JP5089113B2 - Contactless power feeding device to elevator car - Google Patents

Contactless power feeding device to elevator car Download PDF

Info

Publication number
JP5089113B2
JP5089113B2 JP2006247116A JP2006247116A JP5089113B2 JP 5089113 B2 JP5089113 B2 JP 5089113B2 JP 2006247116 A JP2006247116 A JP 2006247116A JP 2006247116 A JP2006247116 A JP 2006247116A JP 5089113 B2 JP5089113 B2 JP 5089113B2
Authority
JP
Japan
Prior art keywords
frequency
power
car
power source
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006247116A
Other languages
Japanese (ja)
Other versions
JP2008068944A (en
Inventor
正昭 繁田
弘晃 伊東
薫雄 中垣
公人 出森
好彦 中田
亮 大坪
勇一郎 海田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Elevator and Building Systems Corp
Original Assignee
Toshiba Elevator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Elevator Co Ltd filed Critical Toshiba Elevator Co Ltd
Priority to JP2006247116A priority Critical patent/JP5089113B2/en
Priority to CNA2007101494691A priority patent/CN101145702A/en
Publication of JP2008068944A publication Critical patent/JP2008068944A/en
Application granted granted Critical
Publication of JP5089113B2 publication Critical patent/JP5089113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Elevator Control (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)

Description

本発明は、ビル等に備えられたエレベータに係わり、特に、昇降路内を上下移動するかごに外部から電力を非接触状態で供給するエレベータのかごへの非接触給電装置に関する。   The present invention relates to an elevator provided in a building or the like, and more particularly to a non-contact power feeding device to an elevator car that supplies electric power from the outside to a car that moves up and down in a hoistway in a non-contact state.

エレベータのかご等のように一定の範囲内で移動している移動体に搭載された負荷に外部から非接触で電力を供給する手法として、図16に示す電磁誘導原理を採用することが実用化されている(非特許文献1参照)。図示するように、電線(一次コイル)に交流電流i1を流すと電流の周囲に磁束φが発生する。この磁束φが二次コイルを貫通すると二次コイルの両端に交流電圧V2が誘導される。この交流電圧V2により負荷であるランプに電力が供給される。 Practical use of the electromagnetic induction principle shown in FIG. 16 as a method for supplying electric power from the outside to a load mounted on a moving body moving within a certain range such as an elevator car. (See Non-Patent Document 1). As shown in the figure, when an alternating current i 1 is passed through the electric wire (primary coil), a magnetic flux φ is generated around the current. When this magnetic flux φ penetrates the secondary coil, an alternating voltage V 2 is induced across the secondary coil. Power supplied to the lamp as a load by the AC voltage V 2.

具体的には、図17に示すように、電力供給側の高周波電源1から給電線(一次コイル)2へ高周波電流を供給する。電力受領側において、E字断面形状を有する磁気コア3の各溝に前記給電線2が通過する。この磁気コア3に2次巻線(二次コイル)4が巻回され、この2次巻線4に受信ユニット5が接続されている。すなわち、磁気コア3に巻回された2次巻線(二次コイル)4で電磁誘導により給電線2から電気エネルギーを非接触で取出す。給電線2は、損失の少ないリッツ線が適用されている。   Specifically, as shown in FIG. 17, a high-frequency current is supplied from a high-frequency power source 1 on the power supply side to a feeder line (primary coil) 2. On the power receiving side, the feeder line 2 passes through each groove of the magnetic core 3 having an E-shaped cross section. A secondary winding (secondary coil) 4 is wound around the magnetic core 3, and a receiving unit 5 is connected to the secondary winding 4. That is, electrical energy is taken out from the feeder 2 in a non-contact manner by electromagnetic induction by a secondary winding (secondary coil) 4 wound around the magnetic core 3. The power supply line 2 is a litz wire with little loss.

図18(a)に特許文献1に記載されている非接触給電装置の構成を示す。この装置は、電源6、給電線7(軌道側に設置された部分7a、電源と軌道との間の区間に敷設された部分7b)、ピックアップ手段8を搭載した台車9から構成される。電源6は給電線7に高周波電流を流す。台車9に搭載されたピックアップ手段8は、電磁誘導により磁束を介して給電線7から電力を取り出し負荷に供給する。   FIG. 18A shows the configuration of the non-contact power feeding device described in Patent Document 1. This apparatus includes a power source 6, a feeder line 7 (a portion 7 a installed on the track side, a portion 7 b laid in a section between the power source and the track), and a carriage 9 on which pickup means 8 is mounted. The power source 6 causes a high-frequency current to flow through the feeder line 7. The pickup means 8 mounted on the carriage 9 takes out electric power from the feeder line 7 via magnetic flux by electromagnetic induction and supplies it to the load.

同軸ケーブルからなる給電線7aは図18(b)に示す断面形状を有する。芯線10の外郭部に絶縁線11を挟んで外皮線12が芯線10を取り巻くように配置されており、全体がシース13で被覆されている。芯線10は、単線またはリッツ線が用いられる。外皮線12は、芯線10と平行状に配置された複数の単線または網組みした配線部材で構成される。   The feeder line 7a made of a coaxial cable has a cross-sectional shape shown in FIG. An outer sheath wire 12 is disposed so as to surround the core wire 10 with an insulating wire 11 sandwiched between outer portions of the core wire 10, and the whole is covered with a sheath 13. The core wire 10 is a single wire or a litz wire. The outer sheath wire 12 is composed of a plurality of single wires arranged in parallel with the core wire 10 or a meshed wiring member.

このような非接触給電装置において、電力の給電効率を上げるためには、給電線4、7に通流させる高周波電流の周波数を上昇させる必要がある。しかしながら、導体に高周波電流を流すと、電流が導体表面近くに集中して流れる表皮効果(skin effect)が生じる。表皮効果が生じると、導線では内部に電流が流れないために、導線の実効断面積が減少して、実効抵抗が増大する(非特許文献2参照)。   In such a non-contact power supply device, in order to increase the power supply efficiency, it is necessary to increase the frequency of the high-frequency current passed through the power supply lines 4 and 7. However, when a high-frequency current is passed through the conductor, a skin effect occurs in which the current concentrates near the conductor surface. When the skin effect occurs, current does not flow in the lead wire, so that the effective cross-sectional area of the lead wire decreases and the effective resistance increases (see Non-Patent Document 2).

この表皮効果を定量的に評価する指標として、表皮深さ(skin depth)が定義されている。この表皮深さは、導体の表面に流れる電流の電流密度に対して、電流密度が1/e(自然対数の底 e=2.71829…)になった位置の導体の表面からの距離(深さ)δを示し、(1)式で示される。   The skin depth is defined as an index for quantitatively evaluating the skin effect. This skin depth is the distance (depth) from the surface of the conductor at the position where the current density is 1 / e (the base of natural logarithm e = 2.71829 ...) with respect to the current density of the current flowing on the surface of the conductor. δ is represented by the equation (1).

δ=1/(πfμσ)1/2 …(1)
但し、f;周波数 μ;導体の透磁率 σ;導体の導電率
ちなみに、導体が銅の場合、(1)式は、(2)式で示すように、表皮深さδ(単位mm)は周波数f(単位Hz)の関数となる。
δ = 1 / (πfμσ) 1/2 (1)
Where f; frequency μ; conductor permeability σ; conductor conductivity When the conductor is copper, equation (1) is the skin depth δ (unit mm) is the frequency as shown in equation (2). It is a function of f (unit: Hz).

δ(mm)=74.9/[f(Hz)]1/2 …(2)
図19は、この(2)式で示される導体材料が銅である場合における周波数f(Hz)と表皮深さδ(mm)との関係を示す特性図である。
δ (mm) = 74.9 / [f (Hz)] 1/2 (2)
FIG. 19 is a characteristic diagram showing the relationship between the frequency f (Hz) and the skin depth δ (mm) when the conductor material represented by the equation (2) is copper.

この実効抵抗の増大を防止するためには、マイクロ波のマイクロ導波管等のように導線を中空にするか、多数の細線を絶縁して寄合わせたリッツ線とすることが実用化されている。具体的には、高周波領域においては、表皮深さδの2倍以下の直径を有するリッツ線が採用されている。
特開2002−2335号公報 高三 正巳、近藤 直、森田 勝幸、渡辺 勲、大立 泰治、「非接触給電を用いた高速搬送台車の開発」、平成9年電気学会産業応用部門全国大会、pp1−4 Ned Mohan,Tore M.Undeland,William P.Robbins,”Power Electronics Converters,Applications and Design", Second Edition,pp748-754
In order to prevent this increase in effective resistance, it has been put into practical use that the lead wire is made hollow, such as a microwave micro-waveguide, or a large number of fine wires are insulated and joined together. Yes. Specifically, in the high frequency region, a litz wire having a diameter not more than twice the skin depth δ is employed.
Japanese Patent Laid-Open No. 2002-2335 Masami Takazo, Nao Kondo, Katsuyuki Morita, Isao Watanabe, Taiji Odate, “Development of a high-speed transport cart using non-contact power feeding”, 1997 Annual Conference of the Institute of Electrical Engineers of Japan, pp1-4 Ned Mohan, Tore M. Undeland, William P. Robbins, “Power Electronics Converters, Applications and Design”, Second Edition, pp748-754

このように高周波になると表皮効果が発生し、導線の実効断面積が減少して、実効抵抗が増大するので、高周波領域においては、例えば、表皮深さδの2倍以下の直径(2R≦2δ R;半径)を有するリッツ線が採用されるが、高コストであり問題である。   Thus, when the frequency becomes high, the skin effect occurs, the effective cross-sectional area of the conducting wire decreases, and the effective resistance increases. For example, in the high-frequency region, the diameter is not more than twice the skin depth δ (2R ≦ 2δ). R; a litz wire having a radius) is employed, but it is expensive and problematic.

本発明はこのような事情に鑑みてなされたものであり、低い設備費用で、かごに搭載された負荷に電力を非接触で効率的に供給できるエレベータのかごへの非接触給電装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a non-contact power feeding device to an elevator car that can efficiently supply power to a load mounted on the car in a non-contact manner at a low equipment cost. For the purpose.

上記課題を解消するために本発明のエレベータのかごへの非接触給電装置においては、交流商用電源から供給される交流電力から、50Hzから10kHzの範囲内の周波数を有する高周波電流を生成する高周波電源と、エレベータの昇降路内におけるかごの移動経路に沿って配線され、高周波電源から供給された高周波電流が通流する給電線と、昇降路内を移動するかごに取付けられ、給電線に対して非接触で磁気的に結合する磁気コアと、この磁気コアに巻回され、給電線に流れる高周波電流に対応した交流電圧が誘起される2次巻線と、この2次巻線に誘起された交流電圧をかごに設けられた負荷に対応した電力形態に変換する受電部とを備えている。さらに、給電線は、導電材料で形成された円形断面形状を有した1本の導線とこの導線の外周面を覆う絶縁被覆層とで形成され、かつ、導線の半径は高周波電源から供給される高周波電流の周波数に対応する表皮深さ以下である。   In order to solve the above-mentioned problems, in the contactless power supply device for an elevator car according to the present invention, a high-frequency power source that generates a high-frequency current having a frequency in the range of 50 Hz to 10 kHz from the AC power supplied from the AC commercial power source. Are connected along the moving path of the car in the elevator hoistway, and are attached to the feeding line through which the high-frequency current supplied from the high-frequency power supply flows, and the car moving in the hoisting path. A magnetic core that is magnetically coupled in a non-contact manner, a secondary winding that is wound around the magnetic core and in which an AC voltage corresponding to a high-frequency current flowing through the feeder line is induced, and is induced in the secondary winding A power receiving unit that converts an AC voltage into a power form corresponding to a load provided in the car. Further, the feeder line is formed by one conductive wire having a circular cross-sectional shape made of a conductive material and an insulating coating layer covering the outer peripheral surface of the conductive wire, and the radius of the conductive wire is supplied from a high-frequency power source. It is below the skin depth corresponding to the frequency of the high frequency current.

このように構成されたエレベータのかごへの非接触給電装置においては、昇降路内を移動するかごに取付けられた磁気コアに対して非接触状態で磁気的に結合する高周波電流が流れる給電線における導線の半径Rは、高周波電源から供給された50Hzから10kHzの範囲内の周波数を有する高周波電流の周波数fに対応する図19の特性から求めた表皮深さδ以下に設定されている(R≦δ)ので、導体の断面における電流が流れていない又は流れる電流が少ない部分の割合が大幅に減少するので、導線の実効断面積が大きくなり、実効抵抗が低下する。   In the non-contact power feeding device to the elevator car configured as described above, in the power feeding line through which a high-frequency current magnetically coupled in a non-contact state to the magnetic core attached to the car moving in the hoistway flows. The radius R of the conducting wire is set to a skin depth δ or less obtained from the characteristic of FIG. 19 corresponding to the frequency f of the high frequency current having a frequency in the range of 50 Hz to 10 kHz supplied from the high frequency power source (R ≦ Since δ), the ratio of the portion where the current does not flow or the current flowing in the cross section of the conductor is greatly reduced, the effective sectional area of the conducting wire is increased and the effective resistance is decreased.

その結果、リッツ線以外の一般的な電力線を給電線とした電力のかごに対する給電が可能となるので、低い設備費用でもって、かごに対する非接触給電装置を実現ができる。また表皮深さ以下の半径の導線が組込まれた給電線により給電するので、表皮効果が発生せず、送電効率の優れたかごに対する非接触給電装置を実現することができる。   As a result, since it is possible to feed power to a car using a general power line other than the litz wire as a feed line, a non-contact power feeding device for the car can be realized with low equipment costs. In addition, since power is supplied by a power supply line in which a lead wire having a radius equal to or smaller than the skin depth is incorporated, a skin effect does not occur, and a contactless power supply device for a car having excellent power transmission efficiency can be realized.

また、別の発明のエレベータのかごへの非接触給電装置においては、交流商用電源から供給される交流電力から、50Hzから10kHzの範囲内の周波数を有する高周波電流を生成する高周波電源と、エレベータの昇降路内におけるかごの移動経路に沿って配線され、前記高周波電源から供給された高周波電流が通流する給電線と、昇降路内を移動するかごに取付けられ、給電線に対して非接触で磁気的に結合する複数の磁気コアと、この各磁気コアに巻回され、給電線に流れる高周波電流に対応した交流電圧が誘起される複数の2次巻線と、この複数の2次巻線に誘起された交流電圧をかごに設けられた負荷に対応した電力形態に変換する受電部とを備えている。さらに、給電線は、導電材料で形成された円形断面形状を有した1本の導線とこの導線の外周面を覆う絶縁被覆層とで形成され、かつ、導線の半径は高周波電源から供給される高周波電流の周波数に対応する表皮深さ以下である。   Moreover, in the non-contact electric power feeder to the elevator car of another invention, a high-frequency power source that generates a high-frequency current having a frequency within a range of 50 Hz to 10 kHz from the AC power supplied from the AC commercial power source, Wired along the movement path of the car in the hoistway and attached to the feeder line through which the high-frequency current supplied from the high-frequency power source flows, and the car moving in the hoistway, without contact with the feeder line A plurality of magnetic cores that are magnetically coupled, a plurality of secondary windings that are wound around each of the magnetic cores and that are induced with an AC voltage corresponding to a high-frequency current that flows through the feeder line, and the plurality of secondary windings A power receiving unit that converts the AC voltage induced in the power into a power form corresponding to a load provided in the car. Further, the feeder line is formed by one conductive wire having a circular cross-sectional shape made of a conductive material and an insulating coating layer covering the outer peripheral surface of the conductive wire, and the radius of the conductive wire is supplied from a high-frequency power source. It is below the skin depth corresponding to the frequency of the high frequency current.

このように構成されたエレベータのかごへの非接触給電装置においても、給電線の導線半径は高周波電流の周波数に対応する表皮深さ以下であるので、前述した発明のエレベータのかごへの非接触給電装置とほぼ同様の作用効果を奏することが可能である。   Even in the non-contact power feeding device to the elevator car configured as described above, since the conducting wire radius of the power feeding line is equal to or less than the skin depth corresponding to the frequency of the high-frequency current, the non-contact power to the elevator car of the above-described invention It is possible to achieve substantially the same operational effects as the power feeding device.

さらに、この発明においては、磁気コア及び2次巻線が複数設けられているので、かごへ供給する電力量を増加できる。   Further, in the present invention, since a plurality of magnetic cores and secondary windings are provided, the amount of power supplied to the car can be increased.

さらに、給電線を昇降路内におけるかごの移動経路を複数回周回するように移動経路に沿って配線することによって、磁気コアに磁気的に結合する給電線の本数が増加し、磁気コアに生じる磁束を増大できるので、かごへ供給する電力量を増加できる。   Furthermore, the number of feeder lines that are magnetically coupled to the magnetic core is increased by wiring the feeder lines along the movement path so as to circulate the movement path of the car in the hoistway a plurality of times, which occurs in the magnetic core. Since the magnetic flux can be increased, the amount of power supplied to the car can be increased.

また、給電線を昇降路内におけるかごのガイドレールに沿って配線することによって、給電線の配線に係わる設備費用を低減できる。   Further, by arranging the power supply line along the guide rail of the car in the hoistway, the equipment cost related to the wiring of the power supply line can be reduced.

さらに、受電部は、かごに設けられた負荷が直流負荷の場合には、次巻線に誘起された交流電圧を直流電力に変換して当該直流負荷に供給する。   Further, when the load provided in the car is a DC load, the power receiving unit converts the AC voltage induced in the next winding into DC power and supplies the DC power to the DC load.

また、交流商用電源として、単相商用電源又は三相商用電源を採用できる。   In addition, a single-phase commercial power source or a three-phase commercial power source can be adopted as the AC commercial power source.

本発明においては、低い設備費用で、かごに搭載された負荷に電力を非接触で効率的に供給できる。   In the present invention, power can be efficiently supplied to a load mounted on a car in a non-contact manner at low equipment costs.

以下、本発明の各実施形態を図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は本発明の第1実施形態に係わるエレベータのかごへの非接触給電装置が組込まれたエレベータシステムの要部を示す模式図である。
(First embodiment)
FIG. 1 is a schematic view showing a main part of an elevator system in which a non-contact power feeding device for an elevator car according to a first embodiment of the present invention is incorporated.

ビル等の建屋内に形成されたエレベータの昇降路21の上側に設けられた機械室22内に制御盤23及び巻上機24が設置されている。巻上機24の主シーブ25及びそらせシーブ26に、一端にかご27が取付けられ、他端に釣合錘28が取付けられた主ロープ29が掛けられている。外部の単相商用電源30から電源ケーブル31を介して単相交流電力が供給される制御盤23内には、巻上機24に組込まれた電動機を回転駆動するモータ駆動回路、図示しない乗場呼びボタンやかご呼びボタンのボタン操作による行先階を指定した呼びに応じて、モータ駆動回路へかご27を指定階へ移動させる指示を出す運転制御部等が組込まれている。   A control panel 23 and a hoisting machine 24 are installed in a machine room 22 provided above an elevator hoistway 21 formed in a building such as a building. A main rope 29 having a car 27 attached to one end and a counterweight 28 attached to the other end is hung on the main sheave 25 and the baffle sheave 26 of the hoisting machine 24. In a control panel 23 to which single-phase AC power is supplied from an external single-phase commercial power supply 30 via a power cable 31, a motor drive circuit for rotating and driving an electric motor incorporated in the hoisting machine 24, a hall call (not shown) In response to a call that designates a destination floor by button operation of a button or a car call button, an operation control unit or the like that issues an instruction to move the car 27 to the designated floor to the motor drive circuit is incorporated.

さらに、機械室22内には、単相商用電源30から電源ケーブル31を介して単相交流電力が供給される高周波電源32が設置されている。この高周波電源32は入力された例えば100Vの単相交流電力から、50Hzから10kHzの範囲内の前記制御盤23の設定器33で設定された周波数fSを有する単相の高周波電流Iを生成して、昇降路21内に配線された給電線34に通流させる。 Further, a high frequency power supply 32 to which single phase AC power is supplied from a single phase commercial power supply 30 via a power cable 31 is installed in the machine room 22. The high-frequency power source 32 generates a single-phase high-frequency current I having a frequency f S set by the setting device 33 of the control panel 23 within a range of 50 Hz to 10 kHz from an input single-phase AC power of 100 V, for example. Then, it is made to flow through the feeder line 34 wired in the hoistway 21.

この給電線34は、例えば、昇降路21内の側壁21aに支持部材を介して固定された、かご27の上下方向の移動をガイドするガイドレール35に支持されている。具体的には、この給電線34は、上端が高周波電源32の出力端子に接続され、下端がガイドレール35の下端で折り返されており、平行する2本の給電線34a、34bを直列接続した状態である。   The feeder line 34 is supported by, for example, a guide rail 35 that guides the vertical movement of the car 27 that is fixed to the side wall 21a in the hoistway 21 via a support member. Specifically, the power supply line 34 has an upper end connected to the output terminal of the high frequency power supply 32 and a lower end folded back at the lower end of the guide rail 35, and two parallel power supply lines 34a and 34b are connected in series. State.

一方、かご27の側面27aには、図2(a)に示すように、E字形断面を有する磁気コア36が取付けられている。この磁気コア36の各溝36a、36bに前記給電線34における各給電線34a、34bが貫通し、この磁気コア36の中央の磁極36cに2次巻線37が巻回されている。この2次巻線37の両端は受電部38の入力端子に接続されている。この受電部38において、図4に示すように、2次巻線37に誘起された高周波の交流電圧は、整流器54で直流に変換され、直流リアクトル53aと平滑コンデンサ53bとで、この直流に含まれる高調波成分が除去され、受電部38の出力端子に接続された直流の負荷39に供給される。この直流の負荷39は、例えば、かご27内を照明する照明器や、かご呼びボタン、行き先等を含む各種表示器の電源回路、ドアの開閉器等である。   On the other hand, a magnetic core 36 having an E-shaped cross section is attached to the side surface 27a of the car 27 as shown in FIG. The feed lines 34 a and 34 b of the feed line 34 pass through the grooves 36 a and 36 b of the magnetic core 36, and a secondary winding 37 is wound around the magnetic pole 36 c at the center of the magnetic core 36. Both ends of the secondary winding 37 are connected to input terminals of the power receiving unit 38. In the power receiving unit 38, as shown in FIG. 4, the high-frequency AC voltage induced in the secondary winding 37 is converted into DC by the rectifier 54, and is included in the DC by the DC reactor 53a and the smoothing capacitor 53b. The higher harmonic components are removed and supplied to a DC load 39 connected to the output terminal of the power receiving unit 38. The DC load 39 is, for example, an illuminator that illuminates the car 27, a car call button, a power supply circuit for various displays including a destination, a door switch, and the like.

図2(b)は前記給電線34(34a、34b)の断面図である。この給電線34は、円形断面形状を有した導電材料である銅で形成された1本の導線40と、この導線40の外周面を覆う絶縁被覆層41とで形成されている。そして、導線40の半径R(mm)は、高周波電源32から給電線34に供給される高周波電流Iの周波数fSに対応する表皮深さδS以下である。 FIG. 2B is a cross-sectional view of the feeder line 34 (34a, 34b). The power supply line 34 is formed of a single conductive wire 40 made of copper, which is a conductive material having a circular cross-sectional shape, and an insulating coating layer 41 that covers the outer peripheral surface of the conductive wire 40. The radius R (mm) of the conducting wire 40 is equal to or less than the skin depth δ S corresponding to the frequency f S of the high-frequency current I supplied from the high-frequency power source 32 to the feeder line 34.

さらに、高周波電源32から給電線34に供給される高周波電流Iの周波数fSの範囲は前述したように、50Hzから10kHzの範囲内から操作者にて選択されて制御盤23の設定器33にて設定された周波数である。下限周波数50Hzは、単相商用電源30から供給される50Hzの単相交流電力を周波数変換せずに、そのまま高周波電流Iとして、給電線34に印加可能にする周波数である。また、前述したように、給電線34に供給される高周波電流Iの周波数が高い方が電力の給電効率が高いが、過度に高いと、電波法の規制を受けるので、規制を受けない最高周波数の10kHzを上限周波数としている。 Further, as described above, the range of the frequency f S of the high-frequency current I supplied from the high-frequency power source 32 to the feeder line 34 is selected by the operator from the range of 50 Hz to 10 kHz, and is set to the setting device 33 of the control panel 23. Is the set frequency. The lower limit frequency 50 Hz is a frequency at which 50-Hz single-phase AC power supplied from the single-phase commercial power supply 30 can be applied to the feeder line 34 as it is as the high-frequency current I without frequency conversion. As described above, the higher the frequency of the high-frequency current I supplied to the feeder line 34, the higher the power feeding efficiency. However, if the frequency is excessively high, it is subject to the Radio Law, so the highest frequency not subject to regulation. 10 kHz is the upper limit frequency.

前述したように、導体材料が銅である導体における周波数f(Hz)と表皮深さδ(mm)との関係は図19に示されている。50Hz及び10kHzに対応する各表皮深さδ(mm)は、それぞれ、10.6mm、0.9mmとなる。仮に、操作者が操作盤23の設定器33で選択設定した周波数fSが1kHzの場合は、表皮深さδSは4.5mmとなる。 As described above, the relationship between the frequency f (Hz) and the skin depth δ (mm) in a conductor whose conductor material is copper is shown in FIG. Respective skin depths δ (mm) corresponding to 50 Hz and 10 kHz are 10.6 mm and 0.9 mm, respectively. If the frequency f S selected and set by the operator using the setting device 33 of the operation panel 23 is 1 kHz, the skin depth δ S is 4.5 mm.

したがって、実施形態装置における給電線34における導線40の半径Rの取り得る最大値Rmaxは、設定周波数fSが50Hzの場合で10.6mm、設定周波数fSが1kHzの場合で4.5mm、設定周波数fSが10kHzの場合で0.9mmとなる。 Therefore, the maximum value Rmax that can be taken by the radius R of the conducting wire 40 in the feeder line 34 in the embodiment device is set to 10.6 mm when the set frequency f S is 50 Hz, and 4.5 mm when the set frequency f S is 1 kHz. When the frequency f S is 10 kHz, it becomes 0.9 mm.

なお、給電線34における導線40の半径Rの取り得る最小値Rminは、リッツ線でない一般電源ケーブルの導線の半径以上である。 In addition, the minimum value Rmin that the radius R of the conducting wire 40 in the feeder line 34 can take is equal to or larger than the radius of the conducting wire of the general power supply cable that is not a litz wire .

このように、高周波電流Iが通流する給電線34における導線40の半径Rを表皮効果が顕著に現れる表皮深さδ(mm)以下に設定しているので、導線40の断面における電流が流れていない又は流れる電流が少ない部分の割合が大幅に減少するので、導線40の実効断面積が大きくなり、実効抵抗が低下する。   Thus, since the radius R of the conducting wire 40 in the power supply line 34 through which the high-frequency current I flows is set to a skin depth δ (mm) or less where the skin effect is noticeable, the current flows in the cross section of the conducting wire 40. Since the ratio of the portion that is not or does not flow is significantly reduced, the effective cross-sectional area of the conducting wire 40 is increased and the effective resistance is reduced.

図3は、高周波電源32の概略構成図である。単相商用電源30から電源ケーブル31を介して供給された50Hz、100vの単相交流は、単相ブリッジ回路からなる整流器42で直流に変換され、直流リアクトル43aと平滑コンデンサ43bとで、この直流に含まれる高調波成分が除去される。高調波成分が除去された直流は次のインバータ44の直流側端子45a、45bに入力されている。このインバータ44においては、直流側端子45a、45b相互簡に、ダイオード46aとスイッチング素子46bとの並列回路46が4個、単相ブリッジ接続されている。各並列回路46のスイッチング素子46bは、制御部47から出力されるPWM(パルス幅変調)信号48で通電制御される。   FIG. 3 is a schematic configuration diagram of the high-frequency power source 32. The 50 Hz, 100 V single phase alternating current supplied from the single phase commercial power supply 30 via the power cable 31 is converted into direct current by a rectifier 42 comprising a single phase bridge circuit, and the direct current reactor 43a and the smoothing capacitor 43b Is removed. The direct current from which the harmonic component has been removed is input to the direct current side terminals 45 a and 45 b of the next inverter 44. In the inverter 44, four parallel circuits 46 of a diode 46a and a switching element 46b are connected in a single-phase bridge to the DC side terminals 45a and 45b. The switching element 46 b of each parallel circuit 46 is energized and controlled by a PWM (pulse width modulation) signal 48 output from the control unit 47.

したがって、このインバータ44は入力された直流を交流に変換する。このインバータ42の交流側端子(出力端子)49a、49b間には、コイル50aとコンデンサ50bからなるフィルタ50を介して、給電線34(34a、34b)が接続されている。このフィルタ50はインバータ44から給電線34(34a、34b)へ出力される高周波信号Iの高調波成分を除去して設定された周波数fSの正弦波形とする。 Therefore, the inverter 44 converts the input direct current into alternating current. A feeding line 34 (34a, 34b) is connected between the AC side terminals (output terminals) 49a, 49b of the inverter 42 via a filter 50 including a coil 50a and a capacitor 50b. This filter 50 removes the harmonic component of the high-frequency signal I output from the inverter 44 to the power supply line 34 (34a, 34b) to obtain a sine waveform of the set frequency f S.

制御部47には、前記単相商用電源30から駆動電源が供給されており、制御盤23に設けられた設定器33にて、操作員が操作入力した開始/停止信号51、変調率信号52、変調周波数信号53が入力される。制御部47は、開始/停止信号51に応じて、インバータ44へ送出するPWM信号48をオン/オフ制御する。さらに、変調率信号52に応じてPWM信号48のパルス幅を変更することによって、インバータ44から出力される単相の高周波電流Iの振幅、すなわち電流値を制御する。また、変調周波数信号53に応じてPWM(パルス幅変調)信号48の出力周期を変更することによって、インバータ44から出力される単相の高周波電流Iの周波数fを制御する。すなわち、操作者は、制御盤23の接定器33で、高周波電源32から給電線34(34a、34b)へ出力される高周波電流Iの電流値と周波数fを任意の値に設定可能である。   The controller 47 is supplied with drive power from the single-phase commercial power supply 30, and a start / stop signal 51 and a modulation factor signal 52 input by the operator through the setting device 33 provided on the control panel 23. The modulation frequency signal 53 is input. The control unit 47 performs on / off control of the PWM signal 48 sent to the inverter 44 in accordance with the start / stop signal 51. Further, by changing the pulse width of the PWM signal 48 in accordance with the modulation factor signal 52, the amplitude, that is, the current value of the single-phase high-frequency current I output from the inverter 44 is controlled. Further, the frequency f of the single-phase high-frequency current I output from the inverter 44 is controlled by changing the output cycle of the PWM (pulse width modulation) signal 48 according to the modulation frequency signal 53. That is, the operator can set the current value and the frequency f of the high-frequency current I output from the high-frequency power source 32 to the power supply line 34 (34a, 34b) with the contactor 33 of the control panel 23 to arbitrary values. .

このように構成された第1実施形態のエレベータのかごへの非接触給電装置においては、高周波電源32から出力された高周波電流Iが流れる給電線34(34a、34b)は、かご27の側面に取付けられた、磁気コア36に磁気的に結合し、この磁気コア36の磁極36cに巻回された2次巻線7にて、高周波電流Iに対応した交流電圧が誘起され、この交流電圧は受電部38で直流に変換されて、直流の負荷39に供給される。   In the non-contact power feeding device to the elevator car according to the first embodiment configured as described above, the feed lines 34 (34a, 34b) through which the high-frequency current I output from the high-frequency power source 32 flows are formed on the side surface of the car 27. An AC voltage corresponding to the high-frequency current I is induced in the secondary winding 7 that is magnetically coupled to the attached magnetic core 36 and is wound around the magnetic pole 36 c of the magnetic core 36. It is converted into direct current by the power receiving unit 38 and supplied to the direct current load 39.

そして、非接触状態で磁気的に結合する高周波電流Iが流れる給電線34における導線40の半径Rは、高周波電源32から供給された50Hzから10kHzの範囲内の周波数を有する高周波電流の周波数fに対応する表皮深さδ以下に設定されている(R≦δ)ので、導線0の断面における電流が流れていない又は流れる電流が少ない部分の割合が大幅に減少するので、導線の実効断面積が大きくなり、実効抵抗が低下する。したがって、リッツ線以外の一般的な電力線を給電線とした電力のかごに対する給電が可能となるので、低い設備費用でもって、かごに対する非接触給電装置を実現ができる。   The radius R of the conducting wire 40 in the power supply line 34 through which the high-frequency current I that is magnetically coupled in a non-contact state flows is equal to the frequency f of the high-frequency current having a frequency in the range of 50 Hz to 10 kHz supplied from the high-frequency power source 32. Since the corresponding skin depth is set to be equal to or less than δ (R ≦ δ), the ratio of the portion where the current does not flow or the current flowing in the cross section of the conductor 0 is greatly reduced, so that the effective sectional area of the conductor is reduced. The effective resistance decreases. Therefore, since it is possible to supply power to a car using a general power line other than the litz wire as a power supply line, a non-contact power supply device for the car can be realized with low equipment costs.

(第2実施形態)
図5は本発明の第2実施形態に係わるエレベータのかごへの非接触給電装置が組込まれたエレベータシステムの要部を示す模式図である。図1に示す第1実施形態のエレベータのかごへの非接触給電装置と同一部分には同一符号を付して重複する部分の詳細説明を省略する。
(Second Embodiment)
FIG. 5 is a schematic view showing a main part of an elevator system in which a non-contact power feeding device for an elevator car according to a second embodiment of the present invention is incorporated. The same parts as those of the non-contact power feeding apparatus to the elevator car according to the first embodiment shown in FIG.

この第2実施形態のエレベータのかごへの非接触給電装置においては、かご27の側面27bに同一仕様の2個の磁気コア55、56が上下方向に互いに微少距離離間して取付けられている。そして、図6に示すように、給電線34a、34bはそれぞれ、2個の磁気コア55、56の各溝内を貫通する。各磁気コア55、56の中央の磁極55c、56cに2次巻線57、58が巻回されている。各2次巻線57、58の他端は、かご27の上面に設けられた受電部38の整流器54の入力端子に対して並列接続されている。その他の構成及び動作は図1の第1実施形態とほぼ同じである。   In the non-contact power feeding device for an elevator car according to the second embodiment, two magnetic cores 55 and 56 having the same specifications are attached to the side surface 27b of the car 27 at a slight distance from each other in the vertical direction. As shown in FIG. 6, the feed lines 34 a and 34 b penetrate through the grooves of the two magnetic cores 55 and 56, respectively. Secondary windings 57 and 58 are wound around the magnetic poles 55c and 56c at the center of the magnetic cores 55 and 56, respectively. The other ends of the secondary windings 57 and 58 are connected in parallel to the input terminal of the rectifier 54 of the power receiving unit 38 provided on the upper surface of the car 27. Other configurations and operations are substantially the same as those of the first embodiment shown in FIG.

このように構成された第2実施形態においては、各2次巻線57、58においてそれぞれ第1実施形態の2次巻線37に誘起された電圧が誘起される。したがって、受電部38から負荷39へ供給する直流電力を増加することが可能である。さらに、負荷39の容量に応じて、いずれか一方の2次巻線57、58のみを受電部38に接続することにより、負荷39に供給する直流電力の容量を調整できる。   In the second embodiment configured as described above, the voltage induced in the secondary winding 37 of the first embodiment is induced in each of the secondary windings 57 and 58. Therefore, it is possible to increase the DC power supplied from the power receiving unit 38 to the load 39. Furthermore, the capacity of the DC power supplied to the load 39 can be adjusted by connecting only one of the secondary windings 57 and 58 to the power receiving unit 38 according to the capacity of the load 39.

(第3実施形態)
図7は本発明の第3実施形態に係わるエレベータのかごへの非接触給電装置が組込まれたエレベータシステムの要部を示す模式図である。図1に示す第1実施形態のエレベータのかごへの非接触給電装置と同一部分には同一符号を付して重複する部分の詳細説明を省略する。
(Third embodiment)
FIG. 7 is a schematic view showing a main part of an elevator system in which a non-contact power feeding device to an elevator car according to a third embodiment of the present invention is incorporated. The same parts as those of the non-contact power feeding apparatus to the elevator car according to the first embodiment shown in FIG.

この第3実施形態のエレベータのかごへの非接触給電装置においては、高周波電源32から高周波電流Iが供給される給電線34は、昇降路21内におけるかごの移動経路における上端から下端までの範囲を2回周回するように折返されている。したがって、給電線34は、4本の給電線34a、34b、34c、34dを直列接続したものである。よって、図8に示すように、磁気コア36の各溝36a、36bにはそれぞれ2本の給電線(34a、34c)(34d、34e)が貫通する。   In the non-contact power feeding device to the elevator car according to the third embodiment, the power feed line 34 to which the high frequency current I is supplied from the high frequency power supply 32 is a range from the upper end to the lower end in the moving path of the car in the hoistway 21. It is folded back to go around twice. Therefore, the power supply line 34 is obtained by connecting four power supply lines 34a, 34b, 34c, and 34d in series. Therefore, as shown in FIG. 8, the two power supply lines (34a, 34c) (34d, 34e) penetrate the grooves 36a, 36b of the magnetic core 36, respectively.

したがって、磁気コア36内に生起される磁束は、給電線34a、34bの2本のみが通過に比較して、磁気コア36内に生起される磁束が大幅に増加するので、磁極36cに巻回された2次巻線37に誘起する交流電圧が上昇するので、受電部38から負荷39に供給する直流電力の容量を増加できる。   Therefore, since the magnetic flux generated in the magnetic core 36 is greatly increased compared to the case where only two of the feeder lines 34a and 34b are passed, the magnetic flux generated in the magnetic core 36 is wound around the magnetic pole 36c. Since the AC voltage induced in the secondary winding 37 is increased, the capacity of the DC power supplied from the power receiving unit 38 to the load 39 can be increased.

(第4実施形態)
図9は本発明の第4実施形態に係わるエレベータのかごへの非接触給電装置が組込まれたエレベータシステムの要部を示す模式図である。図5、図7に示す第2、第3実施形態のエレベータのかごへの非接触給電装置と同一部分には同一符号を付して重複する部分の詳細説明を省略する。
(Fourth embodiment)
FIG. 9 is a schematic view showing a main part of an elevator system in which a non-contact power feeding device to an elevator car according to a fourth embodiment of the present invention is incorporated. The same parts as those of the non-contact power feeding device to the elevator car of the second and third embodiments shown in FIGS. 5 and 7 are denoted by the same reference numerals, and detailed description of the overlapping parts is omitted.

この第4実施形態においては、図5に示すように2つの磁気コア55、59をかご27の側面27aを取付けると共に、図7に示すように給電線34を昇降路21内におけるかごの移動経路における上端から下端までの範囲を2回周回するように折返している。   In the fourth embodiment, two magnetic cores 55 and 59 are attached to the side surface 27a of the car 27 as shown in FIG. 5, and the feeding line 34 is moved along the hoistway 21 as shown in FIG. The range from the upper end to the lower end is turned around twice.

そして、図7に示すように、2個の磁気コア55、56の各溝内には、それぞれ2本の(給電線34a、34c)、(給電線34b、34c)が貫通しているので、磁気コア55、59に生起される磁束が大幅に増加するので、各磁気コア55、56の中央の磁極55c、56cに巻回されている2次巻線57、58に誘起される交流電圧が上昇する。この2つの2次巻線57、58はかご27の上面に設けられた受電部38の整流器54の入力端子に対して並列接続されている。   Then, as shown in FIG. 7, two (feed lines 34a, 34c) and (feed lines 34b, 34c) pass through the grooves of the two magnetic cores 55, 56, respectively. Since the magnetic flux generated in the magnetic cores 55 and 59 is greatly increased, the AC voltage induced in the secondary windings 57 and 58 wound around the magnetic poles 55c and 56c at the center of the magnetic cores 55 and 56 is increased. To rise. The two secondary windings 57 and 58 are connected in parallel to the input terminal of the rectifier 54 of the power receiving unit 38 provided on the upper surface of the car 27.

したがって、受電部38から負荷39に供給する直流電力の容量をさらに増加できる。   Therefore, the capacity of the DC power supplied from the power receiving unit 38 to the load 39 can be further increased.

(第5実施形態)
図11は本発明の第5実施形態に係わるエレベータのかごへの非接触給電装置が組込まれたエレベータシステムの要部を示す模式図である。図1に示す第1実施形態のエレベータのかごへの非接触給電装置と同一部分には同一符号を付して重複する部分の詳細説明を省略する。
(Fifth embodiment)
FIG. 11 is a schematic view showing a main part of an elevator system in which a non-contact power feeding device to an elevator car according to a fifth embodiment of the present invention is incorporated. The same parts as those of the non-contact power feeding apparatus to the elevator car according to the first embodiment shown in FIG.

この第5実施形態のエレベータのかごへの非接触給電装置においては、三相商用電源60から三相交流が電源ケーブル61を介して高周波電源62及び制御盤63に供給される。高周波電源62は図12に示すように構成されている。図3と同一部分は同一符号が付されている。   In the non-contact power feeding apparatus for an elevator car according to the fifth embodiment, a three-phase alternating current is supplied from a three-phase commercial power source 60 to a high-frequency power source 62 and a control panel 63 via a power cable 61. The high frequency power supply 62 is configured as shown in FIG. The same parts as those in FIG. 3 are denoted by the same reference numerals.

この高周波電源62においては、電源ケーブル61を介して供給された50Hz、200vの三相交流は、三相ブリッジからなる整流器64で直流に変換され、直流リアクトル43aと平滑コンデンサ43bとで高調波成分が除去され、インバータ44で単相の交流に変換される。そして、制御部47は三相商用電源60から駆動電源が供給され、制御盤63の設定器33の操作者が操作入力した開始/停止信号51、変調率信号52、変調周波数信号53に基づいて給電線34(34a、34b)に供給される。したがって、操作者は高周波電流Iの振幅、周波数を任意に設定可能である。その他の構成は第1の実施形態と同じである。よって、第1の実施形態と同様の作用効果を奏することができる。このように、三相電源で駆動されるエレベータにおいても、かご27に非接触で電力を供給できる。   In the high-frequency power source 62, the 50 Hz, 200 v three-phase alternating current supplied via the power cable 61 is converted into direct current by a rectifier 64 comprising a three-phase bridge. Is removed and converted to single-phase alternating current by the inverter 44. The controller 47 is supplied with driving power from the three-phase commercial power source 60 and is based on the start / stop signal 51, the modulation factor signal 52, and the modulation frequency signal 53 input by the operator of the setting device 33 of the control panel 63. It is supplied to the power supply line 34 (34a, 34b). Therefore, the operator can arbitrarily set the amplitude and frequency of the high-frequency current I. Other configurations are the same as those of the first embodiment. Therefore, the same operational effects as those of the first embodiment can be achieved. Thus, even in an elevator driven by a three-phase power source, electric power can be supplied to the car 27 in a non-contact manner.

(第6実施形態)
図13は本発明の第6実施形態に係わるエレベータのかごへの非接触給電装置が組込まれたエレベータシステムの要部を示す模式図である。図5、図11に示す第2、第5実施形態のエレベータのかごへの非接触給電装置と同一部分には同一符号を付して重複する部分の詳細説明を省略する。
(Sixth embodiment)
FIG. 13 is a schematic view showing a main part of an elevator system in which a non-contact power feeding device for an elevator car according to a sixth embodiment of the present invention is incorporated. The same parts as those of the non-contact power feeding device to the elevator car of the second and fifth embodiments shown in FIGS. 5 and 11 are denoted by the same reference numerals, and detailed description of the overlapping parts is omitted.

この第6実施形態のエレベータのかごへの非接触給電装置においては、前述した三相商用電源60から電源ケーブル61を介して高周波電源62及び制御盤63に供給される。高周波電源62は図12に示すように構成されている。また、この第6実施形態においては、図5に示す第2実施形態と同様に、かご27の側面27bに同一仕様の2個の磁気コア55、56が上下方向に互いに微少間隔を開けて取付けられている。したがって、第2実施形態と同様に、受電部38から負荷39へ供給する直流電力を増加することが可能である。   In the contactless power supply device for an elevator car according to the sixth embodiment, the three-phase commercial power supply 60 is supplied to the high frequency power supply 62 and the control panel 63 via the power cable 61. The high frequency power supply 62 is configured as shown in FIG. Further, in the sixth embodiment, similarly to the second embodiment shown in FIG. 5, two magnetic cores 55 and 56 having the same specifications are attached to the side surface 27b of the car 27 with a slight gap therebetween in the vertical direction. It has been. Therefore, as in the second embodiment, the DC power supplied from the power receiving unit 38 to the load 39 can be increased.

(第7実施形態)
図14は本発明の第7実施形態に係わるエレベータのかごへの非接触給電装置が組込まれたエレベータシステムの要部を示す模式図である。図7、図11に示す第3、第5実施形態のエレベータのかごへの非接触給電装置と同一部分には同一符号を付して重複する部分の詳細説明を省略する。
(Seventh embodiment)
FIG. 14 is a schematic view showing a main part of an elevator system in which a non-contact power feeding device to an elevator car according to a seventh embodiment of the present invention is incorporated. The same parts as those of the non-contact power feeding apparatus for elevator cars according to the third and fifth embodiments shown in FIGS. 7 and 11 are denoted by the same reference numerals, and detailed description of the overlapping parts is omitted.

この第7実施形態のエレベータのかごへの非接触給電装置においては、前述した三相商用電源60から電源ケーブル61を介して高周波電源62及び制御盤63に供給される。高周波電源62は図12に示すように構成されている。また、この第7実施形態においては、図7に示す第3実施形態と同様に、高周波電源32から高周波電流Iが供給される給電線34を4本の給電線34a、34b、34c、34dを直列接続したものである。よって、磁極36cに巻回された2次巻線37に誘起する交流電圧が上昇するので、受電部38から負荷39に供給する直流電力の容量を増加できる。   In the non-contact power feeding device to the elevator car according to the seventh embodiment, the three-phase commercial power source 60 is supplied to the high frequency power source 62 and the control panel 63 via the power cable 61. The high frequency power supply 62 is configured as shown in FIG. Further, in the seventh embodiment, similarly to the third embodiment shown in FIG. 7, the power supply line 34 to which the high frequency current I is supplied from the high frequency power supply 32 is replaced with four power supply lines 34a, 34b, 34c, and 34d. They are connected in series. Therefore, since the AC voltage induced in the secondary winding 37 wound around the magnetic pole 36c increases, the capacity of the DC power supplied from the power receiving unit 38 to the load 39 can be increased.

(第8実施形態)
図15は本発明の第8実施形態に係わるエレベータのかごへの非接触給電装置が組込まれたエレベータシステムの要部を示す模式図である。図9、図11に示す第4、第5実施形態のエレベータのかごへの非接触給電装置と同一部分には同一符号を付して重複する部分の詳細説明を省略する。
(Eighth embodiment)
FIG. 15 is a schematic view showing a main part of an elevator system in which a non-contact power feeding device to an elevator car according to an eighth embodiment of the present invention is incorporated. The same parts as those of the non-contact power feeding apparatus for elevator cars according to the fourth and fifth embodiments shown in FIGS. 9 and 11 are denoted by the same reference numerals, and detailed description of the overlapping parts is omitted.

この第8実施形態のエレベータのかごへの非接触給電装置においては、前述した三相商用電源60から電源ケーブル61を介して高周波電源62及び制御盤63に供給される。高周波電源62は図12に示すように構成されている。また、この第8実施形態においては、図9に示す第4実施形態と同様に、2つの磁気コア55、59をかご27の側面27aを取付けると共に、給電線34を昇降路21内におけるかごの移動経路における上端から下端までの範囲を2回周回するように折返している。   In the non-contact power feeding apparatus for an elevator car according to the eighth embodiment, the three-phase commercial power source 60 is supplied to the high frequency power source 62 and the control panel 63 via the power cable 61. The high frequency power supply 62 is configured as shown in FIG. In the eighth embodiment, similarly to the fourth embodiment shown in FIG. 9, the two magnetic cores 55 and 59 are attached to the side surface 27 a of the car 27, and the feeder line 34 is connected to the car in the hoistway 21. It wraps around the range from the upper end to the lower end in the movement path so as to go around twice.

したがって、したがって、受電部38から負荷39に供給する直流電力の容量をさらに増加できる。   Therefore, the capacity of the DC power supplied from the power receiving unit 38 to the load 39 can be further increased.

なお、本発明は上述した実施形態に限定されるものではない。各実施形態においては、かご27における負荷39は直流負荷を採用したが、交流負荷を採用することも可能である。この場合は、受電部38は、2次巻線に誘起された高周波の交流電圧を例えば50Hzの低周波の交流電力に周波数変換して負荷に供給する。   In addition, this invention is not limited to embodiment mentioned above. In each embodiment, the load 39 in the car 27 employs a DC load, but an AC load can also be employed. In this case, the power receiving unit 38 converts the high-frequency AC voltage induced in the secondary winding into a low-frequency AC power of, for example, 50 Hz, and supplies it to the load.

さらに、第2、第4、第6、第8実施形態において、各磁気コア55、56の中央の磁極55c、56cに巻回されている2次巻線57、58他端を、かご27の上面に設けられた受電部38の整流器54の入力端子に対して並列接続したが、受電部38の整流器54の入力端子に対して直列接続することも可能である。   Furthermore, in the second, fourth, sixth, and eighth embodiments, the other ends of the secondary windings 57 and 58 wound around the magnetic poles 55c and 56c at the center of the magnetic cores 55 and 56 are connected to the cage 27. Although connected in parallel to the input terminal of the rectifier 54 of the power receiving unit 38 provided on the upper surface, it is also possible to connect in series to the input terminal of the rectifier 54 of the power receiving unit 38.

本発明の第1実施形態に係わるエレベータのかごへの非接触給電装置が組込まれたエレベータシステムの要部を示す模式図The schematic diagram which shows the principal part of the elevator system with which the non-contact electric power feeder to the elevator car concerning 1st Embodiment of this invention was integrated. 同実施形態のかごへの非接触給電装置の磁気コア、給電線、2次巻線を示す図The figure which shows the magnetic core of the non-contact electric power feeder to the cage | basket | car of the same embodiment, a feeder, and a secondary winding 同実施形態のかごへの非接触給電装置に組込まれた高周波電源の概略構成を示す回路図The circuit diagram which shows schematic structure of the high frequency power supply integrated in the non-contact electric power feeder to the cage | basket | car of the embodiment 同実施形態のかごへの非接触給電装置に組込まれた受電部の概略構成を示す回路図The circuit diagram which shows schematic structure of the power receiving part integrated in the non-contact electric power feeder to the cage | basket | car of the embodiment 本発明の第2実施形態に係わるエレベータのかごへの非接触給電装置が組込まれたエレベータシステムの要部を示す模式図The schematic diagram which shows the principal part of the elevator system in which the non-contact electric power feeder to the elevator car concerning 2nd Embodiment of this invention was integrated. 同実施形態のかごへの非接触給電装置の磁気コア、給電線、2次巻線を示す図The figure which shows the magnetic core of the non-contact electric power feeder to the cage | basket | car of the same embodiment, a feeder, and a secondary winding 本発明の第3実施形態に係わるエレベータのかごへの非接触給電装置が組込まれたエレベータシステムの要部を示す模式図The schematic diagram which shows the principal part of the elevator system in which the non-contact electric power feeder to the elevator car concerning 3rd Embodiment of this invention was integrated. 同実施形態のかごへの非接触給電装置の磁気コア、給電線、2次巻線を示す図The figure which shows the magnetic core of the non-contact electric power feeder to the cage | basket | car of the same embodiment, a feeder, and a secondary winding 本発明の第4実施形態に係わるエレベータのかごへの非接触給電装置が組込まれたエレベータシステムの要部を示す模式図The schematic diagram which shows the principal part of the elevator system in which the non-contact electric power feeder to the elevator car concerning 4th Embodiment of this invention was integrated. 同実施形態のかごへの非接触給電装置の磁気コア、給電線、2次巻線を示す図The figure which shows the magnetic core of the non-contact electric power feeder to the cage | basket | car of the same embodiment, a feeder, and a secondary winding 本発明の第5実施形態に係わるエレベータのかごへの非接触給電装置が組込まれたエレベータシステムの要部を示す模式図The schematic diagram which shows the principal part of the elevator system in which the non-contact electric power feeder to the elevator car concerning 5th Embodiment of this invention was integrated. 同実施形態のかごへの非接触給電装置に組込まれた高周波電源の概略構成を示す回路図The circuit diagram which shows schematic structure of the high frequency power supply integrated in the non-contact electric power feeder to the cage | basket | car of the embodiment 本発明の第6実施形態に係わるエレベータのかごへの非接触給電装置が組込まれたエレベータシステムの要部を示す模式図The schematic diagram which shows the principal part of the elevator system in which the non-contact electric power feeder to the elevator car concerning 6th Embodiment of this invention was integrated. 本発明の第7実施形態に係わるエレベータのかごへの非接触給電装置が組込まれたエレベータシステムの要部を示す模式図The schematic diagram which shows the principal part of the elevator system in which the non-contact electric power feeder to the elevator car concerning 7th Embodiment of this invention was integrated. 本発明の第8実施形態に係わるエレベータのかごへの非接触給電装置が組込まれたエレベータシステムの要部を示す模式図The schematic diagram which shows the principal part of the elevator system in which the non-contact electric power feeder to the elevator car concerning 8th Embodiment of this invention was integrated. 電磁誘導原理を示す図Diagram showing the principle of electromagnetic induction 一般的な非接触給電装置を示す図Diagram showing a typical non-contact power feeding device 従来の非接触給電装置を示す図The figure which shows the conventional non-contact electric power feeder 周波数と表皮深さの関係を示す図Diagram showing the relationship between frequency and skin depth

符号の説明Explanation of symbols

21…昇降路、22…機械室、23,63…制御盤、27…かご、30…単相商用電源、31,61…電源ケーブル、32,62…高周波電源、34,34a,34b,34c,34d…給電線、35…ガイドレール、36,55,56…磁気コア、37,57,58…2次巻線、38…受電部、39…負荷、40…導線、41…絶縁被覆層、42,54,62…整流器、44…インバータ、47…制御部、60…三相商用電源   DESCRIPTION OF SYMBOLS 21 ... Hoistway, 22 ... Machine room, 23, 63 ... Control panel, 27 ... Car, 30 ... Single phase commercial power supply 31, 61 ... Power cable, 32, 62 ... High frequency power supply, 34, 34a, 34b, 34c, 34d ... feed wire, 35 ... guide rail, 36,55,56 ... magnetic core, 37,57,58 ... secondary winding, 38 ... power receiving unit, 39 ... load, 40 ... conductor, 41 ... insulation coating layer, 42 , 54, 62 ... rectifier, 44 ... inverter, 47 ... control unit, 60 ... three-phase commercial power supply

Claims (7)

交流商用電源から供給される交流電力から、50Hzから10kHzの範囲内の周波数を有する高周波電流を生成する高周波電源と、
エレベータの昇降路内におけるかごの移動経路に沿って配線され、前記高周波電源から供給された高周波電流が通流する給電線と、
前記昇降路内を移動するかごに取付けられ、前記給電線に対して非接触で磁気的に結合する磁気コアと、
この磁気コアに巻回され、前記給電線に流れる高周波電流に対応した交流電圧が誘起される2次巻線と、
この2次巻線に誘起された交流電圧を前記かごに設けられた負荷に対応した電力形態に変換する受電部とを備え、
前記給電線は、導電材料で形成された円形断面形状を有した1本の導線とこの導線の外周面を覆う絶縁被覆層とで形成され、かつ、前記導線の半径は前記高周波電源から供給される高周波電流の周波数に対応する表皮深さ以下である
ことを特徴とするエレベータのかごへの非接触給電装置。
A high frequency power source for generating a high frequency current having a frequency within a range of 50 Hz to 10 kHz from AC power supplied from an AC commercial power source;
A feeder line that is routed along a moving path of the car in the elevator hoistway, and through which the high-frequency current supplied from the high-frequency power source flows;
A magnetic core attached to a car moving in the hoistway and magnetically coupled to the feeder line in a non-contact manner;
A secondary winding wound around the magnetic core and inducing an AC voltage corresponding to a high-frequency current flowing through the feeder line;
A power receiving unit that converts the AC voltage induced in the secondary winding into a power form corresponding to a load provided in the car;
The power supply line is formed of one conductive wire having a circular cross-sectional shape made of a conductive material and an insulating coating layer covering the outer peripheral surface of the conductive wire, and the radius of the conductive wire is supplied from the high-frequency power source. A non-contact power feeding device to an elevator car characterized by being below the skin depth corresponding to the frequency of the high frequency current.
交流商用電源から供給される交流電力から、50Hzから10kHzの範囲内の周波数を有する高周波電流を生成する高周波電源と、
エレベータの昇降路内におけるかごの移動経路に沿って配線され、前記高周波電源から供給された高周波電流が通流する給電線と、
前記昇降路内を移動するかごに取付けられ、前記給電線に対して非接触で磁気的に結合する複数の磁気コアと、
この各磁気コアに巻回され、前記給電線に流れる高周波電流に対応した交流電圧が誘起される複数の2次巻線と、
この複数の2次巻線に誘起された交流電圧を前記かごに設けられた負荷に対応した電力形態に変換する受電部とを備え、
前記給電線は、導電材料で形成された円形断面形状を有した1本の導線とこの導線の外周面を覆う絶縁被覆層とで形成され、かつ、前記導線の半径は前記高周波電源から供給される高周波電流の周波数に対応する表皮深さ以下である
ことを特徴とするエレベータのかごへの非接触給電装置。
A high frequency power source for generating a high frequency current having a frequency within a range of 50 Hz to 10 kHz from AC power supplied from an AC commercial power source;
A feeder line that is routed along a moving path of the car in the elevator hoistway, and through which the high-frequency current supplied from the high-frequency power source flows;
A plurality of magnetic cores attached to a car moving in the hoistway and magnetically coupled to the feeder line in a non-contact manner;
A plurality of secondary windings that are wound around each of the magnetic cores, and in which an alternating voltage corresponding to a high-frequency current flowing through the feeder line is induced;
A power receiving unit for converting the AC voltage induced in the plurality of secondary windings into a power form corresponding to a load provided in the car;
The power supply line is formed of one conductive wire having a circular cross-sectional shape made of a conductive material and an insulating coating layer covering the outer peripheral surface of the conductive wire, and the radius of the conductive wire is supplied from the high-frequency power source. A non-contact power feeding device to an elevator car characterized by being below the skin depth corresponding to the frequency of the high frequency current.
前記給電線は、前記昇降路内における前記かごの移動経路を複数回周回するように前記移動経路に沿って配線されていることを特徴とする請求項1または2記載のエレベータのかごへの非接触給電装置。   3. The elevator car according to claim 1, wherein the feeder line is wired along the movement path so as to go around the movement path of the car in the hoistway a plurality of times. Contact power supply device. 前記給電線は、前記昇降路内におけるかごのガイドレールに沿って配線されていることを特徴とする請求項1または2記載のエレベータのかごへの非接触給電装置。   3. The non-contact power feeding apparatus for an elevator car according to claim 1, wherein the power feeding line is wired along a guide rail of the car in the hoistway. 前記受電部は、2次巻線に誘起された交流電圧を直流電力に変換することを特徴とする請求項1または2記載のエレベータのかごへの非接触給電装置。   The non-contact power feeding device for an elevator car according to claim 1, wherein the power receiving unit converts an AC voltage induced in the secondary winding into a DC power. 前記交流商用電源は単相商用電源であることを特徴とする請求項1または2記載のエレベータのかごへの非接触給電装置。   The non-contact power feeding device for an elevator car according to claim 1 or 2, wherein the AC commercial power source is a single-phase commercial power source. 前記交流商用電源は三相商用電源であることを特徴とする請求項1または2記載のエレベータのかごへの非接触給電装置。   The non-contact power feeding device for an elevator car according to claim 1 or 2, wherein the AC commercial power source is a three-phase commercial power source.
JP2006247116A 2006-09-12 2006-09-12 Contactless power feeding device to elevator car Active JP5089113B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006247116A JP5089113B2 (en) 2006-09-12 2006-09-12 Contactless power feeding device to elevator car
CNA2007101494691A CN101145702A (en) 2006-09-12 2007-09-12 Non-contact feeding device for elevator car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006247116A JP5089113B2 (en) 2006-09-12 2006-09-12 Contactless power feeding device to elevator car

Publications (2)

Publication Number Publication Date
JP2008068944A JP2008068944A (en) 2008-03-27
JP5089113B2 true JP5089113B2 (en) 2012-12-05

Family

ID=39208050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006247116A Active JP5089113B2 (en) 2006-09-12 2006-09-12 Contactless power feeding device to elevator car

Country Status (2)

Country Link
JP (1) JP5089113B2 (en)
CN (1) CN101145702A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010047210A (en) * 2008-08-25 2010-03-04 Toshiba Corp Contactless power feeder and transporting apparatus
KR101211517B1 (en) 2009-02-06 2013-01-09 주식회사 리프텍 Lift Apparatus For Construction Of Power Supply Apparatus
CN101902081B (en) * 2010-03-16 2013-10-30 苏州康开电气有限公司 Floor non-contact power supply device of lift car
CN101944781A (en) * 2010-10-09 2011-01-12 南京航空航天大学 Non-contact power supply closed type power collector
TWI397500B (en) * 2010-12-31 2013-06-01 Golden Friends Gfc Ltd Corp Elevator energy saving device
CN105398918B (en) * 2015-11-30 2018-12-04 苏州中远电梯有限公司 A kind of device to charge in elevator moving process to electric car
JP2019011141A (en) * 2017-06-29 2019-01-24 株式会社日立製作所 Non-contact power supply system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2929897B2 (en) * 1993-06-14 1999-08-03 株式会社ダイフク Automatic warehouse
JPH08175232A (en) * 1994-12-22 1996-07-09 Toyota Autom Loom Works Ltd Noncontact power feeding system
JP4873786B2 (en) * 2001-01-09 2012-02-08 株式会社熊谷組 Pulse current supply cable
JP2002338170A (en) * 2001-05-17 2002-11-27 Hitachi Building Systems Co Ltd Power supply device for car of elevator
JP3900109B2 (en) * 2003-04-28 2007-04-04 株式会社ダイフク Induction line cover connection structure

Also Published As

Publication number Publication date
CN101145702A (en) 2008-03-19
JP2008068944A (en) 2008-03-27

Similar Documents

Publication Publication Date Title
JP5089113B2 (en) Contactless power feeding device to elevator car
JP2009044918A (en) Non-contact power feeder
CN105228936B (en) Wireless power supply for self-propelled elevator
JP4292184B2 (en) Inductively coupled power useful for wireless elevator hall fixtures
JP6179375B2 (en) Coil unit
CN108946404B (en) Wireless power transmission device for elevator car and elevator
JP2007076787A (en) Non-contact power feeding device of elevator
JP2009040589A (en) Elevator system
JP6878252B2 (en) Elevator contactless charging system
JP4993713B2 (en) Power supply device for elevator
JP5471043B2 (en) Elevator control device
JP2008154342A (en) Non-contact power feeding device
EP1160801B1 (en) High-frequency current multiconductor cable and power feeding equipment for one or more movable bodies using said cable
JP3142369B2 (en) Elevator power supply
JP4999443B2 (en) Non-contact power feeding device
JP3303686B2 (en) Non-contact power supply system for mobile object and pickup coil unit
CN105321656A (en) Electric reactor and power conversion device using the same
JPH06135645A (en) Electric power transmission system for elevator cage
EP0599331A1 (en) Elevator driven by linear motor
JPH0956088A (en) Feeder device for elevator
JP2012521941A (en) Elevator regenerative drive device with air-core inductor
CN107697777A (en) Lift facility
CN104891280A (en) Elevator system
CN111668000B (en) Reinforced insulation transformer and design method thereof
CN109153528B (en) Non-contact power supply device and elevator using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5089113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350