく撹拌し、シリコーンゴム組成物を調製した。この組成物を150℃/4hrにて加熱成型して硬化物を形成し、実施例6と同様に測定した結果を表3に示した。
[Comparative Example 4]
50 parts by weight of the polysiloxane represented by the above formula (iii) has a resin structure composed of 50 mol% of SiO 2 units, 42.5 mol% of (CH 3 ) 3 SiO 0.5 units and 7.5 mol% of ViMe 2 SiO 0.5 units. 50 parts of vinylmethylsiloxane (VMQ), 8 parts of organohydrogenpolysiloxane represented by the above formula (iv), 5 parts of organohydrogenpolysiloxane represented by the above formula (v), adhesion represented by the above formula (vi) 0.3 parts of auxiliary agent and 0.05 parts of chloroplatinic acid octyl alcohol-modified solution were added and stirred well to prepare a silicone rubber composition. This composition was heat-molded at 150 ° C./4 hr to form a cured product, and the results of measurement in the same manner as in Example 6 are shown in Table 3.

[比較例5]
上記式(i)で示されるポリシロキサン50部に、SiO2単位50モル%、(CH33SiO0.5単位42.5モル%及びViMe2SiO0.5単位7.5モル%からなるレジン構造のビニルメチルシロキサン(VMQ)50部、上記式(ii)で示されるオルガノハイドロジェンポリシロキサン3部、上記式(iv)で示されるオルガノハイドロジェンポリシロキサン5部、上記式(vii)で示される接着助剤0.2部及び塩化白金酸のオクチルアルコール変性溶液0.05部を加え、よく撹拌し、シリコーンゴム組成物を調製した。この組成物を150℃/4hrにて加熱成型して硬化物を形成し、実施例6と同様に測定した結果を表3に示した。
[Comparative Example 5]
50 parts by weight of the polysiloxane represented by the above formula (i) has a resin structure composed of 50 mol% of SiO 2 units, 42.5 mol% of (CH 3 ) 3 SiO 0.5 units and 7.5 mol% of ViMe 2 SiO 0.5 units. 50 parts of vinylmethylsiloxane (VMQ), 3 parts of organohydrogenpolysiloxane represented by the above formula (ii), 5 parts of organohydrogenpolysiloxane represented by the above formula (iv), adhesion represented by the above formula (vii) 0.2 part of auxiliary agent and 0.05 part of octyl alcohol modified solution of chloroplatinic acid were added and stirred well to prepare a silicone rubber composition. This composition was heat-molded at 150 ° C./4 hr to form a cured product, and the results of measurement in the same manner as in Example 6 are shown in Table 3.

Figure 0004586967
Figure 0004586967

表1〜3の結果に示されているように、本発明によれば、耐衝撃性に優れ、シリコーンエラストマーの欠点である表面タックによる埃の付着のない硬化物が得られる。   As shown in the results of Tables 1 to 3, according to the present invention, a cured product having excellent impact resistance and free from dust adhesion due to surface tack, which is a defect of the silicone elastomer, can be obtained.

次に、透明半導体被覆保護材の実施例と比較例を示す。
実施例9〜12と比較例6〜8の被覆保護材の評価方法は下記の通りである。
[評価方法]
シリコーン系ダイボンド材の調製
下記式(I)

Figure 0004586967
で表される末端ビニルジメチルシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体(粘度3Pa・s)100部、下記式(II) Next, examples and comparative examples of the transparent semiconductor coating protective material are shown.
The evaluation methods of the coating protective materials of Examples 9 to 12 and Comparative Examples 6 to 8 are as follows.
[Evaluation methods]
Preparation of silicone die bond material
Figure 0004586967
A terminal vinyldimethylsiloxy group-capped dimethylsiloxane / diphenylsiloxane copolymer (viscosity 3 Pa · s) represented by the following formula (II):

Figure 0004586967
で表されるメチルハイドロジェンポリシロキサン(粘度15mPa・s)2.5部、塩化白金酸2−エチルヘキシルアルコール変性溶液(Pt濃度2質量%)0.03部、エチニルシクロヘキシルアルコール0.05部、3−グリシドキシプロピルトリメトキシシラン7部及び平均粒径9μmの球状アルミナ微粉末400部を均一混合してシリコーンダイボンド材を調製した。
Figure 0004586967
Methyl hydrogen polysiloxane (viscosity 15 mPa · s) 2.5 parts, chloroplatinic acid 2-ethylhexyl alcohol modified solution (Pt concentration 2% by mass) 0.03 parts, ethynylcyclohexyl alcohol 0.05 parts, 3 A silicone die bond material was prepared by uniformly mixing 7 parts of glycidoxypropyltrimethoxysilane and 400 parts of spherical alumina fine powder having an average particle size of 9 μm.

発光半導体装置の作製方法
発光素子として、InGaNからなる発光層を有し、主発光ピークが470nmのLEDチップを用いて、図1に示すような発光半導体装置を作製した。発光素子2をリード電極にシリコーン系ダイボンド材5を用い、180℃で10分間加熱して固定した。発光素子2とリード電極3,4を金線6にて接続させた後、被覆保護材7をポッティングし、180℃で1時間硬化し、発光半導体装置を作製した。
耐熱衝撃性の試験方法
作製した発光半導体装置を、低温側−40℃、高温側120℃の熱衝撃試験を1,000サイクル行って外観のクラックが発生した数を観察した。
表面埃付着性
作製した発光半導体装置に微粉末シリカをふりかけ表面に付着させた後、エアーを吹きかけることで半導体装置表面に付着した微粉末シリカを除去できるかどうか確認した。
Method for Manufacturing Light-Emitting Semiconductor Device A light-emitting semiconductor device as shown in FIG. 1 was manufactured using an LED chip having a light-emitting layer made of InGaN and having a main light emission peak of 470 nm as a light-emitting element. The light emitting element 2 was fixed by heating at 180 ° C. for 10 minutes using a silicone die bond material 5 as a lead electrode. After the light emitting element 2 and the lead electrodes 3 and 4 were connected by the gold wire 6, the covering protective material 7 was potted and cured at 180 ° C. for 1 hour to produce a light emitting semiconductor device.
Thermal Shock Resistance Test Method The manufactured light-emitting semiconductor device was subjected to 1,000 cycles of thermal shock tests at a low temperature side of −40 ° C. and a high temperature side of 120 ° C., and the number of appearance cracks was observed.
Surface dust adhesion The light-emitting semiconductor device produced was sprinkled with fine powder silica and adhered to the surface, and then air was blown to confirm whether the fine powder silica adhered to the surface of the semiconductor device could be removed.

[実施例9]
下記式

Figure 0004586967
で示されるポリシロキサン(VF)50部に、SiO2単位50モル%、(CH33SiO0.5単位42.5モル%及びVi3SiO0.5単位7.5モル%からなるレジン構造のビニルメチルシロキサン(VMQ)50部、
Figure 0004586967
で示されるオルガノハイドロジェンポリシロキサン8部、
Figure 0004586967
で示されるオルガノハイドロジェンポリシロキサン5部、
Figure 0004586967
で示される接着助剤0.3部、及び、塩化白金酸のオクチルアルコール変性溶液0.05部を加え、よく撹拌し、シリコーンゴム組成物を調製した。この組成物を150℃/4hrにて加熱成型して硬化物を形成し、JIS K 6301に準拠して、硬度(A型スプリング試験機を用いて測定)を測定した。この組成物を硬化させたものは無色透明なものであった。このゴム組成物を用いて発光半導体装置を作製した。 [Example 9]
Following formula
Figure 0004586967
And 50 parts by weight of polysiloxane (VF) represented by the following formula: Resin-structure vinylmethyl consisting of 50 mol% of SiO 2 units, 42.5 mol% of (CH 3 ) 3 SiO 0.5 units and 7.5 mol% of Vi 3 SiO 0.5 units 50 parts of siloxane (VMQ),
Figure 0004586967
8 parts of an organohydrogenpolysiloxane represented by
Figure 0004586967
5 parts of an organohydrogenpolysiloxane represented by
Figure 0004586967
A silicone rubber composition was prepared by adding 0.3 part of an adhesion aid represented by the above and 0.05 part of an octyl alcohol-modified solution of chloroplatinic acid and stirring well. This composition was heat-molded at 150 ° C./4 hr to form a cured product, and the hardness (measured using an A-type spring tester) was measured in accordance with JIS K 6301. The cured product was colorless and transparent. A light-emitting semiconductor device was manufactured using this rubber composition.

[実施例10]
VFとして下記式

Figure 0004586967
を使用した以外は実施例9と同じ組成にてシリコーンゴム組成物を調製し、硬化物を形成し、実施例9と同様に測定した結果を表4に示した。硬化物は無色透明であった。このゴム組成物を用いて発光半導体装置を作製した。 [Example 10]
The following formula as VF
Figure 0004586967
Table 4 shows the results of preparing a silicone rubber composition with the same composition as in Example 9 except that was used, forming a cured product, and measuring the same as in Example 9. The cured product was colorless and transparent. A light-emitting semiconductor device was manufactured using this rubber composition.

[実施例11]
実施例9において使用したポリシロキサン(VF)70部、VMQレジンとしてSiO2単位50モル%、(CH33SiO0.5単位42.5モル%及びVi2MeSiO0.5単位7.5モル%からなるレジン構造のビニルメチルシロキサン(VMQ)30部、下記式

Figure 0004586967
で示されるオルガノハイドロジェンポリシロキサン10部を使用した以外は、実施例9と同様にしてシリコーンゴム組成物を調製し、硬化物を形成し、実施例9と同様に測定した結果を表4に示した。硬化物は無色透明であった。このゴム組成物を用いて発光半導体装置を作製した。 [Example 11]
70 parts of polysiloxane (VF) used in Example 9, 50 mol% of SiO 2 units as VMQ resin, 42.5 mol% of (CH 3 ) 3 SiO 0.5 units and 7.5 mol% of Vi 2 MeSiO 0.5 units Resin structure vinyl methylsiloxane (VMQ) 30 parts, following formula
Figure 0004586967
A silicone rubber composition was prepared in the same manner as in Example 9 except that 10 parts of the organohydrogenpolysiloxane shown in FIG. Indicated. The cured product was colorless and transparent. A light-emitting semiconductor device was manufactured using this rubber composition.

[実施例12]
下記式

Figure 0004586967
で示されるポリシロキサン50部に、SiO2単位50モル%、(CH33SiO0.5単位40モル%及びVi3SiO0.5単位10モル%からなるレジン構造のビニルメチルシロキサン(VMQ)50部、下記式
Figure 0004586967
で示されるオルガノハイドロジェンポリシロキサン3部、
Figure 0004586967
で示されるオルガノハイドロジェンポリシロキサン5部、
Figure 0004586967
で示される接着助剤0.2部、及び、塩化白金酸のオクチルアルコール変性溶液0.05部を加え、よく撹拌し、シリコーンゴム組成物を調製した。この組成物を150℃/4hrにて加熱成型して硬化物を形成し、実施例9と同様に測定した結果を表4に示した。この硬化物は無色透明なものであった。このゴム組成物を用いて発光半導体装置を作製した。 [Example 12]
Following formula
Figure 0004586967
50 parts by weight of polysiloxane represented by the following formula: 50 parts by weight of SiO 2 units, 50 parts by weight of (CH 3 ) 3 SiO 0.5 units and 50 parts by weight of vinyl methylsiloxane (VMQ) having a resin structure consisting of 10 mol% of Vi 3 SiO 0.5 units, Following formula
Figure 0004586967
3 parts of an organohydrogenpolysiloxane represented by
Figure 0004586967
5 parts of an organohydrogenpolysiloxane represented by
Figure 0004586967
And 0.2 part of an adhesion assistant represented by the above and 0.05 part of a chloroplatinic acid octyl alcohol-modified solution were added and stirred well to prepare a silicone rubber composition. This composition was heat-molded at 150 ° C./4 hr to form a cured product, and the results of measurement similar to Example 9 are shown in Table 4. This cured product was colorless and transparent. A light-emitting semiconductor device was manufactured using this rubber composition.

[比較例6]
下記式

Figure 0004586967
で示されるポリシロキサン50部に、SiO2単位50モル%、(CH33SiO0.5単位42.5モル%及びViMe2SiO0.5単位7.5モル%からなるレジン構造のビニルメチルシロキサン(VMQ)50部、下記式
Figure 0004586967
で示されるオルガノハイドロジェンポリシロキサン8部、
Figure 0004586967
で示されるオルガノハイドロジェンポリシロキサン5部、
Figure 0004586967
で示される接着助剤0.3部、及び、塩化白金酸のオクチルアルコール変性溶液0.05部を加え、よく撹拌し、シリコーンゴム組成物を調製した。この組成物を150℃/4hrにて加熱成型して硬化物を形成し、実施例9と同様に測定した結果を表4に示した。硬化物は無色透明であった。このゴム組成物を用いて発光半導体装置を作製した。 [Comparative Example 6]
Following formula
Figure 0004586967
And 50 parts by weight of polysiloxane represented by the formula: Resin-structured vinylmethylsiloxane (VMQ) consisting of 50 mol% of SiO 2 units, 42.5 mol% of (CH 3 ) 3 SiO 0.5 units and 7.5 mol% of ViMe 2 SiO 0.5 units. 50 parts, following formula
Figure 0004586967
8 parts of an organohydrogenpolysiloxane represented by
Figure 0004586967
5 parts of an organohydrogenpolysiloxane represented by
Figure 0004586967
A silicone rubber composition was prepared by adding 0.3 part of an adhesion aid represented by the above and 0.05 part of an octyl alcohol-modified solution of chloroplatinic acid and stirring well. This composition was heat-molded at 150 ° C./4 hr to form a cured product, and the results of measurement similar to Example 9 are shown in Table 4. The cured product was colorless and transparent. A light-emitting semiconductor device was manufactured using this rubber composition.

[比較例7]
下記式

Figure 0004586967
で示されるポリシロキサン50部に、SiO2単位50モル%、(CH33SiO0.5単位42.5モル%及びViMe2SiO0.5単位7.5モル%からなるレジン構造のビニルメチルシロキサン(VMQ)50部、下記式
Figure 0004586967
で示されるオルガノハイドロジェンポリシロキサン3部、
Figure 0004586967
で示されるオルガノハイドロジェンポリシロキサン5部、
Figure 0004586967
で示される接着助剤0.2部、及び、塩化白金酸のオクチルアルコール変性溶液0.05部を加え、よく撹拌し、シリコーンゴム組成物を調製した。この組成物を150℃/4hrにて加熱成型して硬化物を形成し、実施例9と同様に測定した結果を表4に示した。硬化物は無色透明であった。このゴム組成物を用いて発光半導体装置を作製した。 [Comparative Example 7]
Following formula
Figure 0004586967
And 50 parts by weight of polysiloxane represented by the formula: Resin-structured vinylmethylsiloxane (VMQ) consisting of 50 mol% of SiO 2 units, 42.5 mol% of (CH 3 ) 3 SiO 0.5 units and 7.5 mol% of ViMe 2 SiO 0.5 units. 50 parts, following formula
Figure 0004586967
3 parts of an organohydrogenpolysiloxane represented by
Figure 0004586967
5 parts of an organohydrogenpolysiloxane represented by
Figure 0004586967
And 0.2 part of an adhesion assistant represented by the above and 0.05 part of a chloroplatinic acid octyl alcohol-modified solution were added and stirred well to prepare a silicone rubber composition. This composition was heat-molded at 150 ° C./4 hr to form a cured product, and the results of measurement similar to Example 9 are shown in Table 4. The cured product was colorless and transparent. A light-emitting semiconductor device was manufactured using this rubber composition.

[比較例8]
市販シリコーンワニスKJR−632(信越化学工業(株)製)を同様に硬化させ、硬化物を形成し、実施例9と同様に測定した結果を表4に示した。硬化物は無色透明であった。このワニスを用いて発光半導体装置を作製した。
[Comparative Example 8]
Commercially available silicone varnish KJR-632 (manufactured by Shin-Etsu Chemical Co., Ltd.) was cured in the same manner to form a cured product, and the results measured in the same manner as in Example 9 are shown in Table 4. The cured product was colorless and transparent. A light emitting semiconductor device was manufactured using this varnish.

実施例9〜12及び比較例6〜8のシリコーンゴム組成物及びワニスを用いて発光素子を封止し、特性を評価した。
上記実施例9〜12及び比較例6〜8の被覆保護材の評価結果を表4に示す。
The light emitting element was sealed using the silicone rubber compositions and varnishes of Examples 9 to 12 and Comparative Examples 6 to 8, and the characteristics were evaluated.
Table 4 shows the evaluation results of the coating protective materials of Examples 9 to 12 and Comparative Examples 6 to 8.

Figure 0004586967
Figure 0004586967

表4の結果に示されているように、本発明の発光半導体被覆保護材で被覆保護された発光半導体装置は、耐熱試験による変色も少なく、発光効率も高いため長寿命で省エネルギーに優れる発光半導体装置を提供することが可能となり、産業上のメリットは多大である。   As shown in the results of Table 4, the light-emitting semiconductor device coated and protected with the light-emitting semiconductor coating protective material of the present invention has a long life and excellent energy saving because there is little discoloration due to the heat resistance test and high light emission efficiency. An apparatus can be provided, and the industrial merit is great.

表面実装型半導体発光装置の一例(発光素子が絶縁性の筐体上にダイボンドされたもの)を示す発光ダイオードの断面図である。It is sectional drawing of the light emitting diode which shows an example (thing by which the light emitting element was die-bonded on the insulating housing | casing) of a surface mount type semiconductor light-emitting device. 表面実装型半導体発光装置の他の例(発光素子が筐体に挿入されたリード電極上にダイボンドされたもの)を示す発光ダイオードの断面図である。It is sectional drawing of the light emitting diode which shows the other example (The thing by which the light emitting element was die-bonded on the lead electrode inserted in the housing | casing). 砲弾型半導体発光装置を示す発光ダイオードの断面図である。It is sectional drawing of the light emitting diode which shows a shell-type semiconductor light-emitting device.

符号の説明Explanation of symbols

1 筐体
2 発光素子
3,4 リード電極
5 ダイボンド材
6 金線
7 被覆保護材
DESCRIPTION OF SYMBOLS 1 Case 2 Light emitting element 3, 4 Lead electrode 5 Die-bonding material 6 Gold wire 7 Covering protective material

Claims (5)

(A)下記一般式(1)
Figure 0004586967
(式中、R 1 は互いに同一又は異種の非置換又は置換一価炭化水素基、R 2 は互いに同一又は異種の脂肪族不飽和結合を有さない非置換又は置換一価炭化水素基であり、k,mは0又は正の整数であり、k+mがこのオルガノポリシロキサンの25℃の粘度を10〜1,000,000mPa・sとする数である。)
で表される一分子中に2個以上の脂肪族不飽和結合を有し、粘度が25℃で10〜1,000,000mPa・sであるオルガノポリシロキサン、
(B)SiO2単位、R3 n4 pSiO0.5単位及びR3 q4 rSiO0.5単位からなるレジン構造のオルガノポリシロキサン(但し、上記式において、R3はビニル基又はアリル基、R4は脂肪族不飽和結合を含まない一価炭化水素基であり、nは2又は3、pは0又は1で、n+p=3、qは0、rは3で、q+r=3である。)
(C)一分子中に2個以上のケイ素原子に結合する水素原子を有するオルガノハイドロジェンポリシロキサン、
(D)白金族金属系触媒
を含有してなり、前記(B)成分は、前記(A)及び(B)成分の合計量に対して20〜70質量%の量で配合されていると共に、(C)成分が、そのSiH基が(A)成分及び(B)成分中のアルケニル基の合計量当たり0.1〜4.0のモル比となる量で配合されているシリコーンゴム組成物からなる透明な発光半導体被覆保護材。
(A) The following general formula (1)
Figure 0004586967
(Wherein R 1 is the same or different unsubstituted or substituted monovalent hydrocarbon group, and R 2 is an unsubstituted or substituted monovalent hydrocarbon group not having the same or different aliphatic unsaturated bond. , K, m is 0 or a positive integer, and k + m is a number that makes the viscosity of this organopolysiloxane at 25 ° C. 10 to 1,000,000 mPa · s.)
An organopolysiloxane having two or more aliphatic unsaturated bonds in one molecule represented by the formula, and having a viscosity of 10 to 1,000,000 mPa · s at 25 ° C.,
(B) Resin-structured organopolysiloxane composed of SiO 2 units, R 3 n R 4 p SiO 0.5 units and R 3 q R 4 r SiO 0.5 units (wherein R 3 is a vinyl group or an allyl group, R 4 is a monovalent hydrocarbon group not containing an aliphatic unsaturated bond, n is 2 or 3, p is 0 or 1, n + p = 3, q is 0, r is 3, and q + r = 3 .)
(C) an organohydrogenpolysiloxane having hydrogen atoms bonded to two or more silicon atoms in one molecule;
(D) It contains a platinum group metal catalyst, and the component (B) is blended in an amount of 20 to 70% by mass with respect to the total amount of the components (A) and (B) . From the silicone rubber composition in which the component (C) is blended in such an amount that the SiH group has a molar ratio of 0.1 to 4.0 per the total amount of the alkenyl groups in the component (A) and the component (B). A transparent light emitting semiconductor coating protective material.
更に、(E)接着助剤を配合した請求項記載の保護材。 Additionally, (E) a protective material according to claim 1, wherein blended with adhesion aid. (E)成分の接着助剤が、下記一般式(3)
Figure 0004586967
(式中、R6は、下記式(4)
Figure 0004586967
で表される有機基又は脂肪族不飽和結合を含有する一価炭化水素基であるが、少なくとも1個は式(4)の有機基であり、R7は水素原子又は炭素数1〜6の一価炭化水素基、sは1〜6の整数である。)
で表されるイソシアヌレート化合物及び/又はその加水分解縮合物である請求項記載の保護材。
(E) The adhesion assistant of the component is represented by the following general formula (3)
Figure 0004586967
(Wherein R 6 represents the following formula (4)
Figure 0004586967
Or a monovalent hydrocarbon group containing an aliphatic unsaturated bond, at least one of which is an organic group of the formula (4), and R 7 is a hydrogen atom or having 1 to 6 carbon atoms. A monovalent hydrocarbon group, s is an integer of 1-6. )
The protective material according to claim 2 , which is an isocyanurate compound represented by the formula (1) and / or a hydrolysis-condensation product thereof.
発光半導体素子が開口部を有するセラミック及び/又はプラスチック筐体内に配置された発光半導体装置で、その筐体内部が請求項1〜のいずれか1項記載の被覆保護材の硬化物で被覆保護された発光半導体装置。 A light emitting semiconductor device in which a light emitting semiconductor element is disposed in a ceramic and / or plastic housing having an opening, and the inside of the housing is covered and protected with a cured product of the covering protective material according to any one of claims 1 to 3. Light emitting semiconductor device. 発光半導体素子が開口部を有するセラミック及び/又はプラスチック筐体内のリード電極上に配置された発光半導体装置で、その筐体内部が請求項1〜のいずれか1項記載の被覆保護材の硬化物で被覆保護された発光半導体装置。 A light emitting semiconductor device in which a light emitting semiconductor element is disposed on a lead electrode in a ceramic and / or plastic housing having an opening, and the inside of the housing is cured of the covering protective material according to any one of claims 1 to 3. Light-emitting semiconductor device covered and protected with an object.
JP2004191266A 2003-07-09 2004-06-29 Light emitting semiconductor coating protective material and light emitting semiconductor device Active JP4586967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004191266A JP4586967B2 (en) 2003-07-09 2004-06-29 Light emitting semiconductor coating protective material and light emitting semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003194304 2003-07-09
JP2003194969 2003-07-10
JP2004191266A JP4586967B2 (en) 2003-07-09 2004-06-29 Light emitting semiconductor coating protective material and light emitting semiconductor device

Publications (2)

Publication Number Publication Date
JP2005042099A JP2005042099A (en) 2005-02-17
JP4586967B2 true JP4586967B2 (en) 2010-11-24

Family

ID=34279521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004191266A Active JP4586967B2 (en) 2003-07-09 2004-06-29 Light emitting semiconductor coating protective material and light emitting semiconductor device

Country Status (1)

Country Link
JP (1) JP4586967B2 (en)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2955206A1 (en) * 2005-01-24 2015-12-16 Momentive Performance Materials Japan LLC Silicone composition for sealing light emitting element, and light emitting device
JP4771046B2 (en) * 2005-03-11 2011-09-14 信越化学工業株式会社 Curable silicone rubber composition and method for producing composite molded body of liquid crystal polymer and silicone rubber
JP4636242B2 (en) * 2005-04-21 2011-02-23 信越化学工業株式会社 Optical semiconductor element sealing material and optical semiconductor element
JP4954499B2 (en) * 2005-05-20 2012-06-13 信越化学工業株式会社 Silicone resin lens for LED and manufacturing method thereof
JP5138158B2 (en) * 2005-05-23 2013-02-06 信越化学工業株式会社 Silicone lens molding material for LED light-emitting devices
JP2007002234A (en) * 2005-05-27 2007-01-11 Shin Etsu Chem Co Ltd Curable silicone rubber composition and semiconductor device
JP5247979B2 (en) * 2005-06-01 2013-07-24 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Polyorganosiloxane composition giving a transparent cured product
JP2007063538A (en) * 2005-08-03 2007-03-15 Shin Etsu Chem Co Ltd Addition curing-type silicone resin composition for light emitting diode
JP4872296B2 (en) * 2005-09-30 2012-02-08 日亜化学工業株式会社 Silicone rubber-sealed light emitting device and method for manufacturing the light emitting device
JP4644129B2 (en) 2006-01-17 2011-03-02 信越化学工業株式会社 Curable silicone rubber composition and cured product thereof
US20070269586A1 (en) * 2006-05-17 2007-11-22 3M Innovative Properties Company Method of making light emitting device with silicon-containing composition
JP4933179B2 (en) * 2006-07-14 2012-05-16 信越化学工業株式会社 Curable silicone rubber composition and cured product thereof
JP4636275B2 (en) * 2006-07-18 2011-02-23 信越化学工業株式会社 Semiconductor device sealed with silicone resin composition and silicone resin tablet for sealing semiconductor device
JP4519869B2 (en) * 2007-03-05 2010-08-04 株式会社東芝 Semiconductor device
JP2009024077A (en) * 2007-07-19 2009-02-05 Kaneka Corp Silicone-based composition containing silicone-based polymer particle and method for producing the same
TWI458780B (en) 2007-07-31 2014-11-01 Dow Corning Toray Co Ltd Curable silicone composition for providing highly transparent cured product
JP2009173773A (en) 2008-01-24 2009-08-06 Toshiba Corp Silicone resin composition and semiconductor device
JP5149022B2 (en) * 2008-01-25 2013-02-20 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Silicone composition for optical semiconductor sealing and optical semiconductor device using the same
JP4947310B2 (en) * 2008-02-08 2012-06-06 信越化学工業株式会社 Addition-curable silicone rubber composition and cured product thereof
JP5131464B2 (en) * 2008-03-14 2013-01-30 信越化学工業株式会社 Addition type silicone adhesive composition
JP5000566B2 (en) * 2008-03-27 2012-08-15 信越化学工業株式会社 Curable silicone rubber composition and optical semiconductor device using the same as sealing material
US9051445B2 (en) 2008-07-31 2015-06-09 Dow Corning Toray Co., Ltd. Multi-component sponge-forming liquid silicone rubber composition and silicone rubber sponge manufacturing method
JPWO2010052856A1 (en) 2008-11-06 2012-04-05 パナソニック株式会社 Lead, wiring member, package component, resin-coated metal component, resin-encapsulated semiconductor device, and manufacturing method thereof
CN102143952A (en) 2008-12-25 2011-08-03 松下电器产业株式会社 Lead, wiring member, package part, metal part provided with resin and resin-sealed semiconductor device, and methods for producing same
JP5475296B2 (en) 2009-02-02 2014-04-16 東レ・ダウコーニング株式会社 Curable silicone composition giving highly transparent silicone cured product
JP5475295B2 (en) * 2009-02-02 2014-04-16 東レ・ダウコーニング株式会社 Curable silicone composition giving highly transparent silicone cured product
JP5568240B2 (en) 2009-02-02 2014-08-06 東レ・ダウコーニング株式会社 Curable silicone rubber composition
DE102009002231A1 (en) * 2009-04-06 2010-10-07 Wacker Chemie Ag Self-adherent Pt-catalyzed addition-crosslinking silicone compositions at room temperature
JP2011057755A (en) * 2009-09-07 2011-03-24 Shin-Etsu Chemical Co Ltd Silicone composition and cured product thereof
KR101713087B1 (en) * 2010-02-19 2017-03-07 도레이 카부시키가이샤 Phosphor-containing cured silicone, process for production of same, phosphor-containing silicone composition, precursor of the composition, sheet-shaped moldings, led package, light-emitting device, and process for production of led-mounted substrate
CN103154144A (en) * 2010-10-14 2013-06-12 迈图高新材料日本合同公司 Curable polyorganosiloxane composition
MY175544A (en) 2010-12-13 2020-07-01 Toray Industries Phosphor sheet, led and light emitting device using the same and method for manufacturing led
JP5522111B2 (en) 2011-04-08 2014-06-18 信越化学工業株式会社 Silicone resin composition and optical semiconductor device using the composition
JP6057503B2 (en) * 2011-09-21 2017-01-11 東レ・ダウコーニング株式会社 Curable silicone composition for encapsulating optical semiconductor element, method for producing resin-encapsulated optical semiconductor element, and resin-encapsulated optical semiconductor element
KR101917618B1 (en) * 2011-12-08 2018-11-13 모멘티브 파포만스 마테리아루즈 쟈판 고도가이샤 Hydrosilylation-curable silicone rubber composition
EP2960296B1 (en) * 2013-04-04 2020-01-15 LG Chem, Ltd. Curable composition
WO2014163439A1 (en) * 2013-04-04 2014-10-09 주식회사 엘지화학 Curable composition
KR101591167B1 (en) * 2013-04-04 2016-02-02 주식회사 엘지화학 Curable composition
JP6432844B2 (en) * 2013-04-04 2018-12-05 エルジー・ケム・リミテッド Curable composition
WO2014163438A1 (en) 2013-04-04 2014-10-09 주식회사 엘지화학 Curable composition
TWI535792B (en) * 2013-10-24 2016-06-01 瓦克化學公司 Led encapsulant
JP6313722B2 (en) * 2015-04-15 2018-04-18 信越化学工業株式会社 Addition-curing silicone composition and semiconductor device
JP6302866B2 (en) * 2015-04-15 2018-03-28 信越化学工業株式会社 Addition-curing silicone composition and semiconductor device
JP6307470B2 (en) * 2015-04-15 2018-04-04 信越化学工業株式会社 Addition-curing silicone composition and semiconductor device
JP6519305B2 (en) * 2015-05-11 2019-05-29 富士電機株式会社 Silicone resin composition for sealing material and power semiconductor module using the composition
JP6393659B2 (en) * 2015-05-26 2018-09-19 信越化学工業株式会社 Addition-curing silicone composition and semiconductor device
JP6657037B2 (en) * 2015-12-22 2020-03-04 信越化学工業株式会社 Addition-curable silicone resin composition and semiconductor device
US20200291187A1 (en) 2017-06-02 2020-09-17 Dow Silicones Corporation Curable silicone composition with reduced mold fouling
JP6958031B2 (en) * 2017-07-04 2021-11-02 信越化学工業株式会社 Silicone gel composition and its cured product and power module
WO2020080349A1 (en) 2018-10-18 2020-04-23 ダウ・東レ株式会社 Curable silicone composition and cured product thereof, layered product and production method therefor, and optical device or optical display
US20220002594A1 (en) * 2018-10-18 2022-01-06 Dow Toray Co., Ltd. Curable silicone composition and cured product thereof, layered product and production method therefor, and optical device or optical display
JP6966411B2 (en) * 2018-11-02 2021-11-17 信越化学工業株式会社 Additive-curable silicone resin composition, cured product thereof, and optical semiconductor device
JP7297460B2 (en) * 2019-02-20 2023-06-26 旭化成株式会社 UV irradiation device
JP7390962B2 (en) * 2020-04-14 2023-12-04 信越化学工業株式会社 Curable organosilicon resin composition
JPWO2022030235A1 (en) * 2020-08-06 2022-02-10

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137355A (en) * 1981-02-17 1982-08-24 Shin Etsu Chem Co Ltd Organopolysiloxane composition
JPS63265956A (en) * 1987-04-24 1988-11-02 Shin Etsu Chem Co Ltd Silicone composition for optical communication fiber
JPH0314884A (en) * 1989-04-03 1991-01-23 General Electric Co <Ge> Coating material with improved additive properties
JPH0753872A (en) * 1993-08-17 1995-02-28 Shin Etsu Chem Co Ltd Curable silicone rubber composition
JPH11274571A (en) * 1998-01-26 1999-10-08 Nichia Chem Ind Ltd Semiconductor light emitting device
JP2000198930A (en) * 1998-12-28 2000-07-18 Shin Etsu Chem Co Ltd Addition curable silicone composition
JP2001217467A (en) * 2000-02-02 2001-08-10 Ind Technol Res Inst Highly efficient white light-emitting diode
JP2002314143A (en) * 2001-04-09 2002-10-25 Toshiba Corp Light emitting device
JP2002314139A (en) * 2001-04-09 2002-10-25 Toshiba Corp Light emitting device
JP2002327126A (en) * 2001-02-23 2002-11-15 Kanegafuchi Chem Ind Co Ltd Composition for optical material, optical material, method for producing the same and liquid crystal display device and light-emitting diode using the same
JP2002338833A (en) * 2001-02-23 2002-11-27 Kanegafuchi Chem Ind Co Ltd Composition for optical material, optical material, its manufacturing method, and liquid crystal display device and light-emitting diode obtained using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137355A (en) * 1981-02-17 1982-08-24 Shin Etsu Chem Co Ltd Organopolysiloxane composition
JPS63265956A (en) * 1987-04-24 1988-11-02 Shin Etsu Chem Co Ltd Silicone composition for optical communication fiber
JPH0314884A (en) * 1989-04-03 1991-01-23 General Electric Co <Ge> Coating material with improved additive properties
JPH0753872A (en) * 1993-08-17 1995-02-28 Shin Etsu Chem Co Ltd Curable silicone rubber composition
JPH11274571A (en) * 1998-01-26 1999-10-08 Nichia Chem Ind Ltd Semiconductor light emitting device
JP2000198930A (en) * 1998-12-28 2000-07-18 Shin Etsu Chem Co Ltd Addition curable silicone composition
JP2001217467A (en) * 2000-02-02 2001-08-10 Ind Technol Res Inst Highly efficient white light-emitting diode
JP2002327126A (en) * 2001-02-23 2002-11-15 Kanegafuchi Chem Ind Co Ltd Composition for optical material, optical material, method for producing the same and liquid crystal display device and light-emitting diode using the same
JP2002338833A (en) * 2001-02-23 2002-11-27 Kanegafuchi Chem Ind Co Ltd Composition for optical material, optical material, its manufacturing method, and liquid crystal display device and light-emitting diode obtained using the same
JP2002314143A (en) * 2001-04-09 2002-10-25 Toshiba Corp Light emitting device
JP2002314139A (en) * 2001-04-09 2002-10-25 Toshiba Corp Light emitting device

Also Published As

Publication number Publication date
JP2005042099A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
JP4586967B2 (en) Light emitting semiconductor coating protective material and light emitting semiconductor device
KR100848861B1 (en) Silicone rubber composition, light-emitting semiconductor embedding/protecting material and light-emitting semiconductor device
JP4300418B2 (en) Epoxy / silicone hybrid resin composition and light emitting semiconductor device
JP4803339B2 (en) Epoxy / silicone hybrid resin composition and light emitting semiconductor device
JP4933179B2 (en) Curable silicone rubber composition and cured product thereof
US6806509B2 (en) Light-emitting semiconductor potting composition and light-emitting semiconductor device
JP4636242B2 (en) Optical semiconductor element sealing material and optical semiconductor element
KR101939408B1 (en) Heat curable silicone resin composition for reflector of led, and reflector for led and optical semiconductor device using the same
JP4614075B2 (en) Epoxy / silicone hybrid resin composition, method for producing the same, and light emitting semiconductor device
JP5526823B2 (en) Optical semiconductor device sealed with silicone resin
JP6096087B2 (en) Curable silicone resin composition, cured product thereof and optical semiconductor device
JP4684835B2 (en) Method for reducing surface tackiness of cured silicone rubber, liquid silicone rubber composition for semiconductor encapsulation, silicone rubber encapsulated semiconductor device, and method for producing the semiconductor device
JP4766222B2 (en) Light emitting semiconductor coating protective material and light emitting semiconductor device
JP4479882B2 (en) Cannonball type light emitting semiconductor device
JP2006321832A (en) Resin composition for sealing optical semiconductor and optical semiconductor device using the same
JP4844732B2 (en) Light emitting semiconductor device
JP2010121117A (en) Visible light-shielding silicone rubber composition, cured product thereof, and optical semiconductor device
JP4479883B2 (en) Light emitting semiconductor device
JP2007191697A (en) Epoxy/silicone hybrid resin composition and photosemiconductor device
JP2023132309A (en) curable silicone composition
TW201909454A (en) Curable polyoxyn composition and optical semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100824

R150 Certificate of patent or registration of utility model

Ref document number: 4586967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3