JP5113820B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP5113820B2
JP5113820B2 JP2009247037A JP2009247037A JP5113820B2 JP 5113820 B2 JP5113820 B2 JP 5113820B2 JP 2009247037 A JP2009247037 A JP 2009247037A JP 2009247037 A JP2009247037 A JP 2009247037A JP 5113820 B2 JP5113820 B2 JP 5113820B2
Authority
JP
Japan
Prior art keywords
light
light emitting
wavelength conversion
conversion layer
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009247037A
Other languages
Japanese (ja)
Other versions
JP2011096739A (en
Inventor
尚子 竹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2009247037A priority Critical patent/JP5113820B2/en
Publication of JP2011096739A publication Critical patent/JP2011096739A/en
Application granted granted Critical
Publication of JP5113820B2 publication Critical patent/JP5113820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

本発明は、発光素子および該発光素子からの光を波長変換する波長変換層を用いた発光装置に関するものである。   The present invention relates to a light emitting device and a light emitting device using a wavelength conversion layer that converts the wavelength of light from the light emitting device.

近年、実装基板に実装されるLEDチップなどの半導体発光素子からなる発光素子と、該発光素子を被覆し、該発光素子からの光の少なくとも一部を吸収し波長変換して補色となる光を発する蛍光体が含有された透光性部材からなる波長変換層とを備え、たとえば、発光素子からの青色光と波長変換層からの黄色光とを混色した白色光を放射する発光装置が開発されている。この種の発光装置は、発光素子の光出力の高出力化などにともない照明器具にまで利用されている。   In recent years, a light-emitting element composed of a semiconductor light-emitting element such as an LED chip mounted on a mounting substrate, and a light that covers the light-emitting element, absorbs at least part of the light from the light-emitting element, and converts the wavelength to become a complementary color. For example, a light-emitting device that emits white light that is a mixture of blue light from a light-emitting element and yellow light from a wavelength conversion layer has been developed. ing. This type of light-emitting device has been used for lighting fixtures as the light output of light-emitting elements is increased.

ところで、発光装置は、たとえば、放射する白色光を、より太陽光などの自然光に近づけさせるため、青色光を放射する発光素子と、緑色光を発する蛍光体(緑色蛍光体)および赤色光を発する蛍光体(赤色蛍光体)などを組み合わせた波長変換層とを用いて白色光の演色性を高めた構造とする場合がある。   By the way, the light emitting device emits blue light, a phosphor emitting green light (green phosphor), and red light, for example, in order to make radiating white light closer to natural light such as sunlight. In some cases, the color rendering property of white light is enhanced by using a wavelength conversion layer combined with a phosphor (red phosphor).

このような複数種の蛍光体を含有した波長変換層を備える発光装置は、主発光波長の長波長の蛍光体(たとえば、赤色蛍光体)が、主発光波長のより短波長側の蛍光体(たとえば、緑色蛍光体)で変換された光の一部を吸収(以下、二次吸収という)し波長変換する。そのため、発光装置は、蛍光体での波長変換に伴う損失が重複することにより、発光効率を十分に高めることができない。   In a light emitting device including such a wavelength conversion layer containing a plurality of types of phosphors, a phosphor having a long wavelength of the main emission wavelength (for example, a red phosphor) is a phosphor having a shorter wavelength than the main emission wavelength ( For example, part of the light converted by the green phosphor is absorbed (hereinafter referred to as secondary absorption) and wavelength-converted. Therefore, the light emitting device cannot sufficiently increase the light emission efficiency due to the overlap of the loss accompanying the wavelength conversion in the phosphor.

そこで、複数種の蛍光体間での上述の二次吸収を抑制するため、緑色蛍光体を含有する波長変換層と、赤色蛍光体を含有する波長変換層とに分離した構造を有する発光装置が考えられている。たとえば、図6に示すように、実装基板4の一表面にそれぞれ実装された第一のLEDチップ11および第二のLEDチップ21と、第一のLEDチップ11の全体を被覆して第一のLEDチップ11からの光を吸収し蛍光を発する蛍光体が含有された第一の波長変換層12’と、第二のLEDチップ21の全体を被覆して第二のLEDチップ21からの光を吸収し第一の波長変換層12’からの前記蛍光よりも長波長の蛍光を発する蛍光体が含有された第二の波長変換層22’と、第一のLEDチップ11、第一の波長変換層12’、第二のLEDチップ21および第二の波長変換層22’を被覆する透光性部材15とを有し、第一の波長変換層12’と第二の波長変換層22’との境界に反射膜14を形成した発光装置10’が提案されている(たとえば、特許文献1参照)。なお、実装基板4上には、第一のLEDチップ11、第一の波長変換層12’、第二のLEDチップ21および第二の波長変換層22’からの光を反射させる反射層13が形成されている。   Therefore, in order to suppress the above-described secondary absorption between a plurality of types of phosphors, a light emitting device having a structure separated into a wavelength conversion layer containing a green phosphor and a wavelength conversion layer containing a red phosphor It is considered. For example, as shown in FIG. 6, the first LED chip 11 and the second LED chip 21 respectively mounted on one surface of the mounting substrate 4 and the entire first LED chip 11 are covered and the first LED chip 11 is covered. The first wavelength conversion layer 12 ′ containing a phosphor that absorbs light from the LED chip 11 and emits fluorescence, and the second LED chip 21 are covered so that the light from the second LED chip 21 is reflected. A second wavelength conversion layer 22 ′ containing a phosphor that absorbs and emits fluorescence having a longer wavelength than the fluorescence from the first wavelength conversion layer 12 ′, the first LED chip 11, and the first wavelength conversion A transparent member 15 covering the layer 12 ′, the second LED chip 21 and the second wavelength conversion layer 22 ′, and the first wavelength conversion layer 12 ′ and the second wavelength conversion layer 22 ′. A light-emitting device 10 ′ having a reflective film 14 formed at the boundary is proposed. Are (e.g., see Patent Document 1). On the mounting substrate 4, there is a reflective layer 13 that reflects light from the first LED chip 11, the first wavelength conversion layer 12 ′, the second LED chip 21, and the second wavelength conversion layer 22 ′. Is formed.

図6に示す発光装置10’では、第一のLEDチップ11から放射される光は、第一の波長変換層12’に照射され、第一の波長変換層12’の蛍光体から放射される光は、全方向に等方的に放射される。しかしながら、図6に示す発光装置10’では、第一の波長変換層12’と、第二の波長変換層22’との境界に、反射膜14が形成されていることにより、第一の波長変換層12’から放射された光が反射膜14で反射され、第二の波長変換層22’によって二次吸収されることなく効率のよい光を放射することが可能になる、とされている。   In the light emitting device 10 ′ shown in FIG. 6, the light emitted from the first LED chip 11 is applied to the first wavelength conversion layer 12 ′ and emitted from the phosphor of the first wavelength conversion layer 12 ′. Light is emitted isotropically in all directions. However, in the light emitting device 10 ′ shown in FIG. 6, the reflective film 14 is formed at the boundary between the first wavelength conversion layer 12 ′ and the second wavelength conversion layer 22 ′, so that the first wavelength The light radiated from the conversion layer 12 ′ is reflected by the reflection film 14, and can be emitted efficiently without being secondarily absorbed by the second wavelength conversion layer 22 ′. .

特開2009−117825号公報JP 2009-117825 A

しかしながら、図6に示した構成の発光装置10’は、反射膜14が第一の波長変換層12’から放射される光および第二の波長変換層22’から放射される光を、それぞれ反射させて外部に放射する。そのため、発光装置10’は、発光装置10’から放射された第一の波長変換層12’からの光と、第二の波長変換層22’からの光とを十分に混色させることが難しい場合がある。   However, in the light emitting device 10 ′ configured as shown in FIG. 6, the reflective film 14 reflects the light emitted from the first wavelength conversion layer 12 ′ and the light emitted from the second wavelength conversion layer 22 ′, respectively. Radiate to the outside. Therefore, when it is difficult for the light emitting device 10 ′ to sufficiently mix the light from the first wavelength conversion layer 12 ′ emitted from the light emitting device 10 ′ and the light from the second wavelength conversion layer 22 ′. There is.

特に、照明用途にまで利用される発光装置10’では、発光装置10’と、発光装置10’からの混色光が照射される照射面との距離が離れるにつれて、照射された混色光の色むらが大きく観測される傾向にあり、より均一な光が求められている現在においては、上述の発光装置10’の構成では十分ではなく更なる改良が求められている。   In particular, in the light emitting device 10 ′ used for illumination purposes, as the distance between the light emitting device 10 ′ and the irradiation surface irradiated with the mixed color light from the light emitting device 10 ′ increases, the color unevenness of the irradiated mixed color light is uneven. In the present situation where more uniform light is demanded, the above-described configuration of the light emitting device 10 ′ is not sufficient, and further improvement is demanded.

本発明は上記事由に鑑みて為されたものであり、その目的は、波長変換層での二次吸収を抑制するとともに、より色むらの少ない光を得ることが可能な発光装置を提供することにある。   The present invention has been made in view of the above-described reasons, and an object thereof is to provide a light-emitting device capable of suppressing secondary absorption in the wavelength conversion layer and obtaining light with less color unevenness. It is in.

請求項1の発明は、実装基板の一表面にそれぞれ実装された第一の発光素子および第二の発光素子と、前記第一の発光素子上に備えられ前記第一の発光素子からの光の少なくとも一部を吸収し蛍光を発する第一の波長変換層と、前記第一の発光素子および前記第一の波長変換層を被覆する第一の透光性部材と、前記第二の発光素子上に備えられ前記第二の発光素子からの光の少なくとも一部を吸収し前記第一の波長変換層からの前記蛍光よりも長波長の蛍光を発する第二の波長変換層と、前記第二の発光素子および前記第二の波長変換層を被覆する第二の透光性部材とを有し、前記第一の透光性部材は、前記第二の透光性部材よりも屈折率が大きく、且つ前記第二の透光性部材と接していることを特徴とする。   According to a first aspect of the present invention, there is provided a first light emitting element and a second light emitting element that are respectively mounted on one surface of a mounting substrate, and the light from the first light emitting element that is provided on the first light emitting element. A first wavelength conversion layer that absorbs at least a portion and emits fluorescence; a first translucent member that covers the first light emitting element and the first wavelength conversion layer; and the second light emitting element. A second wavelength conversion layer that absorbs at least part of light from the second light emitting element and emits fluorescence having a longer wavelength than the fluorescence from the first wavelength conversion layer; and A second light-transmitting member that covers the light-emitting element and the second wavelength conversion layer, and the first light-transmitting member has a higher refractive index than the second light-transmitting member, And it is in contact with said 2nd translucent member, It is characterized by the above-mentioned.

この発明によれば、第一の透光性部材は、第二の透光性部材よりも屈折率が大きく、且つ前記第二の透光性部材と接していることにより、たとえば、前記第一の発光素子から放射された青色光を吸収して発した前記第一の波長変換層の緑色光の一部が、前記第二の透光性部材で全反射される。そのため、発光装置は、前記第一の波長変換層からの緑色光が前記第二の波長変換層に入射し二次吸収されることを抑制し、発光効率を高くすることができる。また、前記第一の波長変換層からの光は、前記第二の透光性部材で全てが完全に反射されるものでもない。さらに、前記第二の波長変換層から放射された光は、前記第一の透光性部材を透過することができる。そのため、発光装置は、前記第一および第二の波長変換層からの相互の光を混色させやすくすることが可能となり、発光効率の低下を引き起こすことなく、より色むらの少ない光を放射することができる。   According to this invention, the first translucent member has a refractive index larger than that of the second translucent member and is in contact with the second translucent member. Part of the green light of the first wavelength conversion layer emitted by absorbing blue light emitted from the light emitting element is totally reflected by the second light transmissive member. Therefore, the light emitting device can suppress the green light from the first wavelength conversion layer from being incident on the second wavelength conversion layer and secondarily absorbed, thereby increasing the light emission efficiency. Further, the light from the first wavelength conversion layer is not completely reflected by the second light transmissive member. Furthermore, the light emitted from the second wavelength conversion layer can pass through the first translucent member. Therefore, the light emitting device can easily mix the light from the first and second wavelength conversion layers, and emits light with less color unevenness without causing a decrease in light emission efficiency. Can do.

請求項2の発明は、請求項1に記載の発明において、前記第二の透光性部材は、拡散材が分散されていることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the second translucent member is characterized in that a diffusing material is dispersed.

この発明によれば、前記第二の透光性部材に拡散材が分散されていることにより、前記第二の発光素子および前記第二の波長変換層からの光は、前記第二の透光性部材から外に広がって光が放射されるように配光されるため、前記第一の発光素子および前記第一の波長変換層から放射された光との混色が促進される。そのため、発光装置は、色むらがさらに少ない混色光を放射することが可能となる。   According to this invention, since the diffusing material is dispersed in the second light transmissive member, the light from the second light emitting element and the second wavelength conversion layer is transmitted to the second light transmissive member. Since the light is distributed so that the light is emitted outward from the conductive member, color mixing with the light emitted from the first light emitting element and the first wavelength conversion layer is promoted. Therefore, the light emitting device can emit mixed color light with less color unevenness.

請求項1の発明では、第一の発光素子および第一の波長変換層を被覆する第一の透光性部材と、第二の発光素子および第二の波長変換層を被覆する第二の透光性部材とを有し、前記第一の透光性部材は、前記第二の透光性部材よりも屈折率が大きく、且つ前記第二の透光性部材と接していることにより、前記第二の波長変換層での二次吸収を抑制するとともに、より色むらの少ない光を放射することが可能な発光装置を提供できるという顕著な効果がある。   According to the first aspect of the present invention, the first light transmissive member covering the first light emitting element and the first wavelength conversion layer, and the second light transmitting element covering the second light emitting element and the second wavelength conversion layer. The first translucent member has a refractive index larger than that of the second translucent member and is in contact with the second translucent member. There is a remarkable effect that it is possible to provide a light emitting device capable of suppressing the secondary absorption in the second wavelength conversion layer and emitting light with less color unevenness.

実施形態1の発光装置を示す概略断面図である。1 is a schematic cross-sectional view showing a light emitting device of Embodiment 1. FIG. 発光装置の波長変換層からの光の放射を示し、(a)は比較のための発光装置の説明図、(b)は実施形態1の発光装置の説明図、(c)は実施形態1の発光装置における原理説明図である。The light emission from the wavelength conversion layer of a light-emitting device is shown, (a) is an explanatory view of a light-emitting device for comparison, (b) is an explanatory view of the light-emitting device of Embodiment 1, and (c) is an illustration of Embodiment 1. It is principle explanatory drawing in a light-emitting device. 実施形態1の他の発光装置を示す概略断面図である。6 is a schematic cross-sectional view showing another light emitting device of Embodiment 1. FIG. 同上の別の発光装置を示す概略断面図である。It is a schematic sectional drawing which shows another light-emitting device same as the above. 実施形態2の発光装置を示す概略断面図である。6 is a schematic cross-sectional view showing a light emitting device of Embodiment 2. FIG. 従来の発光装置を示す概略断面図である。It is a schematic sectional drawing which shows the conventional light-emitting device.

(実施形態1)
以下、本実施形態の発光装置を図1から図4に基づいて説明する。なお、図1から図4において同じ部材に対しては、同じ番号を付して重複する説明を省略している。
(Embodiment 1)
Hereinafter, the light emitting device of this embodiment will be described with reference to FIGS. 1 to 4. In FIG. 1 to FIG. 4, the same members are denoted by the same reference numerals and redundant description is omitted.

本実施形態の図1に示す発光装置10は、実装基板4の一表面4aに実装される青色光を発光する第一の発光素子たる第一のLEDチップ11と、第一のLEDチップ11上に備えられ第一のLEDチップ11からの青色光の一部を吸収し緑色の蛍光を発する緑色蛍光体が含有された透光性樹脂層からなる第一の波長変換層12とを有している。また、発光装置10は、実装基板4の上記一表面4aに実装される青色光を発光する第二の発光素子たる第二のLEDチップ21と、第二のLEDチップ21上に備えられ第二のLEDチップ21からの青色光の一部を吸収し第一の波長変換層12の緑色の蛍光よりも長波長の赤色の蛍光を発する赤色蛍光体が含有された透光性樹脂層からなる第二の波長変換層22とを有している。ここにおいて、発光装置10は、第一のLEDチップ11および第一の波長変換層12を被覆する第一の透光性部材5と、第二のLEDチップ21および第二の波長変換層22を被覆する第二の透光性部材6とを有し、第一の透光性部材5が、第二の透光性部材6よりも屈折率が大きく、且つ第二の透光性部材6と接している。   The light emitting device 10 shown in FIG. 1 of the present embodiment includes a first LED chip 11 that is a first light emitting element that emits blue light mounted on one surface 4 a of the mounting substrate 4, and the first LED chip 11. And a first wavelength conversion layer 12 made of a translucent resin layer containing a green phosphor that absorbs part of the blue light from the first LED chip 11 and emits green fluorescence. Yes. The light emitting device 10 is provided on the second LED chip 21 and the second LED chip 21 that is a second light emitting element that emits blue light mounted on the one surface 4 a of the mounting substrate 4. A first light-transmitting resin layer containing a red phosphor that absorbs part of the blue light from the LED chip 21 and emits red fluorescence having a longer wavelength than the green fluorescence of the first wavelength conversion layer 12. And a second wavelength conversion layer 22. Here, the light emitting device 10 includes a first light-transmissive member 5 that covers the first LED chip 11 and the first wavelength conversion layer 12, a second LED chip 21, and a second wavelength conversion layer 22. The first translucent member 5 has a refractive index larger than that of the second translucent member 6 and the second translucent member 6. It touches.

この発光装置10では、第一のLEDチップ11および第一のLEDチップ11上の緑色の蛍光を発する第一の波長変換層12を短波長発光部1とし、第二のLEDチップ21および第二のLEDチップ21上の赤色の蛍光を発する第二の波長変換層22を長波長発光部2としている。   In the light emitting device 10, the first wavelength conversion layer 12 that emits green fluorescence on the first LED chip 11 and the first LED chip 11 is used as the short wavelength light emitting unit 1, and the second LED chip 21 and the second LED chip 21. The second wavelength conversion layer 22 that emits red fluorescence on the LED chip 21 is the long wavelength light emitting section 2.

より具体的には、発光装置10は、矩形平板状のアルミナセラミック基板上にAuでメッキされた一対の導体パターン(図示していない)が形成された実装基板4を用いている。実装基板4の一対の導体パターンには、第一および第二のLEDチップ11,21ごとに、それぞれAuバンプ3を複数個設けている。実装基板4の上記一表面4aに実装された第一のLEDチップ11および第二のLEDチップ21は、それぞれサファイア基板上にn型の窒化ガリウム系化合物半導体層、Inが含有された窒化ガリウム系化合物半導体からなる発光層、p型の窒化ガリウム系化合物半導体層が順に積層されている。第一および第二のLEDチップ11,21は、前記p型の窒化ガリウム系化合物半導体層および前記発光層の一部が除去されて前記n型の窒化ガリウム系化合物半導体層が部分的に露出しておより、同一平面側にp型およびn型の各窒化ガリウム系化合物半導体層と電気的に接続されるアノード電極およびカソード電極がそれぞれ設けられている。第一および第二のLEDチップ11,21は、第一および第二のLEDチップ11,21の同一平面側に設けられた前記アノード電極および前記カソード電極を、実装基板4の一対の導体パターン上のAuバンプ3にフリップチップ実装して給電可能に実装されている。   More specifically, the light emitting device 10 uses a mounting substrate 4 in which a pair of conductor patterns (not shown) plated with Au are formed on a rectangular flat alumina ceramic substrate. A plurality of Au bumps 3 are provided on each of the first and second LED chips 11 and 21 in the pair of conductor patterns of the mounting substrate 4. The first LED chip 11 and the second LED chip 21 mounted on the one surface 4a of the mounting substrate 4 are respectively an n-type gallium nitride compound semiconductor layer and a gallium nitride system containing In on the sapphire substrate. A light emitting layer made of a compound semiconductor and a p-type gallium nitride compound semiconductor layer are sequentially stacked. In the first and second LED chips 11 and 21, a part of the p-type gallium nitride compound semiconductor layer and the light emitting layer are removed, and the n-type gallium nitride compound semiconductor layer is partially exposed. An anode electrode and a cathode electrode that are electrically connected to the p-type and n-type gallium nitride compound semiconductor layers are provided on the same plane side. The first and second LED chips 11, 21 are arranged such that the anode electrode and the cathode electrode provided on the same plane side of the first and second LED chips 11, 21 are placed on a pair of conductor patterns on the mounting substrate 4. The Au bump 3 is flip-chip mounted so that power can be supplied.

実装基板4の上記一表面4a上にそれぞれ実装された第一および第二のLEDチップ11,21は、通電によりピーク波長が、たとえば、450nm〜470nmの範囲内にある青色光をそれぞれ放射する。このような第一および第二のLEDチップ11,21の外形は、たとえば、大きさが約1mm角で、厚みが約100μmとすることができる。   The first and second LED chips 11 and 21 mounted on the one surface 4a of the mounting substrate 4 respectively emit blue light having a peak wavelength in the range of 450 nm to 470 nm, for example, when energized. The outer shapes of the first and second LED chips 11 and 21 can be, for example, about 1 mm square and about 100 μm thick.

また、第一の波長変換層12は、第一のLEDチップ11からの青色光を吸収して緑色光が発光可能な緑色蛍光体(たとえば、Euで付活された(SrBa)SiOなど)をバインダーとなるシリコーン樹脂中に均一に分散させ、外形を第一のLEDチップ11と略同じ約1mm角として、厚さ約100μmのフィルム状に形成している。短波長発光部1は、第一のLEDチップ11上に第一の波長変換層12を透光性を有する接着剤により接着することで形成させている。 The first wavelength conversion layer 12 is a green phosphor capable of absorbing green light from the first LED chip 11 and emitting green light (for example, (SrBa) 2 SiO 4 activated with Eu) ) Is uniformly dispersed in a silicone resin serving as a binder, and the outer shape is approximately the same as the first LED chip 11 and is formed in a film shape having a thickness of approximately 100 μm. The short wavelength light emitting unit 1 is formed by adhering the first wavelength conversion layer 12 on the first LED chip 11 with an adhesive having translucency.

同様に、第二の波長変換層22は、第二のLEDチップ21からの青色光を吸収して赤色光が発光可能な赤色蛍光体(たとえば、Euで付活されたCaAlSiNなど)をバインダーとなるシリコーン樹脂中に均一に分散させ、外形を第二のLEDチップ21と略同じ約1mm角として、厚さ約100μmのフィルム状に形成している。長波長発光部2は、第二のLEDチップ21上に第二の波長変換層22を透光性を有する接着剤により接着することで形成している。 Similarly, the second wavelength conversion layer 22 binds a red phosphor capable of absorbing blue light from the second LED chip 21 and emitting red light (for example, CaAlSiN 3 activated with Eu) as a binder. The outer shape is approximately 1 mm square, which is substantially the same as that of the second LED chip 21, and is formed in a film shape having a thickness of about 100 μm. The long wavelength light emitting unit 2 is formed by adhering the second wavelength conversion layer 22 on the second LED chip 21 with an adhesive having translucency.

ところで、蛍光体は、励起源からのエネルギー(ここでは、第一および第二のLEDチップ11,21からの青色光)によって励起されて全方向に等方的に蛍光を放射する性質を有するため、発光装置10の第一の波長変換層12から放射される光の一部は、第二の波長変換層22側にも向かう。そのため、たとえば、図2(a)に示す発光装置10”の場合、短波長発光部1の緑色蛍光体を含有する第一の波長変換層12から長波長発光部2側に放射される緑色光(図2(a)中の矢印)は、赤色蛍光体を含有する第二の波長変換層22で二次吸収されることになる。   By the way, the phosphor is excited by energy from the excitation source (here, blue light from the first and second LED chips 11 and 21) and emits fluorescence isotropically in all directions. A part of the light emitted from the first wavelength conversion layer 12 of the light emitting device 10 is also directed to the second wavelength conversion layer 22 side. Therefore, for example, in the case of the light emitting device 10 ″ shown in FIG. 2A, the green light emitted from the first wavelength conversion layer 12 containing the green phosphor of the short wavelength light emitting unit 1 to the long wavelength light emitting unit 2 side. (Arrows in FIG. 2A) are secondarily absorbed by the second wavelength conversion layer 22 containing a red phosphor.

図2(a)の発光装置10”に対して、図2(b)に示す本実施形態の発光装置10は、短波長発光部1の第一の波長変換層12から長波長発光部2側に放射された緑色光(図2(b)中の矢印)は、第二の透光性部材6によって全反射され発光装置10の外部に放射される。したがって、図2(b)の発光装置10は、図2(a)の発光装置10”と比較して第一の波長変換層12から放射され第二の波長変換層22に到達する光を少なくさせ、第二の波長変換層22での二次吸収に伴う発光効率の低下を抑制することが可能となる。   2A is different from the first wavelength conversion layer 12 of the short wavelength light emitting unit 1 in the long wavelength light emitting unit 2 side. 2 (the arrow in FIG. 2B) is totally reflected by the second light transmissive member 6 and is emitted to the outside of the light emitting device 10. Therefore, the light emitting device of FIG. 10 reduces the amount of light emitted from the first wavelength conversion layer 12 and reaching the second wavelength conversion layer 22 as compared with the light emitting device 10 ″ of FIG. It is possible to suppress a decrease in luminous efficiency due to the secondary absorption.

すなわち、本実施形態の発光装置10は、図2(c)で例示するように、第一の波長変換層12から放射され長波長発光部2側に向かう光(図2(c)中の矢印Aを参照)が第二の透光性部材6の表面で全反射するようにしている。より具体的には、発光装置10は、上述の光(図2(c)中の矢印Aを参照)と、第二の透光性部材6の前記光が照射される表面での接線(図2(c)中の破線Bを参照)の垂線(図2(c)中の一点鎖線Cを参照)とをなす角度が臨界角θ以上となるように設計すればよい。   That is, as illustrated in FIG. 2C, the light emitting device 10 of the present embodiment emits light emitted from the first wavelength conversion layer 12 toward the long wavelength light emitting unit 2 (an arrow in FIG. 2C). A) is totally reflected on the surface of the second translucent member 6. More specifically, the light-emitting device 10 includes the above-described light (see the arrow A in FIG. 2C) and a tangent line on the surface of the second translucent member 6 that is irradiated with the light (see FIG. What is necessary is just to design so that the angle which makes | forms the perpendicular (refer the dashed-dotted line C in FIG.2 (c)) of the perpendicular (refer the broken line B in 2 (c)) becomes more than critical angle (theta).

なお、図2(a)では、説明のために短波長発光部1を被覆する透光性部材を省略している。また、図2(b),(c)では、短波長発光部1を被覆するとともに、第二の透光性部材6と接し、第二の透光性部材6よりも屈折率の大きい第一の透光性部材5を省略している。   In FIG. 2A, a translucent member that covers the short wavelength light emitting unit 1 is omitted for the sake of explanation. Further, in FIGS. 2B and 2C, the first light having a refractive index larger than that of the second light transmissive member 6 is covered with the short wavelength light emitting unit 1 and is in contact with the second light transmissive member 6. The translucent member 5 is omitted.

以下、本実施形態の発光装置10に用いられる各構成について詳述する。   Hereinafter, each component used for the light-emitting device 10 of this embodiment is explained in full detail.

本実施形態1の発光装置10に用いられる第一および第二の発光素子は、通電により光を発光可能なものである。第一および第二の発光素子の放射する光は、たとえば、可視光のうちピーク波長が450nmから470nmの青色光とすることができるが、青色光のみに限定するものではなく、他の波長の光や第一の波長変換層12や第二の波長変換層22を効率よく励起させるために紫外線を用いてもよい。発光素子たるLEDチップ11,21としては、たとえば、サファイア基板、スピネル基板、窒化ガリウム基板、酸化亜鉛基板や炭化シリコン基板などの結晶成長基板上にn型窒化ガリウム系化合物半導体層、多重量子井戸構造や単一量子井戸構造の発光層となるインジウムが含有された窒化ガリウム系化合物体層、p型窒化ガリウム系化合物半導体層を順に積層させたものが挙げられる。   The first and second light-emitting elements used in the light-emitting device 10 of Embodiment 1 can emit light when energized. The light emitted from the first and second light emitting elements can be, for example, blue light having a peak wavelength of 450 nm to 470 nm in visible light, but is not limited to blue light, and has other wavelengths. Ultraviolet light may be used to efficiently excite the light, the first wavelength conversion layer 12 and the second wavelength conversion layer 22. As the LED chips 11 and 21 as light emitting elements, for example, an n-type gallium nitride compound semiconductor layer, a multiple quantum well structure on a crystal growth substrate such as a sapphire substrate, a spinel substrate, a gallium nitride substrate, a zinc oxide substrate or a silicon carbide substrate. And a gallium nitride compound body layer containing indium and a p-type gallium nitride compound semiconductor layer, which are light emitting layers having a single quantum well structure, are sequentially stacked.

なお、絶縁性基板を用いたLEDチップ11,21は、前記p型の窒化ガリウム系半導体層側から前記n型の窒化ガリウム系化合物半導体層の一部を露出させることにより、同一平面側でアノード電極におよびカソード電極をそれぞれ形成することができる。また、導電性基板を用いたLEDチップ11,21は、LEDチップ11,21の厚み方向の両面側にアノード電極やカソード電極を形成すればよい。   Note that the LED chips 11 and 21 using the insulating substrate have anodes on the same plane side by exposing a part of the n-type gallium nitride compound semiconductor layer from the p-type gallium nitride semiconductor layer side. An electrode and a cathode electrode can be formed respectively. Moreover, what is necessary is just to form the anode electrode and the cathode electrode in the LED chip 11 and 21 using the electroconductive board | substrate on the both surfaces side of the thickness direction of the LED chip 11 and 21. FIG.

LEDチップ11,21に設けられる前記アノード電極や前記カソード電極は、Ni膜とAu膜との積層膜、Al膜、ITO膜など窒化ガリウム系化合物半導体層などと良好なオーミック特性が得られる材料であれば、限定されるものではない。   The anode electrode and the cathode electrode provided on the LED chips 11 and 21 are materials that can obtain good ohmic characteristics with a laminated film of a Ni film and an Au film, a gallium nitride compound semiconductor layer such as an Al film and an ITO film, and the like. If there is, it is not limited.

同一平面側に前記アノード電極および前記カソード電極が設けられたLEDチップ11,21は、実装基板4上の一対の導電パターンにAuバンプ3などの金属バンプを用いてフリップチップ実装させることができる。また、LEDチップ11,21として、厚み方向の両面側に前記アノード電極や前記カソード電極が形成されたLEDチップ11,21を用いる場合は、LEDチップ11,21が実装される実装基板4上に形成された一対の導体パターンのうちの一方の導体パターンと、LEDチップ11,21の前記アノード電極あるいは前記カソード電極とを導電性部材(たとえば、AuSnやAgペーストなど)を介してダイボンディングなどして電気的に接続させる。また、LEDチップ11,21の光取り出し面側の他方の前記カソード電極あるいは前記アノード電極は、ワイヤ(たとえば、金線やアルミニウム線など)を介して他方の導体パターンと電気的に接続させればよい。   The LED chips 11 and 21 provided with the anode electrode and the cathode electrode on the same plane side can be flip-chip mounted on a pair of conductive patterns on the mounting substrate 4 using metal bumps such as Au bumps 3. When the LED chips 11 and 21 having the anode electrode and the cathode electrode formed on both sides in the thickness direction are used as the LED chips 11 and 21, on the mounting substrate 4 on which the LED chips 11 and 21 are mounted. One conductor pattern of the formed pair of conductor patterns and the anode electrode or the cathode electrode of the LED chips 11 and 21 are die-bonded via a conductive member (for example, AuSn or Ag paste). Connect them electrically. Further, the other cathode electrode or anode electrode on the light extraction surface side of the LED chips 11 and 21 may be electrically connected to the other conductor pattern via a wire (for example, a gold wire or an aluminum wire). Good.

なお、本実施形態の図1に示す発光装置10では、実装基板4上の上記一表面4aの周部に二個の第一のLEDチップ11,11、実装基板4上の上記一表面4aの中央部に一個の第二のLEDチップ21を実装しているが、各LEDチップ11,21の数は、それぞれ一個だけでも、それぞれ複数個でもよい。この場合、各LEDチップ11,21は、適宜に直列、並列や直並列に電気的に接続させればよい。また、第一および第二のLEDチップ11,21は、同種のものを用いてもよいし、異なる発光波長の光を発光する複数個のLEDチップ11,21を用いてもよい。発光装置10は、実装基板4の一表面4a上で、長波長発光部2が複数個の短波長発光部2により囲まれるように配置される場合、特に二次吸収を抑制する効果が顕著に現れる。   In the light emitting device 10 shown in FIG. 1 of the present embodiment, two first LED chips 11 and 11 on the peripheral portion of the one surface 4a on the mounting substrate 4 and the one surface 4a on the mounting substrate 4 are provided. Although one second LED chip 21 is mounted at the center, the number of LED chips 11 and 21 may be one or more. In this case, the LED chips 11 and 21 may be electrically connected in series, parallel, or series-parallel as appropriate. The first and second LED chips 11 and 21 may be of the same type, or a plurality of LED chips 11 and 21 that emit light having different emission wavelengths. In the case where the light emitting device 10 is disposed on the one surface 4a of the mounting substrate 4 so that the long wavelength light emitting unit 2 is surrounded by the plurality of short wavelength light emitting units 2, the effect of suppressing secondary absorption is particularly remarkable. appear.

次に、本実施形態の発光装置10に用いられる実装基板4は、発光素子たる第一および第二のLEDチップ11,21がそれぞれ実装可能なものである。また、実装基板4は、実装基板4上の前記一対の導体パターン(たとえば、最表面がAuでメッキされた導体パターン)を利用して、LEDチップ11,21の通電経路を構成してもよい。このような実装基板4は、アルミナや窒化アルミニウムなどを用いたセラミック基板、Fe、CuやAlなどの金属材料を用いた金属ベース基板やガラスエポキシ樹脂基板などを用いることができる。実装基板4としてアルミナセラミック基板を用いた場合は、導体パターンを形成しやすく、ガラスエポキシ樹脂基板などと比較して熱伝導率も高く、LEDチップ11,21の点灯で生じた熱を外部に効率よく放熱させ発光装置10の放熱性を高めることができる。実装基板4として前記金属ベース基板を用いる場合は、各LEDチップ11,21が電気的に短絡しないように前記金属ベース基板上に絶縁層を適宜に形成すればよい。   Next, the mounting substrate 4 used in the light emitting device 10 of the present embodiment can mount the first and second LED chips 11 and 21 as light emitting elements. Further, the mounting substrate 4 may constitute a current-carrying path for the LED chips 11 and 21 by using the pair of conductor patterns (for example, a conductor pattern plated with Au on the outermost surface) on the mounting substrate 4. . As the mounting substrate 4, a ceramic substrate using alumina, aluminum nitride, or the like, a metal base substrate using a metal material such as Fe, Cu, or Al, a glass epoxy resin substrate, or the like can be used. When an alumina ceramic substrate is used as the mounting substrate 4, it is easy to form a conductor pattern, has higher thermal conductivity than a glass epoxy resin substrate, etc., and efficiently generates heat generated by lighting the LED chips 11 and 21. The heat radiation of the light emitting device 10 can be enhanced by sufficiently dissipating heat. When the metal base substrate is used as the mounting substrate 4, an insulating layer may be appropriately formed on the metal base substrate so that the LED chips 11 and 21 are not electrically short-circuited.

なお、本実施形態の発光装置10は、矩形平板状の実装基板4を用いているが、実装基板4の上記一表面4aの外周部に、短波長発光部1および長波長発光部2から放射される光を外部に放射させやすくさせるために、側壁(図示していない)を設けても良い。側壁は、実装基板4の上記一表面4aから外部に向かって広がるテーパー部を有することで、発光装置10の外部に光を取り出し易くなり、発光装置10の発光効率の低下を抑制することができる。また、前記側壁を備えた実装基板4として、カップを備えたリードフレームを用いてもよい。実装基板4として、カップを備えたリードフレームを用いる場合、発光装置10は、前記カップの内底面に第一のLEDチップ11および第二のLEDチップ21を実装させればよい。   Note that the light emitting device 10 of the present embodiment uses the rectangular flat plate-shaped mounting substrate 4, but radiates from the short wavelength light emitting unit 1 and the long wavelength light emitting unit 2 to the outer peripheral portion of the one surface 4 a of the mounting substrate 4. Side walls (not shown) may be provided in order to make the emitted light easily radiate to the outside. Since the side wall has a tapered portion that spreads outward from the one surface 4a of the mounting substrate 4, light can be easily extracted to the outside of the light emitting device 10, and a decrease in light emission efficiency of the light emitting device 10 can be suppressed. . In addition, as the mounting substrate 4 having the side wall, a lead frame having a cup may be used. When a lead frame including a cup is used as the mounting substrate 4, the light emitting device 10 may have the first LED chip 11 and the second LED chip 21 mounted on the inner bottom surface of the cup.

また、本実施形態の発光装置10は、前記側壁に、光を反射する反射層を設けてもよい。たとえば、前記側壁に反射層として銀メッキを形成させた場合、銀メッキは、短波長発光部1および長波長発光部2から放射する光に対して、1回の反射で約2%の反射損を生ずるだけとすることが可能である。なお、前記テーパー部に前記反射層を設けても良いことはいうまでもない。   In the light emitting device 10 of the present embodiment, a reflective layer that reflects light may be provided on the side wall. For example, when silver plating is formed on the side wall as a reflective layer, the silver plating is a reflection loss of about 2% in one reflection with respect to light emitted from the short wavelength light emitting unit 1 and the long wavelength light emitting unit 2. Can only occur. Needless to say, the reflective layer may be provided on the tapered portion.

さらに、発光装置10は、実装基板4の上記一表面4aに、反射部(図示せず)を設けても良く、このような反射部は、短波長発光部1から放射される光と、長波長発光部2から放射される光とを効率よく反射可能なものであって、具体的には、Al、Al合金、Ag、Ag合金などの金属材料やBaSOなどの白色顔料となる無機材料が含有されたガラス材料などを用いて構成すればよい。本実施形態の発光装置10は、前記反射部を設けることにより短波長発光部1の発光効率が高まると共に、前記反射部で反射された光による第二の波長変換層22での二次吸収も抑制可能となる。なお、前記反射部が導電性を有する場合、発光装置10は、第一および第二のLEDチップ11,21のそれぞれの前記アノード電極と前記カソード電極とが短絡しないように、前記反射部と前記一対の導体パターンとの間に絶縁層(図示していない)を適宜に形成させればよい。 Further, the light emitting device 10 may be provided with a reflecting portion (not shown) on the one surface 4 a of the mounting substrate 4. Specifically, it is capable of efficiently reflecting the light emitted from the wavelength light emitting unit 2, and specifically, a metal material such as Al, Al alloy, Ag, and Ag alloy, or an inorganic material that becomes a white pigment such as BaSO 4 What is necessary is just to comprise using the glass material etc. which contain. In the light emitting device 10 of the present embodiment, the light emitting efficiency of the short wavelength light emitting unit 1 is increased by providing the reflecting unit, and secondary absorption in the second wavelength conversion layer 22 by the light reflected by the reflecting unit is also performed. It becomes possible to suppress. In addition, when the reflection part has conductivity, the light emitting device 10 includes the reflection part and the cathode so that the anode electrode and the cathode electrode of each of the first and second LED chips 11 and 21 are not short-circuited. An insulating layer (not shown) may be appropriately formed between the pair of conductor patterns.

実装基板4には、実装基板4の上記一表面4aから側面および裏面にも導体パターンを延設させて発光装置10の外部電極として構成してもよい。このような発光装置10の外部電極は、リフロー工程などによって配線基板(図示せず)と電気的に接続させることができる。   The mounting substrate 4 may be configured as an external electrode of the light emitting device 10 by extending a conductor pattern from the one surface 4 a of the mounting substrate 4 to the side surface and the back surface. Such external electrodes of the light emitting device 10 can be electrically connected to a wiring board (not shown) by a reflow process or the like.

本実施形態に用いられる第一および第二の波長変換層12,22は、発光素子たる第一および第二のLEDチップ11,21がそれぞれ放射する光の少なくとも一部を吸収して波長変換し、第一および第二のLEDチップ11,21からの光よりも長波長側にピークをもつ蛍光を発するものである。   The first and second wavelength conversion layers 12 and 22 used in the present embodiment absorb at least a part of light emitted from the first and second LED chips 11 and 21 that are light emitting elements, respectively, and perform wavelength conversion. The fluorescent light having a peak on the longer wavelength side than the light from the first and second LED chips 11 and 21 is emitted.

第一の波長変換層12は、たとえば、第一のLEDチップ11から放射された光の一部を吸収して、より長波長側に発光ピークをもつ蛍光を放射する蛍光体をシリコーン樹脂、アクリル樹脂、エポキシ樹脂やガラスなどの透光性材料中に含有して形成すればよい。第二の波長変換層22は、第二のLEDチップ21から放射された光の一部を吸収してより長波長側に発光ピークをもつ蛍光を放射する蛍光体を含有するものであり、第一の波長変換層12の蛍光よりも長波長の光を放射する。第二の波長変換層22も、第一の波長変換層12と同様に、たとえば、蛍光体をシリコーン樹脂、アクリル樹脂、エポキシ樹脂やガラスなどの透光性材料中に含有することができる。発光装置10が放射する光を、演色性の高い白色光とするには、青色光を放射する第一および第二のLEDチップ11,21と第一および第二の波長変換層12,22との組み合わせにおいて、第一の波長変換層12用の蛍光体として緑色蛍光体、第二の波長変換層22用の蛍光体として赤色蛍光体を用いることができる。   For example, the first wavelength conversion layer 12 absorbs a part of the light emitted from the first LED chip 11 and converts a phosphor that emits fluorescence having an emission peak on a longer wavelength side into a silicone resin or an acrylic resin. What is necessary is just to include and form in translucent materials, such as resin, an epoxy resin, and glass. The second wavelength conversion layer 22 contains a phosphor that absorbs part of the light emitted from the second LED chip 21 and emits fluorescence having an emission peak on the longer wavelength side. It emits light having a longer wavelength than the fluorescence of one wavelength conversion layer 12. Similarly to the first wavelength conversion layer 12, the second wavelength conversion layer 22 can also contain, for example, a phosphor in a translucent material such as a silicone resin, an acrylic resin, an epoxy resin, or glass. In order to change the light emitted from the light emitting device 10 into white light having high color rendering properties, the first and second LED chips 11 and 21 that emit blue light and the first and second wavelength conversion layers 12 and 22 In this combination, a green phosphor can be used as the phosphor for the first wavelength conversion layer 12, and a red phosphor can be used as the phosphor for the second wavelength conversion layer 22.

また、第一および第二の波長変換層12,22の厚みは、それぞれ発光装置10から放射する光の目標とする色温度、第一および第二のLEDチップ11,21から放射される青色光の発光強度や蛍光体の含有量などによって異なるが、たとえば、約100μmの厚みに形成することができる。   The thicknesses of the first and second wavelength conversion layers 12 and 22 are the target color temperature of the light emitted from the light emitting device 10 and the blue light emitted from the first and second LED chips 11 and 21, respectively. For example, it can be formed to a thickness of about 100 μm, although it varies depending on the emission intensity and the phosphor content.

第一および第二の波長変換層12,22に用いられる蛍光体としては、たとえば、Ceで付活されたYAl12やCeで付活されたTbAl12などのアルミネート系の蛍光体のほか、Euで付活されたBaSiOやEuで付活された(SrBa)SiOなどの珪酸塩系の蛍光体、Euで付活されたCaAlSiN、Euで付活されたSrSi、Euで付活されたCaSi、Euで付活されたSrSi10やEuで付活されたCaSi10などの窒化物系の蛍光体を採用することもできる。また、第一および第二の波長変換層12,22に用いられる前記蛍光体は、第一の波長変換層12用の緑色蛍光体と第二の波長変換層22用の赤色蛍光体に限らず、第一の波長変換層12用の黄色蛍光体と第二の波長変換層22用の赤色蛍光体などとして用いても、白色光を得ることができる。 Examples of the phosphor used for the first and second wavelength conversion layers 12 and 22 include aluminum such as Y 3 Al 5 O 12 activated by Ce and Tb 3 Al 5 O 12 activated by Ce. In addition to nate-based phosphors, silicate-based phosphors such as Ba 2 SiO 4 activated by Eu and (SrBa) 2 SiO 4 activated by Eu, CaAlSiN 3 activated by Eu, Eu nitrides such as CaSi 7 N 10 which is activated by in activated with Sr 2 Si 5 N 8, Ca were activated by Eu 2 Si 5 N 8, Eu in-activated the SrSi 7 N 10 and Eu It is also possible to employ a phosphor of the system. The phosphors used in the first and second wavelength conversion layers 12 and 22 are not limited to the green phosphor for the first wavelength conversion layer 12 and the red phosphor for the second wavelength conversion layer 22. Even when used as a yellow phosphor for the first wavelength conversion layer 12 and a red phosphor for the second wavelength conversion layer 22, white light can be obtained.

また、本実施形態の発光装置10では、第一のLEDチップ11および第一の波長変換層12が第一の透光性部材5で被覆され、第二のLEDチップ21および第二の波長変換層22が第二の透光性部材6で被覆されている。発光装置10は、第一の透光性部材5の屈折率を、第二の透光性部材6の屈折率よりも大きくしている。第一の透光性部材5は、第二の透光性部材6と接しており、好適には第一の透光性部材5が、第二の透光性部材6を被覆している。   In the light emitting device 10 of the present embodiment, the first LED chip 11 and the first wavelength conversion layer 12 are covered with the first light-transmissive member 5, and the second LED chip 21 and the second wavelength conversion are performed. The layer 22 is covered with the second translucent member 6. In the light emitting device 10, the refractive index of the first light transmissive member 5 is made larger than the refractive index of the second light transmissive member 6. The first translucent member 5 is in contact with the second translucent member 6, and preferably the first translucent member 5 covers the second translucent member 6.

これにより、発光装置10は、上述の図2(b)で示したごとく実装基板4の一表面4aに実装された第一のLEDチップ11上の第一の波長変換層12から放射された蛍光(図中の矢印を参照)が第二の透光性部材6に入射されることを抑制することができ、第二の波長変換層22での二次吸収に伴う発光効率の低下を抑制させるとともに、より色むらの少ない光を得ることができる。   As a result, the light emitting device 10 fluoresces from the first wavelength conversion layer 12 on the first LED chip 11 mounted on the one surface 4a of the mounting substrate 4 as shown in FIG. (Refer to the arrow in the figure) can be prevented from being incident on the second light-transmissive member 6, and a decrease in light emission efficiency associated with secondary absorption in the second wavelength conversion layer 22 can be suppressed. At the same time, light with less color unevenness can be obtained.

たとえば、発光装置10は、第一のLEDチップ11上に形成された第一の波長変換層12から放射された緑色光のうち、緑色光の一部が実装基板4上の長波長発光部2側へ向かう。しかしながら、発光装置10は、第二の波長変換層22を第一の透光性部材5よりも相対的に屈折率の小さい第二の透光性部材6で被覆していることにより、第一の透光性部材5と第二の透光性部材6との界面で屈折率差に伴う光の反射する割合が増加する。これにより、発光装置10は、緑色光が第二の波長変換層22へ入射することを抑制され、第二の波長変換層22による二次吸収を抑制し、発光効率の低下をより抑制することが可能となる。   For example, in the light emitting device 10, among the green light emitted from the first wavelength conversion layer 12 formed on the first LED chip 11, a part of the green light is the long wavelength light emitting unit 2 on the mounting substrate 4. Head to the side. However, the light emitting device 10 covers the second wavelength conversion layer 22 with the second light transmissive member 6 having a relatively lower refractive index than the first light transmissive member 5. The ratio of light reflection due to the difference in refractive index at the interface between the translucent member 5 and the second translucent member 6 increases. Thereby, the light-emitting device 10 is suppressed from entering green light into the second wavelength conversion layer 22, suppresses secondary absorption by the second wavelength conversion layer 22, and further suppresses a decrease in light emission efficiency. Is possible.

このような第一および第二の透光性部材5,6は、短波長発光部1,1および長波長発光部2をそれぞれ被覆し、外部からの力に対して保護などするために好適に用いられるものであって、可視域において透光性の高い透光性材料を好適に用いることができる。第一および第二の透光性部材5,6の具体的材料としては、シリコーン樹脂、アクリル樹脂、エポキシ樹脂やガラスなどが挙げられ、使用する部位に応じて適した屈折率を有する材料を適宜に採用すればよい。エポキシ樹脂は、たとえば、屈折率が1.55から1.61とすることができ、シリコーン樹脂は、屈折率が1.35から1.53とすることができる。   Such first and second translucent members 5 and 6 are suitable for covering the short-wavelength light-emitting portions 1 and 1 and the long-wavelength light-emitting portion 2, respectively, and protecting them from external forces. A light-transmitting material that is used and has a high light-transmitting property in the visible range can be suitably used. Specific materials for the first and second translucent members 5 and 6 include silicone resin, acrylic resin, epoxy resin, glass, and the like, and a material having a suitable refractive index according to the site to be used is appropriately used. Adopted for. For example, the epoxy resin can have a refractive index of 1.55 to 1.61, and the silicone resin can have a refractive index of 1.35 to 1.53.

第一および第二の透光性部材5,6としてシリコーン樹脂を用いた場合は、第一の透光性部材5としてフェニル系シリコーン樹脂を用い、第二の透光性部材6としてフッ素系のシリコーン樹脂を用いることで、第一の透光性部材5の屈折率を第二の透光性部材6の屈折率よりも高くすることができる。   When a silicone resin is used as the first and second translucent members 5, 6, a phenyl silicone resin is used as the first translucent member 5, and a fluorine-based resin is used as the second translucent member 6. By using a silicone resin, the refractive index of the 1st translucent member 5 can be made higher than the refractive index of the 2nd translucent member 6. FIG.

第一および第二の透光性部材5,6は、たとえば、実装基板4上に短波長発光部1および長波長発光部2をそれぞれ形成後、最初に第二の透光性部材6となるフッ素系のシリコーン樹脂材料を長波長発光部2を包囲するように充填して加熱硬化する。次に、第一の透光性部材5となるフェニル系シリコーン樹脂材料を、第二の透光性部材6が形成された実装基板4上に複数個の短波長発光部1,1および第二の透光性部材6を被覆するように塗布して加熱硬化させればよい。   The first and second translucent members 5 and 6 are, for example, first formed as the second translucent member 6 after forming the short wavelength light emitting unit 1 and the long wavelength light emitting unit 2 on the mounting substrate 4 respectively. A fluorine-based silicone resin material is filled so as to surround the long-wavelength light emitting portion 2 and cured by heating. Next, a plurality of short wavelength light emitting portions 1, 1 and second on the mounting substrate 4 on which the second translucent member 6 is formed by using the phenyl silicone resin material to be the first translucent member 5. What is necessary is just to apply | coat so that the translucent member 6 may be coat | covered and to heat-harden.

なお、第一の透光性部材5と第二の透光性部材6とが接する界面には、第二の透光性部材6よりも屈折率が大きく、第一の透光性部材5よりも屈折率の小さい第三の透光性部材(図示せず)を設けてもよい。前記第三の透光性部材を設けることにより、第一の透光性部材5と前記第三の透光性部材との界面では反射しなかった第一の波長変換層12からの光を、前記第三の透光性部材と第二の透光性部材6との界面で反射させることが可能となる。そのため、発光装置10は、全体として第一の透光性部材5から第二の透光性部材6に向かう第一の波長変換層12からの光を更に抑制し、発光効率の低下を抑制することが可能となる。   In addition, the refractive index is larger than the 2nd translucent member 6 in the interface which the 1st translucent member 5 and the 2nd translucent member 6 contact | connect, than the 1st translucent member 5 Alternatively, a third translucent member (not shown) having a low refractive index may be provided. By providing the third translucent member, the light from the first wavelength conversion layer 12 that was not reflected at the interface between the first translucent member 5 and the third translucent member, It is possible to reflect at the interface between the third translucent member and the second translucent member 6. Therefore, the light emitting device 10 further suppresses light from the first wavelength conversion layer 12 that travels from the first light transmissive member 5 to the second light transmissive member 6 as a whole, and suppresses a decrease in light emission efficiency. It becomes possible.

また、発光装置10は、実装基板4の一表面4a上に複数個の短波長発光部1および長波長発光部2を配置させた場合、第二の透光性部材6は、個々の長波長発光部2に対してそれぞれ形成させてもよいし、複数個の長波長発光部2に対して、一個の第二の透光性部材6を設けても良い。すなわち、図3に示す発光装置10のごとく、たとえば、二個の長波長発光部2,2を、それぞれ二個の第二の透光性部材6,6で個別に被覆するとともに、一個の第一の透光性部材5によって、二個の透光性部材6,6および二個の短波長発光部1,1を被覆することができる。   In the light emitting device 10, when a plurality of short wavelength light emitting units 1 and long wavelength light emitting units 2 are arranged on one surface 4 a of the mounting substrate 4, the second translucent member 6 has individual long wavelengths. You may form each with respect to the light emission part 2, and you may provide the one 2nd translucent member 6 with respect to the some long wavelength light emission part 2. FIG. That is, as in the light emitting device 10 shown in FIG. 3, for example, the two long wavelength light emitting units 2 and 2 are individually covered with the two second light transmissive members 6 and 6, respectively. With the single translucent member 5, the two translucent members 6 and 6 and the two short wavelength light emitting units 1 and 1 can be covered.

これによって、図3に示す発光装置10は、各短波長発光部1,1と、各長波長発光部2,2との距離や出力を考慮し、各別に透光性部材6,6の屈折率や第一の透光性部材5と第二の透光性部材6,6との界面の形状を変えて、第二の波長変換層での二次吸収の抑制や混色性の向上を図ることが可能となる。   Accordingly, the light emitting device 10 shown in FIG. 3 takes into account the distance and output between each short wavelength light emitting unit 1, 1 and each long wavelength light emitting unit 2, 2 and refracts the translucent members 6, 6 separately. By changing the ratio and the shape of the interface between the first translucent member 5 and the second translucent members 6, 6, the secondary absorption in the second wavelength conversion layer is suppressed and the color mixing property is improved. It becomes possible.

また、図4に示す発光装置10は、たとえば、二個の長波長発光部2,2を一個の第二の透光性部材6で被覆するとともに、一個の第一の透光性部材5によって、第二の透光性部材6および二個の短波長発光部1,1を被覆させることができる。   In addition, the light emitting device 10 illustrated in FIG. 4 includes, for example, two long wavelength light emitting units 2 and 2 covered with one second light transmissive member 6 and one first light transmissive member 5. The second translucent member 6 and the two short-wavelength light emitting portions 1 and 1 can be covered.

これによって、図4に示す発光装置10は、各透光性部材5,6の形成が一回で済むため、量産性よく製造させることができる。   Accordingly, the light-emitting device 10 shown in FIG. 4 can be manufactured with high productivity because the light-transmitting members 5 and 6 need only be formed once.

次に、本実施形態の発光装置10の製造工程について説明する。   Next, the manufacturing process of the light emitting device 10 of this embodiment will be described.

実装基板4の上記一表面4aに第一のLEDチップ11を複数個のAuバンプ3を用いてフリップチップ実装する。同様に、実装基板4の上記一表面4aに第二のLEDチップ21を複数個のAuバンプ3を用いてフリップチップ実装する。第一および第二のLEDチップ11,21は、フリップチップ実装に先立って、それぞれ、第一のLEDチップ11上に第一の波長変換層12を形成し、第二のLEDチップ21上に第二の波長変換層22を形成している。このような第一および第二の波長変換層12,22の形成方法としては透光性部材たるシリコーン樹脂をバインダーとして蛍光体が充填されたフィルム状のシート(大きさ:約1mm角、厚み約100μm)を、LEDチップ11,21のサファイア基板上に透光性の接着剤により接着させればよい。   The first LED chip 11 is flip-chip mounted on the one surface 4 a of the mounting substrate 4 using a plurality of Au bumps 3. Similarly, the second LED chip 21 is flip-chip mounted on the one surface 4 a of the mounting substrate 4 using a plurality of Au bumps 3. Prior to flip chip mounting, the first and second LED chips 11, 21 are each formed with a first wavelength conversion layer 12 on the first LED chip 11, and on the second LED chip 21. A second wavelength conversion layer 22 is formed. As a method for forming the first and second wavelength conversion layers 12 and 22, a film-like sheet (size: about 1 mm square, thickness of about 1 mm square) filled with a phosphor using a silicone resin as a translucent member as a binder. 100 μm) may be adhered to the sapphire substrate of the LED chips 11 and 21 with a translucent adhesive.

これにより、実装基板4の上記一表面4aに実装した第一のLEDチップ11は、緑色蛍光体が含有された第一の波長変換層12を、第二のLEDチップ21には赤色蛍光体が含有された第二の波長変換層22がそれぞれ積載される。   Accordingly, the first LED chip 11 mounted on the one surface 4a of the mounting substrate 4 has the first wavelength conversion layer 12 containing the green phosphor, and the second LED chip 21 has the red phosphor. The contained second wavelength conversion layer 22 is loaded.

なお、第一および第二の波長変換層12,22は、実装基板4上に第一および第二のLEDチップ11,21を実装した後、スクリーン印刷法を利用して、第一および第二のLEDチップ11,21上に蛍光体を含有する透光性材料を塗布させて、それぞれ形成させることもできる。また、第一および第二の波長変換層12,22は、実装基板4上に第一および第二のLEDチップ11,21を実装した後、インクジェット印刷法を利用して、第一および第二のLEDチップ11,21上に蛍光体を含有する透光性材料を吐出させ、それぞれ形成させてもよい。   The first and second wavelength conversion layers 12 and 22 are formed by mounting the first and second LED chips 11 and 21 on the mounting substrate 4, and then using the screen printing method. Each of the LED chips 11 and 21 can be formed by applying a translucent material containing a phosphor. The first and second wavelength conversion layers 12 and 22 are formed by mounting the first and second LED chips 11 and 21 on the mounting substrate 4 and then using the ink jet printing method. A translucent material containing a phosphor may be discharged onto the LED chips 11 and 21 and formed respectively.

続いて、本実施形態の発光装置10では、第二のLEDチップ21および第二の波長変換層22上にフッ素系のシリコーン樹脂からなる第二の透光性部材6を塗布して被覆し加熱硬化させる。その後、第一のLEDチップ11、第一の波長変換層12および第二の透光性部材6上にフェニル系のシリコーン樹脂からなる第一の透光性部材5を塗布して被覆し加熱硬化させている。これにより、発光装置10は、第一の透光性部材5の屈折率が、第二の透光性部材6の屈折率よりも大きくしている。第一の透光性部材5は、第二の透光性部材6と接して被覆している。なお、第一および第二の透光性部材5,6との界面の形状は、第二の透光性部材6の形成時における透光性材料の粘度の調整などにより、比較的簡単に変更することができる。   Subsequently, in the light emitting device 10 according to the present embodiment, the second LED chip 21 and the second wavelength conversion layer 22 are coated with the second translucent member 6 made of a fluorine-based silicone resin, covered, and heated. Harden. Thereafter, the first light-transmissive member 5 made of a phenyl-based silicone resin is coated on the first LED chip 11, the first wavelength conversion layer 12, and the second light-transmissive member 6, and then heated and cured. I am letting. Thereby, in the light emitting device 10, the refractive index of the first light transmissive member 5 is made larger than the refractive index of the second light transmissive member 6. The first translucent member 5 is in contact with and covers the second translucent member 6. The shape of the interface with the first and second translucent members 5 and 6 can be changed relatively easily by adjusting the viscosity of the translucent material when the second translucent member 6 is formed. can do.

(実施形態2)
本実施形態は、図1で示した実施形態1の第二の透光性部材6に、図5の発光装置10で示すように拡散材7を含有させた点が異なる。なお、実施形態1と同様の構成要素には、同一の符号を付して説明を適宜省略する。
(Embodiment 2)
This embodiment is different in that a diffusing material 7 is included in the second light transmissive member 6 of the first embodiment shown in FIG. 1 as shown in the light emitting device 10 of FIG. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.

以下、本実施形態の発光装置10を図5に示す概略断面図で説明する。   Hereinafter, the light emitting device 10 of the present embodiment will be described with reference to a schematic cross-sectional view shown in FIG.

本実施形態の図5に示す発光装置10は、青色光を発光する第一のLEDチップ11が実装基板4の一表面4aの導体パターン(図示せず)に複数個のAuバンプ3を用いてフリップチップ実装されている。同様に、青色光を発光する第二のLEDチップ21は実装基板4の上記一表面4aの導体パターン(図示せず)に複数個のAuバンプ3を用いてフリップチップ実装されている。第一のLEDチップ11上には、第一のLEDチップ11からの青色光の一部を吸収し緑色の蛍光を発する緑色蛍光体が含有された透光性樹脂層からなる第一の波長変換層12を形成させている。同様に、第二のLEDチップ11上には、第二のLEDチップ21からの青色光の一部を吸収し赤色の蛍光を発する赤色蛍光体が含有された透光性樹脂層からなる第二の波長変換層22を形成させている。これにより、この発光装置10では、第一のLEDチップ11および第一のLEDチップ11上の緑色の蛍光を発する第一の波長変換層12を短波長発光部1とし、第二のLEDチップ21および第二のLEDチップ21上の赤色の蛍光を発する第二の波長変換層22を長波長発光部2として構成させている。   In the light emitting device 10 shown in FIG. 5 of the present embodiment, the first LED chip 11 that emits blue light uses a plurality of Au bumps 3 on a conductor pattern (not shown) on one surface 4 a of the mounting substrate 4. Flip chip mounting. Similarly, the second LED chip 21 that emits blue light is flip-chip mounted on a conductor pattern (not shown) on the one surface 4 a of the mounting substrate 4 using a plurality of Au bumps 3. On the first LED chip 11, a first wavelength conversion comprising a translucent resin layer containing a green phosphor that absorbs part of the blue light from the first LED chip 11 and emits green fluorescence. Layer 12 is formed. Similarly, on the second LED chip 11, a second light-transmitting resin layer containing a red phosphor that absorbs a part of blue light from the second LED chip 21 and emits red fluorescence is contained. The wavelength conversion layer 22 is formed. Thereby, in this light-emitting device 10, the 1st LED chip 11 and the 1st wavelength conversion layer 12 which emits the green fluorescence on the 1st LED chip 11 are used as the short wavelength light emission part 1, and the 2nd LED chip 21 And the 2nd wavelength conversion layer 22 which emits the red fluorescence on the 2nd LED chip 21 is comprised as the long wavelength light emission part 2. FIG.

また、本実施形態の発光装置10では、実装基板4の上記一表面4aにおける周部に設けられた二個の短波長発光部1,1が第一の透光性部材5で被覆され、上記一表面4aの中央部に設けられた一個の長波長発光部2が第二の透光性部材6で被覆されている。発光装置10は、第一の透光性部材5の屈折率が、第二の透光性部材6の屈折率よりも大きくしている。第一の透光性部材5は、第二の透光性部材6と接しており、好適には第一の透光性部材5が、第二の透光性部材6を被覆している。   Further, in the light emitting device 10 of the present embodiment, the two short wavelength light emitting portions 1, 1 provided on the peripheral portion of the one surface 4 a of the mounting substrate 4 are covered with the first translucent member 5, and One long wavelength light emitting portion 2 provided at the center of one surface 4 a is covered with a second light transmissive member 6. In the light emitting device 10, the refractive index of the first light transmissive member 5 is larger than the refractive index of the second light transmissive member 6. The first translucent member 5 is in contact with the second translucent member 6, and preferably the first translucent member 5 covers the second translucent member 6.

本実施形態の発光装置10では、特に、第二の透光性部材6中に拡散材7を含有させることにより、実装基板4の第二の透光性部材6から長波長発光部2の光を拡散させて外部に放射させる。これにより図5に示す発光装置10は、拡散材7を含有させない発光装置10と比較して、第二の透光性部材6から放射される光の配光をより広げ、発光装置10から放射される光の混色性をより促進させることが可能となる。また、第一の透光性部材5および第二の透光性部材6の両方に拡散材7を含有させる発光装置10よりも、発光効率の低下を少なくすることができる。   In the light emitting device 10 of the present embodiment, in particular, the light of the long wavelength light emitting unit 2 is emitted from the second light transmissive member 6 of the mounting substrate 4 by including the diffusing material 7 in the second light transmissive member 6. Is diffused and emitted to the outside. Accordingly, the light emitting device 10 illustrated in FIG. 5 further spreads the light distribution of the light emitted from the second light transmissive member 6 and emits light from the light emitting device 10 as compared with the light emitting device 10 that does not contain the diffusing material 7. It is possible to further promote the color mixing of the emitted light. In addition, a decrease in luminous efficiency can be reduced as compared with the light emitting device 10 in which both the first light transmissive member 5 and the second light transmissive member 6 contain the diffusing material 7.

このような拡散材7の材料としては、酸化アルミニウム、シリカ、酸化チタンなどの無機材料やフッ素系樹脂などの有機材料、有機成分と無機成分とを分子レベルや粒子レベルで複合化した有機無機ハイブリッド材料などが挙げられ、平均粒径もたとえば、数μmから数十μmまでで適宜に選択すればよい。   Examples of the material of the diffusing material 7 include inorganic materials such as aluminum oxide, silica, and titanium oxide, organic materials such as fluorine-based resins, and organic-inorganic hybrids in which organic components and inorganic components are combined at the molecular level and particle level. The average particle size may be appropriately selected from several μm to several tens of μm, for example.

なお、拡散材7を含有する第二の透光性部材6を形成させるためには、硬化前の第二の透光性部材6の透光性材料中に予め拡散材7を分散含有させておき、拡散材7が分散した透光性材料を長波長発光部2が配置された実装基板4の上記一表面4a上に被覆して加熱硬化させればよい。   In addition, in order to form the 2nd translucent member 6 containing the diffusing material 7, the diffusing material 7 is dispersed and contained in advance in the translucent material of the second translucent member 6 before curing. The light-transmitting material in which the diffusing material 7 is dispersed may be coated on the surface 4a of the mounting substrate 4 on which the long-wavelength light emitting portion 2 is disposed and heat-cured.

4 実装基板
4a 一表面
5 第一の透光性部材
6 第二の透光性部材
7 拡散材
10 発光装置
11 第一のLEDチップ(第一の発光素子)
12 第一の波長変換層
21 第二のLEDチップ(第二の発光素子)
22 第二の波長変換層
4 mounting substrate 4a one surface 5 first light transmissive member 6 second light transmissive member 7 diffusing material 10 light emitting device 11 first LED chip (first light emitting element)
12 1st wavelength conversion layer 21 2nd LED chip (2nd light emitting element)
22 Second wavelength conversion layer

Claims (2)

実装基板の一表面にそれぞれ実装された第一の発光素子および第二の発光素子と、前記第一の発光素子上に備えられ前記第一の発光素子からの光の少なくとも一部を吸収し蛍光を発する第一の波長変換層と、前記第一の発光素子および前記第一の波長変換層を被覆する第一の透光性部材と、前記第二の発光素子上に備えられ前記第二の発光素子からの光の少なくとも一部を吸収し前記第一の波長変換層からの前記蛍光よりも長波長の蛍光を発する第二の波長変換層と、前記第二の発光素子および前記第二の波長変換層を被覆する第二の透光性部材とを有し、前記第一の透光性部材は、前記第二の透光性部材よりも屈折率が大きく、且つ前記第二の透光性部材と接していることを特徴とする発光装置。   A first light-emitting element and a second light-emitting element respectively mounted on one surface of the mounting substrate; and at least part of light from the first light-emitting element that is provided on the first light-emitting element and absorbs fluorescence A first wavelength conversion layer that emits light, a first translucent member that covers the first light emitting element and the first wavelength conversion layer, and the second light emitting element provided on the second light emitting element. A second wavelength conversion layer that absorbs at least part of light from the light emitting element and emits fluorescence having a longer wavelength than the fluorescence from the first wavelength conversion layer; the second light emitting element; and the second light emitting element A second translucent member that covers the wavelength conversion layer, wherein the first translucent member has a refractive index greater than that of the second translucent member and the second translucent member. A light-emitting device in contact with the sexual member. 第二の透光性部材は、拡散材が分散されてなることを特徴とする請求項1に記載の発光装置。   The light-emitting device according to claim 1, wherein the second light-transmissive member includes a diffusing material dispersed therein.
JP2009247037A 2009-10-27 2009-10-27 Light emitting device Active JP5113820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009247037A JP5113820B2 (en) 2009-10-27 2009-10-27 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009247037A JP5113820B2 (en) 2009-10-27 2009-10-27 Light emitting device

Publications (2)

Publication Number Publication Date
JP2011096739A JP2011096739A (en) 2011-05-12
JP5113820B2 true JP5113820B2 (en) 2013-01-09

Family

ID=44113368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009247037A Active JP5113820B2 (en) 2009-10-27 2009-10-27 Light emitting device

Country Status (1)

Country Link
JP (1) JP5113820B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111490038A (en) * 2019-01-25 2020-08-04 蚌埠三颐半导体有限公司 L ED package preparation method and L ED package
US11774060B2 (en) 2020-08-25 2023-10-03 Nil Technology Aps Structured and diffuse light generation

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101873998B1 (en) * 2011-07-28 2018-07-05 엘지이노텍 주식회사 Light emitting device package and lighting system including the same
JP5810758B2 (en) * 2011-08-31 2015-11-11 日亜化学工業株式会社 Light emitting device
JP2013065726A (en) 2011-09-16 2013-04-11 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
JP5557828B2 (en) * 2011-12-07 2014-07-23 三菱電機株式会社 Light emitting device
JPWO2013121903A1 (en) * 2012-02-13 2015-05-11 コニカミノルタ株式会社 Wavelength conversion element and method for manufacturing the same, light emitting device and method for manufacturing the same
JP5776599B2 (en) * 2012-03-26 2015-09-09 東芝ライテック株式会社 Light emitting module and lighting device
JP6093127B2 (en) * 2012-08-29 2017-03-08 シャープ株式会社 Light emitting device and manufacturing method thereof
WO2014087938A1 (en) * 2012-12-03 2014-06-12 シチズンホールディングス株式会社 Led module
RU2651794C2 (en) * 2013-03-11 2018-04-27 Филипс Лайтинг Холдинг Б.В. Dimable light emitting arrangement
JP2015076527A (en) * 2013-10-09 2015-04-20 シチズン電子株式会社 Led light emitting device
JP6229455B2 (en) * 2013-11-25 2017-11-15 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP6524107B2 (en) 2014-09-29 2019-06-05 シチズン時計株式会社 LED module
JP6625326B2 (en) * 2015-02-09 2019-12-25 住友化学株式会社 Semiconductor light emitting device manufacturing method and semiconductor light emitting device
JP6728869B2 (en) * 2016-02-25 2020-07-22 豊田合成株式会社 Light emitting device
JP6769248B2 (en) 2016-11-09 2020-10-14 日亜化学工業株式会社 Light emitting device
JP6917179B2 (en) * 2017-04-18 2021-08-11 スタンレー電気株式会社 White light emitting device
JP7178820B2 (en) * 2018-08-09 2022-11-28 シチズン時計株式会社 LED light emitting device
CN110957409B (en) * 2019-11-28 2020-11-17 华灿光电(苏州)有限公司 Light emitting diode epitaxial wafer, light emitting diode module and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4679183B2 (en) * 2005-03-07 2011-04-27 シチズン電子株式会社 Light emitting device and lighting device
JP4535928B2 (en) * 2005-04-28 2010-09-01 シャープ株式会社 Semiconductor light emitting device
JP5357379B2 (en) * 2006-02-23 2013-12-04 パナソニック株式会社 Light emitting device
JP2007243056A (en) * 2006-03-10 2007-09-20 Matsushita Electric Works Ltd Light emitting device
JP2007273562A (en) * 2006-03-30 2007-10-18 Toshiba Corp Semiconductor light-emitting device
JP4805026B2 (en) * 2006-05-29 2011-11-02 シャープ株式会社 LIGHT EMITTING DEVICE, DISPLAY DEVICE, AND LIGHT EMITTING DEVICE CONTROL METHOD
KR100891810B1 (en) * 2007-11-06 2009-04-07 삼성전기주식회사 White light emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111490038A (en) * 2019-01-25 2020-08-04 蚌埠三颐半导体有限公司 L ED package preparation method and L ED package
CN111490038B (en) * 2019-01-25 2022-04-05 蚌埠三颐半导体有限公司 Preparation method of LED package and LED package
US11774060B2 (en) 2020-08-25 2023-10-03 Nil Technology Aps Structured and diffuse light generation

Also Published As

Publication number Publication date
JP2011096739A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP5113820B2 (en) Light emitting device
JP5810301B2 (en) Lighting device
JP5044329B2 (en) Light emitting device
JP5899507B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP4238681B2 (en) Light emitting device
JP2011096740A (en) Light-emitting device
JP6777127B2 (en) Manufacturing method of light emitting device
JP2016027620A (en) Light emitting device
JP5598323B2 (en) Light emitting device and method for manufacturing light emitting device
TW200537716A (en) Light-emitting apparatus and illuminating apparatus
JP2008166782A (en) Light-emitting element
JP2007035885A (en) Light emitting device and illumination device employing it
JP2012099544A (en) Manufacturing method of light-emitting apparatus
JP2006202962A (en) Light emitting apparatus
JP2011114093A (en) Lighting system
JP2012248553A (en) Light-emitting device and luminaire using the same
JP2013038215A (en) Wavelength conversion member
JP2014060328A (en) Light-emitting device
JP5374332B2 (en) Lighting device
JP2011171504A (en) Light-emitting device
JP6997869B2 (en) Wavelength conversion element and light source device
JP6158341B2 (en) Light emitting device and method for manufacturing light emitting device
JP2007288138A (en) Light emitting device
JP5678462B2 (en) Light emitting device
JP2012009696A (en) Light emitting device and led illuminating equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5113820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150