JP5087344B2 - Synthesis of H8-binaphthyl derivatives by reduction of binaphthyl compounds - Google Patents

Synthesis of H8-binaphthyl derivatives by reduction of binaphthyl compounds Download PDF

Info

Publication number
JP5087344B2
JP5087344B2 JP2007214115A JP2007214115A JP5087344B2 JP 5087344 B2 JP5087344 B2 JP 5087344B2 JP 2007214115 A JP2007214115 A JP 2007214115A JP 2007214115 A JP2007214115 A JP 2007214115A JP 5087344 B2 JP5087344 B2 JP 5087344B2
Authority
JP
Japan
Prior art keywords
carbon atoms
formula
binaphthyl
group
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007214115A
Other languages
Japanese (ja)
Other versions
JP2009046430A (en
Inventor
幸弘 本山
英夫 永島
幹大 高崎
智樹 越山
泰一郎 岩村
博司 真見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
New Japan Chemical Co Ltd
Original Assignee
Kyushu University NUC
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, New Japan Chemical Co Ltd filed Critical Kyushu University NUC
Priority to JP2007214115A priority Critical patent/JP5087344B2/en
Publication of JP2009046430A publication Critical patent/JP2009046430A/en
Application granted granted Critical
Publication of JP5087344B2 publication Critical patent/JP5087344B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、金属錯体の配位子などに幅広く利用される有用な化合物である5,5’,6,6’,7,7’,8,8’−オクタヒドロ−1,1’−ビ−2−ナフチル誘導体(以下「H8−ビナフチル誘導体」という)を、対応するビナフチル誘導体から収率良く、しかも光学純度を保持したまま選択的に還元して製造する方法に関する。 The present invention is a 5,5 ′, 6,6 ′, 7,7 ′, 8,8′-octahydro-1,1′-bi- compound which is a useful compound widely used as a ligand for metal complexes. The present invention relates to a method for producing a 2-naphthyl derivative (hereinafter referred to as “H 8 -binaphthyl derivative”) by selective reduction from the corresponding binaphthyl derivative with good yield while maintaining optical purity.

2,2’−位が官能基化された1,1’−ビ−2−ナフチル誘導体、例えば1,1’−ビ−2−ナフトール(以下「BINOL」と略記)、2,2’−ジアミノ−1,1’−ビナフチル(以下「DABN」と略記)は、不斉触媒反応において有効であると実証されている光学活性配位子である(非特許文献1−3)。さらにナフチル環を部分水素化したH8−ビナフチル骨格を基礎とする配位子は、有機溶媒に対する溶解性、2つのナフチル環が構成する2面角、ならびに電子供与性が向上すること、さらに対応するビナフチル誘導体と比較して、頻繁により高い不斉誘導を示すことから、近年、更なる開発の注目を集めている(非特許文献4)。 1,1′-bi-2-naphthyl derivatives functionalized at the 2,2′-position, such as 1,1′-bi-2-naphthol (hereinafter abbreviated as “BINOL”), 2,2′-diamino -1,1′-binaphthyl (hereinafter abbreviated as “DABN”) is an optically active ligand that has been demonstrated to be effective in asymmetric catalytic reactions (Non-patent Documents 1-3). Furthermore, a ligand based on an H 8 -binaphthyl skeleton obtained by partially hydrogenating a naphthyl ring has improved solubility in an organic solvent, dihedral angle formed by two naphthyl rings, and electron donating property. In recent years, it has attracted much attention for further development (Non-Patent Document 4).

このようなH8−ビナフチル誘導体のうち、市販の例はH8−1,1’−ビ−2−ナフトール(以下「H8−BINOL」と略記)のみであり、例えば東京化成(純度99%以上)、和光純薬(純度97%)、Aldrich社(純度99%)の製品として販売されているが、それ以外のH8−ビナフチル誘導体はH8−BINOLからの合成か、相応の2,2’−位が官能基化された1,1’−ビ−2−ナフチル誘導体の還元によって得ている。 Among such H 8 -binaphthyl derivatives, the only commercially available example is H 8 -1,1′-bi-2-naphthol (hereinafter abbreviated as “H 8 -BINOL”), for example, Tokyo Kasei (purity 99%). These are sold as products of Wako Pure Chemical (purity 97%) and Aldrich (purity 99%), but other H 8 -binaphthyl derivatives can be synthesized from H 8 -BINOL or Obtained by reduction of a 1,1′-bi-2-naphthyl derivative functionalized at the 2′-position.

上記1,1’−ビ−2−ナフチル誘導体の還元は、一般にはCramらによって開発されたPtO2触媒を用いて酢酸の存在下で実施する方法が用いられる(非特許文献5)。しかしながら、該方法の実施には多くの触媒量(基質/触媒金属のモル比=約7)が必要である。更にBINOL等の2,2’−位に水酸基を有する化合物の反応では、光学純度を保持するには、低い温度で反応を行う必要があるため、1週間以上の長い還元時間が必要となる。 The reduction of the 1,1′-bi-2-naphthyl derivative is generally carried out using a PtO 2 catalyst developed by Cram et al. In the presence of acetic acid (Non-patent Document 5). However, implementation of the process requires a large amount of catalyst (substrate / catalyst metal molar ratio = about 7). Furthermore, in the reaction of a compound having a hydroxyl group at the 2,2′-position such as BINOL, it is necessary to carry out the reaction at a low temperature in order to maintain the optical purity, so a long reduction time of one week or longer is required.

また、ラネーNi/Al化合物をアルカリ溶液中で使用する還元法も知られている(非特許文献6、7)。その方法では、DABNや2−アミノ−2’−ヒドロキシ−1,1’−ビナフチル(以下「NOBIN」と略記)の還元において光学純度が保持されるものの、BINOLでは部分ラセミ化が観測される。さらに多量の触媒と溶媒が必要であり、また、2,2’−ジ(メトキシメチルオキシ)−1,1’−ビナフチル(以下「BINOL−MOM2」と略記)の還元では、片側のナフチル環のみが部分還元されたH4−BINOL−MOM2が得られるに過ぎない。 A reduction method using Raney Ni / Al compound in an alkaline solution is also known (Non-Patent Documents 6 and 7). In this method, although optical purity is maintained in the reduction of DABN or 2-amino-2′-hydroxy-1,1′-binaphthyl (hereinafter abbreviated as “NOBIN”), partial racemization is observed in BINOL. Further, a large amount of catalyst and solvent are required, and reduction of 2,2′-di (methoxymethyloxy) -1,1′-binaphthyl (hereinafter abbreviated as “BINOL-MOM 2 ”) requires a naphthyl ring on one side. Only partially reduced H 4 -BINOL-MOM 2 is obtained.

さらなる還元法として、活性炭や酸化アルミニウムの多孔質担体に担持されたパラジウム及びルテニウム触媒が知られている(特許文献1、非特許文献8)。その方法では反応温度50〜100℃、初期水素圧5〜6MPaで実施できるが、比較的多くの触媒量(基質/触媒金属のモル比=14)が必要である。BINOLの還元において、基質/触媒金属のモル比=100での実施も可能であるが、100℃、5時間半の反応で初期水素圧8MPa気圧の条件が必要である。更にBINOLの水酸基をアルキル基で保護した2,2’−ジアルコキシ−1,1’−ビナフチル誘導体の反応では1〜5%のラセミ化が観測され、得られるH8−ビナフチル誘導体の光学純度は90〜98%に低下する。 As a further reduction method, palladium and ruthenium catalysts supported on a porous support of activated carbon or aluminum oxide are known (Patent Document 1, Non-Patent Document 8). This method can be carried out at a reaction temperature of 50 to 100 ° C. and an initial hydrogen pressure of 5 to 6 MPa, but requires a relatively large amount of catalyst (substrate / catalyst metal molar ratio = 14). In the reduction of BINOL, it is possible to carry out at a molar ratio of substrate / catalyst metal = 100, but an initial hydrogen pressure of 8 MPa atm is required for the reaction at 100 ° C. for 5 hours and half. Furthermore, in the reaction of 2,2′-dialkoxy-1,1′-binaphthyl derivative in which the hydroxyl group of BINOL is protected with an alkyl group, 1 to 5% racemization is observed, and the optical purity of the resulting H 8 -binaphthyl derivative is Reduced to 90-98%.

特開2005−126433号公報JP 2005-126433 A C.Rosini,L.Franzini,A.Raffaelli,P.Salvadori,Synthesis,503 (1992)C. Rosani, L. Franzini, A.M. Raffaelli, P.A. Salvadori, Synthesis, 503 (1992) L.Pu,Chem.Rev.,98,2405 (1998)L. Pu, Chem. Rev. , 98, 2405 (1998) M.McCarthy,P.J.Guiry,Tetrahedron,57,3809 (2001)M.M. McCarthy, P.M. J. et al. Gury, Tetrahedron, 57, 3809 (2001) T.T.−L.Au−Yeung,S.−S. Chan,A.S.C.Chan,Adv.Synth.Catal.345,537(2003)T.A. T.A. -L. Au-Yeung, S .; -S. Chan, A. et al. S. C. Chan, Adv. Synth. Catal. 345, 537 (2003) D.J.Cram,R.C.Helgeson,S.C.Peacock,L.J.Kaplam,L.A.Domeier,P.Moreau,K.Koga,J.Mayer,Y.Chao,M.G.Siegel,D.H.G.Hoffman,D.Y.Sogah,J.Org.Chem.43,1930(1978)D. J. et al. Cram, R.A. C. Helgeson, S.M. C. Peacock, L.M. J. et al. Kapam, L.M. A. Domeier, P.M. Moreau, K. et al. Koga, J .; Mayer, Y. et al. Chao, M .; G. Siegel, D.M. H. G. Hoffman, D.M. Y. Sogah, J .; Org. Chem. 43, 1930 (1978) H.Guo,K.Ding,Tetrahedron Lett.41,10061(2000)H. Guo, K .; Ding, Tetrahedron Lett. 41, 10061 (2000) X.Shen,H.Guo,K.Ding,Tetrahedron:Asymmetry,11,4321(2000)X. Shen, H .; Guo, K .; Ding, Tetrahedron: Asymmetry, 11, 4321 (2000) A.Korostylev,V.I.Tararov,C.Fischer,A.Monsees,A.Borner,(oにはウムラウトが付く)J.Org.Chem.69,3220(2004)A. Korostylev, V.M. I. Tararov, C.I. Fischer, A.M. Monsees, A.M. Borner, (o has an umlaut) Org. Chem. 69, 3220 (2004)

本発明の課題は、1,1’−ビ−2−ナフチル誘導体から所望のH8−1,1’−ビ−2−ナフチル誘導体を、高い選択性、且つ、高い収率で、光学純度を保持して、製造する新しい技術を提供することにある。 The object of the present invention is to obtain a desired H 8 -1,1′-bi-2-naphthyl derivative from a 1,1′-bi-2-naphthyl derivative with high selectivity and high optical purity. It is to provide new technology to hold and manufacture.

本発明者らは鋭意検討を行った結果、炭素ナノ繊維担体上に担持された金属触媒の存在下で、1,1’−ビ−2−ナフチル誘導体を水素化還元することによって、目的のH8−1,1’−ビ−2−ナフチル誘導体を高い選択性で、且つ、高い収率で、光学純度を保持して製造できることを見いだした。 As a result of intensive studies, the inventors of the present invention reduced the 1,1′-bi-2-naphthyl derivative by hydrogenation in the presence of a metal catalyst supported on a carbon nanofiber support, thereby achieving the target H 8 -1,1'-bi-2-naphthyl derivatives with high selectivity and at high yield, have found that can be prepared by holding the optical purity.

即ち、本発明は、以下の項目の発明を提供する。
[項1]
下記一般式(1)で表される1,1’−ビ−2−ナフチル誘導体を、炭素ナノ繊維を担体とする金属触媒存在下で、水素化還元し、下記一般式(2)で表される5,5’,6,6’,7,7’,8,8’−オクタヒドロ−1,1’−ビ−2−ナフチル誘導体を製造する方法。

Figure 0005087344
[a及びbはそれぞれ0〜6の整数を表す。a個のR及びb個のRは同一又は異なって、それぞれ炭素数1〜30のアルキル基又は炭素数3〜12のシクロアルキル基を表す。X及びYは同一又は異なって、
式(A)、
Figure 0005087344
{式中、Rは、水素原子、炭素数1〜30のアルキル基又は炭素数3〜12のシクロアルキル基を表す。nは1〜4の整数を表す。mは0〜12の整数を表す。}
式(B)、
Figure 0005087344
{式中、Rは、炭素数1〜30のアルキル基又は炭素数3〜12のシクロアルキル基を表す。}
式(C)、
Figure 0005087344
{式中、R及びRは同一又は異なって、それぞれ水素原子、炭素数1〜30のアルキル基又は炭素数3〜12のシクロアルキル基を表す。}
又は式(D)
Figure 0005087344
{式中、Rは水素原子、炭素数1〜30のアルキル基又は炭素数3〜12のシクロアルキル基を表す。Rは炭素数1〜30のアルキル基又は炭素数3〜12のシクロアルキル基を表す。}
で表されるいずれかの基を表す。]
Figure 0005087344
[式中、a、b、X、Y、R及びRはそれぞれ、上記一般式(1)におけると同義である。] That is, the present invention provides the following inventions.
[Claim 1]
The 1,1′-bi-2-naphthyl derivative represented by the following general formula (1) is hydroreduced in the presence of a metal catalyst using carbon nanofibers as a carrier, and is represented by the following general formula (2). 5,5 ′, 6,6 ′, 7,7 ′, 8,8′-octahydro-1,1′-bi-2-naphthyl derivatives.
Figure 0005087344
[a and b represent the integer of 0-6, respectively. a R 1 and b R 2 are the same or different and each represents an alkyl group having 1 to 30 carbon atoms or a cycloalkyl group having 3 to 12 carbon atoms. X and Y are the same or different,
Formula (A),
Figure 0005087344
{Wherein, R 3 represents a hydrogen atom, an alkyl group or a cycloalkyl group having 3 to 12 carbon atoms having 1 to 30 carbon atoms. n represents an integer of 1 to 4. m represents an integer of 0 to 12. }
Formula (B),
Figure 0005087344
{In the formula, R 4 represents an alkyl group having 1 to 30 carbon atoms or a cycloalkyl group having 3 to 12 carbon atoms. }
Formula (C),
Figure 0005087344
{Wherein, R 5 and R 6 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or a cycloalkyl group having 3 to 12 carbon atoms. }
Or formula (D)
Figure 0005087344
{Wherein, R 7 represents a hydrogen atom, an alkyl group or a cycloalkyl group having 3 to 12 carbon atoms having 1 to 30 carbon atoms. R 8 represents an alkyl group having 1 to 30 carbon atoms or a cycloalkyl group having 3 to 12 carbon atoms. }
Represents any group represented by ]
Figure 0005087344
[Wherein, a, b, X, Y, R 1 and R 2 have the same meaning as in the general formula (1). ]

[項2]
金属触媒が、金属錯体を有機溶媒中で炭素ナノ繊維と混合して得られる触媒である、上記項1に記載の方法。
[Section 2]
Item 2. The method according to Item 1, wherein the metal catalyst is a catalyst obtained by mixing a metal complex with carbon nanofibers in an organic solvent.

[項3]
金属触媒が、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd及びPtからなる群より選ばれる少なくとも一種の金属を含有する触媒である、上記項1又は2に記載の方法。
[Section 3]
Item 3. The method according to Item 1 or 2, wherein the metal catalyst is a catalyst containing at least one metal selected from the group consisting of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd and Pt.

[項4]
金属触媒が、Ru、Rh、Pd及びPtからなる群より選ばれる少なくとも1種の金属を含有する触媒である、上記項3に記載の方法。
[Claim 4]
Item 4. The method according to Item 3, wherein the metal catalyst is a catalyst containing at least one metal selected from the group consisting of Ru, Rh, Pd and Pt.

[項5]
1,1’−ビ−2−ナフチル誘導体(S)に対する、金属触媒中の金属(C)のモル比(S/C)が、S/C=100〜10000の範囲内で水素化還元する、上記項1〜4のいずれかに記載の方法。
[Section 5]
The molar ratio (S / C) of the metal (C) in the metal catalyst to the 1,1′-bi-2-naphthyl derivative (S) is hydroreduced within the range of S / C = 100 to 10,000. Item 5. The method according to any one of Items 1 to 4.

[項6]
一般式(1)においてa及びbがそれぞれ0で表される1,1’−ビ−2−ビナフチル誘導体を還元する、上記項1〜5のいずれかに記載の方法。
[Claim 6]
Item 6. The method according to any one of Items 1 to 5, wherein the 1,1′-bi-2-binaphthyl derivative in which a and b are each represented by 0 in General Formula (1) is reduced.

[項7]
一般式(1)において、X及びYが同一又は異なって、それぞれ
式(E)、

Figure 0005087344
{式中、Rは水素原子、炭素数1〜10のアルキル基又は炭素数3〜6のシクロアルキル基を表す。}
式(F)、
Figure 0005087344
{式中、R10はメチル基又はエチル基を表す。pは、1又は2の整数を表す。}
式(G)、
Figure 0005087344
{式中、R11は炭素数1〜10のアルキル基又は炭素数3〜6のシクロアルキル基を表す。}
又は式(H)
Figure 0005087344
で表されるいずれかの基である、上記項1〜6のいずれかに記載の方法。 [Claim 7]
In the general formula (1), X and Y are the same or different, and the formula (E),
Figure 0005087344
{In the formula, R 9 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 6 carbon atoms. }
Formula (F),
Figure 0005087344
{In the formula, R 10 represents a methyl group or an ethyl group. p represents an integer of 1 or 2. }
Formula (G),
Figure 0005087344
{In the formula, R 11 represents an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 6 carbon atoms. }
Or formula (H)
Figure 0005087344
Item 7. The method according to any one of Items 1 to 6, which is any group represented by:

本発明に従えば、炭素ナノ繊維担体に担持された金属担持触媒の存在下で、高選択率、且つ高収率で、光学純度を維持したままH8−1,1’−ビ−2−ナフチル誘導体が得られる。 According to the present invention, in the presence of a metal-supported catalyst supported on a carbon nanofiber support, H 8 -1,1′-bi-2- (2) is maintained with high selectivity and high yield while maintaining optical purity. A naphthyl derivative is obtained.

本発明において用いられる炭素ナノ繊維(カーボンナノファイバー)は、特に限定されるものでない。また、一般公知のものを使用することができる。例えば、サブミクロンオーダーの繊維径をもつ炭素繊維が好ましい。炭素ナノ繊維は、炭素ヘキサゴン表面の配列が繊維軸に垂直なもの、ある角度をもつもの、あるいは平行なものの3種類に分類され、それぞれ、プレートレット(平板積層)、ヘリングボーン(魚骨状積層)、チューブラー(筒状)と名付けられている(例えば、「高圧ガス、Vol.141,No.2,10−18頁(2004)」参照)。本明細書においては、プレートレット(平板積層)炭素ナノ繊維を「CNF−P」、ヘリングボーン(魚骨状積層)炭素ナノ繊維を「CNF−H」、チューブラー(筒状)炭素ナノ繊維を「CNF−T」と略記する。このような炭素ナノ繊維は、公知の方法で得ることができる(例えば、H.Murayama,T.Maeda、Nature,1990,345,791、U.S. Patent,5149584、A.Chambers,NMRodriguez,R.T.K.Bakere,Langmuir,1995,11,3862)。 The carbon nanofiber (carbon nanofiber) used in the present invention is not particularly limited. Moreover, a generally well-known thing can be used. For example, a carbon fiber having a submicron order fiber diameter is preferable. Carbon nanofibers are categorized into three types: carbon hexagon surface arrangement perpendicular to the fiber axis, one with an angle, or one parallel to the fiber axis. Platelet (plate lamination) and herringbone (fishbone lamination), respectively. ), Tubular (cylindrical) (see, for example, “High Pressure Gas, Vol. 141, No. 2, pages 10-18 (2004)”). In this specification, platelet (flat laminate) carbon nanofibers are “CNF-P”, herringbone (fishbone laminate) carbon nanofibers are “CNF-H”, and tubular (tubular) carbon nanofibers are Abbreviated as “CNF-T”. Such carbon nanofibers can be obtained by known methods (for example, H. Murayama, T. Maeda, Nature, 1990, 345, 791, U.S. Patent, 5149484, A. Chambers, NMRodrigez, R TK Bakere, Langmuir, 1995, 11, 3862).

本発明においては、上記のような炭素ナノ繊維で、表面にアモルファス層がなく、きれいな組織を有するものを使用するのが好ましい。例えば、CNF−HについてはM.−S.Kim,Dr.Thesis,Auburn University(1991)、CNF−P及びCNF−Tについては、A.Tanaka,S−H.Yoon,I Mochida,Carbon,2004,42,591、A.Tanaka,S.−H.Yoon,I Mochida,Carbon,2004,42,1291である。この条件を満たす市販の例は、米国のCatalytic Materials LLC社の製品であり、CNF−Pについては「Platelet GNF」、CNF−Hについては「Herringbone」、CNF−Tについては「Multi−walled Nanotubes」の商品名で、いずれも純度99.0%の製品として販売されている。金属触媒は適宜選択されるが、高選択率で、且つ、高収率で、光学純度を保持したまま目的化合物が得られるという観点からはCNF−Pが最も好ましい。 In the present invention, it is preferable to use carbon nanofibers having the clean structure without the amorphous layer on the surface as described above. For example, C.F. -S. Kim, Dr. Thesis, Auburn University (1991), CNF-P and CNF-T are described in A.C. Tanaka, SH. Yoon, I Mochida, Carbon, 2004, 42, 591; Tanaka, S .; -H. Yoon, I Mochida, Carbon, 2004, 42, 1291. Commercial examples that satisfy this condition are products of Catalytic Materials LLC of the United States, “Platelet GNF” for CNF-P, “Herringbone” for CNF-H, and “Multi-walled Nanotubes” for CNF-T. All are sold as products with a purity of 99.0%. The metal catalyst is appropriately selected, but CNF-P is most preferable from the viewpoint of obtaining the target compound with high selectivity and high yield while maintaining optical purity.

本発明に係る炭素ナノ繊維を担体とする金属触媒は、一般的に水素化還元に用いられる金属が使用できる。金属の種類の好ましい例として、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt等の金属が挙げられる。好ましくは、Ru、Rh、Pd、Os、Ir、Ptの白金族金属であり、少なくとも1つの金属を含有していることが推奨される。より好ましくはRu、Rh、Pd、Ptであり、特にRuが推奨される。前記金属には、本発明の効果を損なわない範囲で、他の金属が含まれてもよい。 As the metal catalyst using the carbon nanofibers as a carrier according to the present invention, a metal generally used for hydrogenation reduction can be used. Preferable examples of the type of metal include metals such as Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, and Pt. Preferably, it is a platinum group metal of Ru, Rh, Pd, Os, Ir, Pt, and it is recommended that it contains at least one metal. Ru, Rh, Pd, and Pt are more preferable, and Ru is particularly recommended. The metal may contain other metals as long as the effects of the present invention are not impaired.

本発明に係る炭素ナノ繊維を担体とする金属触媒は、好ましくは金属錯体を溶解した有機溶媒中で炭素ナノ繊維と混合して得られる触媒が推奨される。調製方法しては、均一且つ安定的に担持されるという観点から、金属錯体を溶解した有機溶媒中に炭素ナノ繊維を懸濁させて、該懸濁液を水素化分解する方法、熱分解する(例えば熱還流)する方法、超音波を照射する方法などが推奨される。前記有機溶媒は、広範囲の中から適宜選択することができる。
また前記金属錯体としては、Ru(CO)12、Co(CO)、Fe(CO)、Os(CO)12、Rh(CO)12、Rh(CO)16、Ir(CO)12、Cr(CO)、W(CO)、Mn(CO)10等の金属カルボニル錯体、Pd(dba)(CHCl)、Pt(dba)等のジベンジリデンアセトン錯体(dbaはジベンジリデンアセトンの略記)、Ni(cod)、Ru(cod)(cot)等のシクロオクタエン錯体(codはシクロオクタ−1,5−ジエンの略記、cotは1,3,5,7−シクロオクタテトラエンの略記)が例示される。
公知文献としては、例えば、Y.Motoyama,M.Takasaki,K.Higashi,S−H.Yoon,I Mochida,H.Nagashima,Chemistry Letters,2006,35,876、 特開2006−281201号公報などが例示される。
As the metal catalyst using carbon nanofibers as a carrier according to the present invention, a catalyst obtained by mixing with carbon nanofibers in an organic solvent in which a metal complex is dissolved is recommended. As a preparation method, from the viewpoint of being uniformly and stably supported, a method in which carbon nanofibers are suspended in an organic solvent in which a metal complex is dissolved, and the suspension is hydrocracked, or pyrolyzed. A method (for example, heat reflux) or a method of irradiating ultrasonic waves is recommended. The organic solvent can be appropriately selected from a wide range.
Examples of the metal complex, Ru 3 (CO) 12, Co 2 (CO) 8, Fe (CO) 5, Os 3 (CO) 12, Rh 4 (CO) 12, Rh 6 (CO) 16, Ir 4 Metal carbonyl complexes such as (CO) 12 , Cr (CO) 6 , W (CO) 6 , Mn 2 (CO) 10 , and dibenzylideneacetones such as Pd 2 (dba) 3 (CHCl 3 ) and Pt (dba) 2 Complexes (dba is an abbreviation for dibenzylideneacetone), cyclooctene complexes such as Ni (cod) 2 , Ru (cod) (cot) (cod is an abbreviation for cycloocta-1,5-diene, cot is 1,3,5 , 7-cyclooctatetraene).
Known literatures include, for example, Y.M. Motoyama, M .; Takasaki, K .; Higashi, SH. Yoon, I Mochida, H .; Examples include Nagashima, Chemistry Letters, 2006, 35, 876, and Japanese Patent Application Laid-Open No. 2006-281201.

本発明に係る炭素ナノ繊維を担体とする金属触媒は、上記の公報と同様に、平均粒子径を測定することができる。本発明における金属触媒の大きさは、一般に1〜20nmの範囲であり、好ましくは1〜10nmの範囲、より好ましくは1〜5nmの範囲である。 The metal catalyst using the carbon nanofibers according to the present invention as a carrier can measure the average particle size as in the above publication. The size of the metal catalyst in the present invention is generally in the range of 1 to 20 nm, preferably in the range of 1 to 10 nm, more preferably in the range of 1 to 5 nm.

本発明の製造方法において、1,1’−ビ−2−ナフチル誘導体と金属触媒中の金属のモル比(S/C)がS/C=100〜10000の範囲で、金属触媒を使用することが好ましい。より好ましくはS/C=250〜3500の範囲であり、さらにS/C=300〜1500の範囲が最も好ましい。S/C=10000を超えると反応時間が長くなり、一方、S/C=100より低いと、金属触媒量に見合った効果はない。 In the production method of the present invention, the metal catalyst is used so that the molar ratio (S / C) of the 1,1′-bi-2-naphthyl derivative to the metal in the metal catalyst is in the range of S / C = 100 to 10,000. Is preferred. More preferably, it is the range of S / C = 250-3500, and the range of S / C = 300-1500 is the most preferable. When S / C = 10000 is exceeded, the reaction time becomes longer, while when it is lower than S / C = 100, there is no effect commensurate with the amount of metal catalyst.

本発明における金属触媒中の金属担持量は、特に規定されるものではないが、金属触媒中、0.1〜20wt%の担持量が好ましく、さらには1〜15wt%の担持量がより好ましい。 The amount of metal supported in the metal catalyst in the present invention is not particularly defined, but the amount supported is preferably 0.1 to 20 wt%, more preferably 1 to 15 wt% in the metal catalyst.

本発明における1,1’−ビ−2−ナフチル誘導体は、上記一般式(1)で表される化合物である。該誘導体は、市販の化合物を用いても良く、また公知の方法で製造されたものを用いても良い。前記一般式(1)におけるR及びRは、それぞれ同一又は異なって、炭素数1〜30のアルキル基又は炭素数3〜12のシクロアルキル基であり、好ましくは炭素数1〜10のアルキル基又は炭素数3〜6のアルキル基が推奨される。また、前記一般式(1)におけるa及びbは、それぞれ0〜6の整数であり、好ましくは0〜3の整数、より好ましくは0の整数である。 The 1,1′-bi-2-naphthyl derivative in the present invention is a compound represented by the above general formula (1). As the derivative, a commercially available compound may be used, or a derivative produced by a known method may be used. R 1 and R 2 in the general formula (1) are the same or different and are each an alkyl group having 1 to 30 carbon atoms or a cycloalkyl group having 3 to 12 carbon atoms, preferably an alkyl having 1 to 10 carbon atoms. Groups or alkyl groups having 3 to 6 carbon atoms are recommended. Moreover, a and b in the general formula (1) are each an integer of 0 to 6, preferably an integer of 0 to 3, more preferably an integer of 0.

本発明において、一般式(1)で表される1,1’−ビ−2−ナフチル誘導体のX及びYは、同一又は異なって、それぞれ上記式(A)〜(D)で表され、好ましくは式(A)、式(B)又は式(C)であり、さらに式(E)、式(F)、式(G)又は式(H)がより好ましい。 In the present invention, X and Y of the 1,1′-bi-2-naphthyl derivative represented by the general formula (1) are the same or different and are each represented by the above formulas (A) to (D), preferably Is a formula (A), a formula (B), or a formula (C), and a formula (E), a formula (F), a formula (G), or a formula (H) is still more preferred.

最も好ましいX及びYは、−OH、−OCH、−OCOC(CH、−O−CH−O−CH又は−NHから選択される有機基である。このような有機基を有する1,1−ビ−2−ナフチル誘導体として、具体的には、1,1’−ビ−2−ナフトール、2,2’−ジメトキシ−1,1’−ビナフチル、2,2’−ジ(メトキシメチルオキシ)−1,1’−ビナフチル、2−メトキシ−2’−ヒドロキシ−1,1’−ビナフチル、2−ピバロイルオキシ−2’−ヒドロキシ−1,1’−ビナフチル、2,2’−ジアミノ−1,1’−ビナフチルなどが挙げられる。 Most preferred X and Y are organic groups selected from —OH, —OCH 3 , —OCOC (CH 3 ) 3 , —O—CH 2 —O—CH 3 or —NH 2 . Specific examples of the 1,1-bi-2-naphthyl derivative having such an organic group include 1,1′-bi-2-naphthol, 2,2′-dimethoxy-1,1′-binaphthyl, 2 , 2′-di (methoxymethyloxy) -1,1′-binaphthyl, 2-methoxy-2′-hydroxy-1,1′-binaphthyl, 2-pivaloyloxy-2′-hydroxy-1,1′-binaphthyl, 2,2′-diamino-1,1′-binaphthyl and the like can be mentioned.

本発明における1,1’−ビ−2−ナフチル誘導体の純度は、特に限定されるものではなく、所望する目的物の純度によって適宜選択されるが、歩留まりなどを考慮すれば高純度であることが好ましい。また、該誘導体の光学純度は、99.0%以上が好ましく、より光学純度の高い目的物を得るという観点から、より好ましくは99.9%以上である。 The purity of the 1,1′-bi-2-naphthyl derivative in the present invention is not particularly limited and is appropriately selected depending on the desired purity of the target product, but is high purity in consideration of yield and the like. Is preferred. Further, the optical purity of the derivative is preferably 99.0% or more, and more preferably 99.9% or more from the viewpoint of obtaining a target product having higher optical purity.

水素化還元における反応溶媒は、該反応に悪影響を与えないものであれば、反応条件に応じて適宜選択することができる。具体的には、アルコール系溶媒、エーテル系溶媒、含塩素系溶媒等が挙げられるが、一般的には、メタノール、エタノール、プロパノールなどが使用される。
また、反応温度は、1,1’−ビ−2−ナフチル誘導体及び金属触媒の種類にもよるが、20℃〜150℃が好ましく、より好ましくは50〜100℃である。反応時間は、通常1〜50時間である。
The reaction solvent in the hydrogenation reduction can be appropriately selected according to the reaction conditions as long as it does not adversely affect the reaction. Specific examples include alcohol solvents, ether solvents, chlorine-containing solvents, etc., but generally methanol, ethanol, propanol and the like are used.
The reaction temperature is preferably 20 ° C. to 150 ° C., more preferably 50 to 100 ° C., although it depends on the type of 1,1′-bi-2-naphthyl derivative and metal catalyst. The reaction time is usually 1 to 50 hours.

基質濃度は、特に規定されるものではないが、0.1〜50重量%、好ましくは0.5〜20重量%の範囲が推奨される。 The substrate concentration is not particularly defined, but a range of 0.1 to 50% by weight, preferably 0.5 to 20% by weight is recommended.

反応水素圧は、原料である1,1’−ビ−2−ナフチル誘導体に主として依存するが、1〜20MPaが好ましく、より好ましくは3〜7MPaである。 The reaction hydrogen pressure mainly depends on the 1,1'-bi-2-naphthyl derivative as a raw material, but is preferably 1 to 20 MPa, more preferably 3 to 7 MPa.

上記で例示された製造条件で水素化還元した後、冷却し、減圧吸引ろ過、遠心分離等により、金属触媒と反応溶液とを分離して、目的物の溶液を得ることができる。分離された反応溶液から再沈殿や再結晶、或いは該反応溶液の反応溶媒を留去するなどを行った後、乾燥して、所望のH−1,1’−ビ−2−ナフチル誘導体が得られる。また、分離された触媒は、必要に応じて再調整して、再利用が可能である。 After the hydrogenation reduction under the production conditions exemplified above, the product is cooled, and the metal catalyst and the reaction solution are separated by vacuum suction filtration, centrifugation, or the like to obtain a target solution. Reprecipitation or recrystallization from the separated reaction solution, or after such distilling off the reaction solvent of the reaction solution, dried, the desired H 8-1,1'-bi-2-naphthyl derivative can get. Further, the separated catalyst can be readjusted if necessary and reused.

以下に、本発明の特徴をさらに具体的に説明するため、実施例を示すが、本発明はこれらによって何ら限定されるものではない。 In order to describe the features of the present invention more specifically, examples will be shown below, but the present invention is not limited to these examples.

本実施例で用いた炭素ナノ繊維担持ルテニウム触媒は、上述の文献(Y.Motoyama,M.Takasaki,K.Higashi,S.−H.Yoon,I Mochida,H.Nagashima,Chemistry Letters,2006,35,876,特開2006−281201号公報)に従って合成したものである。   The carbon nanofiber-supported ruthenium catalyst used in this example is the above-mentioned document (Y. Motoyama, M. Takasaki, K. Higashi, S.-H. Yoon, I Mochida, H. Nagashima, Chemistry Letters, 2006, 35). , 876, Japanese Patent Laid-Open No. 2006-281201).

実施例で使用した光学活性(R)−BINOLには、東京化成社製:Cat.No.B1142(99.1%ee)のものを、エーテル/ヘキサンから再結晶して純度>99.9%eeとしたものを用いた。他の1,1’−ビ−2−ナフチル誘導体は、(R)−BINOL(>99.9%ee)から以下の文献に従って合成し、その光学純度(>99.9%ee)をキラルHPLCで確認したものを用いた。
K.Maruoka,S.Sato,H.Yamamoto,J.Am.Chem.Soc.,117,1165(1995)
H.Hocke,Y.Uozumi、Tetrahedron,59,619(2003)
D.S.Lingenfelter,R.C.Helgeson,D.J.Cram,J.Org.Chem,46,393(1981)
H.Kitajima,K Ito,Y.Aoki,T.Katsuki,Bull,Chem,Soc,Jpn.,70,207(1997)
The optically active (R) -BINOL used in the examples includes: Cat. No. B1142 (99.1% ee) was recrystallized from ether / hexane to a purity of> 99.9% ee. Other 1,1′-bi-2-naphthyl derivatives were synthesized from (R) -BINOL (> 99.9% ee) according to the following literature, and their optical purity (> 99.9% ee) was determined by chiral HPLC. What was confirmed in (1) was used.
K. Maruoka, S .; Sato, H .; Yamamoto, J. et al. Am. Chem. Soc. , 117, 1165 (1995)
H. Hocke, Y. et al. Uozumi, Tetrahedron, 59, 619 (2003)
D. S. Lingenfelder, R.A. C. Helgeson, D.H. J. et al. Cram, J .; Org. Chem, 46, 393 (1981)
H. Kitajima, K Ito, Y. et al. Aoki, T .; Katsuki, Bull, Chem, Soc, Jpn. , 70, 207 (1997)

(製造例1) 金属触媒の調製方法
30mLの2口フラスコの片方に上部に三方コックをつけた冷却管、もう一方に活栓を付け、磁気撹拌子を加えて、0.01MPaで減圧乾燥下後、フラスコ内をアルゴン雰囲気に置換した。平板積層炭素ナノ繊維(100mg)とRu(CO)12(31.9mg、0.05mmol)をフラスコに加え、5.3×10−6MPaで約10分減圧乾燥した後、再びアルゴン雰囲気に置換した。トルエン(17mL)をシリンジで加えて錯体を溶解した。この炭素繊維が懸濁した錯体溶液を24時間加熱還流した。反応物を室温まで冷却した後、メンブランフィルターを用いて濾別し、そのままトルエン(50mL)と引き続きエーテル(50mL)で洗浄した。得られた炭素繊維を30mLナスフラスコに移し、その上部に三方コックをつけた後、5.3×10−6MPaの減圧下、室温で乾燥することにより、ルテニウム担持平板積層炭素ナノ繊維構造体(102mg)を得た。
以上の操作により得られたRu/CNF−Pのルテニウム担持量をICP−MS(ICP質量分析)により測定したところ、1.7wt%であった。
(Production Example 1) Preparation method of metal catalyst A cooling tube with a three-way cock attached to one side of a 30 mL two-necked flask, a stopcock on the other side, a magnetic stirrer added, and drying under reduced pressure at 0.01 MPa The inside of the flask was replaced with an argon atmosphere. Plate-laminated carbon nanofibers (100 mg) and Ru 3 (CO) 12 (31.9 mg, 0.05 mmol) were added to the flask, dried under reduced pressure at 5.3 × 10 −6 MPa for about 10 minutes, and then again placed in an argon atmosphere. Replaced. Toluene (17 mL) was added with a syringe to dissolve the complex. The complex solution in which the carbon fibers were suspended was heated to reflux for 24 hours. After the reaction product was cooled to room temperature, it was filtered off using a membrane filter, and washed with toluene (50 mL) and then with ether (50 mL). The obtained carbon fiber was transferred to a 30 mL eggplant flask, and a three-way cock was attached to the upper part thereof, and then dried at room temperature under a reduced pressure of 5.3 × 10 −6 MPa, whereby a ruthenium-supported flat-plate carbon nanofiber structure (102 mg) was obtained.
The ruthenium loading of Ru / CNF-P obtained by the above operation was measured by ICP-MS (ICP mass spectrometry) and found to be 1.7 wt%.

(実施例1) (R)−1,1’−ビ−2−ナフトール(BINOL)の水素化

Figure 0005087344
100 mLオートクレーブ用ガラス内管に、平板積層炭素ナノ繊維に担持したルテニウム触媒(金属担持量;1.7wt%、Ru/CNF−P;10mg)、(R)−1,1’−ビ−2−ナフトール(BINOL)(143.2mg、0.5mmol;>99.9%ee)を加え、エタノール(10mL)に溶解した[基質/金属のモル比(S/C)=297]。このガラス内管をオートクレーブに設置し、ゲージ圧4MPaで反応した。オートクレーブを70℃のオイルバスにつけ、5時間半撹拌した。反応容器を室温まで冷却した後、オートクレーブのコックを徐々に開放して常圧に戻した。反応物とルテニウム触媒を、セライトを助剤にして、ろ過により分離し、ジクロロメタンでオートクレーブ用内管を洗浄した。得られた洗浄液をろ液に加えた後、溶媒を減圧留去することで目的物の(R)−5,5’,6,6’,7,7’,8,8’−オクタヒドロ−2,2’−ジヒドロキシ−1,1’−ビナフチル(H−BINOL)を定量的に得た。その後、シリカゲルカラム(溶媒:ヘキサン/エーテル=2/1)にて単離した。単離収率は99%であった。反応条件、収率等を表1に示した。 Example 1 Hydrogenation of (R) -1,1′-bi-2-naphthol (BINOL)
Figure 0005087344
Ruthenium catalyst (metal loading: 1.7 wt%, Ru / CNF-P; 10 mg), (R) -1,1′-Bi-2 supported on flat laminated carbon nanofibers in a 100 mL autoclave glass inner tube -Naphthol (BINOL) (143.2 mg, 0.5 mmol;> 99.9% ee) was added and dissolved in ethanol (10 mL) [substrate / metal molar ratio (S / C) = 297]. This glass inner tube was placed in an autoclave and reacted at a gauge pressure of 4 MPa. The autoclave was placed in a 70 ° C. oil bath and stirred for 5 hours and a half. After cooling the reaction vessel to room temperature, the autoclave cock was gradually opened to return to normal pressure. The reaction product and the ruthenium catalyst were separated by filtration using celite as an aid, and the inner tube for autoclave was washed with dichloromethane. The obtained washing solution is added to the filtrate, and then the solvent is distilled off under reduced pressure to obtain the target (R) -5,5 ′, 6,6 ′, 7,7 ′, 8,8′-octahydro-2. , 2′-dihydroxy-1,1′-binaphthyl (H 8 -BINOL) was obtained quantitatively. Then, it was isolated on a silica gel column (solvent: hexane / ether = 2/1). The isolation yield was 99%. The reaction conditions, yield, etc. are shown in Table 1.

得られたH−BINOLは、H及び13Cの核磁気共鳴スペクトル(NMR)により、その構造及び純度 (>99%) を確認した。
H NMR (396MHz,CDCl):
1.62−1.84 (m,8H),2.16(dt,J=17.4,6.3Hz,2H),2.30(dt,J=17.4,6.3Hz,2H),2.75(t,J=6.3Hz,2H),4.54(s,2H),6.83(d,J=8.2Hz,2H),7.07(d,J=8.2Hz,2H)
13C NMR (99.5MHz,CDCl3):
23.0,23.1,27.2,29.3,113.0,118.9,130.2,131.1,137.2,151.5
The resulting H 8 -BINOL was confirmed for its structure and purity (> 99%) by 1 H and 13 C nuclear magnetic resonance spectra (NMR).
1 H NMR (396 MHz, CDCl 3 ):
1.62-1.84 (m, 8H), 2.16 (dt, J = 17.4, 6.3 Hz, 2H), 2.30 (dt, J = 17.4, 6.3 Hz, 2H) , 2.75 (t, J = 6.3 Hz, 2H), 4.54 (s, 2H), 6.83 (d, J = 8.2 Hz, 2H), 7.07 (d, J = 8. (2Hz, 2H)
13 C NMR (99.5 MHz, CDCl 3 ):
23.0, 23.1, 27.2, 29.3, 113.0, 118.9, 130.2, 131.1, 137.2, 151.5

得られたH−BINOLの光学純度は、キラルHPLC[(DAICEL CHIRALCEL OD−H,UV−Detector 254nm,Hexane/i-PrOH=20/1,Flow Rate0.5mL/min),t=15.1min
(R),17.9min (S)]により>99.9%eeであり、光学純度の低下は観測されなかった。
The optical purity of the obtained H 8 -BINOL was determined by chiral HPLC [(DAICEL CHIRALCEL OD-H, UV-Detector 254 nm, Hexane / i-PrOH = 20/1, Flow Rate 0.5 mL / min), t R = 15.1 min.
(R), 17.9 min (S)]> 99.9% ee, and no decrease in optical purity was observed.

(比較例1〜2)
本発明に係る金属触媒を表1に記載の触媒に代えた他は、実施例1と同じ操作を行って、H−BINOLを得た。反応条件、収率等を表1に示した。
なお、「Ru/AC」は、活性炭(関東化学:Cat.No.01085−02)を用いて合成した活性炭担持ルテニウム触媒を指し、「Ru/C」は、市販の炭素担持ルテニウム触媒(N.E.CHEMCAT社製、dry品Aタイプ)を指す。
(Comparative Examples 1-2)
Except that the metal catalyst according to the present invention was changed to the catalyst described in Table 1, by performing the same operation as in Example 1 to obtain a H 8 -BINOL. The reaction conditions, yield, etc. are shown in Table 1.
“Ru / AC” refers to an activated carbon-supported ruthenium catalyst synthesized using activated carbon (Kanto Chemical: Cat. No. 010885-02), and “Ru / C” refers to a commercially available carbon-supported ruthenium catalyst (N.C. E. CHEMCAT, dry product A type).

Figure 0005087344
Figure 0005087344

表1から判るように、本発明に係るRu/CNF-P触媒は高い触媒活性を示す。一方、活性炭担持触媒(Ru/AC)は、中間生成物である片側のナフチル環のみが還元されたテトラヒドロ誘導体(H4-BINOL)が副生し、選択率及び収率が低い。 As can be seen from Table 1, the Ru / CNF-P catalyst according to the present invention exhibits high catalytic activity. On the other hand, in the activated carbon-supported catalyst (Ru / AC), a tetrahydro derivative (H 4 -BINOL) in which only one naphthyl ring as an intermediate product is reduced is by-produced, and the selectivity and yield are low.

(実施例2) (R)−2−メトキシ−2’−ヒドロキシ−1,1’−ビナフチル(BINOL−Me)の水素化

Figure 0005087344
基質として(R)−2−メトキシ−2’−ヒドロキシ−1,1’−ビナフチル(BINOL−Me)(150.0mg、0.5mmol、光学純度>99.9%ee)を用いた他は、表2に記載の条件で、実施例1と同様の操作を行った。目的の(R)−5,5’,6,6’ ,7,7’,8,8’−オクタヒドロ−2−メトキシ−2’−ヒドロキシ−1,1’−ビナフチル(H8−BINOL−Me)が得られた。シリカゲルカラム(溶媒:ヘキサン/塩化メチレン=1/2)にて、単離した。単離収率は96%、光学純度は>99.9%eeであった。反応条件、単離収率、光学純度等を表2に示した。 Example 2 Hydrogenation of (R) -2-methoxy-2′-hydroxy-1,1′-binaphthyl (BINOL-Me)
Figure 0005087344
Other than using (R) -2-methoxy-2′-hydroxy-1,1′-binaphthyl (BINOL-Me) (150.0 mg, 0.5 mmol, optical purity> 99.9% ee) as a substrate, Under the conditions described in Table 2, the same operation as in Example 1 was performed. The desired (R) -5,5 ′, 6,6 ′, 7,7 ′, 8,8′-octahydro-2-methoxy-2′-hydroxy-1,1′-binaphthyl (H 8 -BINOL-Me) )was gotten. It was isolated with a silica gel column (solvent: hexane / methylene chloride = 1/2). The isolation yield was 96% and the optical purity was> 99.9% ee. The reaction conditions, isolated yield, optical purity and the like are shown in Table 2.

得られたH−BINOL−Meは、H及び13Cの核磁気共鳴スペクトルにより、その構造及び純度 (>99%) を確認した。
1H NMR (396MHz,CDCl3):
1.61−1.81(m,8H),2.04−2.21(m,2H),2.21−2.35(m,2H),2.70−2.83(m,4H),3.69(s,3H),4.38(bs,1H),6.78(d,J=8.2Hz,1H),6.81(d,J=8.2Hz,1H),7.01(d,J=8.2Hz,1H),7.13(d,J=8.2Hz,1H)
13C NMR (99.5 MHz,CDCl3):
23.06,23.15,23.19,23.24,27.1,27.3,29.37,29.38,55.8,109.0,112.1,122.0,122.8,129.1,129.5,130.3,130.5,136.2,138.1,150.2,155.6
The resulting H 8 -BINOL-Me was confirmed for its structure and purity (> 99%) by 1 H and 13 C nuclear magnetic resonance spectra.
1 H NMR (396 MHz, CDCl 3 ):
1.61-1.81 (m, 8H), 2.04-2.21 (m, 2H), 2.21-2.35 (m, 2H), 2.70-2.83 (m, 4H) ), 3.69 (s, 3H), 4.38 (bs, 1H), 6.78 (d, J = 8.2 Hz, 1H), 6.81 (d, J = 8.2 Hz, 1H), 7.01 (d, J = 8.2 Hz, 1H), 7.13 (d, J = 8.2 Hz, 1H)
13 C NMR (99.5 MHz, CDCl 3 ):
23.06, 23.15, 23.19, 23.24, 27.1, 277.3, 29.37, 29.38, 55.8, 109.0, 112.1, 122.0, 122. 8, 129.1, 129.5, 130.3, 130.5, 136.2, 138.1, 150.2, 155.6

得られたH−BINOL−Meの光学純度は、キラルHPLC[(DAICEL CHIRALCEL OD−H,UV−Detector 254nm,Hexane/i-PrOH=100/1,Flow Rate 0.5mL/min),tR=18.0min (R),19.3min (S)]により>99.9%eeであり、光学純度の低下は観測されなかった。 The optical purity of the obtained H 8 -BINOL-Me was determined by chiral HPLC [(DAICEL CHIRALCEL OD-H, UV-Detector 254 nm, Hexane / i-PrOH = 100/1, Flow Rate 0.5 mL / min), t R = 18.0 min (R), 19.3 min (S)]> 99.9% ee, and no decrease in optical purity was observed.

(実施例3) (R)−2−ピバロイルオキシ−2’−ヒドロキシ−1,1’−ビナフチル(BINOL−Piv)の水素化

Figure 0005087344
基質として(R)−2−ピバロイルオキシ−2’−ヒドロキシ−1,1’−ビナフチル(BINOL−Piv)(185 mg、0.5 mmol)、光学純度>99.9%ee)を用いた他は、表2に記載の条件で、実施例1と同様の操作を行った。目的の(R)−5,5’,6,6’ ,7,7’,8,8’−オクタヒドロ−2−ピバロイルオキシ−2’−ヒドロキシ−1,1’−ビナフチル(H8−BINOL−Piv)が得られた。シリカゲルカラム(溶媒:ヘキサン/塩化メチレン=1/1)にて単離した。単離収率は92%、光学純度は>99.9%eeであった。反応条件、単離収率、光学純度等を表2に示した。 Example 3 Hydrogenation of (R) -2-Pivaloyloxy-2′-hydroxy-1,1′-binaphthyl (BINOL-Piv)
Figure 0005087344
Other than using (R) -2-pivaloyloxy-2′-hydroxy-1,1′-binaphthyl (BINOL-Piv) (185 mg, 0.5 mmol), optical purity> 99.9% ee) as a substrate, The same operation as in Example 1 was performed under the conditions described in 2. The desired (R) -5,5 ′, 6,6 ′, 7,7 ′, 8,8′-octahydro-2-pivaloyloxy-2′-hydroxy-1,1′-binaphthyl (H 8 -BINOL-Piv) )was gotten. It was isolated on a silica gel column (solvent: hexane / methylene chloride = 1/1). The isolation yield was 92% and the optical purity was> 99.9% ee. The reaction conditions, isolated yield, optical purity and the like are shown in Table 2.

得られたH−BINOL−Pivは、H及び13Cの核磁気共鳴スペクトルにより、その構造及び純度 (>99%) を確認した。
1H NMR (396 MHz,CDCl):
0.95(s,9H),1.59−1.81(m,8H),2.02(dt,J= 17.4,5.3Hz,1H),2.14(dt,J =17.4,6.0Hz,1H),2.32(dt,J = 17.4,6.3Hz,1H),2.42(dt,J =17.4,6.3Hz,1H),2.63−2.77 (m,2H),2.77−2.88 (m,2H),4.73(bs,1H),6.76(d,J =8.2 Hz,1H),6.87(d,J = 8.2 Hz,1H),6.96(d,J = 8.2 Hz,1H),7.16 (d,J = 8.2Hz,1H)
13C NMR (99.5 MHz,CDCl):
22.7,22.9,23.2,23.3,26.7,26.9,27.3,29.3,29.7,38.7,114.1,119.3,122.5,128.1,129.4,129.8,130.2,135.85,135.92,138.3,147.2,150.8,178.2
The resulting H 8 -BINOL-Piv was confirmed for its structure and purity (> 99%) by 1 H and 13 C nuclear magnetic resonance spectra.
1 H NMR (396 MHz, CDCl 3 ):
0.95 (s, 9H), 1.59-1.81 (m, 8H), 2.02 (dt, J = 17.4, 5.3 Hz, 1H), 2.14 (dt, J = 17) .4, 6.0 Hz, 1 H), 2.32 (dt, J = 17.4, 6.3 Hz, 1 H), 2.42 (dt, J = 17.4, 6.3 Hz, 1 H), 2. 63-2.77 (m, 2H), 2.77-2.88 (m, 2H), 4.73 (bs, 1H), 6.76 (d, J = 8.2 Hz, 1H), 6 .87 (d, J = 8.2 Hz, 1H), 6.96 (d, J = 8.2 Hz, 1H), 7.16 (d, J = 8.2 Hz, 1H)
13 C NMR (99.5 MHz, CDCl 3 ):
22.7, 22.9, 23.2, 23.3, 26.7, 26.9, 27.3, 29.3, 29.7, 38.7, 114.1, 119.3, 122. 5, 128.1, 129.4, 129.8, 130.2, 135.85, 135.92, 138.3, 147.2, 150.8, 178.2

得られたH−BINOL−Pivの光学純度は、キラル[HPLC (DAICEL CHIRALCEL OD−H,UV−Detector 254 nm,Hexane/i-PrOH =500/1,Flow Rate 0.5 mL/min),t = 20.8min (R),23.0min (S)、 HRMS (EI) Calcd for C30 378.2195,found 378.2194]により>99.9%eeであり、光学純度の低下は観測されなかった。 The optical purity of the obtained H 8 -BINOL-Piv is chiral [HPLC (DAICEL CHIRALCEL OD-H, UV-Detector 254 nm, Hexane / i-PrOH = 500/1, Flow Rate 0.5 mL / min), t R = 20.8 min (R), 23.0 min (S), HRMS (EI) Calcd for C 5 H 30 O 3 378.2195, found 378.2194], optical purity of> 99.9% No decline was observed.

(実施例4) (R)−2,2’−ジメトキシ−1,1’−ビナフチル(BINOL−Me2)の水素化

Figure 0005087344
基質として(R)−2,2’−ジメトキシ−1,1’ −ビナフチル(BINOL−Me2)(157.0mg、0.5mmol、光学純度>99.9%ee)を用いた他は、表2に記載の条件で、実施例1と同様の操作を行った。目的の(R)−5,5’,6,6’ ,7,7’,8,8’−オクタヒドロ−2,2’−ジメトキシ−1,1’−ビナフチル(H−BINOL−Me2)が得られた。 NMRによる収率は>99%であり、シリカゲルカラム(溶媒:ヘキサン/塩化メチレン=1/1)にて、単離した。単離収率は95%、光学純度は>99.9%eeであった。反応条件、単離収率、光学純度等を表2に示した。 Example 4 Hydrogenation of (R) -2,2′-dimethoxy-1,1′-binaphthyl (BINOL-Me 2 )
Figure 0005087344
Other than using (R) -2,2′-dimethoxy-1,1′-binaphthyl (BINOL-Me 2 ) (157.0 mg, 0.5 mmol, optical purity> 99.9% ee) as a substrate, The same operation as in Example 1 was performed under the conditions described in 2. Target (R) -5,5 ′, 6,6 ′, 7,7 ′, 8,8′-octahydro-2,2′-dimethoxy-1,1′-binaphthyl (H 8 -BINOL-Me 2 ) was gotten. The yield by NMR was> 99%, and it was isolated on a silica gel column (solvent: hexane / methylene chloride = 1/1). The isolation yield was 95% and the optical purity was> 99.9% ee. The reaction conditions, isolated yield, optical purity and the like are shown in Table 2.

得られたH−BINOL−Meは、H及び13Cの核磁気共鳴スペクトルにより、その構造及び純度 (>99%) を確認した。
H NMR (396MHz,CDCl):
1.56−1.81 (m,8H),2.08(dt、J = 17.4, 6.3Hz, 2H), 2.27(dt、J = 17.4, 6.3Hz, 2H),2.66−2.87 (m,4H),3.67(s,6H),6.78(d,J = 8.2Hz,2H),7.06 (d,J =8.2Hz,2H)。
13C NMR(99.5MHz,CDCl):
23.2,23.3,27.2,29.5,56.1,108.9,126.0,128.8,129.6,136.8,154.8
なお、得られたH8−BINOL−Me2の光学純度は、BBrを用いてメチル基を脱離し、H−BINOL として決定した結果、光学純度は>99.9%eeであり、光学純度の低下は観測されなかった。
The resulting H 8 -BINOL-Me 2 was confirmed for its structure and purity (> 99%) by 1 H and 13 C nuclear magnetic resonance spectra.
1 H NMR (396 MHz, CDCl 3 ):
1.56-1.81 (m, 8H), 2.08 (dt, J = 17.4, 6.3 Hz, 2H), 2.27 (dt, J = 17.4, 6.3 Hz, 2H) , 2.66-2.87 (m, 4H), 3.67 (s, 6H), 6.78 (d, J = 8.2 Hz, 2H), 7.06 (d, J = 8.2 Hz, 2H).
13 C NMR (99.5 MHz, CDCl 3 ):
23.2, 23.3, 27.2, 29.5, 56.1, 108.9, 126.0, 128.8, 129.6, 136.8, 154.8
The optical purity of the obtained H 8 -BINOL-Me 2 is eliminated methyl group using BBr 3, the results determined as H 8 -BINOL, optical purity is> 99.9% ee, optical No decrease in purity was observed.

(実施例5) (R)−2,2’−ジ(メトキシメチルオキシ)−1,1’−ビナフチル(BINOL−MOM2)の水素化

Figure 0005087344
基質として(R)−2,2’−ジ(メトキシメチルオキシ)−1,1’−ビナフチル(BINOL−MOM)(187.2 mg、0.5mmol、光学純度>99.9%ee)を用いた他は、表2に記載の条件で、実施例1と同様の操作を行った。目的の(R)−5,5’,6,6’ ,7,7’,8,8’−オクタヒドロ−2,2’−ジ(メトキシメチルオキシ)−1,1’−ビナフチル(H8−BINOL−MOM2)が得られた。シリカゲルカラム(溶媒:ヘキサン/塩化メチレン=1/1)にて単離した。単離収率は98%、光学純度は>99.9%eeであった。反応条件、単離収率、光学純度等を表2に示した。 Example 5 Hydrogenation of (R) -2,2′-di (methoxymethyloxy) -1,1′-binaphthyl (BINOL-MOM 2 )
Figure 0005087344
(R) -2,2′-di (methoxymethyloxy) -1,1′-binaphthyl (BINOL-MOM 2 ) (187.2 mg, 0.5 mmol, optical purity> 99.9% ee) as a substrate. The same operation as in Example 1 was performed under the conditions described in Table 2 except that it was used. The desired (R) -5,5 ′, 6,6 ′, 7,7 ′, 8,8′-octahydro-2,2′-di (methoxymethyloxy) -1,1′-binaphthyl (H 8 − BINOL-MOM 2 ) was obtained. It was isolated on a silica gel column (solvent: hexane / methylene chloride = 1/1). The isolation yield was 98% and the optical purity was> 99.9% ee. The reaction conditions, isolated yield, optical purity and the like are shown in Table 2.

得られたH−BINOL−MOM2は、H及び13Cの核磁気共鳴スペクトルによりその構造及び純度 (>99%) を確認した。
H NMR (396MHz,CDCl):
1.60−1.78(m,8H),2.10 (dt,J = 17.4,6.3Hz,2H),2.30(dt,J = 17.4,6.5Hz,2H),2.77 (t,J = 6.0 Hz,4H),3.28(s,6H),4.96(d,J = 6.8Hz,2H),5.02(d,J = 6.8Hz,2H),6.98 (d,J = 8.7Hz,2H),7.04(d,J = 8.7Hz,2H)
13C NMR(99.5 MHz,CDCl):
23.2,23.3,27.4,29.5,55.7,94.8,112.8,127.2,128.9,131.0,136.9,152.2
The resulting H 8 -BINOL-MOM 2 was confirmed for its structure and purity (> 99%) by 1 H and 13 C nuclear magnetic resonance spectra.
1 H NMR (396 MHz, CDCl 3 ):
1.60-1.78 (m, 8H), 2.10 (dt, J = 17.4, 6.3 Hz, 2H), 2.30 (dt, J = 17.4, 6.5 Hz, 2H) , 2.77 (t, J = 6.0 Hz, 4H), 3.28 (s, 6H), 4.96 (d, J = 6.8 Hz, 2H), 5.02 (d, J = 6) .8 Hz, 2H), 6.98 (d, J = 8.7 Hz, 2H), 7.04 (d, J = 8.7 Hz, 2H)
13 C NMR (99.5 MHz, CDCl 3 ):
23.2, 23.3, 27.4, 29.5, 55.7, 94.8, 112.8, 127.2, 128.9, 131.0, 136.9, 152.2

得られたH−BINOL−MOM2の光学純度は、キラル[HPLC (DAICEL CHIRALCEL OD−H,UV−Detector 254nm,Hexane/i-PrOH = 500/1,Flow Rate 0.5mL/min),t = 15.4min (S),16.8min (R),HRMS(EI) Calcd for C30 382.2144,found 382.2144]により>99.9%eeであり、光学純度の低下は観測されなかった。 The optical purity of the obtained H 8 -BINOL-MOM 2 is chiral [HPLC (DAICEL CHIRALCEL OD-H, UV-Detector 254 nm, Hexane / i-PrOH = 500/1, Flow Rate 0.5 mL / min), t R = 15.4min (S), 16.8min (R), HRMS (EI) Calcd for C 4 H 30 O 4 382.2144, by found the 382.2144]> was 99.9% ee, optical purity No decline was observed.

(実施例6) (R)−2,2’−ジアミノ−1,1’−ビナフチル(DABN)の水素化

Figure 0005087344
基質として(R)−2,2’−ジアミノ−1,1’−ビナフチル(DABN)(71.1 mg、0.25 mmol、光学純度>99.9%ee)を用い、100℃で24時間反応したことを用いた他は、表2に記載の条件で、実施例1と同様の操作を行った。目的の(R)−5,5’,6,6’ ,7,7’,8,8’−オクタヒドロ−2,2’−ジアミノ−1,1’−ビナフチル(H−DABN)が得られた。シリカゲルカラム(溶媒:アセトン)にて単離した。単離収率は80%、光学純度は>99.9%eeであった。反応条件、単離収率、光学純度等を表2に示した。 Example 6 Hydrogenation of (R) -2,2′-diamino-1,1′-binaphthyl (DABN)
Figure 0005087344
(R) -2,2′-diamino-1,1′-binaphthyl (DABN) (71.1 mg, 0.25 mmol, optical purity> 99.9% ee) was used as a substrate and reacted at 100 ° C. for 24 hours. The same operation as in Example 1 was performed under the conditions described in Table 2 except that it was used. The desired (R) -5,5 ′, 6,6 ′, 7,7 ′, 8,8′-octahydro-2,2′-diamino-1,1′-binaphthyl (H 8 -DABN) is obtained. It was. It was isolated on a silica gel column (solvent: acetone). The isolation yield was 80% and the optical purity was> 99.9% ee. The reaction conditions, isolated yield, optical purity and the like are shown in Table 2.

得られたH−DABNは、H及び13Cの核磁気共鳴スペクトルによりその構造及び純度 (>99%) を確認した。
H NMR (396 MHz,CDCl):
1.61−1.76 (m,8H),2.17(dt,J = 17.4,6.5Hz,2H),2.28(dt,J = 17.4,6.0Hz,2H),2.71(t,J = 6.0 Hz,4H),3.31 (bs,4H),6.62 (d,J = 8.2Ht,2H),6.92(d,J = 8.2 Hz,2H)
13C NMR (99.5 MHz,CDCl):
23.3,23.5,27.1,29.5,113.2,122.1,127.7,129.3,136.3,141.7
The resulting H 8 -DABN was confirmed for its structure and purity (> 99%) by 1 H and 13 C nuclear magnetic resonance spectra.
1 H NMR (396 MHz, CDCl 3 ):
1.61-1.76 (m, 8H), 2.17 (dt, J = 17.4, 6.5 Hz, 2H), 2.28 (dt, J = 17.4, 6.0 Hz, 2H) , 2.71 (t, J = 6.0 Hz, 4H), 3.31 (bs, 4H), 6.62 (d, J = 8.2Ht, 2H), 6.92 (d, J = 8 .2 Hz, 2H)
13 C NMR (99.5 MHz, CDCl 3 ):
23.3, 23.5, 27.1, 29.5, 113.2, 122.1, 127.7, 129.3, 136.3, 141.7

得られたH−DABNの光学純度は、キラル[ HPLC (DAICEL CHIRALCEL OD−H,UV−Detector 254nm,Hexane/i-PrOH = 20/1,Flow Rate 0.5mL/min),t=24.7min (R),28.0min (S) ]により>99.9%eeであり、光学純度の低下は観測されなかった。 The optical purity of the obtained H 8 -DABN was determined by chiral [HPLC (DAICEL CHIRALCEL OD-H, UV-Detector 254 nm, Hexane / i-PrOH = 20/1, Flow Rate 0.5 mL / min), t R = 24 0.7 min (R), 28.0 min (S)]> 99.9% ee, and no decrease in optical purity was observed.

(実施例7) (R)−1,1’−ビ−2−ナフトール(BINOL)の水素化(S/C = 1389)

Figure 0005087344
100 mLオートクレーブ用ガラス内管に、平板積層炭素ナノ繊維に担持したルテニウム触媒(金属担持量;1.7wt%、Ru/CNF-P;15.0mg)、(R)−1,1’−ビ−2−ナフトール(BINOL)(1.0g、3.5mmol、光学純度>99.9%ee)を加え、エタノール(15 mL)に溶解した[基質/金属のモル比(S/C)=1460]。このガラス内管をオートクレーブに設置し4MPaの水素を充填した後、このオートクレーブを50℃のオイルバスにつけ、48時間撹拌した。反応容器を室温まで冷却した後、オートクレーブのコックを徐々に開放して常圧に戻した。反応物とルテニウム触媒を、セライトを助剤としたろ過により分離し、ジクロロメタンでオートクレーブ用内管を洗浄した。得られた洗浄液をろ液に加えた後、溶媒を減圧留去することで目的物の(R)−5,5’,6,6’,7,7’,8,8’−オクタヒドロ−2,2’−ジヒドロキシ−1,1’−ビナフチル(H8−BINOL)が得られた。シリカゲルカラム(溶媒:ヘキサン/エーテル=2/1)にて単離した。単離収率は99%、光学純度は>99.9%eeであった。反応条件、単離収率、光学純度等を表2に示した。 Example 7 Hydrogenation of (R) -1,1′-bi-2-naphthol (BINOL) (S / C = 1389)
Figure 0005087344
Ruthenium catalyst (metal loading: 1.7 wt%, Ru / CNF-P; 15.0 mg) supported on a flat laminated carbon nanofiber on a 100 mL autoclave glass inner tube, (R) -1,1′-bi 2-Naphthol (BINOL) (1.0 g, 3.5 mmol, optical purity> 99.9% ee) was added and dissolved in ethanol (15 mL) [substrate / metal molar ratio (S / C) = 1460 ]. The glass inner tube was placed in an autoclave and filled with 4 MPa hydrogen, and then the autoclave was placed in a 50 ° C. oil bath and stirred for 48 hours. After cooling the reaction vessel to room temperature, the autoclave cock was gradually opened to return to normal pressure. The reaction product and the ruthenium catalyst were separated by filtration using celite as an auxiliary, and the inner tube for autoclave was washed with dichloromethane. The obtained washing solution is added to the filtrate, and then the solvent is distilled off under reduced pressure to obtain the target (R) -5,5 ′, 6,6 ′, 7,7 ′, 8,8′-octahydro-2. , 2′-dihydroxy-1,1′-binaphthyl (H 8 -BINOL) was obtained. It was isolated on a silica gel column (solvent: hexane / ether = 2/1). The isolation yield was 99% and the optical purity was> 99.9% ee. The reaction conditions, isolated yield, optical purity and the like are shown in Table 2.

(実施例8) 金属触媒の再利用 (Example 8) Reuse of metal catalyst

実施例5と同様に反応を行なった後、ろ過により平板積層炭素ナノ繊維に担持したルテニウム触媒(金属担持量;1.7wt%、Ru/CNF-P)を回収し、該触媒を用いて実施例5と同様の手順で3回繰り返し反応を行なった。その結果、3回の反応において、目的とする(R)−5,5’,6,6’ ,7,7’,8,8’−オクタヒドロ−2,2’−ジ(メトキシメチルオキシ)−1,1’−ビナフチル(H8−BINOL−MOM2)がほぼ定量的に得られ、その光学純度も>99.9%eeであった。 After reacting in the same manner as in Example 5, the ruthenium catalyst (metal loading amount: 1.7 wt%, Ru / CNF-P) supported on the flat-plate laminated carbon nanofibers was recovered by filtration, and the catalyst was used. The reaction was repeated three times in the same procedure as in Example 5. As a result, the target (R) -5,5 ′, 6,6 ′, 7,7 ′, 8,8′-octahydro-2,2′-di (methoxymethyloxy)-was obtained in three reactions. 1,1′-binaphthyl (H 8 -BINOL-MOM 2 ) was obtained almost quantitatively, and its optical purity was also> 99.9% ee.

Figure 0005087344
Figure 0005087344

表2から判るように、いずれの実施例でも、高選択率・高収率で且つ光学純度を保持したまま、目的物のH8−1,1’−ビ−2−ナフチル誘導体が得られた。特に、実施例4〜6から判るように、比較的反応性の低いジアルコキシ誘導体やジアミノ誘導体においても、定量的に目的物のH−ビナフチル誘導体が光学純度の低下を伴うことなく得られた。
また、実施例8から、比較的少ない触媒量で、目的とするH−ビナフチル誘導体を高選択率で、且つ、高収率に、光学純度を保持したまま、得られることがわかった。
As can be seen from Table 2, in any of the Examples, the target H 8 -1,1′-bi-2-naphthyl derivative was obtained with high selectivity, high yield and optical purity. . In particular, as can be seen from Examples 4 to 6, even in the case of dialkoxy derivatives and diamino derivatives having relatively low reactivity, the objective H 8 -binaphthyl derivative was quantitatively obtained without a decrease in optical purity. .
Further, from Example 8, it was found that the target H 8 -binaphthyl derivative can be obtained with a relatively small amount of catalyst with high selectivity and high yield while maintaining optical purity.

本発明によって、H8−1,1’−ビ−2−ナフチル誘導体を、光学純度を保持したままで、高い選択性で且つ高い収率で製造し得ることが可能となる。その結果、不斉誘導を示すキラル配位子であるH8−1,1’−ビ−2−ナフチル誘導体の開発が進み、各種の有用な材料の開発に利用することができる。 According to the present invention, it is possible to produce an H 8 -1,1′-bi-2-naphthyl derivative with high selectivity and high yield while maintaining optical purity. As a result, the development of H 8-1,1'-bi-2-naphthyl derivatives are chiral ligands exhibiting asymmetric induction proceeds, it can be used to develop a variety of useful materials.

Claims (7)

下記一般式(1)で表される1,1’−ビ−2−ナフチル誘導体を、炭素ナノ繊維を担体とする金属触媒存在下で、水素化還元し、下記一般式(2)で表される5,5’,6,6’,7,7’,8,8’−オクタヒドロ−1,1’−ビ−2−ナフチル誘導体を製造する方法。
Figure 0005087344
[a及びbはそれぞれ0〜6の整数を表す。a個のR及びb個のRは同一又は異なって、それぞれ炭素数1〜30のアルキル基又は炭素数3〜12のシクロアルキル基を表す。X及びYは同一又は異なって、
式(A)、
Figure 0005087344
{式中、Rは、水素原子、炭素数1〜30のアルキル基又は炭素数3〜12のシクロアルキル基を表す。nは1〜4の整数を表す。mは0〜12の整数を表す。}
式(B)、
Figure 0005087344
{式中、Rは、炭素数1〜30のアルキル基又は炭素数3〜12のシクロアルキル基を表す。}
式(C)、
Figure 0005087344
{式中、R及びRは同一又は異なって、それぞれ水素原子、炭素数1〜30のアルキル基又は炭素数3〜12のシクロアルキル基を表す。}
又は式(D)
Figure 0005087344
{式中、Rは水素原子、炭素数1〜30のアルキル基又は炭素数3〜12のシクロアルキル基を表す。Rは炭素数1〜30のアルキル基又は炭素数3〜12のシクロアルキル基を表す。}
で表されるいずれかの基を表す。]
Figure 0005087344
[式中、a、b、X、Y、R及びRはそれぞれ、上記一般式(1)におけると同義である。]
The 1,1′-bi-2-naphthyl derivative represented by the following general formula (1) is hydroreduced in the presence of a metal catalyst using carbon nanofibers as a carrier, and is represented by the following general formula (2). 5,5 ′, 6,6 ′, 7,7 ′, 8,8′-octahydro-1,1′-bi-2-naphthyl derivatives.
Figure 0005087344
[a and b represent the integer of 0-6, respectively. a R 1 and b R 2 are the same or different and each represents an alkyl group having 1 to 30 carbon atoms or a cycloalkyl group having 3 to 12 carbon atoms. X and Y are the same or different,
Formula (A),
Figure 0005087344
{Wherein, R 3 represents a hydrogen atom, an alkyl group or a cycloalkyl group having 3 to 12 carbon atoms having 1 to 30 carbon atoms. n represents an integer of 1 to 4. m represents an integer of 0 to 12. }
Formula (B),
Figure 0005087344
{In the formula, R 4 represents an alkyl group having 1 to 30 carbon atoms or a cycloalkyl group having 3 to 12 carbon atoms. }
Formula (C),
Figure 0005087344
{Wherein, R 5 and R 6 are the same or different and each represents a hydrogen atom, an alkyl group having 1 to 30 carbon atoms, or a cycloalkyl group having 3 to 12 carbon atoms. }
Or formula (D)
Figure 0005087344
{Wherein, R 7 represents a hydrogen atom, an alkyl group or a cycloalkyl group having 3 to 12 carbon atoms having 1 to 30 carbon atoms. R 8 represents an alkyl group having 1 to 30 carbon atoms or a cycloalkyl group having 3 to 12 carbon atoms. }
Represents any group represented by ]
Figure 0005087344
[Wherein, a, b, X, Y, R 1 and R 2 have the same meaning as in the general formula (1). ]
金属触媒が、金属錯体を有機溶媒中で炭素ナノ繊維と混合して得られる触媒である、請求項1に記載の方法。 The method according to claim 1, wherein the metal catalyst is a catalyst obtained by mixing a metal complex with carbon nanofibers in an organic solvent. 金属触媒が、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd及びPtからなる群より選ばれる少なくとも一種の金属を含有する触媒である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the metal catalyst is a catalyst containing at least one metal selected from the group consisting of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd and Pt. 金属触媒が、Ru、Rh、Pd及びPtからなる群より選ばれる少なくとも1種の金属を含有する触媒である、請求項3に記載の方法。 The method according to claim 3, wherein the metal catalyst is a catalyst containing at least one metal selected from the group consisting of Ru, Rh, Pd and Pt. 1,1’−ビ−2−ナフチル誘導体(S)に対する、金属触媒中の金属(C)のモル比(S/C)が、S/C=100〜10000の範囲内で水素化還元する、請求項1〜4のいずれかに記載の方法。 The molar ratio (S / C) of the metal (C) in the metal catalyst to the 1,1′-bi-2-naphthyl derivative (S) is hydroreduced within the range of S / C = 100 to 10,000. The method according to claim 1. 一般式(1)においてa及びbがそれぞれ0で表される1,1’−ビ−2−ビナフチル誘導体を還元する、請求項1〜5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein the 1,1'-bi-2-binaphthyl derivative in which a and b are each represented by 0 in the general formula (1) is reduced. 一般式(1)において、X及びYが同一又は異なって、それぞれ
式(E)、
Figure 0005087344
{式中、Rは水素原子、炭素数1〜10のアルキル基又は炭素数3〜6のシクロアルキル基を表す。}
式(F)、
Figure 0005087344
{式中、R10はメチル基又はエチル基を表す。pは、1又は2の整数を表す。}
式(G)、
Figure 0005087344
{式中、R11は炭素数1〜10のアルキル基又は炭素数3〜6のシクロアルキル基を表す。}
又は式(H)
Figure 0005087344
で表されるいずれかの基である、請求項1〜6のいずれかに記載の方法。
In the general formula (1), X and Y are the same or different, and the formula (E),
Figure 0005087344
{In the formula, R 9 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group having 3 to 6 carbon atoms. }
Formula (F),
Figure 0005087344
{In the formula, R 10 represents a methyl group or an ethyl group. p represents an integer of 1 or 2. }
Formula (G),
Figure 0005087344
{In the formula, R 11 represents an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 6 carbon atoms. }
Or formula (H)
Figure 0005087344
The method in any one of Claims 1-6 which is any group represented by these.
JP2007214115A 2007-08-20 2007-08-20 Synthesis of H8-binaphthyl derivatives by reduction of binaphthyl compounds Expired - Fee Related JP5087344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007214115A JP5087344B2 (en) 2007-08-20 2007-08-20 Synthesis of H8-binaphthyl derivatives by reduction of binaphthyl compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007214115A JP5087344B2 (en) 2007-08-20 2007-08-20 Synthesis of H8-binaphthyl derivatives by reduction of binaphthyl compounds

Publications (2)

Publication Number Publication Date
JP2009046430A JP2009046430A (en) 2009-03-05
JP5087344B2 true JP5087344B2 (en) 2012-12-05

Family

ID=40499003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007214115A Expired - Fee Related JP5087344B2 (en) 2007-08-20 2007-08-20 Synthesis of H8-binaphthyl derivatives by reduction of binaphthyl compounds

Country Status (1)

Country Link
JP (1) JP5087344B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7014962B2 (en) * 2018-03-15 2022-02-15 新日本理化株式会社 New cyclic diol compound

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119340A (en) * 1987-11-04 1989-05-11 Asahi Chem Ind Co Ltd Catalyst using superfine carbon fiber
DE10349399A1 (en) * 2003-10-21 2005-06-02 Degussa Ag Process for the reduction of binaphthyl derivatives
JP4644798B2 (en) * 2004-03-31 2011-03-02 独立行政法人物質・材料研究機構 Metal-supported nanocarbon fiber catalyst
JP5013722B2 (en) * 2005-03-10 2012-08-29 独立行政法人科学技術振興機構 Manufacturing method of nano metal fine particle / carbon nano fiber structure

Also Published As

Publication number Publication date
JP2009046430A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
US8586757B2 (en) Ruthenium-based catalytic complexes and the use of such complexes for olefin metathesis
JP6190886B2 (en) Novel ruthenium complex and process for producing methanol and diol
CN102458659A (en) Asymmetric hydrogenation catalyst
JP2015536922A5 (en)
JPS63145291A (en) Ruthenium-phosphine complex
JP5971656B2 (en) Cyclopolyarylene compounds and methods for producing them
US8394997B2 (en) Process for the isomerization of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
BRPI1010643B1 (en) “PROCESS FOR ALLYL ALCOHOL HYDROPHORMILATION TO PRODUCE 4-HYDROXYBUTYLDEIDE”
JP5087344B2 (en) Synthesis of H8-binaphthyl derivatives by reduction of binaphthyl compounds
JP2021516657A (en) Hydrogenation of carbonyl with quaternary PNNP ligand ruthenium complex
Yang et al. Synthesis of novel chiral tridentate aminophenol ligands for enantioselective addition of diethylzinc to aldehydes
US9790156B2 (en) Olefin hydroformylation methods for obtaining branched aldehydes
Wang et al. Robust and efficient transfer hydrogenation of carbonyl compounds catalyzed by NN-Mn (i) complexes
JP5565554B2 (en) Hydrogen storage material
TWI440627B (en) New process for the synthesis of ivabradine and addition salts thereof with a pharmaceutically acceptable acid
JP6559071B2 (en) Isomerization of exo double bonds
EP2726202B1 (en) Method for the preparation of palladium(i) tri-tert-butylphosphine bromide dimer
HyunáKim A new type of self-supported, polymeric Ru-carbene complex for homogeneous catalysis and heterogeneous recovery: synthesis and catalytic activities for ring-closing metathesis
JP2021134141A (en) Method for producing aromatic compound using heterogeneous noble metal catalyst
JP2010202555A (en) Method for producing carbonyl compound
JP2020069472A (en) Solid catalyst and method for producing carbonyl compound and hydrogen using the same
EP2876108B1 (en) Compounds of chiral aromatic spiroketal diphosphine ligands, preparation methods and uses thereof
CN103130618A (en) Method of compounding eight-hydrogen binaphthol derivative through rhodium catalytic hydrogenation
JP2009137905A (en) Method for producing tertiary amine
JP6327607B2 (en) Composites in which palladium particles are supported on organic polymer compounds

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071017

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101007

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120725

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees