JP5109269B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP5109269B2
JP5109269B2 JP2006064726A JP2006064726A JP5109269B2 JP 5109269 B2 JP5109269 B2 JP 5109269B2 JP 2006064726 A JP2006064726 A JP 2006064726A JP 2006064726 A JP2006064726 A JP 2006064726A JP 5109269 B2 JP5109269 B2 JP 5109269B2
Authority
JP
Japan
Prior art keywords
film
silicon
silicon nitride
dielectric constant
high dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006064726A
Other languages
English (en)
Other versions
JP2007242968A (ja
Inventor
憲彦 高橋
隆浩 山崎
千穂子 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006064726A priority Critical patent/JP5109269B2/ja
Publication of JP2007242968A publication Critical patent/JP2007242968A/ja
Application granted granted Critical
Publication of JP5109269B2 publication Critical patent/JP5109269B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本発明は、ゲート絶縁膜に高誘電率材料を用いた半導体装置の製造方法に関し、特にシリコン酸化膜、シリコン窒化膜及び高誘電率材料膜を積層して構成されたゲート絶縁膜を有する半導体装置の製造方法に関する。
近年、半導体装置の高機能化及び高集積化が促進されており、それに伴って半導体装置を構成するMOSトランジスタのより一層の微細化が要求されている。MOSトランジスタを微細化するためにはゲート絶縁膜の薄膜化が必須であり、そのため現在では厚さが2nm以下のゲート絶縁膜が要求されている。しかし、MOSトランジスタのゲート絶縁膜として一般的に用いられているシリコン酸化膜では、膜厚が2nm以下になるとトンネル効果によるリーク電流が著しく増大し、消費電力が大きくなって実用に耐えられなくなることが判明している。
このため、比誘電率がシリコン酸化膜の数倍〜数十倍の高誘電率材料(いわゆるHigh-k材料)によりゲート絶縁膜を形成することが提案されている。この種の用途に使用される高誘電率材料としては、例えばHfO2、ZrO2、Ta25及びLa23等がある。このような高誘電率材料によりゲート絶縁膜を形成すると、物理的な膜厚を厚くしたままで実効膜厚(SiO2膜に換算した膜厚)を薄くすることができる。これにより、リーク電流を抑制することができて、MOSトランジスタのより一層の微細化が可能になる。
ところで、ゲート絶縁膜には、リーク電流が少ないことに加えて、電子をトラップするような欠陥が少ないことが要求される。しかし、上述した高誘電率材料をシリコン基板上に直接成膜すると、シリコン基板と高誘電率材料膜との界面に多数の界面準位や欠陥準位(欠陥)が発生する。そして、これらの準位に電子がトラップされてゲート絶縁膜の電気的特性にばらつきが発生し、その結果MOSトランジスタの特性が著しく不安定になってしまう。
この問題を解消するために、例えば特許文献1には、シリコン基板と高誘電率材料膜との間にシリコン酸化膜を形成することが提案されている。このようにシリコン基板と高誘電率材料膜との間にシリコン酸化膜を介在させると、シリコン基板とゲート絶縁膜との界面(すなわち、シリコン基板とシリコン酸化膜との界面)が平坦になり、電子をトラップするような欠陥の数が減少する。この場合、ゲート絶縁膜(高誘電率材料膜+シリコン酸化膜)の比誘電率の低下を回避するために、シリコン酸化膜は1nm以下の厚さに形成することが必要となる。
なお、本願発明に関係すると思われる他の先行技術文献として、特許文献2がある。この特許文献2には、半導体基板の上にシリコン酸化膜を形成した後、窒素ラジカルイオン活性種を用いた平滑化窒化処理を実施して半導体基板とシリコン酸化膜との間にシリコン窒化膜を形成し、結晶欠陥や界面準位を低減することが記載されている。
特許第3513018号公報 特開2005−86023号公報
しかしながら、単にシリコン基板と高誘電率材料膜との間にシリコン酸化膜を配置した半導体装置では、ゲート絶縁膜形成後に実施される種々の熱処理工程において、高誘電率材料膜中の原子とシリコン酸化膜中の原子とが相互拡散してしまう。この原子の相互拡散により、高誘電率材料膜とシリコン酸化膜との界面の特性が劣化するとともに、高誘電率材料膜中の金属原子がシリコン基板に到達して、基板表面に金属シリサイドを生成するなどの問題が発生する。
以上から、本発明の目的は、実効膜厚が極めて薄いゲート絶縁膜を有するとともにゲート絶縁膜に起因する不具合の発生がなく、従来に比べてより一層の微細化が可能な半導体装置の製造方法を提供することにある。
本発明の一観点によれば、第1のシリコン基板の上にシリコン酸化膜を形成する工程と、表面が(111)の第2のシリコン基板の上にシリコン窒化膜を形成する工程と、前記シリコン酸化膜と前記シリコン窒化膜とを接触させて前記第1のシリコン基板の上に前記第2のシリコン基板を重ね合わせ、前記シリコン酸化膜と前記シリコン窒化膜とを結合させる工程と、前記第2のシリコン基板を除去する工程と、前記シリコン窒化膜上に高誘電率材料膜を積層して、前記シリコン酸化膜、前記シリコン窒化膜及び前記高誘電率材料膜により構成されるゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上にゲート電極を形成する工程と、前記ゲート電極の両側の前記第1のシリコン基板の表面に不純物を導入してソース・ドレインを形成する工程とを有する半導体装置の製造方法が提供される。
一般的に、シリコン酸化膜の上に厚さが原子層オーダーのシリコン窒化膜を形成しようとしても、均一な厚さのシリコン窒化膜を形成することは極めて困難である。しかし、表面が(111)のシリコン基板の上であれば、例えばプラズマ窒化法により、1〜数原子層分の厚さの均一なシリコン窒化膜を比較的容易に形成することができる。そこで、本発明においては、表面が(111)のシリコン基板(第2のシリコン基板)を用いて、厚さが例えば1〜数原子層分のシリコン窒化膜を形成する。
一方、予め第1のシリコン基板の上にシリコン酸化膜を形成しておく。そして、第2のシリコン基板を第1のシリコン基板の上に、第1のシリコン基板のシリコン酸化膜と第2のシリコン基板のシリコン窒化膜とが接触するようにして重ね合わせ、その後例えば熱処理を実施して、シリコン酸化膜とシリコン窒化膜とを物理的に結合させる。次に、第2のシリコン基板を、研磨又はエッチング等により除去する。その後、シリコン窒化膜上に高誘電率材料膜を形成すると、シリコン酸化膜、シリコン窒化膜及び高誘電率材料膜により構成されるゲート絶縁膜が得られる。次いで、ゲート絶縁膜上にゲート電極を形成し、第1のシリコン基板の表面に不純物を導入してソース・ドレインを形成する。
本発明方法では、上述したように、表面が(111)のシリコン基板の上に窒化シリコン膜を形成するので、原子層オーダーの極めて薄いシリコン窒化膜を均一な厚さに形成することができる。また、このようにして形成したシリコン窒化膜をシリコン酸化膜と高誘電率材料膜との間に配置するので、シリコン酸化膜と高誘電率材料膜との間の原子の相互拡散が防止される。
更に、本発明方法では、上述したように、ゲート絶縁膜がシリコン酸化膜、シリコン窒化膜及び高誘電率材料膜により構成され、最下層のシリコン酸化膜がシリコン基板に接触する。シリコン酸化膜は、例えばスパッタリング法によりシリコン基板上に形成すると、シリコン基板との間に平坦で電子をトラップするような欠陥のない界面が得られる。これにより、特性が安定なMOSトランジスタを形成することができる
更にまた、本発明方法では、高誘電率材料を用いてゲート絶縁膜を形成しているので、物理的な膜厚が厚いままで実効膜厚を薄くすることができる。これにより、MOSトランジスタのより一層の微細化が可能となる。
以下、本発明の実施形態について、添付の図面を参照して説明する。
図1〜図10は、本発明の実施形態に係る半導体装置の製造方法を工程順に示す断面図である。
まず、図1に示すように、表面が(100)のシリコン基板(第1の半導体基板)11を用意する。そして、このシリコン基板11の上に、スパッタリング法により、非晶質シリコン酸化膜12を例えば0.5〜1nmの厚さに形成する。この非晶質シリコン酸化膜12の形成は、室温で行われる。このシリコン酸化膜12は、電子をトラップするような欠陥(表面準位や欠陥準位)の発生を防止するために形成される。シリコン酸化膜12の厚さが0.5nm未満の場合は欠陥の発生を防止する効果を十分に得ることができない。また、シリコン酸化膜12の厚さが1nmを超えると、ゲート絶縁膜の実効膜厚が厚くなって、MOSトランジスタの微細化が困難になる。従って、シリコン酸化膜12の厚さは、上述したように0.5〜1nmとすることが好ましい。
一方、図2に示すように、表面が(111)のシリコン基板(第2の半導体基板)13を用意する。そして、プラズマ窒化法により、シリコン基板13の上にシリコン窒化膜14を10原子層分以下(1〜数原子層分)の厚さに形成する。このシリコン窒化膜14の形成は、例えば500℃以下の比較的低温で行われる。このように表面が(111)のシリコン基板13とプラズマ窒化法とを用いることにより、シリコン基板13の上に極めて薄いシリコン窒化膜14を均一の厚さで形成することができる。なお、シリコン窒化膜14の厚さが厚くなると均一な膜質を得ることが困難になるので、上述の如くシリコン窒化膜14の厚さは10原子層分以下(より好ましくは1〜3原子層分)とする。
このようにして形成されたシリコン窒化膜14の最表面には、窒素原子のダングリングボンド(未結合手)が存在する。このダングリングボンドが異物原子と結合することを防ぐために、シリコン窒化膜14形成後のシリコン基板13を室温の水素ガス雰囲気に晒して、水素原子による終端処理を行う。
次に、図3に示すように、非晶質シリコン酸化膜12とシリコン窒化膜14とが接触するようにしてシリコン基板11,13を重ね合わせる。そして、この状態で800〜900℃の温度で熱処理を施す。そうすると、終端処理によりシリコン窒化膜14の最表面の窒素原子に結合していた水素原子が熱処理の初期段階で放出され、その後シリコン窒化膜14の最表面の窒素原子と非晶質シリコン酸化膜12の最表面のシリコン原子とが結合する。これにより、シリコン酸化膜12とシリコン窒化膜14とが物理的に接合して、均一で安定な界面が形成される。
次に、図4に示すように、化学機械研磨(CMP)により、シリコン基板13を裏面側(シリコン窒化膜14形成面と反対側の面側)から研磨する。そして、シリコン基板13が若干残る程度のところ、例えばシリコン基板13の厚さが約2nmになったところで研磨を終了する。その後、例えばCF4をエッチングガスとして使用するドライエッチングにより、図5に示すように残存するシリコン基板13を除去して、シリコン窒化膜14を露出させる。
このようにして、膜厚が0.5〜1nmのシリコン酸化膜12と、膜厚が1〜数原子層分のシリコン窒化膜14とが積層されたシリコン基板11が得られる。
次に、図6に示すように、スパッタリング法により、シリコン窒化膜14の上にHfO2、ZrO2、Ta25又はLa23等の高誘電率材料のシリケート膜15を1〜1.5nmの厚さに形成する。このシリケート膜15の形成は、室温で行われる。なお、高誘電率材料のシリケート膜15に替えて、高誘電率材料のアルミネート膜を形成してもよい。
次に、スパッタリング法により、シリケート膜15の上にHfO2、ZrO2、Ta25又はLa23等の高誘電率材料膜16を1〜1.5nmの厚さに形成する。このようにして、シリコン基板11上に、シリコン酸化膜12,シリコン窒化膜14、シリケート膜15及び高誘電率材料膜16を積層してなるゲート絶縁膜17が形成される。
なお、本実施形態では、上述の如く、シリコン窒化膜14の上に高誘電率材料のシリケート膜15(又は、アルミネート膜)と高誘電率材料膜16とを形成しているが、図11に示すように、シリコン窒化膜14の上に厚さが2〜3nmの高誘電率材料膜16を直接形成してもよい。しかし、図6に示すように、シリコン窒化膜14と高誘電率材料膜16との間に高誘電率材料のシリケート膜15(又は、アルミネート膜)を形成することにより、ゲート絶縁膜17の絶縁特性が向上する。また、これらのシリケート膜15(又は、アルミネート膜)及び高誘電率材料膜16に窒素原子を添加した高誘電率材料を用いると、ゲート絶縁膜17の絶縁特性がより一層向上する。
高誘電率材料膜16とシリケート膜15との合計の厚さ(シリケート膜15がない場合は高誘電率材料膜16のみの厚さ)が3nmを超えると、ゲート絶縁膜の実効膜厚が厚くなってMOSトランジスタの微細化が困難になる。このため、高誘電率材料膜16とシリケート膜15との合計の厚さ(シリケート膜15がない場合は高誘電率材料膜16のみの厚さ)は、3nm以下とすることが好ましい。
次に、図7に示すように、ゲート絶縁膜17の上に、不純物を導入して導電性を付与したポリシリコン膜18を例えば80〜100mの厚さに形成する。
次に、ポリシリコン膜18をフォトリソグラフィ法によりパターニングして、図8に示すように、ゲート電極19を形成する。そして、このゲート電極19の両側に露出するゲート絶縁膜17(シリコン酸化膜12、シリコン窒化膜14、シリケート膜15及び高誘電率材料膜16)をエッチングにより順次除去する。その後、ゲート電極19をマスクとしてシリコン基板11の表面に不純物を低濃度に導入して、LDD(Lightly Doped Drain)となる低濃度不純物領域20を形成する。
次に、シリコン基板11の上側全面にシリコン酸化膜を形成し、このシリコン酸化膜をエッチバックして、図9に示すように、ゲート電極19及びゲート絶縁膜17の側面を被覆するサイドウォール21を形成する。そして、ゲート電極19及びサイドウォール21をマスクとしてシリコン基板11の表面に不純物を高濃度に導入して、高濃度不純物領域22を形成する。
次いで、例えば950〜1000℃の温度で10秒間熱処理を行い、図10に示すように、低濃度不純物領域20及び高濃度不純物領域22中の不純物を活性化させて、ソース・ドレイン23を形成する。このようにして、MOSトランジスタを有する半導体装置が完成する。
本実施形態においては、上述したように、表面が(111)のシリコン基板13の上にプラズマ窒化法によりシリコン窒化膜14を形成する。シリコン酸化膜上にシリコン窒化膜を直接形成する場合は、1〜数原子層分の均一な厚さのシリコン窒化膜を形成することは極めて困難である。しかし、本実施形態では、上述の如く、表面が(111)のシリコン基板13の上にプラズマ窒化法を用いてシリコン窒化膜14を形成するので、1〜数原子層分の均一な厚さのシリコン窒化膜14を比較的容易に形成することができる。
また、本実施形態では、上述のようにして形成したシリコン窒化膜14を、表面が(100)のシリコン基板上11に形成されたシリコン酸化膜12に接合することにより、シリコン酸化膜12と1〜数原子層分の厚さのシリコン窒化膜14との積層構造を形成している。そして、シリコン窒化膜14の形成に用いたシリコン基板13を化学機械研磨及びエッチングにより除去した後、シリコン酸化膜12とシリコン窒化膜14との積層構造の上に高誘電率材料のシリケート膜15と、高誘電率材料膜16とを積層してゲート絶縁膜17としている。このように、本実施形態により製造された半導体装置では、シリコン酸化膜12、シリコン窒化膜14、シリケート膜15及び高誘電率材料膜16を積層してなるゲート絶縁膜17を有しているので、シリコン基板11とゲート絶縁膜17との界面(すなわち、シリコン基板11とシリコン酸化膜12との界面)が平坦になり、電子をトラップするような欠陥の発生が防止される。従って、MOSトランジスタの特性が安定し、半導体装置の信頼性が向上するという効果を奏する。
更に、本実施形態により製造された半導体装置では、高誘電率材料膜16とシリコン酸化膜12との間にシリコン窒化膜14が介在しているので、高誘電率材料膜16とシリコン酸化膜12との間の原子の相互拡散が防止される。これにより、ゲート絶縁膜17の良好な絶縁特性が維持される。
更にまた、本実施形態では、高誘電率材料膜16を用いてゲート絶縁膜17を形成しているので、ゲート絶縁膜17の物理的な膜厚を厚くしたままで実効膜厚を薄くすることができる。これにより、リーク電流を抑制しつつ、MOSトランジスタのより一層の微細化が実現されるという効果を奏する。
以下、本発明の諸態様を、付記としてまとめて記載する。
(付記1)第1の半導体基板の上にシリコン酸化膜を形成する工程と、
表面が(111)の第2の半導体基板の上にシリコン窒化膜を形成する工程と、
前記シリコン酸化膜と前記シリコン窒化膜とを接触させて前記第1の基板の上に前記第2の基板を重ね合わせ、前記シリコン酸化膜と前記シリコン窒化膜とを結合させる工程と、
前記第2の半導体基板を除去する工程と、
前記シリコン窒化膜上に高誘電率材料膜を積層して、前記シリコン酸化膜、前記シリコン窒化膜及び前記高誘電率材料膜により構成されるゲート絶縁膜を形成する工程と、
前記ゲート絶縁膜上にゲート電極を形成する工程と、
前記ゲート電極の両側の前記第1の半導体基板の表面に不純物を導入してソース・ドレインを形成する工程と
を有することを特徴とする半導体装置の製造方法。
(付記2)前記第2の半導体基板の上に前記シリコン窒化膜を形成した後、前記シリコン窒化膜の表面を水素で終端処理する工程を有することを特徴とする付記1に記載の半導体装置の製造方法。
(付記3)前記シリコン酸化膜と前記シリコン窒化膜とを結合させる工程は、800乃至900℃の温度で熱処理をすることによることを特徴とする付記1又は2に記載の半導体装置の製造方法。
(付記4)前記高誘電率材料膜を形成する工程の前に、前記シリコン窒化膜上に高誘電率材料のシリケート膜又はアルミネート膜を形成し、当該シリケート膜又はアルミネート膜の上に前記高誘電率材料膜を形成することを特徴とする付記1乃至3のいずれか1項に記載の半導体装置の製造方法。
(付記5)前記高誘電率材料膜及び前記高誘電率材料のシリケート膜又はアルミネート膜の少なくとも一方を、窒素原子を添加した高誘電率材料により形成することを特徴とする付記1乃至4のいずれか1項に記載の半導体装置の製造方法。
(付記6)前記第1の半導体基板の表面が(100)面であることを特徴とする付記1乃至5のいずれか1項に記載の半導体装置の製造方法。
(付記7)前記シリコン窒化膜は、プラズマ窒化法により形成することを特徴とする付記1乃至6のいずれか1項に記載の半導体装置の製造方法。
(付記8)前記シリコン窒化膜は、10原子層分以下の厚さに形成することを特徴とする付記1乃至7のいずれか1項に記載の半導体装置の製造方法。
(付記9)前記シリコン酸化膜は、0.5nm以上且つ1.0nm以下の厚さに形成することを特徴とすることを特徴とする付記1乃至8のいずれか1項に記載の半導体装置の製造方法。
(付記10)前記高誘電率材料膜は、3nm以下の厚さに形成することを特徴とする付記1乃至9のいずれか1項に記載の半導体装置の製造方法。
(付記11)前記高誘電率材料膜は、HfO2、ZrO2、Ta25及びLa23からなる群から選択されたいずれか1種の化合物を主成分とすることを特徴とする付記1乃至10のいずれか1項に記載の半導体装置の製造方法。
図1は、本発明の実施形態に係る半導体装置の製造方法を示す断面図(その1)である。 図2は、本発明の実施形態に係る半導体装置の製造方法を示す断面図(その2)である。 図3は、本発明の実施形態に係る半導体装置の製造方法を示す断面図(その3)である。 図4は、本発明の実施形態に係る半導体装置の製造方法を示す断面図(その4)である。 図5は、本発明の実施形態に係る半導体装置の製造方法を示す断面図(その5)である。 図6は、本発明の実施形態に係る半導体装置の製造方法を示す断面図(その6)である。 図7は、本発明の実施形態に係る半導体装置の製造方法を示す断面図(その7)である。 図8は、本発明の実施形態に係る半導体装置の製造方法を示す断面図(その8)である。 図9は、本発明の実施形態に係る半導体装置の製造方法を示す断面図(その9)である。 図10は、本発明の実施形態に係る半導体装置の製造方法を示す断面図(その10)である。 図11は、本発明の実施形態に係る半導体装置の製造方法において、シリコン窒化膜の上に高誘電率材料膜を直接形成した例を示す断面図である。
符号の説明
11…シリコン基板(第1の半導体基板)、
12…シリコン酸化膜、
13…シリコン基板(第2の半導体基板)
14…シリコン窒化膜、
15…シリケート膜、
16…高誘電率材料膜、
17…ゲート絶縁膜、
18…ポリシリコン膜、
19…ゲート電極、
20…低濃度不純物領域、
21…サイドウォール、
22…高濃度不純物領域
23…ソース・ドレイン。

Claims (5)

  1. 第1のシリコン基板の上にシリコン酸化膜を形成する工程と、
    表面が(111)の第2のシリコン基板の上にシリコン窒化膜を形成する工程と、
    前記シリコン酸化膜と前記シリコン窒化膜とを接触させて前記第1のシリコン基板の上に前記第2のシリコン基板を重ね合わせ、前記シリコン酸化膜と前記シリコン窒化膜とを結合させる工程と、
    前記第2のシリコン基板を除去する工程と、
    前記シリコン窒化膜上に高誘電率材料膜を積層して、前記シリコン酸化膜、前記シリコン窒化膜及び前記高誘電率材料膜により構成されるゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜上にゲート電極を形成する工程と、
    前記ゲート電極の両側の前記第1のシリコン基板の表面に不純物を導入してソース・ドレインを形成する工程と
    を有することを特徴とする半導体装置の製造方法。
  2. 前記第2のシリコン基板の上に前記シリコン窒化膜を形成した後、前記シリコン窒化膜の表面を水素で終端処理する工程を有することを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記シリコン酸化膜と前記シリコン窒化膜とを結合させる工程は、800乃至900℃の温度で熱処理をすることによることを特徴とする請求項1又は2に記載の半導体装置の製造方法。
  4. 前記第1のシリコン基板の表面が(100)面であることを特徴とする請求項1乃至3のいずれか1項に記載の半導体装置の製造方法。
  5. 前記高誘電率材料膜は、HfO2、ZrO2、Ta25及びLa23からなる群から選択されたいずれか1種の化合物を主成分とすることを特徴とする請求項1乃至4のいずれか1項に記載の半導体装置の製造方法。
JP2006064726A 2006-03-09 2006-03-09 半導体装置の製造方法 Expired - Fee Related JP5109269B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006064726A JP5109269B2 (ja) 2006-03-09 2006-03-09 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006064726A JP5109269B2 (ja) 2006-03-09 2006-03-09 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2007242968A JP2007242968A (ja) 2007-09-20
JP5109269B2 true JP5109269B2 (ja) 2012-12-26

Family

ID=38588203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006064726A Expired - Fee Related JP5109269B2 (ja) 2006-03-09 2006-03-09 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP5109269B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8114739B2 (en) 2009-09-28 2012-02-14 Freescale Semiconductor, Inc. Semiconductor device with oxygen-diffusion barrier layer and method for fabricating same
JP7193014B2 (ja) * 2020-01-22 2022-12-20 株式会社デンソー 半導体装置の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3513018B2 (ja) * 1998-06-30 2004-03-31 株式会社東芝 半導体装置及びその製造方法
JP3746968B2 (ja) * 2001-08-29 2006-02-22 東京エレクトロン株式会社 絶縁膜の形成方法および形成システム
US7560361B2 (en) * 2004-08-12 2009-07-14 International Business Machines Corporation Method of forming gate stack for semiconductor electronic device

Also Published As

Publication number Publication date
JP2007242968A (ja) 2007-09-20

Similar Documents

Publication Publication Date Title
US7851276B2 (en) Methods and structures for planar and multiple-gate transistors formed on SOI
TWI604562B (zh) 選擇性氮化方法
US20060157750A1 (en) Semiconductor device having etch-resistant L-shaped spacer and fabrication method thereof
US8691649B2 (en) Methods of forming recessed channel array transistors and methods of manufacturing semiconductor devices
JP2012114445A (ja) 金属ゲート電極を有する半導体素子の製造方法
JP2007335834A (ja) 半導体装置およびその製造方法
JP2006005313A (ja) 半導体装置及びその製造方法
JP2007088322A (ja) 半導体装置及びその製造方法
US7427553B2 (en) Fabricating method of semiconductor device
JP2010147104A (ja) 半導体装置の製造方法
JP5109269B2 (ja) 半導体装置の製造方法
JP2009164424A (ja) 半導体装置およびその製造方法
JP2004335566A (ja) 半導体装置の製造方法
WO2012046365A1 (ja) 半導体装置及びその製造方法
JP2008021935A (ja) 電子デバイス及びその製造方法
US20090117751A1 (en) Method for forming radical oxide layer and method for forming dual gate oxide layer using the same
US7445998B2 (en) Method for fabricating semiconductor device
TWI635599B (zh) 記憶元件的製造方法
KR100529873B1 (ko) 반도체소자의 제조방법
JP2003100860A (ja) 半導体装置
JP4063567B2 (ja) 半導体装置およびその製造方法
JP4575653B2 (ja) 半導体装置及び半導体装置の製造方法
TWI357624B (en) Metal-oxide-semiconductor transistor and method of
US20130012012A1 (en) Semiconductor process
JP5073158B2 (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees