JP2886935B2 - Method for producing modified ultrafine carbon fibrils - Google Patents

Method for producing modified ultrafine carbon fibrils

Info

Publication number
JP2886935B2
JP2886935B2 JP8786690A JP8786690A JP2886935B2 JP 2886935 B2 JP2886935 B2 JP 2886935B2 JP 8786690 A JP8786690 A JP 8786690A JP 8786690 A JP8786690 A JP 8786690A JP 2886935 B2 JP2886935 B2 JP 2886935B2
Authority
JP
Japan
Prior art keywords
ultrafine carbon
fibrils
carbon fibrils
fibril
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8786690A
Other languages
Japanese (ja)
Other versions
JPH03287821A (en
Inventor
淳 塩田
正樹 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAIPIRION KATARISHISU INTERN Inc
Original Assignee
HAIPIRION KATARISHISU INTERN Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HAIPIRION KATARISHISU INTERN Inc filed Critical HAIPIRION KATARISHISU INTERN Inc
Priority to JP8786690A priority Critical patent/JP2886935B2/en
Publication of JPH03287821A publication Critical patent/JPH03287821A/en
Application granted granted Critical
Publication of JP2886935B2 publication Critical patent/JP2886935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は表面性状を改良した変性極細炭素フィブリル
の製造方法に関し、さらに詳しくは有機重合性単量体を
重合付加したことにより表面の濡れ性を改良した極細炭
素フィブリルの製造方法に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to a method for producing a modified ultrafine carbon fibril having improved surface properties, and more particularly, to a method of polymerizing an organic polymerizable monomer to obtain a wettability of a surface. The present invention relates to a method for producing ultrafine carbon fibrils in which is improved.

[従来の技術] 本発明の原料である極細炭素フィブリルは、その直径
が3.5〜70nmで直径の少なくとも5倍以上の長さを持
ち、規則的に配列した炭素原子の本質的に連続的な多重
層から成る外側領域と内部コア領域とを有し、各層とコ
アとがフィブリルの円柱軸の周囲に実質的に同心に配置
された本質的に円柱状のフィブリルである。この極細炭
素フィブリルは、特表昭62−500943号公報および米国特
許第4,663,230号明細書に詳しく記載されている。
[Prior Art] The ultrafine carbon fibril, which is the raw material of the present invention, has a diameter of 3.5 to 70 nm and a length of at least five times the diameter, and is essentially a continuous multiplicity of regularly arranged carbon atoms. An essentially cylindrical fibril having an outer region comprising a multilayer and an inner core region, wherein each layer and the core are disposed substantially concentrically about the cylindrical axis of the fibril. The ultrafine carbon fibrils are described in detail in JP-T-62-500943 and U.S. Pat. No. 4,663,230.

特に、特表昭62−500943号公報は、その4頁右下欄17
〜18行等において、当該フィブリルは熱炭素皮膜を実質
的に含まない旨、記載している。
In particular, Japanese Patent Publication No. Sho 62-500943 is disclosed in the lower right column on page 4
In lines 18 to 18 etc., it is described that the fibrils do not substantially contain a thermal carbon film.

この極細炭素フィブリルは表面積が大きく、ヤング率
が高くかつ引張り強度が大きいなどの力学的特徴を有
し、高い導電性をも備えている。また、黒鉛化温度(29
00℃)等の高温を必要とせずにえられるため廉価であり
工業的に有益である。
This ultrafine carbon fibril has mechanical properties such as a large surface area, a high Young's modulus and a high tensile strength, and also has high conductivity. The graphitization temperature (29
It is inexpensive and industrially useful because it does not require a high temperature (eg, 00 ° C.).

しかしながら、この極細炭素フィブリルの表面は本質
的に配向性の高い結晶性炭素より形成されているため他
の材料、例えば、樹脂、溶剤との接着性、濡れ性がわる
く、機械的な混合攪拌を行なってもフィブリルの凝集が
起こりマトリックスへ均一に分散させることは困難であ
る。このため、その用途が限られており、極細炭素フィ
ブリルの有する優れた物性を引き出すに至っていない。
However, since the surface of this ultrafine carbon fibril is formed of crystalline carbon having a high degree of orientation, adhesion to other materials such as a resin and a solvent and wettability are poor, and mechanical mixing and stirring are required. Even if it is performed, aggregation of the fibrils occurs and it is difficult to uniformly disperse them in the matrix. For this reason, its use is limited, and the excellent physical properties of the ultrafine carbon fibrils have not been brought out.

一方、PAN系、ピッチ系などの炭素繊維の樹脂との接
着性を改良する方法として、電解法などによりまず表面
に酸化処理を行なった後、カップリング剤で処理する方
法が知られている。
On the other hand, as a method for improving the adhesion of a PAN-based or pitch-based carbon fiber to a resin, there is known a method in which a surface is first oxidized by an electrolytic method or the like and then treated with a coupling agent.

[発明が解決しようとする課題] しかし、上記極細炭素フィブリルの直径は約3.5〜70n
mとPAN系、ピッチ系炭素繊維に比べ格段に細い。従っ
て、酸化処理を行なうとフィブリルに大きな損傷をあた
え、時にはフィブリルの切断も生じるため酸化処理を施
すのは好ましくない。
[Problems to be Solved by the Invention] However, the diameter of the ultrafine carbon fibrils is about 3.5 to 70 n.
It is much thinner than m, PAN, and pitch carbon fibers. Therefore, the oxidization treatment is not preferable because the fibril is seriously damaged and sometimes the fibril is cut.

比較的微細な炭素繊維の表面改質に関するものとして
特開昭63−196770号が知られているが、繊維への損傷を
避けるために原料炭素繊維にプラズマ処理や、電子線、
X線、紫外線あるいはレーザー光照射といった励起処理
を予め施したのち、単量体溶液に浸漬して表面改質を行
なう必要があり、操作が煩雑で工業的に採用し難く、ま
た付加量も炭素繊維1gあたり数mg〜20mg程度と少なく不
十分なものであった。
JP-A-63-196770 is known as a method for modifying the surface of relatively fine carbon fibers.However, in order to avoid damage to the fibers, the raw carbon fibers are subjected to plasma treatment, electron beam,
After applying an excitation treatment such as X-ray, ultraviolet light or laser light irradiation in advance, it is necessary to perform surface modification by immersion in a monomer solution, the operation is complicated, it is difficult to employ industrially, and the added amount is carbon. The amount was several mg to 20 mg per g of fiber, which was low and insufficient.

[課題を解決するための手段] 本発明者らは、上記極細炭素フィブリルについてその
表面性状を改質しゴム、樹脂、水その他の溶剤との接着
性、濡れ性を改良しマトリックスへの均一な分散を行な
うべく鋭意検討した結果、この極細炭素フィブリルが極
めて小さい直径を有し、その外側が規則的に配列した多
重層よりなり、表面が配向性の高い結晶性炭素より形成
されている、すなわち熱炭素皮膜を実質的に含まないに
も拘らず、有機重合性単量体が特別な処理を要すること
なくしかもフィブリル本体に損傷を与えることなくその
表面に効率よく重合付加すること、さらにこのことによ
りその接着性、濡れ性が極めて向上することを見出し本
発明を完成するに至った。
Means for Solving the Problems The present inventors have improved the surface properties of the ultrafine carbon fibrils, improved the adhesion to rubber, resins, water and other solvents, improved wettability, and improved uniformity in the matrix. As a result of diligent studies to disperse, this ultrafine carbon fibril has an extremely small diameter, the outside of which is composed of regularly arranged multilayers, and the surface is formed of highly oriented crystalline carbon, that is, Despite substantially no thermal carbon coating, the organic polymerizable monomer efficiently polymerizes and adds to the surface without any special treatment and without damaging the fibril body. As a result, it has been found that the adhesiveness and wettability are extremely improved, and the present invention has been completed.

すなわち本発明は、原料フィブリルの直径が3.5〜70n
mで直径の少なくとも5倍以上の長さを持ち、規則的ゞ
い配列した炭素原子の本質的に連続的な多重層から成る
外側領域と不連続な内部コア領域とを有し、各層とコア
とがフィブリルの円柱軸の周囲に実質的に同心に配置さ
れた本質的に円柱状の極細炭素フィブリルを予め励起処
理することなく有機重合性単量体を重合付加したもので
あることを特徴とする変性極細炭素フィブリルの製造方
法に関する。
That is, in the present invention, the diameter of the raw material fibrils is 3.5 to 70 n
m having an outer region consisting of essentially continuous multilayers of regularly arranged carbon atoms and a discontinuous inner core region having a length of at least five times the diameter in m, and a discontinuous inner core region. Is characterized in that it is obtained by polymerizing an organic polymerizable monomer without pre-exciting an essentially cylindrical ultrafine carbon fibril arranged substantially concentrically around the cylindrical axis of the fibril. To a method for producing a modified ultrafine carbon fibril.

本発明においては、極細炭素フィブリルとしては直径
が3.5〜70nm、長さが直径の少なくとも5倍以上のもの
が用いられ、好ましくは、直径が3.5〜40nm、長さが直
径の100〜10000倍のものである。また、規則的に配列し
た炭素原子の連続層の面間隔は3.38〜3.50Åであるもの
が多く用いられる。
In the present invention, as the ultrafine carbon fibrils, those having a diameter of 3.5 to 70 nm and a length of at least 5 times or more are used, preferably 3.5 to 40 nm in diameter and 100 to 10,000 times in diameter. Things. In many cases, a continuous layer of regularly arranged carbon atoms has a plane spacing of 3.38 to 3.50 °.

本発明において、有機重合性単量体としては重合性の
二重結合を有する種々の化合物が用いられ、例えば、エ
チレン、プロピレン、スチレン、アクリロニトリル、塩
化ビニル、塩化ビニリデン、フッ化ビニリデン、酢酸ビ
ニル、ブタジエン、イソプレン、クロロプレン、シクロ
ペンタジエン、ビニルピリジン、メタクリル酸、メタク
リル酸エステル類、メタクリル酸アミド類、アクリル
酸、アクリル酸エステル類、アクリル酸アミド類、フマ
ル酸エステル類、マレイン酸エステル類などである。該
単量体に何を用いるかは極細炭素フィブリルの用途に応
じて選択される。すなわち、極細炭素フィブリルを樹
脂、ゴムとの複合材に用いる場合には、付加した重合体
が樹脂との接着性を持つよう、構造を類似させたり、水
素結合等による結合をもたせるような有機重合性単量体
を選択することが好ましい。例えば、ABS樹脂、ゴム等
の補強には、ジエン系単量体、スチレン、アクリロニト
リルなどが好ましく使用でき、ナイロン樹脂、エポキシ
樹脂などにはアクリルアミド、メタクリルアミドを用い
ることが好ましい。また、トルエンなどの溶剤に分散さ
せてインク状、ペースト状にて用いる場合、スチレンな
どが好ましく用いられる。また、親水性を付与するため
には、アクリル酸、メタクリル酸などが好ましく用いら
れる。
In the present invention, various compounds having a polymerizable double bond are used as the organic polymerizable monomer, for example, ethylene, propylene, styrene, acrylonitrile, vinyl chloride, vinylidene chloride, vinylidene fluoride, vinyl acetate, Butadiene, isoprene, chloroprene, cyclopentadiene, vinylpyridine, methacrylic acid, methacrylic esters, methacrylic amides, acrylic acid, acrylic esters, acrylic amides, fumaric esters, maleic esters, etc. . What to use for the monomer is selected according to the use of the ultrafine carbon fibrils. In other words, when ultrafine carbon fibrils are used as a composite material with resin and rubber, organic polymers that have similar structures or have bonds such as hydrogen bonds so that the added polymer has adhesion to the resin. It is preferable to select a hydrophilic monomer. For example, a diene monomer, styrene, acrylonitrile, or the like can be preferably used for reinforcing ABS resin, rubber, or the like, and acrylamide or methacrylamide is preferably used for nylon resin, epoxy resin, or the like. In the case of dispersing in a solvent such as toluene and using it in the form of an ink or paste, styrene or the like is preferably used. In order to impart hydrophilicity, acrylic acid, methacrylic acid and the like are preferably used.

これらの有機重合性単量体を極細炭素フィブリルに重
合付加する方法としては、スチレン、アクリロニトリ
ル、酢酸ビニル、塩化ビニル、塩化ビニリデン、アクリ
ル酸、メタクリル酸などでは、通常のラジカル重合(塊
状重合、溶液重合、乳化重合、懸濁重合)を極細炭素フ
ィブリル存在下で行なうことにより成長ラジカルの一部
が連鎖移動し極細炭素フィブリル表面に付加する。極細
炭素フィブリルに対する重合性単量体の添加量、反応温
度、重合開始剤、使用する溶剤の種類などは重合付加さ
せる重合性単量体の種類により適宜選択され一般的に行
なわれている重合性単量体の重合条件に準じればよい。
例えば、ポリスチレンでは通常、極細炭素フィブリル10
0重量部に対し0.1重量部以上のスチレンを添加し、酸素
の非存在下において70℃以上200℃以下の温度で常圧下
5分以上反応させるだけで重合付加が起こる。
As a method of polymerizing and adding these organic polymerizable monomers to ultrafine carbon fibrils, styrene, acrylonitrile, vinyl acetate, vinyl chloride, vinylidene chloride, acrylic acid, methacrylic acid, and the like can be produced by ordinary radical polymerization (bulk polymerization, solution polymerization). (Polymerization, emulsion polymerization, suspension polymerization) in the presence of ultrafine carbon fibrils, a part of the growing radicals is chain-transferred and added to the surface of the ultrafine carbon fibrils. The amount of the polymerizable monomer added to the ultrafine carbon fibrils, the reaction temperature, the polymerization initiator, the type of the solvent to be used, and the like are appropriately selected depending on the type of the polymerizable monomer to be polymerized and are generally used. What is necessary is just to follow the polymerization conditions of a monomer.
For example, in polystyrene, ultrafine carbon fibrils 10
Polymerization occurs only by adding 0.1 parts by weight or more of styrene to 0 parts by weight and reacting at 70 ° C. to 200 ° C. under normal pressure for 5 minutes or more in the absence of oxygen.

また、イオン重合法を用いて極細炭素フィブリルへ有
機重合性単量体を重合付加できる。例えば、ポリメタク
リル酸メチルリビングアニオンに極細炭素フィブリルを
接触させることによりポリメタクリル酸メチルを付加さ
せることできる。
Further, an organic polymerizable monomer can be polymerized and added to ultrafine carbon fibrils by using an ionic polymerization method. For example, polymethyl methacrylate can be added by bringing microfine carbon fibrils into contact with polymethyl methacrylate living anions.

いずれの付加方法においても、予めプラズマ処理、電
子線、X線、紫外線等の照射といった原料極細炭素フィ
ブリルの励起処理を必要としない。
In any of the additional methods, there is no need to previously excite the raw material ultrafine carbon fibrils, such as plasma treatment, irradiation with electron beams, X-rays, and ultraviolet rays.

極細炭素フィブリルへの重合性単量体の付加量は、一
般に、原料極細炭素フィブリル1gあたり1mg〜2gであ
り、好ましくは、1gあたり0.05g〜2gである。この付加
量は、用途に応じ適宜調節される。極細炭素フィブリル
の場合、他の炭素繊維に比べ、繊維の直径が格段に細い
ため、その分表面積が大きく、1mg/g未満の付加量では
表面の性状を改良するためには不十分であり、樹脂、溶
剤との接着性、濡れ性を改善しマトリックスへの分散性
も改善されない。逆に、付加量が2g/gを越えると繊維の
直径も太くなり極細炭素フィブリルの特徴が失われるの
で好ましくない。
The amount of the polymerizable monomer added to the ultrafine carbon fibrils is generally 1 mg to 2 g per 1 g of the raw material ultrafine carbon fibrils, and preferably 0.05 g to 2 g per 1 g. This additional amount is appropriately adjusted according to the application. In the case of ultrafine carbon fibrils, the diameter of the fibers is much smaller than other carbon fibers, so the surface area is large, and the added amount of less than 1 mg / g is insufficient to improve the surface properties, The adhesiveness and wettability with a resin and a solvent are improved, and the dispersibility in a matrix is not improved. Conversely, if the added amount exceeds 2 g / g, the diameter of the fiber becomes large, and the characteristics of ultrafine carbon fibrils are lost, which is not preferable.

本発明において、重合性単量体の付加量を測定する手
段としては、付加反応を行なう前の極細炭素フィブリル
の重量を予め秤量しておき、重合性単量体の重合反応を
行なった後、洗浄により未付加の重合物及び、未反応物
を除去し、十分に乾燥させてから再度秤量を行ない、反
応前と反応後での重量増加分を反応前の極細炭素フィブ
リルの重量に対する割合として求める方法がとられる。
In the present invention, as a means for measuring the amount of addition of the polymerizable monomer, the weight of the ultrafine carbon fibrils before performing the addition reaction is measured in advance, and after performing the polymerization reaction of the polymerizable monomer, The unadded polymer and unreacted material are removed by washing, dried sufficiently and weighed again, and the weight increase before and after the reaction is determined as a ratio to the weight of the ultrafine carbon fibril before the reaction. The method is taken.

このようにして得られた表面性状を改良した極細炭素
フィブリルは、ゴム、樹脂、溶剤との濡れ性、親和性が
改良され、ゴムや樹脂の補強剤として、塗料やインクな
どの添加剤として用いることができる。その使用に際し
て、必要に応じてサイジング剤や表面処理の補助剤と共
に用いることができる。
The ultrafine carbon fibrils with improved surface properties obtained in this way have improved wettability with rubber, resin, and solvent, and affinity, and are used as additives for paints and inks as reinforcing agents for rubber and resins. be able to. When used, it can be used together with a sizing agent or an auxiliary for surface treatment, if necessary.

[実施例1、比較例1] 極細炭素フィブリル(特表昭62−500943に記載のも
の)10gに対しスチレン200gを加え、窒素雰囲気下、110
℃にて熱重合を行った。
Example 1, Comparative Example 1 200 g of styrene was added to 10 g of ultrafine carbon fibrils (described in JP-T-62-500943).
Thermal polymerization was performed at ℃.

反応後、メタノール4kgを加え未反応スチレン及びオ
リゴマーを抽出し、グラスフィルター(G4)を用いて極
細炭素フィブリルを捕集した。50℃、24時間減圧乾燥後
トルエン2kgを用いて、ホモポリマーを除去し、メタノ
ールでトルエンを置換した後、80℃24時間減圧乾燥し変
性極細炭素フィブリルを得、その重量を測定した。スチ
レンの原料極細炭素フィブリル1gに対する付加量は、96
mgであった。
After the reaction, 4 kg of methanol was added to extract unreacted styrene and oligomers, and ultrafine carbon fibrils were collected using a glass filter (G4). After drying under reduced pressure at 50 ° C. for 24 hours, the homopolymer was removed using 2 kg of toluene, the toluene was replaced with methanol, and then dried under reduced pressure at 80 ° C. for 24 hours to obtain a modified ultrafine carbon fibril, and its weight was measured. The amount of styrene added to 1 g of ultrafine carbon fibrils was 96
mg.

この変性極細炭素フィブリル10gとポリスチレン樹脂
(旭化成(株)製、スタイロン679(商品名))90gを50
mm単軸押出機(ナカタニ機械(株)製NVC)、200℃にて
混練を行った後、プレス成形により試験片を得た。同様
の操作を表面を上記重合により変性していない極細炭素
フィブリル(以下、未変性炭素フィブリルと呼ぶ)につ
いても行い、外観、流動性、衝撃強度及び体積固有抵抗
を比較した。
10 g of this modified ultrafine carbon fibril and 90 g of polystyrene resin (Stylon 679 (trade name), manufactured by Asahi Kasei Corporation)
After kneading at 200 ° C. in a mm single screw extruder (NVC manufactured by Nakatanani Machine Co., Ltd.), a test piece was obtained by press molding. The same operation was performed for ultrafine carbon fibrils whose surfaces were not modified by the above polymerization (hereinafter referred to as unmodified carbon fibrils), and the appearance, fluidity, impact strength and volume resistivity were compared.

変性極細炭素フィブリルを配合したポリスチレン樹脂
は、未変性物を配合したものと比較して、電気電導性は
維持しながら流動性と衝撃強度は改善された。
The flowability and impact strength of the polystyrene resin blended with the modified ultrafine carbon fibrils were improved while maintaining the electrical conductivity, as compared with those blended with the unmodified one.

[実施例2、比較例2] 極細炭素フィブリル[吸油量(JIS K6221 6.1.2B法に
よる)9.1ml/g]10gをアゾビスイソブチロニトリル(AI
BN)の5%エタノール溶液中に2時間浸漬した後、極細
炭素フィブリルのみを取り出し0℃減圧下で24時間乾燥
を行いエタノールを除去、極細炭素フィブリル表面にAI
BNを付着させた。次いで、AIBNを付着させた極細炭素フ
ィブリルをスチレン40g及びアクリロニトリル40gの混合
液に加えたところ極細炭素フィブリルは全量これを吸収
した。試験管を窒素で置換後封止し、60℃にて重合を行
った。その後、135℃にて減圧下、未反応単量体を除去
した。
[Example 2, Comparative Example 2] 10 g of ultrafine carbon fibrils [oil absorption (9.1 ml / g according to JIS K6221 6.1.2B method)] was added to azobisisobutyronitrile (AI).
After immersion in a 5% ethanol solution of BN) for 2 hours, only the ultrafine carbon fibrils were taken out and dried at 0 ° C. under reduced pressure for 24 hours to remove ethanol.
BN was deposited. Next, the ultrafine carbon fibrils to which AIBN was attached were added to a mixture of 40 g of styrene and 40 g of acrylonitrile, and the total amount of the ultrafine carbon fibrils was absorbed. The test tube was replaced with nitrogen, sealed, and polymerized at 60 ° C. Thereafter, unreacted monomers were removed at 135 ° C. under reduced pressure.

反応後の極細炭素フィブリル1gを500mlのクロロホル
ム中へ投じ、攪拌を行うと、極細炭素フィブリルはクロ
ロホルム中に良好に分散した。
When 1 g of the ultrafine carbon fibrils after the reaction was thrown into 500 ml of chloroform and stirred, the ultrafine carbon fibrils were well dispersed in chloroform.

クロロホルムに分散した極細炭素フィブリルを50,000
rpmで20分間遠心分離を行い沈殿させ、乾燥後、重量測
定により求めたスチレン及びアクリロニトリルの付加量
は、フィブリル1gあたり586mgであった。
50,000 ultrafine carbon fibrils dispersed in chloroform
After centrifugation at rpm for 20 minutes to precipitate and after drying, the amount of styrene and acrylonitrile added by weighing was 586 mg per 1 g of fibril.

このアクリロニトリル及びスチレンで表面性状を改質
した変性極細炭素フィブリル5gをABS樹脂(JSR ABS 3
5)95gと実施例1と同様に混練し、板状に成形して試験
片を得た。この試験片は、その表面に粒状塊は認められ
ず、表2のように成形性、対衝撃性が改善されていた。
各々の試験は通常、ABS樹脂の評価に用いる表2の注に
記載の方法に準じて行った。
5 g of the modified ultrafine carbon fibrils whose surface properties have been modified with acrylonitrile and styrene are mixed with ABS resin (JSR ABS 3
5) 95 g was kneaded in the same manner as in Example 1 and molded into a plate to obtain a test piece. In this test piece, no granular lump was recognized on the surface, and the moldability and impact resistance were improved as shown in Table 2.
Each test was generally performed according to the method described in the note of Table 2 used for the evaluation of the ABS resin.

[実施例3、比較例3] 金属ナトリウムを用いて十分に脱水したTHF2kgにブタ
ジエン20gを溶解させ、極細炭素フィブリル50gを添加し
た。マグネチックスターラーを用いて極細炭素フィブリ
ルを溶液中に分散させ、ブチルリチウムの15重量%ヘキ
サン溶液10mlを加え、0℃にて反応を行った。
Example 3, Comparative Example 3 20 g of butadiene was dissolved in 2 kg of THF sufficiently dehydrated using metallic sodium, and 50 g of ultrafine carbon fibrils were added. Ultrafine carbon fibrils were dispersed in the solution using a magnetic stirrer, 10 ml of a 15% by weight hexane solution of butyllithium was added, and the reaction was carried out at 0 ° C.

極細炭素フィブリルをグラスフィルター(G4)上に捕
集し、THFで十分に洗浄を行い、50℃で減圧乾燥を24時
間行った後、重量を測定したところ、極細炭素フィブリ
ル1gに対し、付加したブタジエンの量は2mgであった。
The ultrafine carbon fibrils were collected on a glass filter (G4), washed sufficiently with THF, dried under reduced pressure at 50 ° C. for 24 hours, and weighed, and added to 1 g of the ultrafine carbon fibrils. The amount of butadiene was 2 mg.

得られた変性極細炭素フィブリル(もしくは未変性極
細炭素フィブリル)を下記配合処方及び方法によりSBR
に加え試験シートを調製した。
The resulting modified ultrafine carbon fibrils (or unmodified ultrafine carbon fibrils) are SBR according to the following formulation and method.
In addition, a test sheet was prepared.

配合処方 SBR(JSR ♯1502) 100g 極細炭素フィブリル 40g 亜鉛華(堺化学工業製JIS K1410) 3g −ステアリン酸(JIS K3341) 2g 加硫促進剤ノクセーラーD 0.6g (ジフェニルグアニジン) 加硫促進剤ノクセーラーDM 1.2g (ジベンゾチアヂルジスルフィド) 硫黄 1.5g ロールで混練した後145℃で30分間加硫し、厚さ2mmの
ゴムシートを得た。JIS K6301により引張り試験を行
い、硬度(HS)、引張強さ(TB)のデータを得た。
Formulation SBR (JSR 1502) 100g Extra-fine carbon fibrils 40g Zinc flower (Sakai Chemical Industry JIS K1410) 3g-Stearic acid (JIS K3341) 2g 1.2 g (dibenzothiazyl disulfide) sulfur 1.5 g was kneaded with a roll and then vulcanized at 145 ° C. for 30 minutes to obtain a rubber sheet having a thickness of 2 mm. A tensile test was performed according to JIS K6301, and data on hardness (H S ) and tensile strength (T B ) were obtained.

SBR HS(JIS−A) TB(Kgf/cm2) 未編成炭素 フィブリル添加 70 230 変性炭素 フィブリル添加 80 290 上記のとおり、硬度および引張強さの向上が認められ
た。
As SBR H S (JIS-A) T B (Kgf / cm 2) unorganized carbon fibrils added 70 230 modified carbon fibrils added 80 290 above, improvement in hardness and tensile strength were observed.

[実施例4] 極細炭素フィブリル5gに45mlのスチレンを吸収させ、
100ml試験管に移し、窒素置換後、ガラス管を封じ、10M
radのγ−線照射を行った。
Example 4 Absorption of 45 ml of styrene in 5 g of ultrafine carbon fibrils,
Transfer to a 100 ml test tube, replace with nitrogen, seal the glass tube,
Irradiation of rad was performed.

照射後、スチレンのスチレンのホモポリマーを1の
トルエンを用いて抽出した後80℃で24時間乾燥を行い、
重量を測定したところスチレンの付加量はフィブリル1g
に対して1.25gであった。
After irradiation, a styrene homopolymer of styrene was extracted with 1 toluene, and then dried at 80 ° C. for 24 hours.
When the weight was measured, the amount of added styrene was 1 g of fibrils.
Was 1.25 g.

[実施例5] 極細炭素フィブリル1gを、アクリル酸の30重量%水溶
液100mlに入れ、過硫酸カリウムを開始剤としてN2雰囲
気下60℃にて5時間溶液重合を行った。容器として丸底
フラスコを用い、攪拌はマグネチックスターラーを用い
た。反応が進むにつれ極細炭素フィブリルは水溶液中に
分散しはじめ、マグネチック・スターラーを停止しても
液は黒く濁り、沈殿しなかった。
Example 5 1 g of ultrafine carbon fibrils was placed in 100 ml of a 30% by weight aqueous solution of acrylic acid, and solution polymerization was carried out at 60 ° C. for 5 hours under a N 2 atmosphere using potassium persulfate as an initiator. A round bottom flask was used as a container, and a magnetic stirrer was used for stirring. As the reaction proceeded, the ultrafine carbon fibrils began to disperse in the aqueous solution, and even when the magnetic stirrer was stopped, the solution became black and turbid and did not precipitate.

反応後、500mlの精製水を加えてから、50,000rpmで20
分間遠心分離を行い、極細炭素フィブリルを沈殿させ溶
液と分離、乾燥後重量を測定したところ、フィブリル1g
に対してアクリル酸重合体の付加量は51mgであった。
After the reaction, add 500 ml of purified water, and then
After centrifugation for 1 minute, ultrafine carbon fibrils were precipitated and separated from the solution, and the weight was measured after drying.
On the other hand, the addition amount of the acrylic acid polymer was 51 mg.

得られた変性極細炭素フィブリル1gを、純水100g中に
入れ、マグネチックスターラーで攪拌すると、直ちに水
中に均一に分散し良好な親水性を示した。
When 1 g of the obtained modified ultrafine carbon fibril was put into 100 g of pure water and stirred with a magnetic stirrer, it was immediately dispersed uniformly in water and showed good hydrophilicity.

[発明の効果] 極細炭素フィブリルは相溶性に問題があったが、本発
明の方法で製造した変性極細炭素フィブリルは相溶性に
優れており、熱可塑性樹脂とブレンドした場合、流動性
と衝撃強度に優れ、しなやかさの低下も少ない。また、
ゴムとブレンドして加硫した場合、未変性物との比較に
おいて、硬度と引張強さの点で優れている。本発明の方
法により親水性ポリマーで変性したフィブリルは、水へ
の分散性がよく、変性の効果が著しい。
[Effect of the Invention] Although ultrafine carbon fibrils have a problem in compatibility, modified ultrafine carbon fibrils produced by the method of the present invention have excellent compatibility, and when blended with a thermoplastic resin, flowability and impact strength are improved. Excellent and less decrease in flexibility. Also,
When vulcanized by blending with rubber, it is superior in hardness and tensile strength as compared with the unmodified product. The fibrils modified with the hydrophilic polymer according to the method of the present invention have good dispersibility in water and have a remarkable effect of modification.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭51−7053(JP,A) 特表 昭62−500943(JP,A) (58)調査した分野(Int.Cl.6,DB名) D01F 11/14 D06M 14/36 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-51-7053 (JP, A) JP-T-62-500943 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) D01F 11/14 D06M 14/36

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原料フィブリルの直径が3.5〜70nmで直径
の少なくとも5倍以上の長さを持ち、規則的に配列した
炭素原子の本質的に連続的な多重層から成る外側領域と
不連続な内部コア領域とを有し、前記フィブリルは熱炭
素皮膜を実質的に含まず、各層とコアとがフィブリルの
円柱軸の周囲に実質的に同心に配置された本質的に円柱
状の極細炭素フィブリルを予め励起処理することなく有
機重合性単量体を重合付加することを特徴とする変性極
細炭素フィブリルの製造方法。
An outer region consisting of an essentially continuous multilayer of regularly arranged carbon atoms having a diameter of 3.5 to 70 nm and a length of at least 5 times the diameter of the raw fibrils and a discontinuous material. An essentially cylindrical ultrafine carbon fibril having an inner core region, wherein the fibril is substantially free of a thermal carbon coating, and wherein each layer and the core are substantially concentrically disposed about a cylindrical axis of the fibril. A method for producing a modified ultrafine carbon fibril, comprising polymerizing and adding an organic polymerizable monomer without prior excitation treatment.
【請求項2】原料フィブリルの直径が3.5〜70nmで直径
の少なくとも5倍以上のながさを持ち、規則的に配列し
た炭素原子の本質的に連続的な多重層から成る外側領域
と不連続な内部コア領域とを有し、熱炭素皮膜を実質的
に含まない極細炭素フィブリルに有機重合性単量体を重
合付加することを特徴とする変性極細炭素フィブリルの
製造方法。
2. An outer region comprising an essentially continuous multi-layer of regularly arranged carbon atoms and a discontinuous inner region, wherein the diameter of the raw fibrils is 3.5 to 70 nm and has a length at least five times the diameter. A method for producing modified ultrafine carbon fibrils, comprising polymerizing and adding an organic polymerizable monomer to ultrafine carbon fibrils having a core region and substantially not containing a thermal carbon film.
JP8786690A 1990-04-02 1990-04-02 Method for producing modified ultrafine carbon fibrils Expired - Fee Related JP2886935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8786690A JP2886935B2 (en) 1990-04-02 1990-04-02 Method for producing modified ultrafine carbon fibrils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8786690A JP2886935B2 (en) 1990-04-02 1990-04-02 Method for producing modified ultrafine carbon fibrils

Publications (2)

Publication Number Publication Date
JPH03287821A JPH03287821A (en) 1991-12-18
JP2886935B2 true JP2886935B2 (en) 1999-04-26

Family

ID=13926800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8786690A Expired - Fee Related JP2886935B2 (en) 1990-04-02 1990-04-02 Method for producing modified ultrafine carbon fibrils

Country Status (1)

Country Link
JP (1) JP2886935B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003038837A1 (en) * 2001-10-29 2003-05-08 Hyperion Catalysis International, Inc. Polymer containing functionalized carbon nanotubes
WO2006003771A1 (en) * 2004-07-06 2006-01-12 Mitsubishi Corporation Phenolic-resin-coated fine carbon fiber and process for producing the same
JP5095914B2 (en) * 2004-10-25 2012-12-12 帝人株式会社 Coated carbon nanotubes

Also Published As

Publication number Publication date
JPH03287821A (en) 1991-12-18

Similar Documents

Publication Publication Date Title
Martínez-Hernández et al. Carbon nanotubes composites: processing, grafting and mechanical and thermal properties
US4326046A (en) Process for producing modified polytetrafluoroethylene
US6252020B1 (en) Method for forming nanocomposites
Yuan et al. Improved properties of chemically modified graphene/poly (methyl methacrylate) nanocomposites via a facile in-situ bulk polymerization.
Zhu et al. Effect of flexibility of grafted polymer on the morphology and property of nanosilica/PVC composites
GB2090602A (en) Polymer composition
JP2789349B2 (en) Molded article made of vinylidene fluoride copolymer and method for producing the same
MXPA04012506A (en) Carbon nanotube-filled composites.
EP0807659A1 (en) Polyolefin-based composite material and production process therefor
US3102050A (en) Method of coating particulated resinous material by polymerization technique
JP2886935B2 (en) Method for producing modified ultrafine carbon fibrils
KR20090034808A (en) Carbon nanotube reinforced polymer
Pande et al. Synthesis and characterization of multiwalled carbon nanotubes‐polymethyl methacrylate composites prepared by in situ polymerization method
JPS61278502A (en) Polymer bonded surfactant as curing activator
DE2143890A1 (en) Rubber modified resinous polymer
CA1269187A (en) Polymer composites based cellulose - iii
US3821158A (en) Polymer composition
JPH06184211A (en) Improvement in production of powdery superabsorbent by reverse suspension polymerization of acrylic monomer
CN1397572A (en) Nano-class rubber-laminated inorganic substance composition and its preparing process
Choi et al. Characteristics of polycarbonate composites with poly (methyl methacrylate) grafted multi-walled carbon nanotubes
US3632675A (en) Preparation of impact resistant styrene polymers
JP2000191925A (en) Organic and inorganic composite material
EP4006062A1 (en) Acrylic copolymer coagulant and method for preparing graft copolymer using same
JP2020105514A (en) Laminate and composite including carbon material
US3330886A (en) Graft copolymers of polyvinyl chloride with butadiene, acrylate ester and diethylenic compound

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090212

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees