JP5092379B2 - Solid-state imaging device, manufacturing method thereof, and imaging device - Google Patents

Solid-state imaging device, manufacturing method thereof, and imaging device Download PDF

Info

Publication number
JP5092379B2
JP5092379B2 JP2006330583A JP2006330583A JP5092379B2 JP 5092379 B2 JP5092379 B2 JP 5092379B2 JP 2006330583 A JP2006330583 A JP 2006330583A JP 2006330583 A JP2006330583 A JP 2006330583A JP 5092379 B2 JP5092379 B2 JP 5092379B2
Authority
JP
Japan
Prior art keywords
metal
film
imaging device
wiring
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006330583A
Other languages
Japanese (ja)
Other versions
JP2008147288A (en
Inventor
俊介 丸山
壽史 若野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006330583A priority Critical patent/JP5092379B2/en
Publication of JP2008147288A publication Critical patent/JP2008147288A/en
Application granted granted Critical
Publication of JP5092379B2 publication Critical patent/JP5092379B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は、瞳補正が行われた固体撮像装置及びその製造方法並びに固体撮像装置を用いた撮像装置に関する。   The present invention relates to a solid-state imaging device in which pupil correction is performed, a manufacturing method thereof, and an imaging device using the solid-state imaging device.

イメージセンサにおいては、撮像面の中央部から周辺部に向かうに従って光の入射角度が大きくなる。このため、撮像面の周辺部の画素には、フォトダイオードに対する配線、カラーフィルタ及びオンチップマイクロレンズの位置を光の入射角度に応じて補正した瞳補正が行なわれ、光の集光効率を向上させている。
一方、CMOSイメージセンサにおいては、銅(Cu)の多層配線を用いた場合、各配線層の銅拡散防止膜と層間絶縁膜との屈折率の違いにより光の反射が起こり、その光学特性を低下させていた。この光の反射を防止するため、フォトダイオード上の層間膜をエッチングで抜いて開口部を形成し、この開口部に単一の絶縁物を埋めるCMOSイメージセンサが報告されている。層間膜をエッチングする方法としては、各層毎にエッチングを行うと工程数が大幅に増加するため、最上層の配線工程が終了した後、一括してドライエッチングを行う方法が採用されていた(特許文献1参照)。
特開2004−221527号公報
In the image sensor, the incident angle of light increases from the center of the imaging surface toward the periphery. For this reason, the pixels on the periphery of the imaging surface are subjected to pupil correction that corrects the position of the wiring, color filter, and on-chip microlens for the photodiode according to the incident angle of light, thereby improving the light collection efficiency. I am letting.
On the other hand, in a CMOS image sensor, when copper (Cu) multilayer wiring is used, light reflection occurs due to the difference in refractive index between the copper diffusion prevention film and the interlayer insulating film of each wiring layer, and the optical characteristics are deteriorated. I was letting. In order to prevent this light reflection, a CMOS image sensor has been reported in which an interlayer is formed by etching an interlayer film on a photodiode to form an opening, and a single insulator is filled in the opening. As a method of etching the interlayer film, the number of processes increases greatly when etching is performed for each layer. Therefore, a method of performing dry etching in a lump after the uppermost wiring process is completed has been adopted (patented) Reference 1).
JP 2004-221527 A

しかしながら、上記の一括したドライエッチングを行って開口部を形成する方法では、配線の瞳補正にドライエッチングを追従させることができず、瞳補正の効果が不十分になるといった問題があった。
以下、図10により、従来の固体撮像装置について説明する。
図10において、フォトダイオード120が形成された半導体基板110上に3層の配線層間膜121、122及び123、銅(Cu)配線131、132及び133並びに銅拡散防止膜141、142及び143が形成されている。3層の銅配線131、132及び133は、斜めから入射する光100(図中矢印で示される)を想定して瞳補正が行われており、半導体基板110の表面に直交する方向に対し傾斜した位置関係で形成されている。しかし、フォトダイオード120上の開口部150は一括してドライエッチングされるため、その側面は半導体基板110の表面に直交する方向に延在し、半導体基板110の表面と平行な方向に余分な配線層間膜121、122及び123及び銅拡散防止膜141、142及び143が延在する。このため、斜めから入射した光100が各層の銅拡散防止膜141、142及び143に遮られ、フォトダイオード120への光の入射効率が低下する。
However, the method of forming the opening by performing the collective dry etching described above has a problem in that the effect of the pupil correction becomes insufficient because the dry etching cannot follow the wiring pupil correction.
Hereinafter, a conventional solid-state imaging device will be described with reference to FIG.
In FIG. 10, three-layer wiring interlayer films 121, 122, and 123, copper (Cu) wirings 131, 132, and 133, and copper diffusion prevention films 141, 142, and 143 are formed on the semiconductor substrate 110 on which the photodiode 120 is formed. Has been. The three layers of copper wirings 131, 132, and 133 are subjected to pupil correction assuming obliquely incident light 100 (indicated by arrows in the figure), and are inclined with respect to a direction orthogonal to the surface of the semiconductor substrate 110. Are formed in the positional relationship. However, since the openings 150 on the photodiode 120 are collectively dry-etched, the side surfaces thereof extend in a direction perpendicular to the surface of the semiconductor substrate 110, and extra wiring extends in a direction parallel to the surface of the semiconductor substrate 110. Interlayer films 121, 122 and 123 and copper diffusion preventing films 141, 142 and 143 extend. Therefore, the light 100 incident from an oblique direction is blocked by the copper diffusion prevention films 141, 142, and 143 of the respective layers, and the light incident efficiency to the photodiode 120 is lowered.

本発明は、このような事情に鑑みなされたものであり、その目的は、光電変換素子上の複数層の配線層間膜を一括してエッチングして開口部を形成しながらも、その開口部の形状を配線の瞳補正に追従させた形状に形成することで、銅拡散防止膜や配線層間膜による光の反射を低減させた光学特性の良い固体撮像装置固体撮像装置及びその製造方法並びに固体撮像装置を用いた撮像装置を提供するにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to form an opening by etching a plurality of wiring interlayer films on a photoelectric conversion element in a lump. A solid-state imaging device having good optical characteristics in which the reflection of light by the copper diffusion prevention film and the wiring interlayer film is reduced by forming the shape to follow the pupil correction of the wiring, a manufacturing method thereof, and a solid-state imaging An imaging apparatus using the apparatus is provided.

上記目的を達成するため、本発明の固体撮像装置の製造方法は、半導体基板の上層部に複数の光電変換素子を形成する光電変換素子形成工程と、前記半導体基板上に配線層間膜を形成する配線層間膜形成工程と、前記配線層間膜に前記光電変換素子に対し光の入射角度に応じた瞳補正が行われた金属配線を形成するための溝及びビアを形成するとともに、前記光電変換素子の上方の配線層間膜を貫くための前記瞳補正が行われた光入射用の開口部を前記配線層間膜に形成し、前記溝及び前記ビア並びに前記開口部に金属を埋め込んで前記溝及び前記ビアによる前記金属配線並びに前記開口部によるダミー用金属層を形成する金属埋め込み工程と、前記金属配線及び前記ダミー用金属層並びに前記配線層間膜上に金属拡散防止膜を形成し、前記金属拡散防止膜のうち前記開口部による瞳補正を行う部分の金属拡散防止膜を除去する金属拡散防止膜形成工程と、前記配線層間膜形成工程、前記金属埋め込み工程及び前記金属拡散防止膜形成工程を2回以上行う繰り返し工程と、前記繰り返し工程で積層された複数層の前記ダミー用金属層をエッチングにより一括して除去するダミー金属層除去工程と、前記複数層のダミー用金属層が除去された複数層の前記開口部を光透過性の絶縁材料で埋めて絶縁膜を形成する絶縁膜形成工程と、前記絶縁膜の上に前記瞳補正が行われたカラーフィルタを形成するカラーフィルタ形成工程と、前記カラーフィルタの上に前記瞳補正が行われたマイクロレンズを形成するマイクロレンズ形成工程とを含むことを特徴とする。   In order to achieve the above object, a method of manufacturing a solid-state imaging device according to the present invention includes a photoelectric conversion element forming step of forming a plurality of photoelectric conversion elements on an upper layer portion of a semiconductor substrate, and forming a wiring interlayer film on the semiconductor substrate. A wiring interlayer film forming step; forming a groove and a via in the wiring interlayer film for forming a metal wiring in which pupil correction corresponding to an incident angle of light with respect to the photoelectric conversion element is performed; and the photoelectric conversion element Forming an opening for light incidence in which the pupil correction for penetrating through the wiring interlayer film above the wiring interlayer film is formed in the wiring interlayer film, and burying metal in the groove, the via, and the opening. A metal embedding step of forming a metal layer for vias and a metal layer for dummy by the openings, and forming a metal diffusion prevention film on the metal wires, the metal layer for dummy and the wiring interlayer film, A metal diffusion prevention film forming step of removing a portion of the metal diffusion prevention film where pupil correction is performed by the opening, a metal diffusion prevention film forming step, the wiring interlayer film forming step, the metal embedding step, and the metal diffusion prevention film forming step 2 or more times, a dummy metal layer removing step that collectively removes the plurality of dummy metal layers stacked in the repeating step by etching, and the plurality of dummy metal layers are removed. An insulating film forming step of forming an insulating film by filling the openings of the plurality of layers with a light transmissive insulating material, and a color filter forming step of forming a color filter on which the pupil correction has been performed on the insulating film And a microlens forming step of forming a microlens subjected to the pupil correction on the color filter.

また、本発明にかかる固体撮像装置は、半導体基板と、前記半導体基板の上層部に形成された複数の光電変換素子と、前記半導体基板上に配線層間膜を介して複数層に設けられ、各層ごとに前記光電変換素子に対し光の入射角度に応じた瞳補正が行われた金属配線と、前記配線層間膜に形成され、前記光電変換素子の上方の配線層間膜を貫くとともに、前記配線層間膜の各層ごとに前記瞳補正が行われた光入射用の開口部と、前記開口部に埋め込まれた光透過性の絶縁膜と、前記絶縁膜の上に形成され前記瞳補正が行われたカラーフィルタと、前記カラーフィルタの上に形成され前記瞳補正が行われたマイクロレンズとを備える。 The solid-state imaging device according to the present invention includes a semiconductor substrate, wherein a plurality of photoelectric conversion elements formed in an upper layer portion of the semiconductor substrate, provided in a plurality of layers through the wiring interlayer film on the semiconductor substrate, each layer and the metal wire which pupil correction is performed in accordance with the incident angle of light with respect to the photoelectric conversion element every time, formed on the wiring interlayer film, with penetrating the upper wiring interlayer film of the photoelectric conversion element, the wiring layers The pupil correction is performed on each of the layers of the film that is formed on the light entrance opening for which the pupil correction has been performed, a light-transmitting insulating film embedded in the opening, and the insulating film. a color filter, the color filter is formed on the pupil correction is Ru and an executed micro lenses.

また、本発明にかかる撮像装置は、固体撮像装置と、前記固体撮像装置に被写体からの入射光を導く光学系と、前記固体撮像装置からの出力信号を処理する信号処理回路とを備え、前記固体撮像装置は、半導体基板と、前記半導体基板の上層部に形成された複数の光電変換素子と、前記半導体基板上に配線層間膜を介して複数層に設けられ、各層ごとに前記光電変換素子に対し光の入射角度に応じた瞳補正が行われた金属配線と、前記配線層間膜に形成され、前記光電変換素子の上方の配線層間膜を貫くとともに、前記配線層間膜の各層ごとに前記瞳補正が行われた光入射用の開口部と、前記開口部に埋め込まれた光透過性の絶縁膜と、前記絶縁膜の上に形成され前記瞳補正が行われたカラーフィルタと、前記カラーフィルタの上に形成され前記瞳補正が行われたマイクロレンズとを備える。 An imaging apparatus according to the present invention includes a solid-state imaging apparatus, an optical system that guides incident light from a subject to the solid-state imaging apparatus, and a signal processing circuit that processes an output signal from the solid-state imaging apparatus, The solid-state imaging device includes a semiconductor substrate, a plurality of photoelectric conversion elements formed in an upper layer portion of the semiconductor substrate, and a plurality of layers on the semiconductor substrate via a wiring interlayer film, and the photoelectric conversion element for each layer In contrast, a metal wiring subjected to pupil correction according to the incident angle of light and the wiring interlayer film are formed through the wiring interlayer film above the photoelectric conversion element and for each layer of the wiring interlayer film. A pupil-corrected light incident opening, a light-transmitting insulating film embedded in the opening, a color filter formed on the insulating film and subjected to the pupil correction, and the color Formed on the filter Ru and a microlens Kihitomi correction has been performed.

本発明の固体撮像装置の製造方法においては、金属埋め込み工程で瞳補正が行われた溝及びビアと開口部が形成され、この溝及びビアに金属が埋め込まれて金属配線が形成されるとともに開口部に金属が埋め込まれてダミー用金属層が形成され、金属拡散防止膜形成工程で開口部に対応するダミー用金属層が除去された金属配線及び配線層間膜上に金属拡散防止膜が形成され、そして、繰り返し工程により積層された複数のダミー用金属層が形成され、この複数層のダミー用金属層がダミー用金属層除去工程でエッチングにより一括して除去され、瞳補正に追従した複数層の開口部が形成されることになる。そして、絶縁膜形成工程で複数層の開口部が絶縁材料により埋められ、絶縁膜が形成される。
よって、本発明によれば、光電変換素子上の複数層のダミー用金属層を一括してエッチングして複数層の開口部を形成しながらも、その開口部の形状を配線の瞳補正に追従させた形状に形成することができる。したがって、斜めから入射した光が各層の金属拡散防止膜及び配線層間膜で遮られることがなくなり、光電変換素子への光の入射効率を向上できるとともに、銅拡散防止膜や配線層間膜による光の反射を低減させた光学特性の良い固体撮像装置を製造することができる。
In the method for manufacturing a solid-state imaging device according to the present invention, a groove, a via, and an opening that have been pupil-corrected in a metal embedding process are formed, and metal is embedded in the groove and the via to form a metal wiring and an opening. A metal diffusion barrier film is formed on the metal wiring and wiring interlayer film from which the dummy metal layer corresponding to the opening has been removed in the metal diffusion prevention film forming step. Then, a plurality of dummy metal layers stacked in a repeating process are formed, and the plurality of dummy metal layers are collectively removed by etching in the dummy metal layer removing process, and a plurality of layers following the pupil correction. The opening is formed. In the insulating film forming step, the openings in the plurality of layers are filled with an insulating material, and an insulating film is formed.
Therefore, according to the present invention, a plurality of dummy metal layers on the photoelectric conversion element are collectively etched to form a plurality of layers of openings, and the shape of the openings follows the wiring pupil correction. It can be formed into a shape. Therefore, light incident from an angle is not blocked by the metal diffusion prevention film and the wiring interlayer film of each layer, and the light incident efficiency to the photoelectric conversion element can be improved, and the light from the copper diffusion prevention film and the wiring interlayer film can be improved. It is possible to manufacture a solid-state imaging device with good optical characteristics with reduced reflection.

また、本発明の固体撮像装置及び撮像装置によれば、金属配線を光電変換素子に対し光の入射角度に応じた瞳補正が行われた状態に設け、そして、光入射用の開口部を前記瞳補正が行われた状態にして配線層間膜に形成し、さらに、開口部に埋め込まれた絶縁膜の上に前記瞳補正が行われたカラーフィルタを形成し、かつ、カラーフィルタの上に前記瞳補正が行われたマイクロレンズを形成するようにしたので、開口部の形状を配線の瞳補正に追従させた形状に形成することができ、これにより、斜めから入射した光が各層の金属拡散防止膜及び配線層間膜で遮られることがなくなり、光電変換素子への光の入射効率を向上できる。   Further, according to the solid-state imaging device and the imaging device of the present invention, the metal wiring is provided in a state in which pupil correction corresponding to the incident angle of light is performed on the photoelectric conversion element, and the opening for light incidence is provided The pupil correction is performed and formed in the wiring interlayer film, and further, the pupil-corrected color filter is formed on the insulating film buried in the opening, and the color filter is formed on the color filter. Since the microlens with pupil correction is formed, the shape of the opening can be formed to follow the pupil correction of the wiring. It is not blocked by the prevention film and the wiring interlayer film, and the light incident efficiency to the photoelectric conversion element can be improved.

(第1の実施の形態)
以下、本発明にかかる固体撮像装置の製造方法及び固体撮像装置について、図1〜図8を参照して説明する。なお、本発明にかかる固体撮像装置及びその製造方法は、以下に説明する実施の形態に限定されるものではない。
(First embodiment)
Hereinafter, a method for manufacturing a solid-state imaging device and a solid-state imaging device according to the present invention will be described with reference to FIGS. Note that the solid-state imaging device and the manufacturing method thereof according to the present invention are not limited to the embodiments described below.

図1において、シリコン等の半導体基板10の上層部にはフォトダイオード等の複数の光電変換素子20が形成され(特許請求の範囲に記載の光電変換素子形成工程に相当する)、この光電変換素子20の上面を含む半導体基板10上には酸化シリコンなどの層間絶縁膜21が形成されている。この層間絶縁膜21は半導体基板10と、後述する金属配線との間に容量が発生するのを防止するためのものである。また、層間絶縁膜21の内部には、図示省略したスイッチング用トランジスタのゲート電極等が形成されている。さらに、層間絶縁膜21上には、3層の配線層間膜22、23及び24と、金属配線32、33、34が形成され、そして、光電変換素子20の上方に位置する配線層間膜22、23、24には、斜めから入射する光100が効率良く光電変換素子20に集光されるように、光の入射角度に応じて瞳補正された開口部52,53,54が設けられている。   In FIG. 1, a plurality of photoelectric conversion elements 20 such as photodiodes are formed on an upper layer portion of a semiconductor substrate 10 such as silicon (corresponding to the photoelectric conversion element forming step described in the claims), and this photoelectric conversion element An interlayer insulating film 21 such as silicon oxide is formed on the semiconductor substrate 10 including the upper surface 20. The interlayer insulating film 21 is for preventing a capacitance from being generated between the semiconductor substrate 10 and a metal wiring described later. In addition, a gate electrode or the like of a switching transistor (not shown) is formed inside the interlayer insulating film 21. Further, on the interlayer insulating film 21, three-layer wiring interlayer films 22, 23 and 24 and metal wirings 32, 33, 34 are formed, and the wiring interlayer film 22 positioned above the photoelectric conversion element 20, 23 and 24 are provided with openings 52, 53, and 54 that are pupil-corrected according to the incident angle of light so that the light 100 incident obliquely can be efficiently collected on the photoelectric conversion element 20. .

次に、層間絶縁膜21上に、図1に示すように、1層目の配線層間膜22を配線層間膜形成工程により形成する。次いで、この配線層間膜22に、光電変換素子20に対し光100の入射角度に応じた瞳補正が行われた金属配線を形成するための溝(及びビア)22aを形成し、さらに、光電変換素子20の上方の配線層間膜22を貫くための前記瞳補正が行われた光入射用の開口部52を配線層間膜22に形成する。
その後、図1及び図2に示すように、溝(及びビア)22aにタンタルや窒化タンタルなどからなる金属拡散防止用のバリア膜62を介してCu,W,Alなどの金属を蒸着などの手段により埋め込んで金属配線32を形成するとともに、開口部52にもCu,W,Alなどの金属を蒸着などの手段により埋め込んでダミー用金属層72を形成する。
Next, as shown in FIG. 1, a first wiring interlayer film 22 is formed on the interlayer insulating film 21 by a wiring interlayer film forming step. Next, grooves (and vias) 22a are formed in the wiring interlayer film 22 for forming a metal wiring in which pupil correction corresponding to the incident angle of the light 100 is performed on the photoelectric conversion element 20, and further, photoelectric conversion is performed. A light incident opening 52 subjected to the pupil correction for penetrating the wiring interlayer 22 above the element 20 is formed in the wiring interlayer 22.
Thereafter, as shown in FIGS. 1 and 2, a metal such as Cu, W, or Al is deposited on the groove (and via) 22a through a barrier film 62 for preventing metal diffusion made of tantalum or tantalum nitride. The metal wiring 32 is formed by embedding the metal layer 32, and a metal such as Cu, W, or Al is buried in the opening 52 by means such as vapor deposition to form a dummy metal layer 72.

次に、金属埋め込み工程で溝(及びビア)22a並びに開口部52に埋め込まれた金属の配線層間膜22の上面から突出する余分な金属及び配線層間膜22上に蒸着された金属を化学的機械的研磨法により研磨して除去し、配線層間膜22の上面と金属配線32及びダミー用金属層72の上面を露出させる。次いで、図2に示すように、露出された配線層間膜22の上面と金属配線32及びダミー用金属層72の上面にタンタルや窒化タンタルなどからなる金属拡散防止膜42を形成する。その後、この金属拡散防止膜42のうち前記開口部52による瞳補正を行う部分の金属拡散防止膜を除去し、ダミー用金属層72の上面のみを露出する(特許請求の範囲に記載の金属拡散防止膜形成工程に相当する)。 Next, the excess metal protruding from the upper surface of the metal wiring interlayer film 22 embedded in the groove (and via) 22a and the opening 52 in the metal embedding process and the metal deposited on the wiring interlayer film 22 are subjected to chemical mechanical treatment. The upper surface of the wiring interlayer film 22 and the upper surfaces of the metal wiring 32 and the dummy metal layer 72 are exposed by polishing. Next, as shown in FIG. 2, a metal diffusion prevention film 42 made of tantalum, tantalum nitride, or the like is formed on the upper surface of the exposed wiring interlayer film 22 and the upper surfaces of the metal wiring 32 and the dummy metal layer 72. Thereafter, the portion of the metal diffusion prevention film 42 where the pupil correction is performed by the opening 52 is removed, and only the upper surface of the dummy metal layer 72 is exposed (the metal diffusion according to the claims). This corresponds to the prevention film forming step).

2層目及び3層目の配線層間膜23、24及びこれに対応する金属配線33、34及びダミー用金属層73、74等は、上記1層目の配線層間膜22、金属配線32及びダミー用金属層72の場合と同様に前記配線層間膜形成工程、金属埋め込み工程及び金属拡散防止膜形成工程を繰り返すことにより形成される。   The second and third wiring interlayer films 23 and 24 and the corresponding metal wirings 33 and 34 and the dummy metal layers 73 and 74 are the same as the first wiring interlayer film 22, the metal wiring 32, and the dummy. As in the case of the metal layer 72, the wiring interlayer film forming process, the metal embedding process, and the metal diffusion preventing film forming process are repeated.

すなわち、2層目の配線層間膜23は、図1に示すように、ダミー用金属層72上の金属拡散防止膜42が除去された状態の1層目の配線層間膜22上に配線層間膜形成工程により形成される。次いで、この配線層間膜23に、光電変換素子20に対し光100の入射角度に応じた瞳補正が行われた金属配線を形成するための溝(及びビア)23aを形成し、さらに、光電変換素子20の上方の配線層間膜23を貫くための前記瞳補正が行われた光入射用の開口部53を配線層間膜23に形成する。
次に、図1に示すように、溝(及びビア)23aにタンタルや窒化タンタルなどからなる金属拡散防止用のバリア膜63を介してCu,W,Alなどの金属を蒸着などの手段により埋め込んで金属配線33を形成するとともに、開口部53にもCu,W,Alなどの金属を蒸着などの手段により埋め込んでダミー用金属層73を形成する。
That is, as shown in FIG. 1, the second wiring interlayer film 23 is formed on the first wiring interlayer film 22 with the metal diffusion prevention film 42 on the dummy metal layer 72 removed. It is formed by a forming process. Next, a groove (and via) 23a for forming a metal wiring in which pupil correction corresponding to the incident angle of the light 100 is performed on the photoelectric conversion element 20 is formed in the wiring interlayer film 23, and further, photoelectric conversion is performed. A light incident opening 53 subjected to the pupil correction for penetrating the wiring interlayer 23 above the element 20 is formed in the wiring interlayer 23.
Next, as shown in FIG. 1, a groove (and via) 23a is filled with a metal such as Cu, W, or Al through a barrier film 63 for preventing metal diffusion made of tantalum, tantalum nitride, or the like by means such as vapor deposition. Then, the metal wiring 33 is formed, and a metal such as Cu, W, or Al is buried in the opening 53 by means such as vapor deposition to form a dummy metal layer 73.

次に、金属埋め込み工程で溝(及びビア)23a並びに開口部53に埋め込まれた金属の配線層間膜23の上面から突出する余分な金属及び配線層間膜23上に蒸着された金属を化学的機械的研磨法により研磨して除去し、配線層間膜23の上面と金属配線33及びダミー用金属層73の上面を露出させる。次いで、露出された配線層間膜23の上面と金属配線33及びダミー用金属層73の上面にタンタルや窒化タンタルなどからなる金属拡散防止膜43を形成する。その後、この金属拡散防止膜43のうち開口部53による瞳補正を行う部分の金属拡散防止膜を除去し、ダミー用金属層73の上面のみを露出する。 Next, the excess metal protruding from the upper surface of the metal wiring interlayer 23 embedded in the groove (and via) 23a and the opening 53 in the metal filling step and the metal deposited on the wiring interlayer 23 are chemically machined. The upper surface of the wiring interlayer film 23 and the upper surfaces of the metal wiring 33 and the dummy metal layer 73 are exposed by polishing by a mechanical polishing method. Next, a metal diffusion prevention film 43 made of tantalum, tantalum nitride, or the like is formed on the exposed upper surface of the wiring interlayer film 23 and the upper surfaces of the metal wiring 33 and the dummy metal layer 73. Thereafter, a portion of the metal diffusion prevention film 43 where the pupil correction is performed by the opening 53 is removed, and only the upper surface of the dummy metal layer 73 is exposed.

また、3層目の配線層間膜24は、図1に示すように、ダミー用金属層73上の金属拡散防止膜43が除去された状態の2層目の配線層間膜23上に配線層間膜形成工程により形成される。次いで、この配線層間膜24に、光電変換素子20に対し光100の入射角度に応じた瞳補正が行われた金属配線を形成するための溝(及びビア)24aを形成し、さらに、光電変換素子20の上方の配線層間膜24を貫くための前記瞳補正が行われた光入射用の開口部54を配線層間膜24に形成する。
次に、図1示すように、溝(及びビア)24aにタンタルや窒化タンタルなどからなる金属拡散防止用のバリア膜64を介してCu,W,Alなどの金属を蒸着などの手段により埋め込んで金属配線34を形成するとともに、開口部54にもCu,W,Alなどの金属を蒸着などの手段により埋め込んでダミー用金属層74を形成する。
As shown in FIG. 1, the third wiring interlayer film 24 is formed on the second wiring interlayer film 23 in a state where the metal diffusion prevention film 43 on the dummy metal layer 73 is removed. It is formed by a forming process. Next, a groove (and via) 24a for forming a metal wiring in which pupil correction corresponding to the incident angle of the light 100 is performed on the photoelectric conversion element 20 is formed in the wiring interlayer film 24, and further, photoelectric conversion is performed. A light incident opening 54 subjected to the pupil correction for penetrating the wiring interlayer 24 above the element 20 is formed in the wiring interlayer 24.
Next, as shown in FIG. 1, a groove (and via) 24a is filled with a metal such as Cu, W, or Al by means of vapor deposition or the like through a barrier film 64 for preventing metal diffusion made of tantalum or tantalum nitride. In addition to forming the metal wiring 34, a metal layer 74 for dummy is formed by filling the opening 54 with a metal such as Cu, W, or Al by means such as vapor deposition.

次に、金属埋め込み工程で溝(及びビア)24a並びに開口部54に埋め込まれた金属の配線層間膜24の上面から突出する余分な金属及び配線層間膜24上に蒸着された金属を化学的機械的研磨法により研磨して除去し、配線層間膜24の上面と金属配線34及びダミー用金属層74の上面を露出させる。次いで、図3に示すように、露出された配線層間膜24の上面と金属配線34及びダミー用金属層74の上面にタンタルや窒化タンタルなどからなる金属拡散防止膜44を形成する。その後、この金属拡散防止膜44のうち開口部54による瞳補正を行う部分の金属拡散防止膜を除去して、図4に示すように、ダミー用金属層74の上面のみを露出する。 Next, the excess metal protruding from the upper surface of the wiring interlayer film 24 embedded in the groove (and via) 24a and the opening 54 in the metal filling process and the metal deposited on the wiring interlayer film 24 are chemically machined. The upper surface of the wiring interlayer film 24 and the upper surfaces of the metal wiring 34 and the dummy metal layer 74 are exposed. Next, as shown in FIG. 3, a metal diffusion preventing film 44 made of tantalum, tantalum nitride, or the like is formed on the exposed upper surface of the wiring interlayer film 24 and the upper surfaces of the metal wiring 34 and the dummy metal layer 74. Thereafter, the portion of the metal diffusion prevention film 44 where the pupil correction is performed by the opening 54 is removed, and only the upper surface of the dummy metal layer 74 is exposed as shown in FIG.

次に、前記配線層間膜形成工程、金属埋め込み工程及び金属拡散防止膜形成工程の繰り返しで積層された3層のダミー用金属層72,73,74をウェットエッチングにより一括して除去する(特許請求の範囲に記載のダミー用金属層除去工程に相当する)。これにより、図5に示すように、光電変換素子20に対し斜めに入射させる光100の入射角度に応じた瞳補正が行われた光入射用の開口部52,53,54が形成される。また、ダミー用金属層72,73,74の一括エッチングには、例えばCu,W,Alなどの金属をエッチングする高い選択比のエッチング液が使用される。
なお、ダミー用金属層72,73,74の除去には、エッチングガスを用いたドライエッチング法を使用することもできる。
Next, the three dummy metal layers 72, 73, 74 laminated by repeating the wiring interlayer film forming step, the metal burying step, and the metal diffusion preventing film forming step are collectively removed by wet etching. This corresponds to the dummy metal layer removing step described in the above). As a result, as shown in FIG. 5, light incident openings 52, 53, and 54 are formed in which pupil correction is performed according to the incident angle of the light 100 incident obliquely on the photoelectric conversion element 20. For the batch etching of the dummy metal layers 72, 73, and 74, an etching solution having a high selection ratio that etches metal such as Cu, W, and Al is used.
The dummy metal layers 72, 73, 74 can be removed by a dry etching method using an etching gas.

次に、前記開口部52,53,54を光透過性の絶縁材料で埋めて、図6に示すように絶縁膜80を形成する(特許請求の範囲に記載の絶縁膜形成工程に相当する)。次いで、絶縁膜80の上面及び金属拡散防止膜44の上面に、絶縁膜80と同一の絶縁材料からなる保護膜82を形成し、この保護膜82の上面の凹凸がなくなるように平坦化する。
次に、図7に示すように、保護膜82の上に開口部52,53,54の絶縁膜80に対向させて前記瞳補正が行われたカラーフィルタ92を形成する(特許請求の範囲に記載のカラーフィルタ形成工程に相当する)。次いで、各カラーフィルタ92の上に前記瞳補正が行われたマイクロレンズ94を形成する(特許請求の範囲に記載のマイクロレンズ形成工程に相当する)。以上の各工程を実行することにより、図7に示す構造の固体撮像装置を製造することができる。
Next, the openings 52, 53, 54 are filled with a light-transmitting insulating material to form an insulating film 80 as shown in FIG. 6 (corresponding to the insulating film forming step described in the claims). . Next, a protective film 82 made of the same insulating material as that of the insulating film 80 is formed on the upper surface of the insulating film 80 and the upper surface of the metal diffusion preventing film 44, and the protective film 82 is flattened so that there are no irregularities on the upper surface.
Next, as shown in FIG. 7, a color filter 92 subjected to the pupil correction is formed on the protective film 82 so as to oppose the insulating film 80 of the openings 52, 53, and 54. Corresponding to the described color filter forming step). Next, the microlens 94 subjected to the pupil correction is formed on each color filter 92 (corresponding to the microlens forming step described in the claims). By executing the above steps, a solid-state imaging device having the structure shown in FIG. 7 can be manufactured.

このような本実施の形態1によれば、金属埋め込み工程で瞳補正が行われた溝(及びビア)と開口部を形成し、この溝(及びビア)に金属が埋め込まれて金属配線を形成するとともに開口部に金属が埋め込まれてダミー用金属層を形成し、次いで、金属拡散防止膜形成工程で開口部に対応するダミー用金属層が除去された金属配線及び配線層間膜上に金属拡散防止膜を形成し、繰り返し工程により積層された複数のダミー用金属層72,73,74を形成し、この複数層のダミー用金属層72,73,74をエッチングにより一括して除去して瞳補正に追従した複数層の開口部52,53,54を形成し、この開口部52,53,54を絶縁材料により埋めて、絶縁膜80を形成するようにしたので、光電変換素子20上の複数層のダミー用金属層72,73,74を一括してエッチングして複数層の開口部52,53,54を形成しながらも、その開口部52,53,54の形状を配線の瞳補正に追従させた形状に形成することができる。これにより、斜めから入射した光が各層の金属拡散防止膜などで遮られることがなくなり、光電変換素子への光の入射効率を向上できるとともに、銅拡散防止膜や配線層間膜による光の反射を低減させた光学特性の良い固体撮像装置を製造することができる。   According to the first embodiment, a groove (and via) and an opening that have been pupil-corrected in the metal filling process are formed, and a metal wiring is formed by filling the groove (and via) with metal. At the same time, the metal is buried in the opening to form a dummy metal layer, and then the metal diffusion on the metal wiring and wiring interlayer film from which the dummy metal layer corresponding to the opening has been removed in the metal diffusion prevention film forming step A prevention film is formed, and a plurality of dummy metal layers 72, 73, and 74 are formed by a repeated process, and the plurality of dummy metal layers 72, 73, and 74 are collectively removed by etching to form a pupil. Since a plurality of openings 52, 53, and 54 following the correction are formed, and the openings 52, 53, and 54 are filled with an insulating material to form the insulating film 80. For multi-layer dummy The shape in which the shapes of the openings 52, 53, and 54 are made to follow the pupil correction of the wiring while forming the openings 52, 53, and 54 in a plurality of layers by etching the metal layers 72, 73, and 74 collectively. Can be formed. This prevents light incident obliquely from being blocked by the metal diffusion prevention film of each layer, improving the light incident efficiency on the photoelectric conversion element, and reflecting light from the copper diffusion prevention film and the wiring interlayer film. A reduced solid-state imaging device with good optical characteristics can be manufactured.

(第2の実施の形態)
図8により、本発明にかかる固体撮像装置の第2の実施の形態について説明する。
この第2の実施の形態において、固体撮像装置は、図8に示すように、シリコン等の半導体基板10の上層部にはフォトダイオード等の複数の光電変換素子20が形成され(特許請求の範囲に記載の光電変換素子形成工程に相当する)、この光電変換素子20の上面を含む半導体基板10上には酸化シリコンなどの層間絶縁膜21が形成されている。この層間絶縁膜21は半導体基板10と、後述する金属配線との間に容量が発生するのを防止するためのものである。また、層間絶縁膜21の内部には、図示省略したスイッチング用トランジスタのゲート電極等が形成されている。さらに、層間絶縁膜21上には、3層の配線層間膜22、23及び24と、金属配線32、33、34が形成され、そして、光電変換素子20の上方に位置する配線層間膜22、23、24には、斜めから入射する光100が効率良く光電変換素子20に集光されるように、光の入射角度に応じて瞳補正された開口部52,53,54が設けられている。
(Second Embodiment)
A second embodiment of the solid-state imaging device according to the present invention will be described with reference to FIG.
In the second embodiment, as shown in FIG. 8, in the solid-state imaging device, a plurality of photoelectric conversion elements 20 such as photodiodes are formed on an upper layer portion of a semiconductor substrate 10 such as silicon. The interlayer insulating film 21 such as silicon oxide is formed on the semiconductor substrate 10 including the upper surface of the photoelectric conversion element 20. The interlayer insulating film 21 is for preventing a capacitance from being generated between the semiconductor substrate 10 and a metal wiring described later. In addition, a gate electrode or the like of a switching transistor (not shown) is formed inside the interlayer insulating film 21. Further, on the interlayer insulating film 21, three-layer wiring interlayer films 22, 23 and 24 and metal wirings 32, 33, 34 are formed, and the wiring interlayer film 22 positioned above the photoelectric conversion element 20, 23 and 24 are provided with openings 52, 53, and 54 that are pupil-corrected according to the incident angle of light so that the light 100 incident obliquely can be efficiently collected on the photoelectric conversion element 20. .

なお、前記層間絶縁膜21、3層の配線層間膜22,23及び24、金属配線32,33,34、溝(及びビア)、開口部52,53,54、金属配線32,33,34は、上記第1の実施の形態に示した配線層間膜形成工程、金属埋め込み工程及び金属拡散防止膜形成工程によって形成される。   The interlayer insulating film 21, three-layer wiring interlayer films 22, 23 and 24, metal wirings 32, 33 and 34, grooves (and vias), openings 52, 53 and 54, and metal wirings 32, 33 and 34 are The wiring interlayer film forming process, the metal embedding process and the metal diffusion preventing film forming process shown in the first embodiment are formed.

また、開口部52,53,54は、SiO、SiN、SiONなどの光透過性の絶縁材料で埋められ、絶縁膜84が形成されている。そして、絶縁膜84の上面及び金属拡散防止膜44の上面に、絶縁膜84と同一の絶縁材料からなる保護膜86を形成し、この保護膜86の上面を平坦化した後、保護膜86の上に開口部52,53,54の絶縁膜84に対向させてカラーフィルタ92が形成され、さらに、各カラーフィルタ92の上に前記瞳補正が行われたマイクロレンズ94が形成されている。
また、開口部52,53,54の形状(幅と深さ)に応じて絶縁材料とその埋め込み条件を設定することにより、光電変換素子20寄りの開口部52,53の内側箇所、すなわちマイクロレンズ94側から見て死角となる開口部52,53の側面箇所に絶縁材料が埋め込まれないエアギャップ88が形成され、このエアギャップ88は光100の導波路となるように構成されている。
The openings 52, 53, and 54 are filled with a light-transmitting insulating material such as SiO 2 , SiN 2 , or SiON, and an insulating film 84 is formed. Then, a protective film 86 made of the same insulating material as that of the insulating film 84 is formed on the upper surface of the insulating film 84 and the upper surface of the metal diffusion preventing film 44, and after flattening the upper surface of the protective film 86, A color filter 92 is formed above the insulating film 84 of the openings 52, 53, and 54, and a microlens 94 on which the pupil correction has been performed is formed on each color filter 92.
In addition, by setting the insulating material and the embedding conditions thereof according to the shape (width and depth) of the openings 52, 53, and 54, the inside portions of the openings 52 and 53 near the photoelectric conversion element 20, that is, microlenses. An air gap 88 in which an insulating material is not embedded is formed in the side surface portions of the openings 52 and 53 that are blind spots when viewed from the 94 side, and the air gap 88 is configured to be a waveguide of the light 100.

このような第2の実施の形態に示す固体撮像装置においては、上記第1の実施の形態と同様な作用効果が得られるほか、開口部52,53の側面箇所に形成されたエアギャップ88は光100の導波路となり、光電変換素子20への光のシェーディングを更に改善することができる。   In such a solid-state imaging device shown in the second embodiment, the same effects as those in the first embodiment can be obtained, and the air gap 88 formed in the side surface portions of the openings 52 and 53 is It becomes a waveguide of the light 100, and the shading of light to the photoelectric conversion element 20 can be further improved.

(第3の実施の形態)
次に、上記第1または第2の実施の形態に示した固体撮像装置を動画撮影可能なビデオカメラや携帯電話に内蔵されるカメラ等の撮像装置に適用した場合の例について図9を参照して説明する。
図9において、撮像装置200は、固体撮像装置201と、この固体撮像装置201に被写体からの撮像光を導く光学系202と、固体撮像装置201からの出力信号を処理する信号処理回路203と、固体撮像装置201を駆動する駆動回路204などを備える構成になっている。
この撮像装置200において、固体撮像装置201には、前記第1または第2の実施の形態にかかる固体撮像装置が使用される。
(Third embodiment)
Next, an example in which the solid-state imaging device described in the first or second embodiment is applied to an imaging device such as a video camera capable of shooting a moving image or a camera built in a mobile phone will be described with reference to FIG. I will explain.
In FIG. 9, an imaging apparatus 200 includes a solid-state imaging apparatus 201, an optical system 202 that guides imaging light from a subject to the solid-state imaging apparatus 201, a signal processing circuit 203 that processes an output signal from the solid-state imaging apparatus 201, The configuration includes a drive circuit 204 that drives the solid-state imaging device 201.
In the imaging apparatus 200, the solid-state imaging apparatus 201 according to the first or second embodiment is used as the solid-state imaging apparatus 201.

駆動回路204は、固体撮像装置201の転送動作および固体撮像装置201に内蔵されたシャッタ装置(図示せず)のシャッタ動作を制御する駆動信号を供給する。また、駆動回路203から供給される駆動信号(タイミング信号)により、固体撮像装置201の電荷転送を行う。信号処理回路203は、ビデオカメラや携帯電話などに応じた各種の信号処理を行う。信号処理が行われた映像信号は、メモリなどの記憶媒体(図示省略)に記憶され、あるいは図示省略のモニタに出力され、映像が表示される。   The drive circuit 204 supplies a drive signal for controlling the transfer operation of the solid-state imaging device 201 and the shutter operation of a shutter device (not shown) built in the solid-state imaging device 201. Further, charge transfer of the solid-state imaging device 201 is performed by a drive signal (timing signal) supplied from the drive circuit 203. The signal processing circuit 203 performs various types of signal processing according to a video camera, a mobile phone, or the like. The video signal subjected to the signal processing is stored in a storage medium (not shown) such as a memory, or is output to a monitor (not shown) to display the video.

このような撮像装置によれば、上述した第1または第2の実施の形態に示す固体撮像装置を用いることにより、開口部の形状を配線の瞳補正に追従させた形状に形成することができ、これにより、斜めから入射した光が各層の金属拡散防止膜及び配線層間膜で遮られることがなくなり、光電変換素子への光の入射効率を向上できるほか、高画質の撮像装置を提供できる。   According to such an imaging apparatus, the shape of the opening can be formed to follow the pupil correction of the wiring by using the solid-state imaging apparatus described in the first or second embodiment. As a result, light incident from an oblique direction is not blocked by the metal diffusion prevention film and the wiring interlayer film of each layer, so that the light incident efficiency to the photoelectric conversion element can be improved and a high-quality image pickup apparatus can be provided.

本発明の第1の実施の形態における固体撮像装置のフォトダイオード上の開口部の形成過程を示す断面図である。It is sectional drawing which shows the formation process of the opening part on the photodiode of the solid-state imaging device in the 1st Embodiment of this invention. 本発明の第1の実施の形態における固体撮像装置の製造過程を示す要部の断面図である。It is sectional drawing of the principal part which shows the manufacture process of the solid-state imaging device in the 1st Embodiment of this invention. 本発明の第1の実施の形態における固体撮像装置の製造過程を示す断面図である。It is sectional drawing which shows the manufacture process of the solid-state imaging device in the 1st Embodiment of this invention. 本発明の第1の実施の形態における固体撮像装置の製造過程を示す断面図である。It is sectional drawing which shows the manufacture process of the solid-state imaging device in the 1st Embodiment of this invention. 本発明の第1の実施の形態における固体撮像装置の製造過程を示す断面図である。It is sectional drawing which shows the manufacture process of the solid-state imaging device in the 1st Embodiment of this invention. 本発明の第1の実施の形態における固体撮像装置の製造過程を示す断面図である。It is sectional drawing which shows the manufacture process of the solid-state imaging device in the 1st Embodiment of this invention. 本発明の第1の実施の形態における固体撮像装置の製造過程を示す断面図である。It is sectional drawing which shows the manufacture process of the solid-state imaging device in the 1st Embodiment of this invention. 本発明の第2の実施の形態における固体撮像装置を示す断面図である。It is sectional drawing which shows the solid-state imaging device in the 2nd Embodiment of this invention. 本発明の第1または第2の実施の形態に示す固体撮像装置素子を用いた撮像装置の全体の構成を示すブロック図である。It is a block diagram which shows the whole structure of the imaging device using the solid-state imaging device element shown to the 1st or 2nd embodiment of this invention. 従来における固体撮像装置を示す断面図である。It is sectional drawing which shows the conventional solid-state imaging device.

符号の説明Explanation of symbols

10……半導体基板、20……光電変換素子、21、22、23……層間膜、31、32、33……金属配線、41、42、43……金属拡散防止膜、51、52、53……金属埋め込み部、61、62、63……バリア膜、72,73,74……ダミー用金属層、80……絶縁膜、84……絶縁膜、86……保護膜、88……エアギャップ、92……カラーフィルタ、94……マイクロレンズ、200……撮像装置、201……固体撮像装置、202……光学系、203……固体撮像装置、204……駆動回路。   DESCRIPTION OF SYMBOLS 10 ... Semiconductor substrate, 20 ... Photoelectric conversion element, 21, 22, 23 ... Interlayer film, 31, 32, 33 ... Metal wiring, 41, 42, 43 ... Metal diffusion prevention film, 51, 52, 53 ...... Metal buried portion, 61, 62, 63 ... Barrier film, 72, 73, 74 ... Dummy metal layer, 80 ... Insulating film, 84 ... Insulating film, 86 ... Protective film, 88 ... Air Gap, 92... Color filter, 94... Micro lens, 200... Imaging device, 201... Solid-state imaging device, 202.

Claims (10)

半導体基板の上層部に複数の光電変換素子を形成する光電変換素子形成工程と、
前記半導体基板上に配線層間膜を形成する配線層間膜形成工程と、
前記配線層間膜に前記光電変換素子に対し光の入射角度に応じた瞳補正が行われた金属配線を形成するための溝及びビアを形成するとともに、前記光電変換素子の上方の配線層間膜を貫くための前記瞳補正が行われた光入射用の開口部を前記配線層間膜に形成し、前記溝及び前記ビア並びに前記開口部に金属を埋め込んで前記溝及び前記ビアによる前記金属配線並びに前記開口部によるダミー用金属層を形成する金属埋め込み工程と、
前記金属配線及び前記ダミー用金属層並びに前記配線層間膜上に金属拡散防止膜を形成し、前記金属拡散防止膜のうち前記開口部による瞳補正を行う部分の金属拡散防止膜を除去する金属拡散防止膜形成工程と、
前記配線層間膜形成工程、前記金属埋め込み工程及び前記金属拡散防止膜形成工程を2回以上行う繰り返し工程と、
前記繰り返し工程で積層された複数層の前記ダミー用金属層をエッチングにより一括して除去するダミー金属層除去工程と、
前記複数層のダミー用金属層が除去された複数層の前記開口部を光透過性の絶縁材料で埋めて絶縁膜を形成する絶縁膜形成工程と、
前記絶縁膜の上に前記瞳補正が行われたカラーフィルタを形成するカラーフィルタ形成工程と、
前記カラーフィルタの上に前記瞳補正が行われたマイクロレンズを形成するマイクロレンズ形成工程と、
を含む固体撮像装置の製造方法。
A photoelectric conversion element forming step of forming a plurality of photoelectric conversion elements on the upper layer portion of the semiconductor substrate;
A wiring interlayer film forming step of forming a wiring interlayer film on the semiconductor substrate;
Grooves and vias are formed in the wiring interlayer film to form a metal wiring in which pupil correction is performed on the photoelectric conversion element according to the incident angle of light, and a wiring interlayer film above the photoelectric conversion element is formed. A light incident opening subjected to the pupil correction for penetrating is formed in the wiring interlayer film, and a metal is buried in the groove and the via and the opening so that the metal wiring by the groove and the via and the metal A metal embedding step of forming a dummy metal layer by the opening;
Metal diffusion for forming a metal diffusion prevention film on the metal wiring, the dummy metal layer, and the wiring interlayer film, and removing a metal diffusion prevention film in a portion of the metal diffusion prevention film that performs pupil correction by the opening A prevention film forming step;
A repeating step of performing the wiring interlayer film forming step, the metal embedding step and the metal diffusion prevention film forming step twice or more;
A dummy metal layer removing step of collectively removing the plurality of layers of the dummy metal layers stacked in the repeating step by etching;
An insulating film forming step of forming an insulating film by filling the openings of the plurality of layers from which the plurality of dummy metal layers are removed with a light-transmitting insulating material;
A color filter forming step of forming a color filter on which the pupil correction has been performed on the insulating film;
Forming a microlens on which the pupil correction has been performed on the color filter;
A method for manufacturing a solid-state imaging device including:
前記半導体基板の上面と該上面に隣接する配線層間膜との間に層間絶縁膜が形成されている請求項1記載の固体撮像装置の製造方法。   The method for manufacturing a solid-state imaging device according to claim 1, wherein an interlayer insulating film is formed between an upper surface of the semiconductor substrate and a wiring interlayer film adjacent to the upper surface. 前記金属埋め込み工程で前記溝及び前記ビア並びに前記開口部に埋め込まれた金属の前記配線層間膜の上面から突出する余分な金属及び前記金属埋め込み工程で前記配線層間膜の上面に形成された金属を除去する工程を更に含む請求項1記載の固体撮像装置の製造方法。 Excess metal protruding from the upper surface of the wiring interlayer film embedded in the groove, the via and the opening in the metal embedding process and the metal formed on the upper surface of the wiring interlayer film in the metal embedding process. The method of manufacturing a solid-state imaging device according to claim 1, further comprising a removing step. 前記カラーフィルタが形成される前に前記絶縁膜形成工程で形成された前記絶縁膜の上及び前記繰り返し工程で形成された最上層の金属拡散防止膜の上に前記絶縁膜と同一の絶縁材料からなる保護膜を形成する工程を更に含む請求項1記載の固体撮像装置の製造方法。   From the same insulating material as the insulating film on the insulating film formed in the insulating film forming process and on the uppermost metal diffusion prevention film formed in the repeating process before the color filter is formed The method for manufacturing a solid-state imaging device according to claim 1, further comprising forming a protective film. 前記金属埋め込み工程で前記溝及びビアに金属が埋め込まれる前に当該溝及びビアの内壁面にバリア膜が形成される請求項1記載の固体撮像装置の製造方法。   The method of manufacturing a solid-state imaging device according to claim 1, wherein a barrier film is formed on an inner wall surface of the groove and via before the metal is embedded in the groove and via in the metal embedding step. 前記絶縁膜形成工程で前記開口部に絶縁材料で埋め込んで絶縁膜を形成する時に前記光電変換素子寄りの前記開口部の内側箇所に絶縁材料が埋め込まれないエアギャップを形成し、前記エアギャップを前記光の導波路とする請求項1記載の固体撮像装置の製造方法。   When forming an insulating film by filling the opening with an insulating material in the insulating film formation step, an air gap is formed in the inner portion of the opening near the photoelectric conversion element so that the insulating material is not embedded, and the air gap is formed. The solid-state imaging device manufacturing method according to claim 1, wherein the optical waveguide is used as the optical waveguide. 半導体基板と、
前記半導体基板の上層部に形成された複数の光電変換素子と、
前記半導体基板上に配線層間膜を介して複数層に設けられ、各層ごとに前記光電変換素子に対し光の入射角度に応じた瞳補正が行われた金属配線と、
前記配線層間膜に形成され、前記光電変換素子の上方の配線層間膜を貫くとともに、前記配線層間膜の各層ごとに前記瞳補正が行われた光入射用の開口部と、
前記開口部に埋め込まれた光透過性の絶縁膜と、
前記絶縁膜の上に形成され前記瞳補正が行われたカラーフィルタと、
前記カラーフィルタの上に形成され前記瞳補正が行われたマイクロレンズと、
を備える固体撮像装置。
A semiconductor substrate;
A plurality of photoelectric conversion elements formed in an upper layer of the semiconductor substrate;
Provided in a plurality of layers via a wiring interlayer film on the semiconductor substrate, metal wiring in which pupil correction according to the incident angle of light is performed on the photoelectric conversion element for each layer;
An opening for light incidence that is formed in the wiring interlayer film, penetrates the wiring interlayer film above the photoelectric conversion element, and in which the pupil correction is performed for each layer of the wiring interlayer film;
A light-transmissive insulating film embedded in the opening;
A color filter formed on the insulating film and subjected to the pupil correction;
A microlens formed on the color filter and subjected to the pupil correction;
A solid-state imaging device.
前記光電変換素子寄りの前記開口部の内側箇所に前記絶縁膜が埋め込まれないエアギャ
ップが設けられていることを特徴とする請求項7記載の固体撮像装置。
The solid-state imaging device according to claim 7, wherein an air gap in which the insulating film is not embedded is provided in an inner portion of the opening near the photoelectric conversion element.
固体撮像装置と、
前記固体撮像装置に被写体からの入射光を導く光学系と、
前記固体撮像装置からの出力信号を処理する信号処理回路とを備え、
前記固体撮像装置は、
半導体基板と、
前記半導体基板の上層部に形成された複数の光電変換素子と、
前記半導体基板上に配線層間膜を介して複数層に設けられ、各層ごとに前記光電変換素子に対し光の入射角度に応じた瞳補正が行われた金属配線と、
前記配線層間膜に形成され、前記光電変換素子の上方の配線層間膜を貫くとともに、前記配線層間膜の各層ごとに前記瞳補正が行われた光入射用の開口部と、
前記開口部に埋め込まれた光透過性の絶縁膜と、
前記絶縁膜の上に形成され前記瞳補正が行われたカラーフィルタと、
前記カラーフィルタの上に形成され前記瞳補正が行われたマイクロレンズと、
を備える撮像装置。
A solid-state imaging device;
An optical system for guiding incident light from a subject to the solid-state imaging device;
A signal processing circuit for processing an output signal from the solid-state imaging device,
The solid-state imaging device
A semiconductor substrate;
A plurality of photoelectric conversion elements formed in an upper layer of the semiconductor substrate;
Provided in a plurality of layers via a wiring interlayer film on the semiconductor substrate, metal wiring in which pupil correction according to the incident angle of light is performed on the photoelectric conversion element for each layer;
An opening for light incidence that is formed in the wiring interlayer film, penetrates the wiring interlayer film above the photoelectric conversion element, and in which the pupil correction is performed for each layer of the wiring interlayer film;
A light-transmissive insulating film embedded in the opening;
A color filter formed on the insulating film and subjected to the pupil correction;
A microlens formed on the color filter and subjected to the pupil correction;
An imaging apparatus comprising:
前記光電変換素子寄りの前記開口部の内側箇所に前記絶縁膜が埋め込まれないエアギャップが設けられている請求項9記載の撮像装置。   The imaging device according to claim 9, wherein an air gap in which the insulating film is not embedded is provided in an inner portion of the opening portion close to the photoelectric conversion element.
JP2006330583A 2006-12-07 2006-12-07 Solid-state imaging device, manufacturing method thereof, and imaging device Expired - Fee Related JP5092379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006330583A JP5092379B2 (en) 2006-12-07 2006-12-07 Solid-state imaging device, manufacturing method thereof, and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006330583A JP5092379B2 (en) 2006-12-07 2006-12-07 Solid-state imaging device, manufacturing method thereof, and imaging device

Publications (2)

Publication Number Publication Date
JP2008147288A JP2008147288A (en) 2008-06-26
JP5092379B2 true JP5092379B2 (en) 2012-12-05

Family

ID=39607157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006330583A Expired - Fee Related JP5092379B2 (en) 2006-12-07 2006-12-07 Solid-state imaging device, manufacturing method thereof, and imaging device

Country Status (1)

Country Link
JP (1) JP5092379B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6087107B2 (en) 2012-10-29 2017-03-01 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2869280B2 (en) * 1993-01-27 1999-03-10 シャープ株式会社 Solid-state imaging device and method of manufacturing the same
JP4682504B2 (en) * 2002-09-20 2011-05-11 ソニー株式会社 Solid-state imaging device, manufacturing method thereof, and electronic apparatus
US6861686B2 (en) * 2003-01-16 2005-03-01 Samsung Electronics Co., Ltd. Structure of a CMOS image sensor and method for fabricating the same
KR100717277B1 (en) * 2005-03-07 2007-05-15 삼성전자주식회사 Image sensor and methods of forming the same
JP4743842B2 (en) * 2005-03-15 2011-08-10 キヤノン株式会社 Solid-state image sensor

Also Published As

Publication number Publication date
JP2008147288A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
KR102051155B1 (en) Solid-state image pickup device, method for making solid-state image pickup device, and electronic device
TWI566389B (en) Solid-state imaging devices and methods of fabricating the same
JP6060851B2 (en) Method for manufacturing solid-state imaging device
JP5760923B2 (en) Method for manufacturing solid-state imaging device
TWI445167B (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus
TWI390719B (en) Methods of manufacturing an image device
JP4427949B2 (en) Solid-state imaging device and manufacturing method thereof
JP4939206B2 (en) Image sensor and manufacturing method thereof
JP2008192951A (en) Solid state imaging apparatus and manufacturing method thereof
JP2008091643A (en) Solid-state image pick-up device
JP2009252949A (en) Solid-state imaging device and manufacturing method thereof
JP2009021415A (en) Solid-state imaging apparatus and manufacturing method thereof
JP2008091771A (en) Solid-state image pickup device and its manufacturing method
JP2015029011A (en) Solid-state imaging device, method for manufacturing the same, and electronic apparatus
JP2013214616A (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic device
JP6083572B2 (en) Solid-state imaging device and manufacturing method thereof
CN102637707B (en) Method of producing semiconductor device and method of producing solid-state image pickup device
JP2006191000A (en) Photoelectric converter
JP5948783B2 (en) Solid-state imaging device and electronic device
JP5987275B2 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
JP2012186396A (en) Solid state image pickup device and manufacturing method of the same
JP4549195B2 (en) Solid-state imaging device and manufacturing method thereof
TW201507119A (en) Solid-state imaging device and manufacturing method thereof
JP5092379B2 (en) Solid-state imaging device, manufacturing method thereof, and imaging device
JP4682568B2 (en) Manufacturing method of solid-state imaging device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091006

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees