JP5095914B2 - Coated carbon nanotubes - Google Patents

Coated carbon nanotubes Download PDF

Info

Publication number
JP5095914B2
JP5095914B2 JP2004309695A JP2004309695A JP5095914B2 JP 5095914 B2 JP5095914 B2 JP 5095914B2 JP 2004309695 A JP2004309695 A JP 2004309695A JP 2004309695 A JP2004309695 A JP 2004309695A JP 5095914 B2 JP5095914 B2 JP 5095914B2
Authority
JP
Japan
Prior art keywords
carbon nanotube
carbon nanotubes
weight
acid
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004309695A
Other languages
Japanese (ja)
Other versions
JP2006117495A (en
Inventor
真之 畳開
広明 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2004309695A priority Critical patent/JP5095914B2/en
Publication of JP2006117495A publication Critical patent/JP2006117495A/en
Application granted granted Critical
Publication of JP5095914B2 publication Critical patent/JP5095914B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は特定の含窒素複素環化合物で表面を被覆したカーボンナノチューブに関するものである。   The present invention relates to a carbon nanotube whose surface is coated with a specific nitrogen-containing heterocyclic compound.

カーボンナノチューブはその構造からすぐれた強度、弾性率を示し、樹脂に極少量加えることで樹脂の持つ強度、弾性率を大きく向上させることが期待できる。しかしながらカーボンナノチューブは樹脂および溶媒に不溶であり、樹脂および溶媒に十分に分散させることが困難であった。   Carbon nanotubes exhibit excellent strength and elastic modulus from their structure, and it can be expected that the strength and elastic modulus of the resin can be greatly improved by adding a very small amount to the resin. However, carbon nanotubes are insoluble in resins and solvents, and it has been difficult to sufficiently disperse them in resins and solvents.

そこでカーボンナノチューブへの官能基の導入や溶媒への分散性向上が検討されている。例えば硝酸、硫酸等によりカーボンナノチューブにカルボン酸基を導入することが報告されている(非特許文献1参照)。   Thus, introduction of functional groups into carbon nanotubes and improvement in dispersibility in solvents are being studied. For example, it has been reported that a carboxylic acid group is introduced into a carbon nanotube by nitric acid, sulfuric acid or the like (see Non-Patent Document 1).

また酸処理によってカーボンナノチューブを切断し、カルボン酸を導入した後、塩化チオニルによりカルボン酸をアシルハライド化し得られたアシルハライド体にアミンを反応させアミド誘導体を得るたことが紹介されている(非特許文献2参照)。しかしながら上記の方法では反応に塩化チオニル等のハロゲン化物を使用するため環境に悪影響を与えるほか、得られるアシルハライド体は反応性が高い反面不安定な物質であるため単離生成が困難である。   In addition, it was introduced that carbon nanotubes were cleaved by acid treatment, carboxylic acid was introduced, and then an amide derivative was obtained by reacting an amine with an acyl halide obtained by acyl halide conversion of carboxylic acid with thionyl chloride (non- Patent Document 2). However, in the above method, a halide such as thionyl chloride is used for the reaction, which adversely affects the environment. Further, the obtained acyl halide is highly reactive, but is difficult to isolate and produce.

また非特許文献1にはカーボンナノチューブを微細化しようとという報告例として例えば硝酸、硫酸等の存在下加熱あるいは超音波を印加する事により単層カーボンナノチューブを切断し微細化するという報告例がある。酸処理等によりカーボンナノチューブを切断したとしてもカーボンナノチューブをろ過等により分離処理を行った際凝集してしまい、ポリマーとのコンポジットとして使用するにはさらに分散処理を施す必要があった。   Non-Patent Document 1 includes a report example of trying to miniaturize a carbon nanotube, for example, a report example of cutting and miniaturizing a single-walled carbon nanotube by heating or applying ultrasonic waves in the presence of nitric acid, sulfuric acid or the like. . Even if the carbon nanotubes are cut by acid treatment or the like, the carbon nanotubes are aggregated when subjected to separation treatment by filtration or the like, and it has been necessary to further disperse them in order to use them as a composite with a polymer.

また炭素繊維の表面をポリマーで被覆した報告例として極細炭素フィブリルの表面をポリスチレン、ポリエチレン、ポリアクリル酸等のポリオレフィンで被覆し表面の濡れ性を改良したとの報告例が有る(特許文献1参照)。
また炭素繊維表面にカルボジイミド試薬を付着させポリアミド、ポリカーボネート等の熱可塑性樹脂との界面の接着性を改善するといった報告例が有る(特許文献2参照)。
また分子鎖伸長剤をポリマーに加えることでポリマー末端基が反応し分子量が向上するという報告が有る(非特許文献3参照)。
Further, as a report example in which the surface of the carbon fiber is coated with a polymer, there is a report example that the surface of the ultrafine carbon fibril is coated with a polyolefin such as polystyrene, polyethylene, polyacrylic acid or the like to improve the wettability of the surface (see Patent Document 1). ).
In addition, there is a report example in which a carbodiimide reagent is attached to the carbon fiber surface to improve the adhesion at the interface with a thermoplastic resin such as polyamide or polycarbonate (see Patent Document 2).
In addition, there is a report that the molecular weight is improved by adding a molecular chain extender to a polymer to react with a polymer end group (see Non-Patent Document 3).

特開平3−287821号公報Japanese Laid-Open Patent Publication No. 3-287821 特開平5−106163号公報JP-A-5-106163 Science 280, 1253 (1998)Science 280, 1253 (1998) Scinece,282, 95 (1998)Scinece, 282, 95 (1998) Journal of Applied Polymer Science, Vol.30, 3325-3337 (1985)Journal of Applied Polymer Science, Vol. 30, 3325-3337 (1985)

カーボンナノチューブと樹脂との組成物を製造する際、カーボンナノチューブは樹脂や溶剤との接着性、親和性が悪く、組成物の機械強度の向上を達成する事が困難で有った。本発明の目的は樹脂との親和性が向上したカーボンナノチューブを提供することである。   When producing a composition of carbon nanotubes and resin, the carbon nanotubes have poor adhesion and affinity with the resin and solvent, and it has been difficult to achieve improvement in the mechanical strength of the composition. An object of the present invention is to provide a carbon nanotube having improved affinity with a resin.

本発明は、カーボンナノチューブ100重量部に対して0.01〜100重量部の特定の含窒素複素環化合物により被覆したカーボンナノチューブである。すなわちカーボンナノチューブの表面を、マトリックスで有る樹脂との相溶性、および樹脂末端基との反応性の高い含窒素複素環化合物であらかじめ被覆したカーボンナノチューブである。   The present invention is a carbon nanotube coated with 0.01 to 100 parts by weight of a specific nitrogen-containing heterocyclic compound with respect to 100 parts by weight of the carbon nanotube. That is, the carbon nanotube is a carbon nanotube in which the surface of the carbon nanotube is coated in advance with a nitrogen-containing heterocyclic compound having high compatibility with a resin as a matrix and high reactivity with a resin end group.

本発明により樹脂との親和性が向上したカーボンナノチューブを提供することができる。   According to the present invention, a carbon nanotube having improved affinity with a resin can be provided.

以下、本発明について詳述する。
(カーボンナノチューブについて)
本発明に用いられるカーボンナノチューブとしては、平均直径が300nm以下、好ましくは0.3〜250nm、より好ましくは0.3〜200nm、さらに好ましくは0.4〜100nmである。平均直径が0.3nm以下のものは実質的に製造が困難であり、300nm以上のものは分散の改善効果が少ないため好ましくない。
また平均アスペクト比の好ましい値として上限の制限はないが下限としては5.0以上さらには10.0以上、さらに好ましくは50.0以上である事が好ましい。
Hereinafter, the present invention will be described in detail.
(About carbon nanotubes)
As a carbon nanotube used for this invention, an average diameter is 300 nm or less, Preferably it is 0.3-250 nm, More preferably, it is 0.3-200 nm, More preferably, it is 0.4-100 nm. Those having an average diameter of 0.3 nm or less are substantially difficult to produce, and those having an average diameter of 300 nm or more are not preferable because the effect of improving dispersion is small.
The upper limit of the average aspect ratio is not limited, but the lower limit is preferably 5.0 or higher, more preferably 10.0 or higher, and still more preferably 50.0 or higher.

カーボンナノチューブの平均直径およびアスペクト比は、電子顕微鏡による観察から求めることが出来る。例えばTEM(透過型電子顕微鏡)測定を行い、その画像から直接カーボンナノチューブの直径および長手方向の長さを測定することが可能である。また組成物中のカーボンナノチューブの形態は例えば繊維軸と平行に切断した繊維断面のTEM(透過型電子顕微鏡)測定により把握することが出来る。
好ましい平均粒径としては0.01〜5μm、さらに好ましくは0.5〜3μm、さらには0.1〜1.0μmである。
The average diameter and aspect ratio of the carbon nanotube can be determined from observation with an electron microscope. For example, it is possible to perform TEM (transmission electron microscope) measurement and directly measure the diameter and length of the carbon nanotube from the image. The form of the carbon nanotubes in the composition can be grasped by, for example, TEM (transmission electron microscope) measurement of a fiber cross section cut parallel to the fiber axis.
The average particle size is preferably 0.01 to 5 μm, more preferably 0.5 to 3 μm, and further preferably 0.1 to 1.0 μm.

なお平均粒径は従来既知の粒度分布計、粒径測定装置により求めることができる。測定方法としては、光散乱法、レーザードップラー法等が挙げられるがこれに限定されるものではない。   The average particle size can be determined by a conventionally known particle size distribution meter or particle size measuring device. Examples of the measuring method include, but are not limited to, a light scattering method and a laser Doppler method.

カーボンナノチューブの形状としてはグラフェンシートが円筒状に巻かれたもので、この円筒が単層のものでも複数の層からなるものでも構わない。またグラフェンシートがカップ状に積み重なったものでも構わない。すなわち本発明におけるカーボンナノチューブとしては、単層カーボンナノチューブ、多層カーボンナノチューブ、カップスタック型カーボンナノチューブが好ましく挙げられる。   The shape of the carbon nanotube may be a graphene sheet wound in a cylindrical shape, and this cylinder may be a single layer or a plurality of layers. In addition, graphene sheets stacked in a cup shape may be used. That is, the carbon nanotube in the present invention is preferably a single-walled carbon nanotube, a multi-walled carbon nanotube, or a cup-stacked carbon nanotube.

これらカーボンナノチューブは従来公知の方法で製造され、気相流動法、触媒担持型気相流動法、レーザーアブレーション法、高圧一酸化炭素法、アーク放電法等が挙げられるがこれに限定されるものではない。   These carbon nanotubes are produced by a conventionally known method, and examples thereof include a gas phase flow method, a catalyst-supported gas phase flow method, a laser ablation method, a high pressure carbon monoxide method, and an arc discharge method, but are not limited thereto. Absent.

(カーボンナノチューブの前処理)
また、カーボンナノチューブを特定の含窒素複素環化合物で被覆する際、カーボンナノチューブにあらかじめ物理処理および/または化学処理を施しておくことも好ましく利用できる。
(Pretreatment of carbon nanotubes)
In addition, when the carbon nanotube is coated with a specific nitrogen-containing heterocyclic compound, it is also preferable to apply a physical treatment and / or a chemical treatment to the carbon nanotube in advance.

化学処理の好ましい例としては具体的にはpH0.01〜2の強酸を用いて表面処理することが挙げられる。強酸処理によりカルボン酸や水酸基を置換基として有するカーボンナノチューブを得ることができ、溶媒や全芳香族ポリアミドに対する親和性を高めて分散性を向上させることが出来る。使用可能なpH0.01〜2の強酸としては、例えば、硝酸、硫酸、塩酸、リン酸、重クロム酸、およびこれらの混酸等が挙げられるが、なかでも硝酸や、硫酸と硝酸との混酸、重クロム酸と硫酸との混酸を用いることが好ましく、特に濃度の高いものを用いることが好ましい。硝酸と硫酸との好ましい混合比は、特に限定はされるものではないが、硝酸/硫酸(重量比)で10/1〜1/10が好ましい。また化学処理は超音波存在下で処理することがさらに好ましい。   Specific examples of the chemical treatment include surface treatment using a strong acid having a pH of 0.01 to 2. A carbon nanotube having a carboxylic acid or a hydroxyl group as a substituent can be obtained by a strong acid treatment, and the dispersibility can be improved by increasing the affinity for a solvent or wholly aromatic polyamide. Examples of the strong acid having a pH of 0.01 to 2 that can be used include nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, dichromic acid, and mixed acids thereof. Among these, nitric acid, mixed acid of sulfuric acid and nitric acid, It is preferable to use a mixed acid of dichromic acid and sulfuric acid, and it is particularly preferable to use a highly concentrated one. The preferred mixing ratio of nitric acid and sulfuric acid is not particularly limited, but nitric acid / sulfuric acid (weight ratio) is preferably 10/1 to 1/10. The chemical treatment is more preferably carried out in the presence of ultrasonic waves.

物理処理の好ましい例としてはボールミル、ビーズミル、ホモジナイザー、超音波処理、強力なせん断処理等などが挙げられる。カーボンナノチューブをボールミル、ビーズミル、ホモジナイザー等の物理処理により溶媒中であらかじめ分散させ調整したカーボンナノチューブ分散液をカーボンナノチューブとして用いることが好ましい。   Preferable examples of the physical treatment include ball mill, bead mill, homogenizer, ultrasonic treatment, strong shearing treatment and the like. It is preferable to use, as the carbon nanotube, a carbon nanotube dispersion liquid prepared by dispersing carbon nanotubes in advance in a solvent by physical treatment such as ball milling, bead milling, or homogenizer.

物理処理は溶媒を用いない乾式、有機溶媒、酸等を用いる湿式いずれでも構わない。さらに物理処理と超音波処理とを併用することも好ましい。また、溶媒として、硫酸硝酸の混合液、硫酸過酸化水素の混合液等の化学的酸化力の強い溶媒を併用することも好ましい。   The physical treatment may be any of a dry process using no solvent, a wet process using an organic solvent, an acid and the like. It is also preferable to use physical treatment and ultrasonic treatment in combination. It is also preferable to use a solvent having a strong chemical oxidizing power, such as a mixed solution of sulfuric acid nitric acid or a mixed solution of hydrogen peroxide sulfate, as the solvent.

(含窒素複素環化合物)
本発明でカーボンナノチューブの被覆に使用される化合物は下記式(A)
(A)
(Rは直接結合あるいは炭素数1〜20の炭化水素を表す。R、Rはそれぞれ独立に直接結合あるいは炭素数1〜10の炭化水素を表す。XはO、S、NHのいずれかを表す。)
で表される含窒素複素環化合物である。
(Nitrogen-containing heterocyclic compounds)
The compound used for coating the carbon nanotube in the present invention is represented by the following formula (A)
(A)
(R 1 represents a direct bond or a hydrocarbon having 1 to 20 carbon atoms. R 2 and R 3 each independently represents a direct bond or a hydrocarbon having 1 to 10 carbon atoms. X represents any of O, S, and NH. Represents.)
It is a nitrogen-containing heterocyclic compound represented by these.

式(A)で表される含窒素複素環化合物の中で好ましいものは下記式(A−1)、およびまたは(A−2)
(A−1)
(A−2)
であるが、これに限定されるものではない。
Among the nitrogen-containing heterocyclic compounds represented by the formula (A), preferred are the following formulas (A-1) and / or (A-2)
(A-1)
(A-2)
However, the present invention is not limited to this.

特定の含窒素複素環化合物によるカーボンナノチューブの被覆方法は例えば1)含窒素複素環化合物を溶かした溶液にカーボンナノチューブを分散させ加熱攪拌を行い被覆する方法、2)カーボンナノチューブの分散液に含窒素複素環化合物を溶解させ加熱攪拌を行い被覆する方法、3)カーボンナノチューブと含窒素複素環化合物を直接加熱混合する方法などが挙げられるが、これに限定されるものではない。   The method for coating carbon nanotubes with a specific nitrogen-containing heterocyclic compound is, for example, 1) a method in which carbon nanotubes are dispersed in a solution in which a nitrogen-containing heterocyclic compound is dissolved and then heated and stirred, and 2) nitrogen is contained in the carbon nanotube dispersion. Examples of the method include a method in which a heterocyclic compound is dissolved and coating is performed by heating and stirring. 3) A method in which a carbon nanotube and a nitrogen-containing heterocyclic compound are directly heated and mixed is exemplified, but the method is not limited thereto.

含窒素複素環化合物の添加量はカーボンナノチューブ100重量部に対して0.01〜100重量部であり、さらには0.01〜50重量部が好ましい。   The addition amount of the nitrogen-containing heterocyclic compound is 0.01 to 100 parts by weight with respect to 100 parts by weight of the carbon nanotube, and more preferably 0.01 to 50 parts by weight.

以下、実施例を挙げて本発明を詳述するが、本発明はこれらの実施例によって何ら限定されるものではない。
1)遠心分離:MILLIPORE社製パーソナル遠心機チビタンを用いて行った。
EXAMPLES Hereinafter, although an Example is given and this invention is explained in full detail, this invention is not limited at all by these Examples.
1) Centrifugation: It was carried out using a personal centrifuge Chibitan manufactured by MILLIPORE.

[参考例1]多層カーボンナノチューブの合成
多孔性担体にY型ゼオライト粉末(東ソー製;HSZ−320NAA)を用い、触媒金属化合物に酢酸第二鉄と酢酸コバルトを用いて、Fe/Co触媒をゼオライトに担持した。触媒の担持量はそれぞれ2.5重量%に調製した。その後、石英ボートに触媒粉末を乗せてCVD装置の石英管内に設置して真空排気をおこない、流量10mL/分でArガスを導入しながら室温から600℃まで昇温した。所定の600℃に達した後、エタノール蒸気を流量3000mL/分で導入し、Ar/エタノール雰囲気下で30分間保持した。得られた黒色の生成物をレーザーラマン分光法および透過型電子顕微鏡で分析した結果、多層カーボンナノチューブが生成していることが確認された。ついで、得られた生成物(単層カーボンナノチューブ/ゼオライト/金属触媒)を、フッ化水素酸10%に3時間浸漬後、中性になるまでイオン交換水で洗浄することでゼオライトおよび金属触媒を除去してカーボンナノチューブを精製した後、電気焼成炉(倉田技研(株)製、SCC−U−90/150)を用いて黒鉛化処理を行った。まず真空下室温から1000℃まで30分かけて昇温し、次いでアルゴン雰囲気下、圧力5atmで1000℃から2000℃まで30分で昇温、さらに2000℃から2800℃まで1時間かけて昇温して焼成することにより、黒鉛化処理された多層カーボンナノチューブを得た。得られたカーボンナノチューブをTEMで観察したところ、平均直径が58nm、平均アスペクト比が36であった。
[Reference Example 1] Synthesis of multi-walled carbon nanotubes Y-type zeolite powder (Tosoh; HSZ-320NAA) is used for the porous carrier, ferric acetate and cobalt acetate are used for the catalytic metal compound, and Fe / Co catalyst is used as the zeolite. Supported. The catalyst loading was adjusted to 2.5% by weight, respectively. Thereafter, the catalyst powder was placed on a quartz boat, placed in a quartz tube of a CVD apparatus, evacuated, and heated from room temperature to 600 ° C. while introducing Ar gas at a flow rate of 10 mL / min. After reaching the predetermined 600 ° C., ethanol vapor was introduced at a flow rate of 3000 mL / min, and held for 30 minutes in an Ar / ethanol atmosphere. As a result of analyzing the obtained black product by laser Raman spectroscopy and a transmission electron microscope, it was confirmed that multi-walled carbon nanotubes were produced. Subsequently, the obtained product (single-walled carbon nanotube / zeolite / metal catalyst) is immersed in 10% hydrofluoric acid for 3 hours, and then washed with ion-exchanged water until neutral, so that the zeolite and the metal catalyst are obtained. After removing and purifying the carbon nanotubes, graphitization was performed using an electric firing furnace (manufactured by Kurata Giken Co., Ltd., SCC-U-90 / 150). First, the temperature was raised from room temperature to 1000 ° C. in vacuum over 30 minutes, then the temperature was raised from 1000 ° C. to 2000 ° C. in 30 minutes at a pressure of 5 atm, and further from 2000 ° C. to 2800 ° C. over 1 hour. And fired to obtain graphitized multi-walled carbon nanotubes. When the obtained carbon nanotube was observed by TEM, the average diameter was 58 nm and the average aspect ratio was 36.

[実施例1]
ジクロロメタン350重量部に2、2´−ビス(2−オキサゾリン)0.05重量部、参考例1にて得られた多層カーボンナノチューブ0.05重量部を加え超音波を90分印加した後、得られた分散液を孔径0.22μmのテフロン(登録商標)製メンブレンフィルターにて吸引ろ過洗浄し含窒素複素環化合物にて被覆されたカーボンナノチューブ0.55重量部を単離した。このようにして得られたカーボンナノチューブ0.1重量部を100重量部のジクロロメタンに超音波にて分散させ遠心加速度が51000m/sの遠心分離処理を1分間行ったところ得られた沈殿物は0.02重量部であった。
[Example 1]
After adding 0.05 parts by weight of 2,2′-bis (2-oxazoline) and 0.05 parts by weight of the multi-walled carbon nanotube obtained in Reference Example 1 to 350 parts by weight of dichloromethane, applying ultrasonic waves for 90 minutes, The obtained dispersion was subjected to suction filtration washing with a Teflon (registered trademark) membrane filter having a pore size of 0.22 μm to isolate 0.55 parts by weight of carbon nanotubes coated with a nitrogen-containing heterocyclic compound. When 0.1 parts by weight of the carbon nanotubes thus obtained are dispersed in 100 parts by weight of dichloromethane with ultrasonic waves and subjected to a centrifugal treatment at a centrifugal acceleration of 51000 m / s 2 for 1 minute, the resulting precipitate is 0.02 part by weight.

[実施例2]
ジクロロメタン750重量部に2、2´−ビス(2−オキサゾリン)0.25重量部を用いたほかは、実施例1と同様の実施例1と同様の操作を行った。このようにして得られたカーボンナノチューブ0.1重量部を100重量部のジクロロメタンに超音波にて分散させ遠心加速度が51000m/sの遠心分離処理を1分間行ったところ得られた沈殿物は0.01重量部であった。
[Example 2]
The same operation as in Example 1 was performed except that 0.25 part by weight of 2,2′-bis (2-oxazoline) was used in 750 parts by weight of dichloromethane. When 0.1 parts by weight of the carbon nanotubes thus obtained are dispersed in 100 parts by weight of dichloromethane with ultrasonic waves and subjected to a centrifugal treatment at a centrifugal acceleration of 51000 m / s 2 for 1 minute, the resulting precipitate is 0.01 parts by weight.

[比較例1]
参考例1にて得られた多層カーボンナノチューブ0.1重量部を100重量部のジクロロメタンに超音波にて分散させ遠心加速度が51000m/sの遠心分離処理を1分間行ったところ得られた沈殿物は0.07重量部であった。
[Comparative Example 1]
Precipitation obtained when 0.1 part by weight of the multi-walled carbon nanotube obtained in Reference Example 1 is dispersed in 100 parts by weight of dichloromethane by ultrasonic waves and subjected to a centrifugal separation treatment with a centrifugal acceleration of 51000 m / s 2 for 1 minute. The product was 0.07 part by weight.

Claims (2)

カーボンナノチューブ100重量部に対して下記式(A)
(R 直接結合あるいは炭素数1〜20の炭化水素を表す。R、Rはそれぞれ独立に炭素数1〜10の炭化水素を表す。XはO、S、NHのいずれかを表す。)
で表される含窒素複素環化合物0.01〜100重量部により被覆されたカーボンナノチューブ。
The following formula (A) with respect to 100 parts by weight of carbon nanotubes
(R 1 represents a direct bond or a hydrocarbon having 1 to 20 carbon atoms. R 2 and R 3 each independently represent a hydrocarbon having 1 to 10 carbon atoms. X represents one of O, S, and NH. .)
Carbon nanotubes coated with 0.01 to 100 parts by weight of a nitrogen-containing heterocyclic compound represented by the formula:
含窒素複素環化合物が下記式(A−1)、および/または(A−2)
である請求項1に記載のカーボンナノチューブ。
The nitrogen-containing heterocyclic compound is represented by the following formula (A-1) and / or (A-2)
The carbon nanotube according to claim 1, wherein
JP2004309695A 2004-10-25 2004-10-25 Coated carbon nanotubes Expired - Fee Related JP5095914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004309695A JP5095914B2 (en) 2004-10-25 2004-10-25 Coated carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004309695A JP5095914B2 (en) 2004-10-25 2004-10-25 Coated carbon nanotubes

Publications (2)

Publication Number Publication Date
JP2006117495A JP2006117495A (en) 2006-05-11
JP5095914B2 true JP5095914B2 (en) 2012-12-12

Family

ID=36535747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004309695A Expired - Fee Related JP5095914B2 (en) 2004-10-25 2004-10-25 Coated carbon nanotubes

Country Status (1)

Country Link
JP (1) JP5095914B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104203815B (en) * 2012-03-05 2017-02-15 旭化成株式会社 Surface-treated carbon nanotube and resin composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2886935B2 (en) * 1990-04-02 1999-04-26 ハイピリオン・カタリシス・インターナシヨナル・インコーポレイテツド Method for producing modified ultrafine carbon fibrils

Also Published As

Publication number Publication date
JP2006117495A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
US7459137B2 (en) Process for functionalizing carbon nanotubes under solvent-free conditions
Song et al. A facile approach to covalently functionalized carbon nanotubes with biocompatible polymer
JP5514201B2 (en) Method for producing functionalized carbon nanomaterials
CN102648249B (en) There is the solvent-based of removable property additive and water base carbon nanotube ink
Ferreira et al. Carbon nanotube functionalized with dodecylamine for the effective dispersion in solvents
Cheng et al. Covalent modification of Aramid fibers' surface via direct fluorination to enhance composite interfacial properties
Hussain et al. Surface modification of aramid fibres by graphene oxide nano-sheets for multiscale polymer composites
US11643328B2 (en) Method of producing surface-treated carbon nanostructures
Jiang et al. Carbon nanotubides: an alternative for dispersion, functionalization and composites fabrication
AU2002336675A1 (en) Polymer containing functionalized carbon nanotubes
WO2003038837A1 (en) Polymer containing functionalized carbon nanotubes
Gohier et al. Tunable grafting of functional polymers onto carbon nanotubes using diazonium chemistry in aqueous media
WO2004050764A1 (en) Composite fiber comprising wholly aromatic polyamide and carbon nanotube
Lavagna et al. Preparation of hierarchical material by chemical grafting of carbon nanotubes onto carbon fibers
WO2019079882A9 (en) Modified boron nitride nanotubes and solutions thereof
Farzi et al. Effect of radical grafting of tetramethylpentadecane and polypropylene on carbon nanotubes' dispersibility in various solvents and polypropylene matrix
CN104955904B (en) Solvent base and water base carbon nanotube ink with removable property additive
JP2009023886A (en) Carbon nanotube dispersion liquid, its production process and its use
JP5095914B2 (en) Coated carbon nanotubes
Al-Gharabli et al. Covalent surface entanglement of polyvinylidene fluoride membranes with carbon nanotubes
WO2010123600A2 (en) Functionalized carbon nanostructures and compositions and materials formed therefrom
Herman et al. Nitrile N-oxides in programmable one-pot functionalization of multi-wall carbon nanotubes via 1, 3-dipolar cycloaddition
KR20120031624A (en) Method for reforming the surface of carbon nanotube by oxidizing agent
Scheibe et al. Effect of the Silanization Processes on the Properties οf Oxidized Multiwalled Carbon Nanotubes
Karousis et al. Imidazolium modified carbon nanohorns: switchable solubility and stabilization of metal nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110711

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees