JP2010047210A - Contactless power feeder and transporting apparatus - Google Patents

Contactless power feeder and transporting apparatus Download PDF

Info

Publication number
JP2010047210A
JP2010047210A JP2008215248A JP2008215248A JP2010047210A JP 2010047210 A JP2010047210 A JP 2010047210A JP 2008215248 A JP2008215248 A JP 2008215248A JP 2008215248 A JP2008215248 A JP 2008215248A JP 2010047210 A JP2010047210 A JP 2010047210A
Authority
JP
Japan
Prior art keywords
conductive wire
power feeding
feeding device
power supply
supply line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008215248A
Other languages
Japanese (ja)
Inventor
Tetsuya Ito
哲也 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008215248A priority Critical patent/JP2010047210A/en
Publication of JP2010047210A publication Critical patent/JP2010047210A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a contactless power feeder which can reduce a loss due to a resistance of a feeder cable even if a high frequency alternating-current is fed so that the feeder is downsized. <P>SOLUTION: The feeder cable 10 is constituted of: circular conducting cables 31 having a hollow cross section; an insulating core 32 provided in the hollow portion of the conducting cables 31 and having a circular cross section; and an insulating coating 33 provided so as to cover the surfaces of the conducting cables 31. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固定部から可動部に非接触で電力伝送を行う非接触給電装置およびこの非接触給電装置を備えた搬送装置に関する。   The present invention relates to a non-contact power feeding device that performs non-contact power transmission from a fixed portion to a movable portion, and a transport device including the non-contact power feeding device.

特許文献1には、半導体製造工場などの発塵防止が要求される環境で使用される搬送装置の一例が開示されている。この搬送装置は、工程内や工程間にわたって形成された搬送軌道に沿って、リニアモータを駆動源とする搬送台車を走行および停止させることにより荷物を搬送する。リニアモータを構成する駆動コイルは搬送台車側に設けられており、この駆動コイルを駆動するための電力を固定部である搬送軌道側から可動部である搬送台車側に伝送する必要がある。上記したとおり、発塵防止の環境では、塵やごみを生じさせる接触式の例えばブラシなどの摺動接点を用いる電力伝送を行うことはできない。このため、上記搬送装置では、搬送軌道側に設けられ交流電源に接続された給電線と、搬送台車側に設けられた受電ユニット(巻線)とから構成されるトランスを用いて電力伝送が行われる。これにより、固定部から可動部に非接触で電力伝送を行うことを可能にしている。
特開2004−328830号公報
Patent Document 1 discloses an example of a transfer device used in an environment where dust generation prevention is required, such as a semiconductor manufacturing factory. This conveyance device conveys a package by running and stopping a conveyance carriage that uses a linear motor as a drive source along a conveyance track formed in and between processes. The drive coil that constitutes the linear motor is provided on the conveyance carriage side, and it is necessary to transmit the electric power for driving the drive coil from the conveyance track side that is the fixed part to the conveyance carriage side that is the movable part. As described above, in a dust-preventing environment, power transmission using a contact-type sliding contact such as a brush that generates dust or dust cannot be performed. For this reason, in the said conveying apparatus, electric power transmission is performed using the trans | transformer comprised from the electric power feeding line provided in the conveyance track | orbit side and connected to AC power supply, and the power receiving unit (winding) provided in the conveyance trolley side. Is called. Thereby, it is possible to perform power transmission from the fixed portion to the movable portion in a non-contact manner.
JP 2004-328830 A

上記構成の搬送装置において、搬送台車を搬送軌道の全域にわたって駆動させるためには、搬送軌道に設けられる給電線に常時交流電流を流しておく必要がある。このため、給電線の抵抗分による電力の損失が常に生じている。一方、搬送装置の小形化を図るため、上記給電線に流す交流電流の周波数を高めてトランスを小さく構成することが行われている。しかし、交流電流は、その周波数を高くすると表皮効果や近接効果により給電線の表面付近に集中して流れる。このため、給電線の実効的な断面積が小さくなる、つまり、給電線の見かけ上の抵抗分が増加する結果となり、上記した常時の電力損失がさらに増大してしまう。   In the transport apparatus configured as described above, in order to drive the transport carriage over the entire area of the transport track, it is necessary to constantly supply an alternating current to a power supply line provided on the transport track. For this reason, a power loss due to the resistance of the feeder line always occurs. On the other hand, in order to reduce the size of the transport device, the transformer is made smaller by increasing the frequency of the alternating current flowing through the feeder line. However, when the frequency is increased, the alternating current flows in the vicinity of the surface of the feeder line due to the skin effect and proximity effect. For this reason, the effective cross-sectional area of the feeder line is reduced, that is, the apparent resistance of the feeder line is increased, and the above-described normal power loss is further increased.

本発明は上記事情に鑑みてなされたものであり、その目的は、装置の小形化を図るために高い周波数の交流給電を行う場合でも、給電線の抵抗による損失を低減できる非接触給電装置およびこの非接触給電装置を備えた搬送装置を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a non-contact power supply device that can reduce loss due to resistance of a power supply line even when performing high-frequency AC power supply to reduce the size of the device. It is providing the conveying apparatus provided with this non-contact electric power feeder.

上記目的を達成するため、請求項1記載の非接触給電装置は、所定の軌道を形成するように設けられた固定部と、前記固定部に沿って移動可能に設けられた可動部と、前記可動部を移動させるための交流電力を前記固定部から前記可動部に伝送する電力伝送手段とを備え、前記電力伝送手段は、前記固定部に設けられた給電線および前記可動部に設けられた巻線を有し、これら給電線と巻線との間における電磁誘導により非接触で電力伝送を行い、前記給電線は、中空形状の導電線であることを特徴とする。   In order to achieve the above object, a non-contact power feeding device according to claim 1, wherein a fixed portion provided so as to form a predetermined track, a movable portion provided movably along the fixed portion, Power transmission means for transmitting AC power for moving the movable part from the fixed part to the movable part, and the power transmission means is provided in the feeder and the movable part provided in the fixed part It has windings, and electric power transmission is performed in a non-contact manner by electromagnetic induction between these feeding lines and the windings, and the feeding lines are hollow conductive wires.

また、請求項7記載の搬送装置は、請求項1ないし6のいずれかに記載の非接触給電装置と、搬送路と、搬送台車とを備えた搬送装置であって、前記非接触給電装置の固定部は、前記搬送路側に設けられ、前記非接触給電装置の可動部は、前記搬送台車側に設けられ、前記交流電力により前記搬送台車が駆動されることを特徴とする。   According to a seventh aspect of the present invention, there is provided a transport apparatus including the non-contact power supply apparatus according to any one of the first to sixth aspects, a transport path, and a transport carriage. The fixed part is provided on the conveyance path side, the movable part of the non-contact power feeding device is provided on the conveyance carriage side, and the conveyance carriage is driven by the AC power.

本発明によれば、給電線として中空形状の導電線を用いたので、装置の小形化を図るために高い周波数の交流給電を行う場合でも、表皮効果や近接効果による給電線の見かけ上の抵抗分の増加を抑制できる。これにより、給電線に交流電流を流すことで生じる電力の損失を低減することができる。   According to the present invention, since a hollow conductive wire is used as the feeder line, even when high-frequency AC feeding is performed in order to reduce the size of the device, the apparent resistance of the feeder line due to the skin effect or proximity effect An increase in minutes can be suppressed. Thereby, the loss of the electric power which arises by sending an alternating current through a feeder can be reduced.

(第1の実施形態)
以下、本発明の第1の実施形態について、図1〜図4を参照しながら説明する。
図2は、例えば半導体製造工場の工程内や工程間において、半導体ウエハなどの被搬送物を搬送する搬送装置の概略構成を示している。なお、図2では、一部の構成を断面で示している。図2に示す搬送装置1は、搬送方法としてOHT(Over head Hoist Transport)方式を採用し、走行方式としてリニア駆動方式を採用している。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
FIG. 2 shows a schematic configuration of a transfer apparatus that transfers a transferred object such as a semiconductor wafer in, for example, a process of a semiconductor manufacturing factory. In FIG. 2, a part of the configuration is shown in cross section. The transport apparatus 1 shown in FIG. 2 employs an OHT (Overhead Hoist Transport) system as a transport method and a linear drive system as a travel system.

搬送装置1(非接触給電装置に相当)は、天井面に固設されたレール機構2(搬送路および固定部に相当)と、レール機構2に沿って走行(移動)する搬送台車3(可動部に相当)とを備えている。レール機構2は、直線軌道や曲線軌道、分岐軌道等を形成する各種のモジュールの組み合わせからなっており、これら各種のモジュールを組み合わせることによって、工場内の各製造装置等の上方や側方を通過する搬送軌道(軌道に相当)を形成している。   A transport device 1 (corresponding to a non-contact power feeding device) includes a rail mechanism 2 (corresponding to a transport path and a fixed portion) fixed on a ceiling surface, and a transport cart 3 (movable) that travels (moves) along the rail mechanism 2. Equivalent). The rail mechanism 2 is composed of a combination of various modules that form a straight track, a curved track, a branch track, and the like. By combining these various modules, the rail mechanism 2 passes above and to the side of each manufacturing apparatus in the factory. A transport track (corresponding to a track) is formed.

レール機構2の各モジュールは、中空形状のレール枠体4と、レール枠体4を天井面に取り付ける固定具5とを備えている。レール枠体4は、鉛直方向に配置される左側面壁4aおよび右側面壁4bと、これら両側面壁4a、4bの上端部同士を連結した上面壁4cとを備えている。上面壁4cの下面中央部には、永久磁石6が設けられている。左側面壁4aと右側面壁4bとは、左右対称に形成されている。各側面壁4a、4bの下端位置には、下面部4d、4dが形成されている。下面部4d、4dは、内側方向に向けて形成されている。下面部4d、4dの長さは、これら同士が対向する部分に、搬送台車3の支持部材7(後述する)が通過可能な最小限の隙間を出現させる程度に設定されている。   Each module of the rail mechanism 2 includes a hollow rail frame body 4 and a fixture 5 for attaching the rail frame body 4 to the ceiling surface. The rail frame 4 includes a left side wall 4a and a right side wall 4b that are arranged in the vertical direction, and an upper surface wall 4c that connects the upper ends of both side walls 4a and 4b. A permanent magnet 6 is provided at the center of the lower surface of the upper wall 4c. The left side wall 4a and the right side wall 4b are formed symmetrically. Lower surface portions 4d and 4d are formed at the lower end positions of the side walls 4a and 4b. The lower surface portions 4d and 4d are formed in the inner direction. The lengths of the lower surface portions 4d and 4d are set to such an extent that a minimum gap through which a support member 7 (described later) of the transport carriage 3 can pass appears in a portion where the lower surface portions 4d and 4d face each other.

各側面壁4a、4bの中間位置には、ガイド部4e、4eが形成されている。ガイド部4eは、上面壁4cに対して平行に配置され、その先端部は下方に折り曲げられている。ガイド部4eは、搬送台車3のガイドローラ8(後述する)に係合可能に配置されている。ガイド部4eは、搬送経路が二方向に分岐されている場合、ガイドローラ8の係合により搬送台車3をいずれかの分岐方向に進行させるようになっている。   Guide portions 4e and 4e are formed at intermediate positions of the side walls 4a and 4b. The guide portion 4e is disposed in parallel to the upper surface wall 4c, and the tip portion thereof is bent downward. The guide portion 4e is disposed so as to be engageable with a guide roller 8 (described later) of the transport carriage 3. When the conveyance path is branched in two directions, the guide portion 4e is configured to advance the conveyance carriage 3 in any one of the branch directions by the engagement of the guide roller 8.

各ガイド部4eと上面壁4cとの間には、絶縁材料で構成された支持梁9、9が設けられている。各支持梁9は断面がコ字状をなしており、その各先端部には、給電線10がそれぞれ設けられている。支持梁9は、給電線10を搬送軌道の全域にわたって一定の高さ位置に保持するように、搬送軌道方向に所定の間隔で配置されている。給電線10は、図示しない給電装置に接続されており、給電装置から与えられる例えば9kHzの高周波電流が常時流れるようになっている。   Between each guide part 4e and the upper surface wall 4c, the support beams 9 and 9 comprised with the insulating material are provided. Each support beam 9 has a U-shaped cross-section, and a power supply line 10 is provided at each tip. The support beams 9 are arranged at predetermined intervals in the transport track direction so as to hold the power supply line 10 at a constant height position over the entire transport track. The power supply line 10 is connected to a power supply device (not shown), and a high-frequency current of, for example, 9 kHz supplied from the power supply device always flows.

搬送台車3は、被搬送物を収容するための収容容器を昇降可能に保持する昇降機構(いずれも図示せず)と、この昇降機構の上面に連結される駆動機構11とを備えている。駆動機構11は、レール枠体4の内部において鉛直方向に配置された支持部材7と、支持部材7の上端に設けられた一次コイル12とを備えている。一次コイル12は、レール機構2の永久磁石6とともにリニアモータを構成している。一次コイル12は、詳細は図示しないが、鉄心に巻装された3相巻線であり、この巻線に交流電流が通電されることにより、直線状に移動する進行磁界を発生する。そして、一次コイル12と永久磁石6との間の磁気作用により、搬送台車3を走行させる推進力や、停止状態を維持する保持力が発生する。   The transport carriage 3 includes an elevating mechanism (both not shown) that holds an accommodation container for accommodating an object to be conveyed so as to be movable up and down, and a drive mechanism 11 connected to the upper surface of the elevating mechanism. The drive mechanism 11 includes a support member 7 arranged in the vertical direction inside the rail frame 4 and a primary coil 12 provided at the upper end of the support member 7. The primary coil 12 constitutes a linear motor together with the permanent magnet 6 of the rail mechanism 2. Although not shown in detail, the primary coil 12 is a three-phase winding wound around an iron core. When an alternating current is applied to the winding, a primary magnetic field is generated that moves linearly. A propulsive force that causes the transport carriage 3 to travel and a holding force that maintains the stopped state are generated by the magnetic action between the primary coil 12 and the permanent magnet 6.

一次コイル12の両側には、給電機構13、13が左右対称に設けられている。これら給電機構13、13は、支持部材7により支持されている。各給電機構13は、断面E字状をなす二次鉄心14と、二次巻線15(巻線に相当)とを備えている。このような構成により、給電線10に高周波電流が流れることで生じた高周波磁界により、二次巻線15に高周波電流が流れる。すなわち、給電線10と二次巻線15との間における電磁誘導によりレール機構2から搬送台車3に非接触で電力が伝送される。給電機構13の図示しない電源回路では、二次巻線15に流れる高周波電流を一旦直流に変換し、その直流を三相交流に変換した後、一次コイル12に供給する。なお、本実施形態では、給電線10と二次巻線15とから電力伝送手段16が構成される。   On both sides of the primary coil 12, power feeding mechanisms 13, 13 are provided symmetrically. These power feeding mechanisms 13 and 13 are supported by the support member 7. Each power feeding mechanism 13 includes a secondary iron core 14 having an E-shaped cross section and a secondary winding 15 (corresponding to a winding). With such a configuration, a high-frequency current flows through the secondary winding 15 due to a high-frequency magnetic field generated by the high-frequency current flowing through the feeder line 10. That is, electric power is transmitted from the rail mechanism 2 to the transport carriage 3 in a non-contact manner by electromagnetic induction between the feeder line 10 and the secondary winding 15. In a power supply circuit (not shown) of the power supply mechanism 13, the high-frequency current flowing through the secondary winding 15 is once converted into direct current, and the direct current is converted into three-phase alternating current and then supplied to the primary coil 12. In the present embodiment, the power transmission means 16 is composed of the feeder 10 and the secondary winding 15.

給電機構13の下方には、ガイド機構17と走行ローラ機構18とがこの順に設けられている。ガイド機構17は、レール機構2の幅方向にスライド可能に設けられたスライド機構19と、スライド機構19の両端部に回転自在に設けられたガイドローラ8、8とを備えている。ガイド機構17は、ガイドローラ8、8のいずれか一方をガイド部4eに係合させることにより進行方向を変更可能にしている。   A guide mechanism 17 and a traveling roller mechanism 18 are provided below the power supply mechanism 13 in this order. The guide mechanism 17 includes a slide mechanism 19 that is slidable in the width direction of the rail mechanism 2, and guide rollers 8 and 8 that are rotatably provided at both ends of the slide mechanism 19. The guide mechanism 17 can change the advancing direction by engaging one of the guide rollers 8 and 8 with the guide part 4e.

走行ローラ機構18は、支持部材7に水平方向に固設された走行支持板20と、走行支持板20の下面に設けられた軸受部材21、21と、各軸受部材21に回転自在に軸支されたローラ回転軸22と、ローラ回転軸22の両端部に設けられた走行ローラ23、23とを備えている。走行ローラ23は、搬送台車3の走行時の安定性を確保するために設けられており、レール枠体4の下面部4dに載置されている。このような構成の走行ローラ機構18は、搬送台車3をレール機構2に走行自在に係合させているとともに、リニアモータを構成する一次コイル12と永久磁石6とのギャップ長が所定の長さとなるようにしている。   The travel roller mechanism 18 includes a travel support plate 20 that is fixed to the support member 7 in the horizontal direction, bearing members 21 and 21 that are provided on the lower surface of the travel support plate 20, and each bearing member 21 is rotatably supported. The roller rotation shaft 22 and the running rollers 23 and 23 provided at both ends of the roller rotation shaft 22 are provided. The travel roller 23 is provided to ensure stability during travel of the transport carriage 3 and is placed on the lower surface portion 4 d of the rail frame 4. The traveling roller mechanism 18 configured as described above has the transport carriage 3 movably engaged with the rail mechanism 2 and the gap length between the primary coil 12 and the permanent magnet 6 constituting the linear motor is a predetermined length. It is trying to become.

図1は、搬送装置のレール機構に設けられる給電線10の断面図である。図1に示す給電線10は、断面が中空部分を有する円形状(円環状)をなす導電線31と、この導電線31の中空部分に設けられた断面が円形状をなす絶縁芯32(絶縁体に相当)と、導電線31の表面を覆うように設けられた絶縁被覆33とにより構成されている。   FIG. 1 is a cross-sectional view of a power supply line 10 provided in a rail mechanism of a transport device. 1 has a circular (annular) conductive wire 31 having a hollow cross section, and an insulating core 32 (insulating) having a circular cross section provided in the hollow portion of the conductive wire 31. And an insulating coating 33 provided so as to cover the surface of the conductive wire 31.

導電線31は、例えば直径0.45mmの銅線34(電線に相当)を87本配置することにより構成されている(図1に示された銅線34の本数は異なる)。導電線31の直径は、例えば5.5mmとなっており、絶縁芯32の直径は、例えば2.7mmとなっている。つまり、導電線31の断面積は、約18.1mmとなっている。導電線31を構成する各銅線34は、例えばウレタン被覆などの絶縁被覆を有している。導電線31は、複数の銅線34の撚り線により構成された一体化銅線、いわゆるリッツ線となっている。 The conductive wire 31 is configured, for example, by arranging 87 copper wires 34 (corresponding to electric wires) having a diameter of 0.45 mm (the number of the copper wires 34 shown in FIG. 1 is different). The diameter of the conductive wire 31 is, for example, 5.5 mm, and the diameter of the insulating core 32 is, for example, 2.7 mm. That is, the cross-sectional area of the conductive wire 31 is about 18.1 mm 2 . Each copper wire 34 constituting the conductive wire 31 has an insulating coating such as a urethane coating. The conductive wire 31 is an integrated copper wire constituted by a plurality of stranded wires of copper wires 34, a so-called litz wire.

次に、上記構成の給電線に高周波電流を流した場合のシミュレーション結果について図3および図4も参照して説明する。
なお、図3および図4においては、本実施形態の給電線10に加え、断面が円形状をなす導電線を有する従来の給電線に高周波電流を流した場合のシミュレーション結果を比較例として示している。この従来の給電線は、本実施形態の給電線10における導電線31の断面積(約18.1mm)と同等の断面積の導電線を有するものを使用している。従って、この導電線は、直径が4.8mmであり且つ断面が稠密形状となっている。
Next, simulation results when a high-frequency current is passed through the power supply line having the above configuration will be described with reference to FIGS.
3 and 4 show, as a comparative example, simulation results when a high-frequency current is passed through a conventional feeder having a conductive wire having a circular cross section in addition to the feeder 10 of the present embodiment. Yes. As this conventional power supply line, a power supply line having a cross-sectional area equivalent to the cross-sectional area (about 18.1 mm 2 ) of the conductive line 31 in the power supply line 10 of the present embodiment is used. Therefore, this conductive wire has a diameter of 4.8 mm and a dense cross section.

図3は、給電線に9kHzの高周波電流を流した場合の電流密度分布を示している。図3中、縦軸は従来の給電線の表面電流密度を1とした場合の電流密度の相対値であり、横軸は径方向の長さを示している。図3中、実線は本実施形態の給電線(中空形状の導電線)の電流密度分布を示し、破線は従来の給電線(稠密形状の導電線)の電流密度分布を示している。従来技術において述べたとおり、給電線10には常に高周波電流を流しておく必要がある。高周波電流を導体に流す場合、電流密度が導体の表面で高くなり、表面から離れるほど低くなる、いわゆる表皮効果が問題となる。つまり、電流が表面へ集中することで導体の高周波抵抗(見かけ上の抵抗分)が高くなり、これに伴い電力損失が大きくなる。   FIG. 3 shows a current density distribution when a high-frequency current of 9 kHz is passed through the feeder line. In FIG. 3, the vertical axis represents the relative value of the current density when the surface current density of the conventional power supply line is 1, and the horizontal axis represents the length in the radial direction. In FIG. 3, the solid line indicates the current density distribution of the power supply line (hollow conductive wire) of the present embodiment, and the broken line indicates the current density distribution of the conventional power supply line (dense conductive wire). As described in the prior art, a high-frequency current must always flow through the feeder line 10. When a high-frequency current is passed through a conductor, the so-called skin effect, in which the current density increases on the surface of the conductor and decreases with distance from the surface, becomes a problem. That is, when the current is concentrated on the surface, the high-frequency resistance (apparent resistance) of the conductor is increased, and the power loss is increased accordingly.

このような表皮効果の影響などにより、給電線に高周波電流を流した場合の電流密度分布は、図3に示すように、従来の給電線および本実施形態の給電線10のいずれにおいても表面付近で最も大きくなる。しかし、従来の給電線の表面付近の電流密度の相対値が約1であるのに対し、本実施形態の給電線10の表面付近の電流密度の相対値は約0.8と、低くなっている。これは、本実施形態の給電線10のほうが、従来の給電線に比べて導電線の直径が大きく、表面積が大きくなっているからだと考えられる。   Due to the influence of the skin effect, the current density distribution when a high-frequency current is passed through the feeder line is near the surface of both the conventional feeder line and the feeder line 10 of this embodiment as shown in FIG. Will be the largest. However, the relative value of the current density near the surface of the conventional feeder line is about 1, whereas the relative value of the current density near the surface of the feeder line 10 of this embodiment is as low as about 0.8. Yes. This is presumably because the diameter of the conductive wire and the surface area of the feeder line 10 of this embodiment are larger than those of the conventional feeder line.

また、従来の給電線は、中心付近(直径約2mmの範囲)において、電流密度の相対値が約0.2となっている。つまり、この中心付近では電流が流れにくく、高周波抵抗が大きくなる。これに対し、本実施形態の給電線10は、中心付近の部分には導電線31がない中空形状となっているため、高周波抵抗が大きくなる部分が従来の給電線に比べて少ない。   Further, in the conventional feeder, the relative value of the current density is about 0.2 near the center (in the range of about 2 mm in diameter). That is, the current hardly flows near the center, and the high-frequency resistance increases. On the other hand, the power supply line 10 of the present embodiment has a hollow shape without the conductive wire 31 in the vicinity of the center, and therefore there are few portions where the high-frequency resistance increases compared to the conventional power supply line.

図4は、上記シミュレーションにより得られた各特性値などを示しており、上から順に、導電線の断面積[mm]、高周波抵抗[Ω/m]、銅損[W]、電力損失の比率[%]を示している。上記したような電流密度分布の違いにより、同じ断面積の導電線を有する従来の給電線と本実施形態の給電線10とでは、高周波抵抗および銅損が以下のように異なる。 FIG. 4 shows the characteristic values obtained by the above simulation. From the top, the conductive wire cross-sectional area [mm 2 ], high-frequency resistance [Ω / m], copper loss [W], power loss The ratio [%] is shown. Due to the difference in the current density distribution as described above, the high-frequency resistance and the copper loss are different between the conventional power supply line having the same cross-sectional area and the power supply line 10 of the present embodiment as follows.

すなわち、本実施形態の給電線10は、高周波抵抗が0.000153[Ω/m]、銅損が0.304[W]となっている。一方、従来の給電線は、高周波抵抗が0.000187[Ω/m]、銅損が0.371[W]となっている。つまり、本実施形態の給電線10は、従来の給電線と比べて高周波抵抗および銅損の値が約18.1%低減されている。これにより、従来の給電線における電力損失を100[%]とした場合、本実施形態の給電線10の電力損失は81.9[%]となり、約18.1%の電力損失を低減できることになる。   That is, the power supply line 10 of the present embodiment has a high frequency resistance of 0.000153 [Ω / m] and a copper loss of 0.304 [W]. On the other hand, the conventional feeder has a high frequency resistance of 0.000187 [Ω / m] and a copper loss of 0.371 [W]. That is, the value of the high frequency resistance and the copper loss is reduced by about 18.1% in the power supply line 10 of the present embodiment as compared with the conventional power supply line. Accordingly, when the power loss in the conventional power supply line is set to 100 [%], the power loss of the power supply line 10 of the present embodiment is 81.9 [%], and the power loss of about 18.1% can be reduced. Become.

このように、給電線に高周波電流を流した場合の電力損失を低減するためには、導電線31の直径を大きくするとともに、導電線31の中空部分の直径(絶縁芯32の直径)を大きくすればよいことになる。しかし、導電線31の直径を大きくすることは装置の大型化に繋がるため、無制限に大きくすることはできない。本実施形態の場合、給電機構13を構成する二次鉄心14の大きさおよび形状により、導電線31の直径を5.5mm以下にする必要がある。   As described above, in order to reduce power loss when a high-frequency current flows through the feeder line, the diameter of the conductive wire 31 is increased and the diameter of the hollow portion of the conductive wire 31 (diameter of the insulating core 32) is increased. You can do it. However, increasing the diameter of the conductive wire 31 leads to an increase in the size of the device, and therefore cannot be increased without limit. In the case of the present embodiment, the diameter of the conductive wire 31 needs to be 5.5 mm or less depending on the size and shape of the secondary iron core 14 constituting the power feeding mechanism 13.

また、中空部分の直径は、必要とする電力供給量に応じた導電線31の断面積を確保可能な大きさまでしか大きくすることはできない。例えば、前述した従来の給電線と同等の電力供給量が必要である場合には、導電線31の断面積が約18.1mm以上となるように中空部分の直径を設定する必要がある。このようなことから、本実施形態の給電線10では、導電線31の直径は、制限値である5.5mmとし、中空部分の直径は、導電線31の断面積が約18.1mmとなる2.7mmとしている。 Further, the diameter of the hollow portion can only be increased to a size that can ensure the cross-sectional area of the conductive wire 31 according to the required power supply amount. For example, when a power supply amount equivalent to that of the above-described conventional power supply line is required, the diameter of the hollow portion needs to be set so that the cross-sectional area of the conductive wire 31 is about 18.1 mm 2 or more. For this reason, in the power supply line 10 of the present embodiment, the diameter of the conductive wire 31 is 5.5 mm which is a limit value, and the diameter of the hollow portion is about 18.1 mm 2 in cross-sectional area of the conductive wire 31. 2.7 mm.

なお、導電線31の直径および中空部分の直径は、上記各値に限らずともよく、例えば、上記した制限事項がないと仮定した場合、給電線10に流れる高周波電流の周波数から算出される表皮深さの寸法に応じた値にすればよい。すなわち、一般に、導体の所定深さδにおける電流密度Jは、下記(1)式により表される。
J=e−δ/d …(1)
Note that the diameter of the conductive wire 31 and the diameter of the hollow portion are not limited to the above values. For example, when it is assumed that there is no restriction described above, the skin calculated from the frequency of the high-frequency current flowing through the feeder 10 What is necessary is just to set it as the value according to the dimension of the depth. That is, generally, the current density J at a predetermined depth δ of the conductor is expressed by the following equation (1).
J = e −δ / d (1)

(1)式におけるdが表皮深さであり、導体の電流密度が表面の1/e(約0.37、ただしeは自然対数の底)になる深さである。この表皮深さdは、下記(2)式により表される。
d=(2・ρ/(2・π・f・μ))1/2 …(2)
ただし、ρは導体の電気抵抗率[Ω・m]、μは導体の透磁率[N/A]、fは高周波電流の周波数[Hz]とする。
In Equation (1), d is the skin depth, and the current density of the conductor is 1 / e (about 0.37, where e is the base of natural logarithm) of the surface. This skin depth d is expressed by the following equation (2).
d = (2 · ρ / (2 · π · f · μ)) 1/2 (2)
Where ρ is the electrical resistivity [Ω · m] of the conductor, μ is the magnetic permeability [N / A 2 ] of the conductor, and f is the frequency [Hz] of the high-frequency current.

例えば導体が銅である場合には、ρ=1.72×10−8[Ω・m]であり、μ=4・π×10−7[N/A]であるため、表皮深さdは、下記(3)式のように表される。
d=0.066/f1/2 …(3)
上記(3)式により、本実施形態の給電線10に9kHzの高周波電流を流した場合の表皮深さdは約0.7mmとなる。従って、導電線31の表面から中心部方向の厚さを表皮深さd(0.7mm)とし、残りの部分を中空部分(絶縁芯32)とすれば、表皮効果の影響を最も受けにくく、給電線10の高周波抵抗を最も低減できることになる。このためには、導電線31の直径φaおよび中空部分の直径φbとを、下記(4)式の関係を満たすように設定すればよい。
φa−φb=2・d …(4)
For example, when the conductor is copper, ρ = 1.72 × 10 −8 [Ω · m] and μ = 4 · π × 10 −7 [N / A 2 ], so that the skin depth d Is expressed by the following equation (3).
d = 0.066 / f 1/2 (3)
According to the above equation (3), the skin depth d when a high-frequency current of 9 kHz is passed through the feeder line 10 of the present embodiment is about 0.7 mm. Therefore, if the thickness in the central direction from the surface of the conductive wire 31 is the skin depth d (0.7 mm) and the remaining portion is the hollow portion (insulating core 32), it is most unlikely to be affected by the skin effect, The high frequency resistance of the feeder line 10 can be reduced most. For this purpose, the diameter φa of the conductive wire 31 and the diameter φb of the hollow portion may be set so as to satisfy the relationship of the following expression (4).
φa−φb = 2 · d (4)

上記(4)式の関係を満たす場合には、表皮効果の影響を最も低減できると考えられるが、表皮効果の影響を少しでも低減させるためには、導電線31の表面から中心部方向の厚さを表皮深さd以上とすればよい。つまり、導電線31の直径φaおよび中空部分の直径φbとを、下記(5)式の関係を満たすように設定すればよい。
φa−φb≧2・d …(5)
また、中空部分の直径φbが、導電線31の直径φaから表皮深さdの2倍の長さを減算した長さ以下としてもよい。つまり、導電線31の直径φaおよび中空部分の直径φbとを、下記(6)式の関係を満たすように設定してもよい。
φb≦φa−2・d …(6)
In the case where the relationship of the above formula (4) is satisfied, it is considered that the influence of the skin effect can be reduced most. However, in order to reduce the influence of the skin effect as much as possible, the thickness from the surface of the conductive wire 31 to the central portion direction. The thickness may be greater than or equal to the skin depth d. That is, the diameter φa of the conductive wire 31 and the diameter φb of the hollow portion may be set so as to satisfy the relationship of the following expression (5).
φa−φb ≧ 2 · d (5)
Further, the diameter φb of the hollow portion may be equal to or less than the length obtained by subtracting the length twice the skin depth d from the diameter φa of the conductive wire 31. That is, the diameter φa of the conductive wire 31 and the diameter φb of the hollow portion may be set so as to satisfy the relationship of the following expression (6).
φb ≦ φa−2 · d (6)

上記構成によれば、次のような効果が得られる。
本実施形態の給電線10は、円環状の断面をなす中空形状の導電線31を備えた構成としたので、同等の断面積を有する稠密形状の断面をなす導電線を備えた構成の従来の給電線と比べ、高周波電流を流した場合の高周波抵抗および銅損を約18.1%低減することができる。このような給電線10を用いた本実施形態の搬送装置1は、常時の電力損失を従来のものと比較して約18.1%低減することができる。また、電力損失が小さくなったことにより、給電線10の温度上昇も抑制される。
According to the above configuration, the following effects can be obtained.
Since the power supply line 10 of the present embodiment has a configuration including the hollow conductive wire 31 having an annular cross section, a conventional power supply line having a dense cross section having an equivalent cross-sectional area is provided. Compared with the feeder line, the high-frequency resistance and copper loss when a high-frequency current flows can be reduced by about 18.1%. The conveyance device 1 of the present embodiment using such a power supply line 10 can reduce the normal power loss by about 18.1% compared to the conventional one. In addition, since the power loss is reduced, the temperature rise of the feeder line 10 is also suppressed.

(第2の実施形態)
以下、本発明の第2の実施形態について図5を参照しながら説明する。
本実施形態では、第1の実施形態に対して給電線の構成を変更した場合について説明する。図5は、第1の実施形態における図1相当図であり、第1の実施形態と同一部分には同一符号を付して説明を省略する。図5に示す給電線41は、断面が中空形状をなす導電線42と、この導電線42の表面を覆うように設けられた絶縁被覆43により構成されている。
(Second Embodiment)
Hereinafter, a second embodiment of the present invention will be described with reference to FIG.
This embodiment demonstrates the case where the structure of a feeder is changed with respect to 1st Embodiment. FIG. 5 is a view corresponding to FIG. 1 in the first embodiment, and the same parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted. The power supply line 41 shown in FIG. 5 includes a conductive wire 42 having a hollow cross section and an insulating coating 43 provided so as to cover the surface of the conductive wire 42.

導電線42は、第1の実施形態の導電線31と同様、複数の銅線34の撚り線により構成されている。各銅線34は、導電線42の断面形状が円環状(例えば外径5.5mm、内径2.7mm)となるように固定されている。つまり、給電線41は、絶縁芯32が省略されていることを除き、第1の実施形態における給電線10と同様の中空形状の導電線として構成されている。このような構成の給電線41を用いた場合であっても第1の実施形態と同様の作用および効果が得られる。   The conductive wire 42 is composed of a stranded wire of a plurality of copper wires 34, similarly to the conductive wire 31 of the first embodiment. Each copper wire 34 is fixed such that the cross-sectional shape of the conductive wire 42 is annular (for example, an outer diameter of 5.5 mm and an inner diameter of 2.7 mm). That is, the feed line 41 is configured as a hollow conductive wire similar to the feed line 10 in the first embodiment except that the insulating core 32 is omitted. Even when the power supply line 41 having such a configuration is used, the same operations and effects as those of the first embodiment can be obtained.

(その他の実施形態)
なお、本発明は上記し且つ図面に記載した各実施形態に限定されるものではなく、次のような変形又は拡張が可能である。
導電線31、42を構成する銅線34は、それらの間の絶縁に問題なければ、絶縁被覆を有する構成でなくともよい。導電線31、42は、87本の銅線34による構成に限らず、各種の電線を使用して構成してもよい。また、電線の使用本数は、必要とする電力供給量に応じて適宜変更すればよい。導電線31、42は、複数の銅線34の撚り線により構成されたものに限らず、断面が円環状をなす1つの導電線により構成してもよい。
(Other embodiments)
The present invention is not limited to the embodiments described above and illustrated in the drawings, and the following modifications or expansions are possible.
As long as there is no problem in insulation between the copper wires 34 constituting the conductive wires 31 and 42, the copper wires 34 need not have an insulating coating. The conductive wires 31 and 42 are not limited to the configuration using the 87 copper wires 34, and may be configured using various electric wires. Moreover, what is necessary is just to change suitably the usage number of an electric wire according to the electric power supply amount required. The conductive wires 31 and 42 are not limited to those formed by twisted wires of a plurality of copper wires 34, and may be formed by one conductive wire having a circular cross section.

搬送装置1は、搬送方式としてOHT方式を採用したが、例えばOHS(Over Head Shuttle)方式など、他の搬送方式を採用してもよい。搬送装置1は、走行方式としてリニア駆動方式を採用したが、車輪をモータ駆動して搬送台車3を走行させる方式など、他の走行方式を採用してもよい。搬送装置1は、半導体製造工場に用いられる半導体ウエハを搬送する用途に限らず、例えば電子部品、機械部品、食品、書類など、種々の荷物を搬送する用途に適用可能である。また、本発明は、搬送装置に限らず、固定部から可動部に非接触で電力伝送を行う必要のあるシステム全般に適用可能である。   Although the transport apparatus 1 employs the OHT system as the transport system, other transport systems such as an OHS (Over Head Shuttle) system may be employed. The conveyance device 1 employs a linear driving method as a traveling method, but may employ other traveling methods such as a method in which the wheels are driven by a motor to cause the conveying cart 3 to travel. The transfer device 1 is not limited to a use for transferring a semiconductor wafer used in a semiconductor manufacturing factory, but can be applied to a use for transferring various packages such as electronic parts, machine parts, food, and documents. In addition, the present invention is not limited to the transfer device, and can be applied to any system that needs to perform power transmission in a non-contact manner from the fixed portion to the movable portion.

本発明の第1の実施形態を示す給電線の断面図Sectional drawing of the feeder line which shows the 1st Embodiment of this invention 搬送装置の概略構成図Schematic configuration diagram of transfer device 給電線に高周波電流を流した場合の電流密度分布を示す図Diagram showing current density distribution when high-frequency current is passed through the feeder 給電線に高周波電流を流した場合の各特性値を示す図The figure which shows each characteristic value when the high frequency current is made to flow through the feeder 本発明の第2の実施形態を示す図1相当図FIG. 1 equivalent diagram showing a second embodiment of the present invention

符号の説明Explanation of symbols

図面中、1は搬送装置(非接触給電装置)、2はレール機構(搬送路、固定部)、3は搬送台車(可動部)、10、41は給電線、15は二次巻線(巻線)、16は電力伝送手段、31、42は導電線、32は絶縁芯(絶縁体)、34は銅線(電線)を示す。   In the drawings, 1 is a transport device (non-contact power supply device), 2 is a rail mechanism (transport path, fixed portion), 3 is a transport carriage (movable portion), 10 and 41 are power supply lines, and 15 is a secondary winding (winding). Wire), 16 is a power transmission means, 31 and 42 are conductive wires, 32 is an insulating core (insulator), and 34 is a copper wire (electric wire).

Claims (7)

所定の軌道を形成するように設けられた固定部と、
前記固定部に沿って移動可能に設けられた可動部と、
前記可動部を移動させるための交流電力を前記固定部から前記可動部に伝送する電力伝送手段とを備え、
前記電力伝送手段は、前記固定部に設けられた給電線および前記可動部に設けられた巻線を有し、これら給電線と巻線との間における電磁誘導により非接触で電力伝送を行い、
前記給電線は、中空形状の導電線であることを特徴とする非接触給電装置。
A fixed portion provided to form a predetermined trajectory;
A movable part provided movably along the fixed part;
Power transmission means for transmitting AC power for moving the movable part from the fixed part to the movable part,
The power transmission means has a power supply line provided in the fixed part and a winding provided in the movable part, and performs power transmission in a non-contact manner by electromagnetic induction between the power supply line and the winding,
The non-contact power feeding device, wherein the power feeding wire is a hollow conductive wire.
前記中空形状の導電線は、表面から中心部方向の厚さが、当該導電線を流れる交流電流の周波数から算出される表皮深さ寸法以上となっていることを特徴とする請求項1記載の非接触給電装置。   The hollow conductive wire has a thickness in a central direction from the surface that is equal to or greater than a skin depth dimension calculated from a frequency of an alternating current flowing through the conductive wire. Non-contact power feeding device. 前記中空形状の導電線は、中空部分の直径が、当該導電線全体の直径から当該導電線を流れる交流電流の周波数から算出される表皮深さの2倍の寸法を減算した長さ以下となっていることを特徴とする請求項1記載の非接触給電装置。   In the hollow conductive wire, the diameter of the hollow portion is equal to or less than the length obtained by subtracting the dimension twice the skin depth calculated from the frequency of the alternating current flowing through the conductive wire from the diameter of the entire conductive wire. The contactless power feeding device according to claim 1, wherein 前記給電線は、前記導電線の中空部分に絶縁体を設けた構成となっていることを特徴とする請求項1ないし3のいずれかに記載の非接触給電装置。   The non-contact power feeding device according to claim 1, wherein the power supply line has a configuration in which an insulator is provided in a hollow portion of the conductive wire. 前記給電線は、前記導電線を複数の電線の撚り線により構成していることを特徴とする請求項1ないし4のいずれかに記載の非接触給電装置。   The non-contact power feeding device according to any one of claims 1 to 4, wherein the power feeding line is configured such that the conductive wire is a stranded wire of a plurality of electric wires. 前記導電線を構成する複数の電線は、それぞれが絶縁被覆を有していることを特徴とする請求項5記載の非接触給電装置。   The non-contact power feeding device according to claim 5, wherein each of the plurality of electric wires constituting the conductive wire has an insulating coating. 請求項1ないし6のいずれかに記載の非接触給電装置と、搬送路と、搬送台車とを備えた搬送装置であって、
前記非接触給電装置の前記固定部は、前記搬送路側に設けられ、
前記非接触給電装置の前記可動部は、前記搬送台車側に設けられ、
前記交流電力により前記搬送台車が駆動されることを特徴とする搬送装置。
A conveyance device comprising the non-contact power feeding device according to any one of claims 1 to 6, a conveyance path, and a conveyance carriage,
The fixed portion of the non-contact power feeding device is provided on the transport path side,
The movable part of the non-contact power feeding device is provided on the transport carriage side,
The conveyance apparatus, wherein the conveyance carriage is driven by the AC power.
JP2008215248A 2008-08-25 2008-08-25 Contactless power feeder and transporting apparatus Pending JP2010047210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008215248A JP2010047210A (en) 2008-08-25 2008-08-25 Contactless power feeder and transporting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008215248A JP2010047210A (en) 2008-08-25 2008-08-25 Contactless power feeder and transporting apparatus

Publications (1)

Publication Number Publication Date
JP2010047210A true JP2010047210A (en) 2010-03-04

Family

ID=42064672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008215248A Pending JP2010047210A (en) 2008-08-25 2008-08-25 Contactless power feeder and transporting apparatus

Country Status (1)

Country Link
JP (1) JP2010047210A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014049870A1 (en) * 2012-09-28 2016-08-22 富士機械製造株式会社 High frequency power coil and method of manufacturing the same
WO2017163388A1 (en) * 2016-03-25 2017-09-28 富士機械製造株式会社 Wireless power supply device
KR20180100917A (en) * 2017-03-03 2018-09-12 경성대학교 산학협력단 System for supplying a electric power to a rail guided vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344602A (en) * 1992-06-11 1993-12-24 Daifuku Co Ltd Litz wire used for noncontact feeding facilities
JPH10257606A (en) * 1997-03-10 1998-09-25 Ishikawajima Harima Heavy Ind Co Ltd Non-contact feeding facility
JPH11178117A (en) * 1997-12-05 1999-07-02 Shinko Electric Co Ltd Carrier running system
JP2002064025A (en) * 2000-08-21 2002-02-28 Tsubakimoto Chain Co Feeder for non-contact feeding and carrier system
JP2008068944A (en) * 2006-09-12 2008-03-27 Toshiba Elevator Co Ltd Noncontact feeder device to car of elevator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344602A (en) * 1992-06-11 1993-12-24 Daifuku Co Ltd Litz wire used for noncontact feeding facilities
JPH10257606A (en) * 1997-03-10 1998-09-25 Ishikawajima Harima Heavy Ind Co Ltd Non-contact feeding facility
JPH11178117A (en) * 1997-12-05 1999-07-02 Shinko Electric Co Ltd Carrier running system
JP2002064025A (en) * 2000-08-21 2002-02-28 Tsubakimoto Chain Co Feeder for non-contact feeding and carrier system
JP2008068944A (en) * 2006-09-12 2008-03-27 Toshiba Elevator Co Ltd Noncontact feeder device to car of elevator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014049870A1 (en) * 2012-09-28 2016-08-22 富士機械製造株式会社 High frequency power coil and method of manufacturing the same
WO2017163388A1 (en) * 2016-03-25 2017-09-28 富士機械製造株式会社 Wireless power supply device
US11011933B2 (en) 2016-03-25 2021-05-18 Fuji Corporation Contactless electric power supply device
KR20180100917A (en) * 2017-03-03 2018-09-12 경성대학교 산학협력단 System for supplying a electric power to a rail guided vehicle
KR101975931B1 (en) 2017-03-03 2019-05-07 경성대학교 산학협력단 System for supplying a electric power to a rail guided vehicle

Similar Documents

Publication Publication Date Title
JP3370678B2 (en) Truck-guided conveyor with energy and information transfer
CN102076518B (en) Traveling vehicle system
JP5354539B2 (en) Non-contact power feeding device
JP6179375B2 (en) Coil unit
US10272789B2 (en) Wireless power supply system and wireless power transmission system
US10454356B2 (en) Drive system with electromagnetic energy transfer
CN111801746B (en) Composite power cable with built-in thermal induction wire and overheat protection device with same
JP2006136197A (en) Contactless power feeding type run truck
JP2015185719A (en) Coil unit and wireless power transmission device
JP6970616B2 (en) Robots with Mobile Power Couplings and Mobile Power Couplings
ZA200508934B (en) Transport system
JP2010047210A (en) Contactless power feeder and transporting apparatus
EP1160801B1 (en) High-frequency current multiconductor cable and power feeding equipment for one or more movable bodies using said cable
JP5549062B2 (en) Transport device
EP3133640B1 (en) Non-contact power supply device, and processing apparatus including non-contact power supply device
JP2002064025A (en) Feeder for non-contact feeding and carrier system
JP2003087902A (en) Inductive feeding device and truck mounting the same thereon
WO2014207977A1 (en) Ceiling-traveling vehicle system, and wiring method for ceiling-traveling vehicle system
JP5497374B2 (en) Three-dimensional parking device
JP2005306241A (en) Electric supply loop connecting structure of non-contact feeder
JP2009227170A (en) Non-contact feeding system
JPH08205309A (en) Non-contact feeder system
TW201924184A (en) Non-contact power supply facility
US10850626B2 (en) Supply of a trolley chain with electricity
JP7455008B2 (en) Goods conveyance equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205