JP2005123180A - Lithium compound oxide particle for positive electrode material of lithium secondary battery and its manufacturing method, and lithium secondary battery positive electrode using them and the lithium secondary battery - Google Patents

Lithium compound oxide particle for positive electrode material of lithium secondary battery and its manufacturing method, and lithium secondary battery positive electrode using them and the lithium secondary battery Download PDF

Info

Publication number
JP2005123180A
JP2005123180A JP2004278954A JP2004278954A JP2005123180A JP 2005123180 A JP2005123180 A JP 2005123180A JP 2004278954 A JP2004278954 A JP 2004278954A JP 2004278954 A JP2004278954 A JP 2004278954A JP 2005123180 A JP2005123180 A JP 2005123180A
Authority
JP
Japan
Prior art keywords
positive electrode
lithium
secondary battery
raw material
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004278954A
Other languages
Japanese (ja)
Inventor
Koji Shima
耕司 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004278954A priority Critical patent/JP2005123180A/en
Publication of JP2005123180A publication Critical patent/JP2005123180A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superior positive electrode material for lithium secondary battery which improves low temperature load characteristics of a battery, and to improves coating performance at the manufacture of the positive electrode. <P>SOLUTION: A lithium compound oxide particle, having a specific surface area of 0.4 m<SP>2</SP>/g or larger and 2 m<SP>2</SP>/g or smaller, a primary particle size of 0.5 μm or larger and 2 μm or smaller, and a tap density of 1.4 g/cm<SP>3</SP>or larger and 1.8 g/cm<SP>3</SP>or smaller, is used. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、リチウム二次電池の正極材として用いられるリチウム複合酸化物粒子及びその製造方法、並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池に関する。本発明にかかる正極材は、良好な塗布性を有し、低温でも優れた負荷特性が得られる二次電池用正極を与える。   The present invention relates to lithium composite oxide particles used as a positive electrode material of a lithium secondary battery, a method for producing the same, and a positive electrode for a lithium secondary battery and a lithium secondary battery using the same. The positive electrode material according to the present invention provides a positive electrode for a secondary battery having good coating properties and excellent load characteristics even at low temperatures.

近年、小型化及び軽量化が進む携帯用電子機器や通信機器の電源、又は、自動車用の動力源などとして、リチウム二次電池が注目されている。リチウム二次電池は通常、高出力、高エネルギー密度であり、その正極の正極活物質としては、例えば、標準組成がLiCoO2、LiNiO2、LiMn24等で表わされるリチウム遷移金属複合酸化物が用いられている。 In recent years, lithium secondary batteries have attracted attention as power sources for portable electronic devices and communication devices that are becoming smaller and lighter, or as power sources for automobiles. A lithium secondary battery usually has a high output and a high energy density. As a positive electrode active material for the positive electrode, for example, a lithium transition metal composite oxide whose standard composition is represented by LiCoO 2 , LiNiO 2 , LiMn 2 O 4, etc. Is used.

リチウム遷移金属複合酸化物のなかでも、安全性や原料コストの観点から、正極活物質としてLiCoO2やLiNiO2と同じ層状構造を有し、且つ、遷移金属の一部をマンガン等で置換したものが注目されている。その具体例としては、例えば非特許文献1〜3や特許文献1に記載されているような、LiNiO2のNiサイトの一部をMnで置換したLiNi(1-a)Mna2や、Niサイトの一部をMnとCoで置換したLiNi(1-α-β)MnαCoβ2などが挙げられる。 Among lithium transition metal composite oxides, those having the same layered structure as LiCoO 2 and LiNiO 2 as the positive electrode active material from the viewpoint of safety and raw material cost, and a part of the transition metal substituted with manganese or the like Is attracting attention. Specific examples thereof as described in Non-Patent Documents 1 to 3 and Patent Document 1, a part or LiNi (1-a) Mn a O 2 obtained by substituting Mn of Ni site of LiNiO 2, Examples include LiNi (1-α-β) Mn α Co β O 2 in which a part of the Ni site is substituted with Mn and Co.

更に、非特許文献1〜3や特許文献1に記載されているようなリチウム遷移金属酸化物を正極活物質として用いる場合には、このようなリチウム遷移金属複合酸化物を微粒子化し、正極活物質表面と電解液との接触面積を増大させて、負荷特性を改良することがなされる。しかし、リチウム遷移金属酸化物を微粒子化すると、正極板への正極活物質の充填率が制約され、電池容量が制約されてしまう。   Further, when a lithium transition metal oxide as described in Non-Patent Documents 1 to 3 and Patent Document 1 is used as a positive electrode active material, such a lithium transition metal composite oxide is finely divided, and a positive electrode active material is obtained. The load characteristics are improved by increasing the contact area between the surface and the electrolyte. However, when the lithium transition metal oxide is finely divided, the filling rate of the positive electrode active material into the positive electrode plate is restricted, and the battery capacity is restricted.

これに対し、特許文献2には、一次粒子の平均直径が3.0μm以下であり、比表面積が0.2m2/g以上であるLi−Mn−Ni−Co複合酸化物粒子を、リチウム二次電池の正極材として用いることによって、高い放電容量を有するとともに、サイクル性能にも優れたリチウム二次電池を得られることが開示されている。
また、特許文献3には、Li−Mn−Ni−Coスラリーを噴霧乾燥した後、焼成することにより製造したLi−Mn−Ni−Co複合酸化物粒子を、リチウム二次電池の正極材として用いることによって、高い放電容量を有し、サイクル性能に優れたリチウム二次電池を得られることが開示されている。
On the other hand, Patent Document 2 discloses Li—Mn—Ni—Co composite oxide particles having an average primary particle diameter of 3.0 μm or less and a specific surface area of 0.2 m 2 / g or more. It is disclosed that a lithium secondary battery having a high discharge capacity and excellent cycle performance can be obtained by using as a positive electrode material for a secondary battery.
In Patent Document 3, Li-Mn-Ni-Co composite oxide particles produced by spray-drying a Li-Mn-Ni-Co slurry and then firing the slurry are used as a positive electrode material for a lithium secondary battery. Thus, it is disclosed that a lithium secondary battery having a high discharge capacity and excellent cycle performance can be obtained.

Journal of Materials Chemistry、Vol.6、1996年、p.1149Journal of Materials Chemistry, Vol. 6, 1996, p. 1149 Journal of the Electrochemical Society、Vol.145、1998年、p.1113Journal of the Electrochemical Society, Vol. 145, 1998, p. 1113 第41回電池討論会予稿集、2000年、p.460Proceedings of the 41st Battery Symposium, 2000, p. 460 特開2003−17052号公報JP 2003-17052 A 特開2003−68299号公報JP 2003-68299 A 特開2003−51308号公報JP 2003-51308 A

しかしながら、非特許文献1〜3や特許文献1に記載の技術では、上記のようにリチウム遷移金属酸化物を微粒子化した場合、正極板への正極活物質の充填率が制約され、十分な電池容量及び負荷特性を得ることができないという課題があった。
また、微粒子化に伴い塗料化時の塗膜の機械的性質が硬化・脆化し、電池組立時の捲回工程において塗膜の剥離が生じやすくなってしまうことから、塗布性が充分でないという課題があった。この課題は、特に、リチウム遷移金属酸化物LiNi(1-α-β)MnαCoβO2において、Ni:Mn:Coの比が1−α−β:α:β(但し、α及びβはそれぞれ0.05≦α≦0.5、0.05≦β≦0.5を満たす数を表わす。)の付近にある場合に顕著である。
However, in the techniques described in Non-Patent Documents 1 to 3 and Patent Document 1, when the lithium transition metal oxide is finely divided as described above, the filling rate of the positive electrode active material into the positive electrode plate is limited, and a sufficient battery There was a problem that capacity and load characteristics could not be obtained.
In addition, the mechanical properties of the paint film at the time of coating become hardened and brittle with fine particles, and the paint film is easily peeled off during the winding process during battery assembly. was there. In particular, the lithium transition metal oxide LiNi (1- α - β ) MnαCoβO 2 has a Ni: Mn: Co ratio of 1-α-β: α: β (where α and β are each 0. This is remarkable when the number is in the vicinity of 05 ≦ α ≦ 0.5 and 0.05 ≦ β ≦ 0.5.

一方、特許文献2に記載のリチウム二次電池正極材用リチウム複合酸化物粒子においても、依然として、低温における負荷特性が十分でないという課題を抱えていた。
また、特許文献3に記載のリチウム二次電池正極材用リチウム複合酸化物粒子においては、粒子のかさ密度が低くなりやすく、塗布性に問題があった。
本発明は、上記課題に鑑みてなされたものである。即ち、本発明の目的は、電池の低温負荷特性を改善することができ、且つ、正極作製時の塗布性にも優れた、リチウム二次電池正極材用リチウム複合酸化物粒子を提供することにある。
On the other hand, the lithium composite oxide particles for a lithium secondary battery positive electrode material described in Patent Document 2 still have a problem that load characteristics at low temperatures are not sufficient.
Moreover, in the lithium composite oxide particles for a lithium secondary battery positive electrode material described in Patent Document 3, the bulk density of the particles tends to be low, and there is a problem in coating properties.
The present invention has been made in view of the above problems. That is, an object of the present invention is to provide lithium composite oxide particles for a lithium secondary battery positive electrode material, which can improve the low-temperature load characteristics of the battery and are excellent in coating properties at the time of producing the positive electrode. is there.

本発明者らは、上記の課題を解決すべく鋭意検討した結果、特定の比表面積、一次粒子径、及びタップ密度を有するリチウム複合酸化物粒子が、リチウム二次電池の正極材として利用した場合に電池の低温負荷特性を改善することができるとともに、正極作製時の塗布性にも優れており、好適なリチウム二次電池正極材となり得ることを見出して、本発明を完成した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have used lithium composite oxide particles having a specific surface area, primary particle diameter, and tap density as a positive electrode material for a lithium secondary battery. In addition, it was found that the low-temperature load characteristics of the battery can be improved and the coating property at the time of producing the positive electrode is excellent, and it can be a suitable positive electrode material for a lithium secondary battery.

即ち、本発明の趣旨は、一次粒子の集合粒子として構成される、リチウム二次電池正極材用リチウム複合酸化物粒子であって、比表面積が0.4m2/g以上、2m2/g以下であり、一次粒子径が0.5μm以上、2μm以下であり、且つ、タップ密度が1.4g/cm3以上、1.8g/cm3以下であることを特徴とする、リチウム二次電池正極材用リチウム複合酸化物粒子に存する(請求項1)。 That is, the gist of the present invention is a lithium composite oxide particle for a lithium secondary battery positive electrode material configured as an aggregated particle of primary particles, having a specific surface area of 0.4 m 2 / g or more and 2 m 2 / g or less. A positive electrode for a lithium secondary battery, wherein the primary particle diameter is 0.5 μm or more and 2 μm or less, and the tap density is 1.4 g / cm 3 or more and 1.8 g / cm 3 or less. It exists in lithium composite oxide particle for materials (Claim 1).

また、上述のリチウム複合酸化物粒子は、少なくともNi及びCoを含有することが好ましい(請求項2)。
また、上述のリチウム複合酸化物粒子は、下記組成式(1)で表わされる組成を有することが好ましい(請求項3)。
LixNi(1-y-z)Coyz2 組成式(1)
{上記組成式(1)において、Mは、Mn,Al,Fe,Ti,Mg,Cr,Ga,Cu,Zn及びNbから選ばれる少なくとも1種の元素を表わす。また、xは0<x≦1.2を満たす数を表わし、yは0.05≦y≦0.5を満たす数を表わし、zは0.01≦z≦0.5を満たす数を表わす。}
The lithium composite oxide particles preferably contain at least Ni and Co. (Claim 2)
Moreover, it is preferable that the above-mentioned lithium composite oxide particles have a composition represented by the following composition formula (1).
Li x Ni (1-yz) Co y M z O 2 composition formula (1)
{In the above composition formula (1), M represents at least one element selected from Mn, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb. X represents a number satisfying 0 <x ≦ 1.2, y represents a number satisfying 0.05 ≦ y ≦ 0.5, and z represents a number satisfying 0.01 ≦ z ≦ 0.5. . }

また、本発明の別の趣旨は、上記組成のリチウム複合酸化物粒子を製造する方法であって、ニッケル原料、コバルト原料及び元素Mの原料を湿式粉砕し、得られた粉砕物を噴霧乾燥により造粒し、得られた造粒物を更にリチウム原料と乾式混合し、得られた乾式混合物を焼成することを特徴とする、リチウム複合酸化物粒子の製造方法に存する(請求項4)。   Another purpose of the present invention is a method for producing lithium composite oxide particles having the above composition, wherein the nickel raw material, cobalt raw material and element M raw material are wet pulverized, and the obtained pulverized product is spray-dried. The present invention resides in a method for producing lithium composite oxide particles, wherein the granulated product is further dry-mixed with the lithium raw material, and the obtained dry mixture is fired.

また、本発明の別の趣旨は、集電体と、該集電体上に設けられた正極活物質層とを備えるリチウム二次電池用正極であって、該正極活物質層が、少なくとも、上述のリチウム二次電池正極材用リチウム複合酸化物粒子と、結着剤とを含有することを特徴とする、リチウム二次電池用正極に存する(請求項5)。   Another gist of the present invention is a positive electrode for a lithium secondary battery comprising a current collector and a positive electrode active material layer provided on the current collector, wherein the positive electrode active material layer is at least The present invention resides in a positive electrode for a lithium secondary battery, comprising the lithium composite oxide particles for a lithium secondary battery positive electrode material described above and a binder.

更に、本発明の別の趣旨は、リチウムを吸蔵・放出可能な正極及び負極、並びに、リチウム塩を電解質として含有する有機電解液を備えたリチウム二次電池であって、該正極が、上述のリチウム二次電池用正極であることを特徴とする、リチウム二次電池に存する(請求項6)。   Furthermore, another gist of the present invention is a lithium secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium, and an organic electrolyte containing a lithium salt as an electrolyte. The present invention resides in a lithium secondary battery, which is a positive electrode for a lithium secondary battery.

本発明のリチウム複合酸化物粒子は、リチウム二次電池の低温負荷特性を改善することができるとともに、正極作製時の塗布性にも優れ、リチウム二次電池用の正極材として好適に用いることができる。また、本発明のリチウム複合酸化物粒子を正極材として用いることにより、優れた低温負荷特性を有するリチウム二次電池用正極及びリチウム二次電池を得ることができる。   The lithium composite oxide particles of the present invention can improve the low-temperature load characteristics of a lithium secondary battery and are excellent in applicability at the time of producing a positive electrode, and can be suitably used as a positive electrode material for a lithium secondary battery. it can. Moreover, the positive electrode for lithium secondary batteries and lithium secondary battery which have the outstanding low temperature load characteristic can be obtained by using the lithium composite oxide particle of this invention as a positive electrode material.

以下、本発明の実施の形態について詳細に説明するが、本発明は以下の説明に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following descriptions, and various modifications can be made within the scope of the gist.

〔I.リチウム複合酸化物粒子〕
<粒子の形状>
本発明のリチウム二次電池正極材用リチウム複合酸化物粒子(以下、適宜「本発明のリチウム複合酸化物粒子」或いは単に「本発明の粒子」と略称する。)は、リチウム二次電池の正極活物質として従来用いられている一般的なリチウム複合酸化物粒子と同様、一次粒子が集合(例えば凝集・焼結等)して、より大きな二次粒子を構成したものである(なお、以下の記載において単に「本発明の粒子」という場合には、二次粒子のことを指すものとする。)。
[I. Lithium composite oxide particles)
<Particle shape>
The lithium composite oxide particles for a lithium secondary battery positive electrode material of the present invention (hereinafter, simply referred to as “lithium composite oxide particles of the present invention” or simply “particles of the present invention” as appropriate) are used as positive electrodes of lithium secondary batteries. Similar to general lithium composite oxide particles conventionally used as an active material, primary particles aggregate (for example, agglomeration and sintering) to form larger secondary particles (note that In the description, the term “particles of the present invention” refers to secondary particles).

<比表面積>
本発明の粒子は、比表面積が通常0.4m2/g以上、好ましくは0.5m2/g以上、また、通常2m2/g以下、好ましくは1.8m2/g以下の範囲であることを特徴としている。粒子の比表面積は、主に一次粒子径や、一次粒子間の焼結の度合の影響を受ける。粒子の比表面積がこの範囲の上限を超えると、塗料化時に必要な分散媒量が増加すると共に、導電材や結着剤の必要量も増加してしまい、正極板への活物質の充填率が低下して、電池容量が制約されてしまうので、好ましくない。一方、粒子の比表面積がこの範囲の下限に満たないと、正極内において粒子表面と電解液との接触面積が減少し、電池とした場合の負荷特性が低下し易いので、やはり好ましくない。
<Specific surface area>
The particles of the present invention have a specific surface area of usually 0.4 m 2 / g or more, preferably 0.5 m 2 / g or more, and usually 2 m 2 / g or less, preferably 1.8 m 2 / g or less. It is characterized by that. The specific surface area of the particles is mainly affected by the primary particle diameter and the degree of sintering between the primary particles. If the specific surface area of the particles exceeds the upper limit of this range, the amount of dispersion medium required during coating will increase, and the required amount of conductive material and binder will also increase. Decreases, and the battery capacity is restricted. On the other hand, if the specific surface area of the particles is less than the lower limit of this range, the contact area between the particle surface and the electrolytic solution in the positive electrode is decreased, and the load characteristics in the case of a battery are likely to be deteriorated.

なお、本明細書において「比表面積」は、窒素吸着法を利用したBET(Brunauer, Emmett, and Teller)法によって測定した比表面積(BET比表面積)をいうものとする。BET法とは、吸着等温線上で窒素の単分子層吸着量を求め、吸着窒素分子の断面積から表面積を決定して試料の比表面積(BET比表面積)を算出する手法である。BET法による測定は、各種のBET測定装置を用いて測定することができる。   In the present specification, the “specific surface area” refers to a specific surface area (BET specific surface area) measured by a BET (Brunauer, Emmett, and Teller) method using a nitrogen adsorption method. The BET method is a method of calculating a specific surface area (BET specific surface area) of a sample by obtaining a monolayer adsorption amount of nitrogen on an adsorption isotherm, determining a surface area from a cross-sectional area of the adsorbed nitrogen molecule. The measurement by the BET method can be measured using various BET measuring devices.

<一次粒子径>
本発明の粒子(二次粒子)は、これを構成する一次粒子の径が通常0.5μm以上、好ましくは0.6μm以上、また、通常2μm以下、好ましくは1.8μm以下の範囲であることを、更なる特徴としている。一次粒子径は、原料の粉砕粒子径や焼成時の温度、雰囲気等の影響を受ける。一次粒子径がこの範囲の上限を超えると、一次粒子内のリチウムイオンの拡散や電子伝導が律速となって、負荷特性が低下し易くなってしまい好ましくない。一方、一次粒子径がこの範囲の下限を下回ると、塗料化時に必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加してしまい、正極板への活物質の充填率が低下して、電池容量が制約されてしまうので、やはり好ましくない。なお、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、例えば、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値を採ることにより求められる。
<Primary particle size>
The particles (secondary particles) of the present invention have a primary particle diameter of 0.5 μm or more, preferably 0.6 μm or more, and usually 2 μm or less, preferably 1.8 μm or less. Is a further feature. The primary particle size is affected by the pulverized particle size of the raw material, the temperature during firing, the atmosphere, and the like. If the primary particle diameter exceeds the upper limit of this range, the diffusion of lithium ions and electronic conduction in the primary particles become rate-determining, and the load characteristics are likely to deteriorate, which is not preferable. On the other hand, if the primary particle diameter is below the lower limit of this range, the amount of dispersion medium required for coating is increased, and the necessary amount of conductive material and binder is increased, so that the positive plate is filled with the active material. This is also not preferable because the battery capacity is restricted due to a decrease in the rate. The primary particle diameter is measured by observation using a scanning electron microscope (SEM). Specifically, for example, in a photograph at a magnification of 10000 times, the longest value of the intercept by the left and right boundary lines of the primary particles with respect to the horizontal straight line is obtained for any 50 primary particles, and the average value is taken. It is calculated by.

<タップ密度>
本発明の粒子は、そのタップ密度が通常1.4g/cm3以上、好ましくは1.5g/cm3以上、また、通常1.8g/cm3以下、好ましくは1.75g/cm3以下の範囲であることを、更なる特徴としている。本明細書において「タップ密度」は、粉体をタッピングして充填した際の粉体の重量をかさから求めた値を表す。タップ密度が高い粒子ほど、充填性が良いものとみなすことができる。粒子のタップ密度がこの範囲の上限を超えると、正極板中の電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下し易くなってしまうので好ましくない。一方、粒子のタップ密度がこの範囲の下限に満たないと、塗料化時に必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加してしまい、正極板への活物質の充填率が低下して電池容量が制約されてしまうので、やはり好ましくない。なお、粒子のタップ密度は、JIS K5101に規定されている方法や、メスシリンダーに一定重量の粒子を入れ、タップした上で容積を測定する方法等により求めることができる。
<Tap density>
The particles of the present invention have a tap density of usually 1.4 g / cm 3 or more, preferably 1.5 g / cm 3 or more, and usually 1.8 g / cm 3 or less, preferably 1.75 g / cm 3 or less. The range is a further feature. In this specification, the “tap density” represents a value obtained by determining the weight of the powder when the powder is tapped and filled. Particles with a higher tap density can be considered to have better packing properties. When the tap density of the particles exceeds the upper limit of this range, the diffusion of lithium ions using the electrolytic solution in the positive electrode plate as a medium becomes rate-determining, and load characteristics are liable to deteriorate, which is not preferable. On the other hand, if the tap density of the particles is less than the lower limit of this range, the amount of the dispersion medium required at the time of coating is increased, and the necessary amount of the conductive material and the binder is increased, resulting in an active material for the positive electrode plate. As a result, the battery capacity is restricted and the battery capacity is restricted, which is also not preferable. The tap density of the particles can be determined by a method prescribed in JIS K5101 or a method of measuring the volume after putting particles of a constant weight in a measuring cylinder and tapping.

<本発明の粒子により上述の効果が得られる理由>
上述の特徴を有する本発明の粒子が、電池の低温負荷特性の向上及び正極作製時の塗布性の改善という効果をもたらす理由は、未だ本発明者等にも明らかではないが、大まかには以下のように推測される。
<Reason for obtaining the above-described effect by the particles of the present invention>
The reason why the particles of the present invention having the above-described characteristics bring about the effect of improving the low-temperature load characteristics of the battery and improving the coating property during the production of the positive electrode is not yet clear to the present inventors. Is guessed.

リチウム二次電池の低温における負荷特性に影響を与える主な要因として、(a)正極板中の電解液を媒体としたリチウムイオンの拡散、(b)電解液と正極活物質との界面を介しての正極活物質リチウムイオンの挿入、(c)正極活物質内部におけるリチウムイオンの拡散が挙げられる。また、これらの要因は一連の過程として負荷特性に影響を与えると考えられるので、これらの要因の中で一つ又は二つが条件を満たすだけでは不充分であり、全ての条件を同時に満たす必要があると考えられる。一方、これらの要因は塗布性にも影響を与え、低温負荷特性を改良する方向に条件を振ると、塗布性が悪化する傾向にある。従って、比表面積、一次粒子径、タップ密度の全てを特定の範囲とすることにより、初めて塗布性と低温負荷特性を両立させることができるものと推定される。   The main factors affecting the low-temperature load characteristics of the lithium secondary battery are (a) diffusion of lithium ions using the electrolyte in the positive electrode plate as a medium, and (b) through the interface between the electrolyte and the positive electrode active material. Insertion of all positive electrode active material lithium ions, and (c) diffusion of lithium ions inside the positive electrode active material. Also, since these factors are thought to affect the load characteristics as a series of processes, it is not sufficient that one or two of these factors satisfy the conditions, and it is necessary to satisfy all the conditions simultaneously. It is believed that there is. On the other hand, these factors also affect the applicability, and the applicability tends to deteriorate if conditions are changed in the direction of improving the low temperature load characteristics. Therefore, it is presumed that, by setting all of the specific surface area, primary particle diameter, and tap density within a specific range, it is possible to achieve both coating properties and low-temperature load characteristics for the first time.

なお、以下の記載では、本発明の粒子のその他の特性についても詳説するが、本発明の粒子は、上述の特徴を備えるものであれば、その他の特性については特に制限されるものではない。   In the following description, other characteristics of the particles of the present invention will be described in detail. However, as long as the particles of the present invention have the above-described characteristics, the other characteristics are not particularly limited.

<メジアン径>
本発明の粒子における粒子径(二次粒子径)のメジアン値(以下、適宜「メジアン径」という。)は、通常1μm以上、好ましくは2μm以上、また、通常20μm以下、好ましくは15μm以下の範囲が好適である。メジアン径がこの範囲の上限を超えると、本発明の粒子を正極材として電池を作製した際に、正極材内のリチウム拡散が阻害され、又は導電パスが不足して、電池の負荷特性が低下し易くなってしまうので好ましくない。一方、この範囲の下限を下回ると、正極を作製する際に導電材や結着剤の必要量が増加し、正極板(正極の集電体)への活物質の充填率が制約され、電池容量が制約される虞がある。また、微粒子化に伴い、塗料化時の塗膜の機械的性質が硬く脆くなり、電池組立時の捲回工程において塗膜の剥離が生じ易くなってしまうので、やはり好ましくない。なお、粒子のメジアン径の測定は、例えばレーザー回折・散乱法等の手法を用いて行なうことができる。
<Median diameter>
The median value of the particle diameter (secondary particle diameter) in the particles of the present invention (hereinafter referred to as “median diameter” as appropriate) is usually 1 μm or more, preferably 2 μm or more, and usually 20 μm or less, preferably 15 μm or less. Is preferred. When the median diameter exceeds the upper limit of this range, when a battery is produced using the particles of the present invention as a positive electrode material, lithium diffusion in the positive electrode material is inhibited, or the conductive path is insufficient, resulting in a decrease in battery load characteristics. Since it becomes easy to do, it is not preferable. On the other hand, if the lower limit of this range is not reached, the required amount of conductive material and binder increases when producing the positive electrode, and the filling rate of the active material into the positive electrode plate (positive electrode current collector) is restricted, and the battery Capacity may be limited. Further, as the fine particles are formed, the mechanical properties of the coating film become hard and brittle, and the coating film is easily peeled off during the winding process during battery assembly, which is also not preferable. The measurement of the median diameter of the particles can be performed using a technique such as a laser diffraction / scattering method.

<組成>
本発明の粒子の組成としては、特に制限は無いが、エネルギー密度、結晶構造の安定性の観点からは、少なくともNi及びCoを含有することが好ましい。
<Composition>
Although there is no restriction | limiting in particular as a composition of the particle | grains of this invention, From a viewpoint of energy density and stability of a crystal structure, it is preferable to contain Ni and Co at least.

中でも、本発明の粒子としては、下記組成式(1)で表わされる組成を有するものが好ましい。
LixNi(1-y-z)Coyz2 組成式(1)
Among these, particles having a composition represented by the following composition formula (1) are preferable as the particles of the present invention.
Li x Ni (1-yz) Co y M z O 2 composition formula (1)

上記組成式(1)において、Mは、Mn,Al,Fe,Ti,Mg,Cr,Ga,Cu,Zn及びNbから選ばれる少なくとも1種の元素を表わす。中でもMn及び/又はAlが好ましく、特にMnが好ましい。
また、上記組成式(1)において、xは通常0より大きく、好ましくは0.1以上、また、通常1.2以下、好ましくは1.1以下の数を表わす。この範囲の上限を上回ると、粒子が単一の結晶相とならず、また、リチウムが遷移金属サイトに置換する可能性があるため、これを正極活物質とするリチウム二次電池の充放電容量が低下する傾向がみられる。また、この範囲の下限側はリチウムがデインターカレートした充電状態に対応するが、この下限を下回るほど小さな値となるまで充電すると、粒子の結晶構造が劣化する場合があり、やはり好ましくない。
In the composition formula (1), M represents at least one element selected from Mn, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb. Among these, Mn and / or Al are preferable, and Mn is particularly preferable.
In the compositional formula (1), x is usually greater than 0, preferably 0.1 or more, and usually 1.2 or less, preferably 1.1 or less. If the upper limit of this range is exceeded, the particles do not become a single crystal phase, and lithium may be replaced with transition metal sites, so the charge / discharge capacity of a lithium secondary battery using this as the positive electrode active material There is a tendency to decrease. The lower limit of this range corresponds to the state of charge in which lithium is deintercalated, but if the battery is charged to a value that is smaller than this lower limit, the crystal structure of the particles may be deteriorated, which is not preferable.

また、上記組成式(1)において、yは通常0.05以上、好ましくは0.1以上、また、通常0.5以下、好ましくは0.4以下の数を表わす。この範囲の上限を上回ると、正極材に用いた場合に電池の容量が低下し易く、また、Coは資源的に希少で効果な原料であるため、コストの点でも好ましくない。一方、この範囲の下限を下回ると、粒子の結晶構造の安定性が低下し易く、やはり好ましくない。   In the composition formula (1), y represents a number of usually 0.05 or more, preferably 0.1 or more, and usually 0.5 or less, preferably 0.4 or less. If the upper limit of this range is exceeded, the capacity of the battery tends to decrease when used as the positive electrode material, and Co is a resource-rare and effective raw material, which is not preferable in terms of cost. On the other hand, below the lower limit of this range, the stability of the crystal structure of the particles tends to decrease, which is also not preferable.

また、上記組成式(1)において、zは通常0.01以上、好ましくは0.02以上、また、通常0.5以下、好ましくは0.4以下の数を表わす。この範囲の上限を上回ると、粒子が単一の結晶相とならなかったり、これを正極活物質とするリチウム二次電池の充放電容量が低下したりし易くなるため、好ましくない。また、この範囲の下限を下回ると、粒子の結晶構造の安定性が低下し易くなるため、やはり好ましくない。   In the compositional formula (1), z is usually 0.01 or more, preferably 0.02 or more, and usually 0.5 or less, preferably 0.4 or less. Exceeding the upper limit of this range is not preferable because the particles do not become a single crystal phase or the charge / discharge capacity of a lithium secondary battery using this as a positive electrode active material tends to decrease. Further, if the lower limit of this range is not reached, the stability of the crystal structure of the particles tends to decrease, which is also not preferable.

〔II.リチウム複合酸化物粒子の製造方法〕
以下、本発明の粒子の製造方法の一例として、組成式(1)で表わされる組成の粒子を製造する方法(以下「本発明の製造方法」という。)について説明する。もちろん、本発明の粒子が、以下の方法によって製造されるものに限定される訳ではない。また、組成式(1)で表わされる組成の粒子を製造する方法が、以下の製造方法に限定されるものでもない。
本発明の製造方法では、リチウム原料、ニッケル原料、コバルト原料、及び、元素Mの原料を原料として、本発明の粒子を製造する。
[II. Method for producing lithium composite oxide particles]
Hereinafter, as an example of the method for producing particles of the present invention, a method for producing particles having the composition represented by the composition formula (1) (hereinafter referred to as “the production method of the present invention”) will be described. Of course, the particles of the present invention are not limited to those produced by the following method. Further, the method for producing particles having the composition represented by the composition formula (1) is not limited to the following production method.
In the production method of the present invention, the particles of the present invention are produced using a lithium raw material, a nickel raw material, a cobalt raw material, and an element M raw material.

<原料>
・リチウム原料:
リチウム原料としては、リチウムを含有する物質であれば特に制限はない。
リチウム原料の具体例としては、Li2CO3、LiNO3などの無機リチウム塩;LiOH、LiOH・H2Oなどのリチウムの水酸化物;LiCl、LiIなどのリチウムハロゲン化物;Li2O等の無機リチウム化合物、アルキルリチウム、脂肪酸リチウム等の有機リチウム化合物等を挙げることができる。中でも好ましいのは、Li2CO3、LiNO3、LiOH、酢酸Liである。その中でも、Li2CO3及びLiOHは、窒素及び硫黄を含まないので、焼成の際に、NOx及びSOx等の有害物質を発生させない利点をも有する。
なお、上記のリチウム原料は、1種を単独で用いてもよく、2種以上を任意の種類及び比率で併用してもよい。
<Raw material>
・ Lithium raw material:
The lithium raw material is not particularly limited as long as it is a substance containing lithium.
Specific examples of the lithium raw material include inorganic lithium salts such as Li 2 CO 3 and LiNO 3 ; lithium hydroxides such as LiOH and LiOH · H 2 O; lithium halides such as LiCl and LiI; Li 2 O and the like Examples thereof include inorganic lithium compounds, organic lithium compounds such as alkyl lithium and fatty acid lithium. Among these, Li 2 CO 3 , LiNO 3 , LiOH, and Li acetate are preferable. Among them, Li 2 CO 3 and LiOH do not contain nitrogen and sulfur, and therefore have an advantage that no harmful substances such as NO x and SO x are generated during firing.
In addition, said lithium raw material may be used individually by 1 type, and may use 2 or more types together by arbitrary types and ratios.

・ニッケル原料:
ニッケル原料としては、ニッケルを含有する物質であれば特に制限は無い。
ニッケル原料の具体例としては、Ni(OH)2、NiO、NiOOH、NiCO3・2Ni(OH)2・4H2O、NiC24・2H2O、Ni(NO32・6H2O、NiSO4、NiSO4・6H2O、脂肪酸ニッケル、ニッケルハロゲン化物等を挙げることができる。その中でも、Ni(OH)2、NiO、NiOOH、NiCO3・2Ni(OH)2・4H2O、NiC24・2H2Oのような窒素及び硫黄を含まない化合物は、焼成工程においてNOx及びSOx等の有害物質を発生させないので好ましい。工業原料として安価に入手でき、かつ焼成を行なう際に反応性が高いという観点から、特に好ましいのはNi(OH)2、NiO、NiOOHである。
なお、上記のニッケル原料は、1種を単独で用いてもよく、2種以上を任意の種類及び比率で併用してもよい。
-Nickel raw material:
The nickel raw material is not particularly limited as long as it is a substance containing nickel.
Specific examples of nickel raw materials include Ni (OH) 2 , NiO, NiOOH, NiCO 3 .2Ni (OH) 2 .4H 2 O, NiC 2 O 4 .2H 2 O, Ni (NO 3 ) 2 .6H 2 O , NiSO 4 , NiSO 4 .6H 2 O, fatty acid nickel, nickel halide and the like. Among them, compounds containing no nitrogen and sulfur, such as Ni (OH) 2 , NiO, NiOOH, NiCO 3 .2Ni (OH) 2 .4H 2 O, NiC 2 O 4 .2H 2 O, NO are used in the firing step. It is preferable because no harmful substances such as x and SO x are generated. Ni (OH) 2 , NiO, and NiOOH are particularly preferable from the viewpoint that they can be obtained at low cost as industrial raw materials and have high reactivity when firing.
In addition, said nickel raw material may be used individually by 1 type, and may use 2 or more types together by arbitrary types and ratios.

・コバルト原料:
コバルト原料としては、コバルトを含有する物質であれば特に制限は無い。
コバルト原料の具体例としては、CoO、Co23、Co34、Co(OH)2、CoOOH、Co(NO32・6H2O、CoSO4・7H2O、有機コバルト化合物、コバルトハロゲン化物等を挙げることができる。これらコバルト化合物の中でも、CoO、Co23、Co34、Co(OH)2、CoOOHが好ましい。
なお、上記のコバルト原料は、1種を単独で用いてもよく、2種以上を任意の種類及び比率で併用してもよい。
・ Cobalt raw material:
The cobalt raw material is not particularly limited as long as it is a substance containing cobalt.
Specific examples of the cobalt raw material include CoO, Co 2 O 3 , Co 3 O 4 , Co (OH) 2 , CoOOH, Co (NO 3 ) 2 .6H 2 O, CoSO 4 .7H 2 O, an organic cobalt compound, Examples thereof include cobalt halides. Among these cobalt compounds, CoO, Co 2 O 3 , Co 3 O 4 , Co (OH) 2 and CoOOH are preferable.
In addition, said cobalt raw material may be used individually by 1 type, and may use 2 or more types together by arbitrary types and ratios.

・元素Mの原料:
元素Mの原料は、上記組成式(1)の説明において述べた元素Mを含有する物質であれば特に制限は無い。
元素Mの原料の具体例としては、上述のニッケル原料、コバルト原料と同様、元素Mの酸化物、水酸化物、オキシ水酸化物、脂肪酸塩、ハロゲン化物等を挙げることができる。中でも酸化物、水酸化物、オキシ水酸化物が好ましい。
なお、上記の元素Mの原料は、1種を単独で用いてもよく、2種以上を任意の種類及び比率で併用してもよい。
-Raw material for element M:
The raw material for the element M is not particularly limited as long as it is a substance containing the element M described in the description of the composition formula (1).
Specific examples of the raw material of element M include oxides, hydroxides, oxyhydroxides, fatty acid salts, halides, and the like of element M, as with the nickel raw material and cobalt raw material described above. Of these, oxides, hydroxides, and oxyhydroxides are preferred.
In addition, the raw material of said element M may be used individually by 1 type, and may use 2 or more types together by arbitrary types and ratios.

また、上記のニッケル原料、コバルト原料、及び元素Mの原料は、ニッケル、コバルト、及び、Mから選ばれる2種類以上の元素の共沈水酸化物、共沈炭酸塩等、及びこれらを焼成して得られる複合酸化物を、それぞれの原料の一部又は全部として使用してもよい。   The nickel raw material, the cobalt raw material, and the raw material for the element M are nickel, cobalt, and coprecipitated hydroxide, coprecipitated carbonate, etc. of two or more elements selected from M, and these are fired. The resulting composite oxide may be used as part or all of each raw material.

<ニッケル原料、コバルト原料、及び元素Mの原料の粉砕・混合>
ニッケル原料、コバルト原料、及び元素Mの原料を、分散媒に分散させ、湿式法により粉砕・混合し、スラリー化する。なお、必要なリチウム原料の一部をこの段階で予め混合し、スラリー中に水溶液又は粒子の形で存在させておいても良い。
ここで用いる分散媒は任意の液体を用いることができるが、環境負荷の観点から、特に水が好適である。ただし、例えばニッケル原料、コバルト原料、又は元素Mの原料として水溶性のものを使用する際は、後述する噴霧乾燥の際に、造粒された粒子が中空粒子となり、正極板への活物質の充填率が制約される虞があるため、ニッケル原料、コバルト原料、及び元素Mの原料のいずれもが溶解しない液体を分散媒として選択することが好ましい。
原料の粉砕・混合に用いる装置は特に限定されず、任意の装置を用いることができる。その具体例としては、ビーズミル、ボールミル、振動ミル等の装置が挙げられる。
<Crushing and mixing of nickel raw material, cobalt raw material, and element M raw material>
A nickel raw material, a cobalt raw material, and an element M raw material are dispersed in a dispersion medium, and pulverized and mixed by a wet method to form a slurry. A part of the necessary lithium raw material may be preliminarily mixed at this stage and may be present in the slurry in the form of an aqueous solution or particles.
Although any liquid can be used as the dispersion medium used here, water is particularly preferable from the viewpoint of environmental load. However, for example, when using a water-soluble nickel raw material, cobalt raw material, or element M raw material, the granulated particles become hollow particles during spray drying described later, and the active material to the positive electrode plate Since the filling rate may be limited, it is preferable to select a liquid in which none of the nickel raw material, the cobalt raw material, and the element M raw material is dissolved as the dispersion medium.
The apparatus used for the pulverization / mixing of the raw material is not particularly limited, and any apparatus can be used. Specific examples thereof include devices such as a bead mill, a ball mill, and a vibration mill.

ニッケル原料、コバルト原料、及び元素Mの原料を粉砕する程度としては、粉砕後のスラリー中の粒子の粒径が、メジアン径として通常2μm以下、好ましくは1μm以下、更に好ましくは0.5μm以下となるまで粉砕する。メジアン径が上記範囲よりも大きいと、焼成工程における反応性が低下する。また、後述する噴霧乾燥における乾燥粉体の球状度が低下し、最終的な粉体充填密度が低くなる傾向にある。この傾向は、メジアン径で20μm以下の造粒粒子を製造しようとした場合に、特に顕著になる。
なお、必要以上に小粒子化することは、粉砕のコストアップに繋がるので、メジアン径が通常0.01μm以上、好ましくは0.02μm以上、更に好ましくは0.1μm以上となるように粉砕すればよい。
The degree of pulverization of the nickel raw material, cobalt raw material, and element M raw material is such that the particle size of the particles in the pulverized slurry is usually 2 μm or less, preferably 1 μm or less, more preferably 0.5 μm or less as the median diameter. Grind until When the median diameter is larger than the above range, the reactivity in the firing step is lowered. In addition, the sphericity of the dry powder in spray drying described later tends to decrease, and the final powder filling density tends to decrease. This tendency becomes particularly remarkable when trying to produce granulated particles having a median diameter of 20 μm or less.
Note that making the particles smaller than necessary leads to an increase in the cost of pulverization. Therefore, if the pulverization is performed so that the median diameter is usually 0.01 μm or more, preferably 0.02 μm or more, more preferably 0.1 μm or more. Good.

<造粒・乾燥>
次いで、ニッケル原料、コバルト原料、及び元素Mの原料の湿式粉砕・混合により得られたスラリーについて、スラリー中の分散粒子を凝集させ、より大きな粒子状物(凝集粒子、二次粒子)を作成する作業、即ち造粒を行なうとともに、併せて粒子状物の乾燥を行なう。造粒及び乾燥の手法としては、生成する粒子状物(凝集粒子)の均一性や粉体流動性、粉体ハンドリング性能に優れる、造粒と同時に乾燥を行なうことができ、二次粒子を効率よく形成できる等の観点から、スプレードライヤー等を用いた噴霧乾燥が好ましい。
<Granulation and drying>
Next, with respect to the slurry obtained by wet pulverization / mixing of the nickel raw material, cobalt raw material, and element M raw material, the dispersed particles in the slurry are agglomerated to create larger particles (aggregated particles, secondary particles). Work, that is, granulation, and drying of the particulate matter. The granulation and drying methods are excellent in uniformity of particulate matter (aggregated particles), powder flowability, and powder handling performance, and can be dried at the same time as granulation, making secondary particles efficient. From the viewpoint of being able to form well, spray drying using a spray dryer or the like is preferable.

噴霧乾燥により得られる粒子状物の粒子径は、そのまま、最終的な本発明の粒子の二次粒子の粒子径となる。このため、乾燥により得られる粒子状物の粒子径は、通常は1μm以上、好ましくは2μm以上、また、通常20μm以下、好ましくは15μm以下である。また、この粒子径は、噴霧形式、加圧気体流供給速度、スラリー供給速度、乾燥温度等を適宜選定することによって制御することができる。   The particle size of the particulate matter obtained by spray drying is directly the particle size of the secondary particles of the particles of the present invention. For this reason, the particle diameter of the particulate matter obtained by drying is usually 1 μm or more, preferably 2 μm or more, and usually 20 μm or less, preferably 15 μm or less. In addition, the particle size can be controlled by appropriately selecting the spray format, pressurized gas flow supply rate, slurry supply rate, drying temperature, and the like.

<リチウム原料との混合>
上記の造粒・乾燥工程により得られた粒子状物を、リチウム原料と乾式混合して、混合粉とする。
リチウム原料の平均粒子径は、噴霧乾燥で得られた粒子状物との混合性を上げるため、且つ、電池の電池性能を向上させる観点から、通常500μm以下、好ましくは100μm以下、更に好ましくは50μm以下、最も好ましくは20μm以下である。但し、平均粒子径があまりに小さいものは、大気中での安定性が低くなる虞があるので、平均粒子径の下限は通常0.01μm以上、好ましくは0.1μm以上、更に好ましくは0.2μm以上、最も好ましくは0.5μm以上である。
上記乾式混合の手法に特に制限はないが、一般的に工業用として使用されている粉体混合装置を使用するのが好ましい。混合する粉体の混合組成比は任意であり、目的とする多孔質粒子の組成等に応じて適宜選択される。
<Mixing with lithium raw material>
The particulate matter obtained by the above granulation / drying step is dry-mixed with the lithium raw material to obtain a mixed powder.
The average particle size of the lithium raw material is usually 500 μm or less, preferably 100 μm or less, more preferably 50 μm from the viewpoint of improving the mixing performance with the particulate matter obtained by spray drying and improving the battery performance of the battery. Hereinafter, it is most preferably 20 μm or less. However, if the average particle size is too small, the stability in the air may be lowered, so the lower limit of the average particle size is usually 0.01 μm or more, preferably 0.1 μm or more, more preferably 0.2 μm. As described above, it is most preferably 0.5 μm or more.
The dry mixing method is not particularly limited, but it is preferable to use a powder mixing apparatus generally used for industrial use. The mixing composition ratio of the powder to be mixed is arbitrary and is appropriately selected according to the composition of the target porous particles.

<分級・焼成>
次に、得られた混合粉を焼成処理し、一次粒子が焼結して形成された二次粒子を得る。
焼成処理の手法は任意であるが、例えば箱形炉、管状炉、トンネル炉、ロータリーキルン等を使用することができる。焼成処理は、通常、昇温・最高温度保持・降温の三部分に分けられる。また、二番目の最高温度保持部分は必ずしも一回とは限らず、目的に応じて二段階又はそれ以上の段階を踏ませてもよい。
更に、上記の焼成処理は昇温・最高温度保持・降温の工程を2回又はそれ以上繰り返し行なってもよい。また、焼成処理と焼成処理との間に、二次粒子を破壊しない程度に凝集を解消することを意味する解砕工程を挟んで行なってもよい。
<Classification and firing>
Next, the obtained mixed powder is fired to obtain secondary particles formed by sintering the primary particles.
Although the method of baking treatment is arbitrary, a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln etc. can be used, for example. The firing treatment is usually divided into three parts: temperature increase, maximum temperature retention, and temperature decrease. Further, the second maximum temperature holding portion is not necessarily limited to one time, and two or more steps may be performed depending on the purpose.
Further, in the above baking treatment, the steps of raising the temperature, maintaining the maximum temperature, and lowering the temperature may be repeated twice or more. Further, a crushing step that means eliminating aggregation to such an extent that the secondary particles are not destroyed may be sandwiched between the firing treatments.

・昇温部分:
昇温部分では、通常0.2℃/分〜20℃/分の昇温速度で炉内を昇温させる。あまり遅すぎても時間がかかって工業的に不利であるが、あまり速すぎても炉によっては炉内温度が設定温度に追従しなくなる。
・ Temperature rising part:
In the temperature raising portion, the temperature in the furnace is usually raised at a temperature raising rate of 0.2 ° C./min to 20 ° C./min. If it is too slow, it takes time and is disadvantageous industrially. However, if it is too fast, the furnace temperature does not follow the set temperature depending on the furnace.

・最高温度保持部分:
最高温度保持部分における焼成温度は、使用するリチウム原料、ニッケル原料、コバルト原料及び元素Mの原料それぞれの種類、及びその組成比、リチウム原料とその他の原料との混合順序などによって異なるが、通常500℃以上、好ましくは600℃以上、より好ましくは800℃以上、また、通常1200℃以下、好ましくは1100℃以下である。
焼成温度が上記範囲の下限より低いと、結晶性の良い、適切な比表面積、一次粒子径、タップ密度を有する粒子を得るために長時間の焼成時間を要する傾向にある。
また、焼成温度が上限より高いと、粒子の比表面積が過度に小さくなったり、一次粒子径やタップ密度が過度に大きくなったり、あるいは酸素欠損等の欠陥が多い粒子を生成する結果となり、得られた粒子を正極活物質として使用したリチウム二次電池の低温負荷特性が低下したり、あるいは充放電によって本発明の粒子の結晶構造の崩壊による劣化を招いたりすることがある。
最高温度保持部分での保持時間は、通常1時間以上100時間以下の広い範囲から選択される。また、焼成時間が短すぎると、結晶性の良い、適切な大きさの比表面積、一次粒子径、タップ密度を有する粒子が得られ難い。
-Maximum temperature holding part:
The firing temperature in the maximum temperature holding portion varies depending on the types of the lithium raw material, nickel raw material, cobalt raw material and element M raw material used, the composition ratio thereof, the mixing order of the lithium raw material and other raw materials, etc. ℃ or higher, preferably 600 ℃ or higher, more preferably 800 ℃ or higher, and usually 1200 ℃ or lower, preferably 1100 ℃ or lower.
When the firing temperature is lower than the lower limit of the above range, a long firing time tends to be required to obtain particles having good crystallinity, an appropriate specific surface area, a primary particle diameter, and a tap density.
Further, if the firing temperature is higher than the upper limit, the specific surface area of the particles becomes excessively small, the primary particle diameter and the tap density become excessively large, or particles having many defects such as oxygen vacancies are generated. The low-temperature load characteristics of a lithium secondary battery using the obtained particles as a positive electrode active material may deteriorate, or deterioration due to the collapse of the crystal structure of the particles of the present invention may occur due to charge / discharge.
The holding time at the maximum temperature holding portion is usually selected from a wide range of 1 hour to 100 hours. On the other hand, if the firing time is too short, it is difficult to obtain particles having a specific surface area, a primary particle diameter, and a tap density with good crystallinity.

・降温部分:
降温部分では、通常0.1℃/分〜20℃/分の降温速度で炉内を降温させる。あまり遅すぎても時間がかかって工業的に不利な方向であり、あまり早すぎても目的物の均一性に欠けたり、容器の劣化を早めたりする傾向にある。
・ Cooling part:
In the temperature decreasing portion, the temperature in the furnace is normally decreased at a temperature decreasing rate of 0.1 ° C./min to 20 ° C./min. If it is too slow, it takes time and is industrially disadvantageous, and if it is too early, the uniformity of the target product tends to be lost or the deterioration of the container tends to be accelerated.

・その他:
また、焼成雰囲気によっても本発明の粒子のタップ密度は変化する。同じ温度で焼成した場合、酸素濃度が低い程、粒子の比表面積は低下し、一次粒子径及びタップ密度は増加するため、焼成温度との組み合わせにより、焼成時の雰囲気を適宜選択する必要がある。通常は、空気などの酸素濃度が10体積%以上である雰囲気が好ましい。酸素濃度が低すぎると、酸素欠損等の欠陥が多い粒子を生成する結果となる。
・ Other:
Also, the tap density of the particles of the present invention varies depending on the firing atmosphere. When firing at the same temperature, the lower the oxygen concentration, the lower the specific surface area of the particles, and the primary particle diameter and tap density increase. Therefore, it is necessary to select the firing atmosphere appropriately in combination with the firing temperature. . Usually, an atmosphere having an oxygen concentration of 10% by volume or more such as air is preferable. If the oxygen concentration is too low, it results in the generation of particles with many defects such as oxygen vacancies.

焼成により得られたリチウム複合酸化物は、必要に応じ、解砕・分級され、本発明の粒子となる。解砕・分級の方法は、例えば、タッピングボール入りの振動篩等、公知の方法を使用することができる。   The lithium composite oxide obtained by firing is crushed and classified as necessary to form particles of the present invention. As the crushing / classifying method, for example, a known method such as a vibrating sieve containing a tapping ball can be used.

<製造時の注意点>
本発明の粒子を得るには、次のような作製上の工夫を行なうことが重要である。
湿式で粉砕したニッケル原料、コバルト原料、及び元素Mの原料と、リチウム原料との混合状態を制御することが重要である。詳しくは、焼成処理前の混合粉中において、リチウム原料の大部分が、湿式で粉砕されたニッケル原料、コバルト原料、元素Mの原料が造粒されてなる造粒粒子の外部にあることが重要である。このような混合粉を焼成処理することにより、適切な比表面積、一次粒子径、タップ密度を有する粒子を得ることができる。
<Notes on manufacturing>
In order to obtain the particles of the present invention, it is important to devise the following in production.
It is important to control the mixing state of the nickel raw material, the cobalt raw material, and the element M raw material, which are pulverized in a wet manner, and the lithium raw material. Specifically, in the mixed powder before firing treatment, it is important that most of the lithium raw material is outside the granulated particles obtained by granulating the wet-ground nickel raw material, cobalt raw material, and element M raw material. It is. By firing such a mixed powder, particles having an appropriate specific surface area, primary particle diameter, and tap density can be obtained.

ただし、ニッケル原料、コバルト原料、及び元素Mの原料が共沈法により造粒された粒子である場合には、混合粉中のリチウム原料の大部分が造粒粒子の外にあったとしても、焼成処理後の粒子は過度にタップ密度が高い粒子となり易い。したがって、ニッケル原料、コバルト原料、及び元素Mの原料として、共沈原料を使用する場合には、これを湿式で粉砕した後、造粒して造粒粒子を作製し、リチウム原料と乾式混合することが重要である。これにより、本発明の粒子を得ることができる。   However, when the nickel raw material, cobalt raw material, and element M raw material are particles granulated by the coprecipitation method, even if most of the lithium raw material in the mixed powder is outside the granulated particles, The particles after the firing treatment tend to be particles having an excessively high tap density. Therefore, when using a coprecipitation raw material as a raw material for nickel raw material, cobalt raw material, and element M, this is pulverized wet, then granulated to produce granulated particles, and dry mixed with lithium raw material This is very important. Thereby, the particle | grains of this invention can be obtained.

また、湿式で粉砕されたニッケル原料、コバルト原料、及び元素Mの原料が造粒されてなる造粒粒子内部にリチウム原料の大部分が存在する場合には、焼成処理後の粒子が過度に疎な粒子構造となり易い。この場合でも、焼結促進剤を混合することにより適度な密度の粒子構造を得ることが可能であるが、焼結促進剤を混合すると制御が困難となり、一次粒子径が過大になり易い。
従って、本発明の粒子を得るためには、湿式粉砕したニッケル原料、コバルト原料、及び元素Mの原料、又は、湿式粉砕した共沈原料を造粒した造粒粒子に、リチウム原料を乾式混合することが重要である。
In addition, when most of the lithium material is present in the granulated particles formed by granulating the wet-ground nickel raw material, cobalt raw material, and element M raw material, the particles after the baking treatment are excessively sparse. It is easy to become a grain structure. Even in this case, it is possible to obtain a particle structure with an appropriate density by mixing a sintering accelerator, but when the sintering accelerator is mixed, control becomes difficult and the primary particle diameter tends to be excessive.
Therefore, in order to obtain the particles of the present invention, the lithium raw material is dry-mixed into the granulated particles obtained by granulating the wet-pulverized nickel raw material, cobalt raw material, and element M raw material, or wet-pulverized coprecipitation raw material. This is very important.

本発明の粒子を得るための具体的な手順は特に制限されず、使用する各原料の種類に応じて適宜調整すればよいが、例えばニッケル原料としてNiOを使用し、コバルト原料としてCo(OH)2を使用し、元素Mの原料としてMn34等のマンガン原料を使用する場合には、後述の実施例に示すように、NiOをコバルト原料及びマンガン原料と湿式混合してから噴霧乾燥し、その後にリチウム原料を乾式混合するという手順が挙げられる。 The specific procedure for obtaining the particles of the present invention is not particularly limited, and may be appropriately adjusted according to the type of each raw material used. For example, NiO is used as a nickel raw material, and Co (OH) is used as a cobalt raw material. 2 and a manganese raw material such as Mn 3 O 4 is used as a raw material for the element M, NiO is wet-mixed with a cobalt raw material and a manganese raw material and spray-dried, as shown in the examples described later. Then, a procedure of dry mixing the lithium raw material can be mentioned.

〔II.リチウム二次電池用正極〕
本発明のリチウム二次電池用正極は、上述した本発明の粒子と結着剤とを含有する正極活物質層を、集電体上に有することを特徴とする。
また、本発明のリチウム二次電池用正極は、本発明の粒子と結着剤とを含有する正極活物質層を、集電体上に形成して作製される。
[II. (Positive electrode for lithium secondary battery)
The positive electrode for a lithium secondary battery according to the present invention has a positive electrode active material layer containing the above-described particles of the present invention and a binder on a current collector.
The positive electrode for a lithium secondary battery of the present invention is produced by forming a positive electrode active material layer containing the particles of the present invention and a binder on a current collector.

本発明の粒子を用いる正極の製造は、常法により行なうことができる。すなわち、本発明の粒子及び結着剤、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を分散媒に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成させることができる。   The positive electrode using the particles of the present invention can be produced by a conventional method. That is, the particles and the binder of the present invention, and if necessary, a conductive material and a thickener mixed in a dry form into a sheet form are pressure-bonded to the positive electrode current collector, or these materials are dispersed. A positive electrode active material layer can be formed on the current collector by dissolving or dispersing in a medium as a slurry, applying this to a positive electrode current collector, and drying.

本発明の粒子は、正極活物質層中に、通常10重量%以上、好ましくは30重量%以上、より好ましくは50重量%以上、また通常99.9重量%以下含有するように用いることが望ましい。含有量がこの範囲よりも低いと電気容量が不十分となることがある。逆に含有量がこの範囲よりも高いと正極の強度が不足することがある。   The particles of the present invention are desirably used so as to be contained in the positive electrode active material layer in an amount of usually 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more, and usually 99.9% by weight or less. . If the content is lower than this range, the electric capacity may be insufficient. Conversely, if the content is higher than this range, the strength of the positive electrode may be insufficient.

結着剤は、分散媒に対して安定であれば任意のものを用いることができる。具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子、SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、EPDM(エチレン−プロピレン−ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレンスチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   Any binder can be used as long as it is stable to the dispersion medium. Specific examples include resin polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, cellulose, nitrocellulose, SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluororubber, Rubber polymers such as isoprene rubber, butadiene rubber, ethylene / propylene rubber; styrene / butadiene / styrene block copolymer and its hydrogenated product, EPDM (ethylene-propylene-diene terpolymer), styrene / ethylene / Thermoplastic elastomeric polymers such as butadiene / ethylene copolymer, styrene / isoprene styrene block copolymer and hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene Soft resinous polymers such as vinyl acid copolymers and propylene / α-olefin copolymers; Fluorine-based polymers such as polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, and polytetrafluoroethylene / ethylene copolymers Polymers: Polymer compositions having ionic conductivity of alkali metal ions (especially lithium ions), etc. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.

結着剤は、正極活物質層中に、通常0.1重量%以上、好ましくは1重量%以上、より好ましくは5重量%以上、また、通常80重量%以下、好ましくは60重量%以下、より好ましくは40重量%以下含有するように用いることが望ましい。含有量がこの範囲よりも低いと正極活物質を十分保持できず、正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまうことがある。逆に、含有量がこの範囲よりも高いと電池容量や導電性が低下することがある。   In the positive electrode active material layer, the binder is usually 0.1% by weight or more, preferably 1% by weight or more, more preferably 5% by weight or more, and usually 80% by weight or less, preferably 60% by weight or less. More preferably, it is desirably used so as to contain 40% by weight or less. If the content is lower than this range, the positive electrode active material cannot be sufficiently retained, the positive electrode has insufficient mechanical strength, and battery performance such as cycle characteristics may be deteriorated. Conversely, if the content is higher than this range, the battery capacity and conductivity may be reduced.

導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料:天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素材料などが挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   A known conductive material can be arbitrarily used as the conductive material. Specific examples include metal materials such as copper and nickel: graphite such as natural graphite and artificial graphite (graphite); carbon black such as acetylene black; and carbon materials such as amorphous carbon such as needle coke. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.

導電材は、正極活物質中に、通常0.01重量%以上、好ましくは0.1重量%以上、より好ましくは1重量%以上、また、通常50重量%以下、好ましくは30重量%以下、より好ましくは15重量%以下含有するように用いるのが好ましい。含有量がこの範囲よりも低いと導電性が不十分となることがある。逆に、含有量がこの範囲よりも高いと電池容量が低下することがある。   In the positive electrode active material, the conductive material is usually 0.01% by weight or more, preferably 0.1% by weight or more, more preferably 1% by weight or more, and usually 50% by weight or less, preferably 30% by weight or less. More preferably, it is used so as to contain 15% by weight or less. If the content is lower than this range, the conductivity may be insufficient. Conversely, if the content is higher than this range, the battery capacity may decrease.

スラリーの調製に用いる分散媒としては、正極材及び結着剤、並びに導電材及び増粘剤を溶解又は分散することが可能なものであれば、その種類に特に制限はなく、水系媒体と有機系媒体のどちらを用いてもよい。
水系媒体としては、例えば、水、アルコール等が挙げられる。
有機系媒体としては、例えば、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N−N−ジメチルアミノプロピルアミン等のアミン類;ジメチルエーテル、エチレンオキシド、テトラヒドロフラン(THF)等のエーテル類;N−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルホキシド等の非プロトン性極性溶媒などを挙げることができる。特に水系媒体を用いる場合、増粘剤に併せて分散媒を加え、SBR等のラテックスを用いてスラリー化するのが好ましい。なお、これらの分散媒は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
正極活物質層の厚さとしては、10μm〜200μmが好ましい。
The dispersion medium used for the preparation of the slurry is not particularly limited as long as it can dissolve or disperse the positive electrode material and the binder, and the conductive material and the thickener. Either of the system media may be used.
Examples of the aqueous medium include water and alcohol.
Examples of the organic medium include aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, xylene, and methylnaphthalene; heterocyclic compounds such as quinoline and pyridine; ketones such as acetone, methyl ethyl ketone, and cyclohexanone. Esters such as methyl acetate and methyl acrylate; amines such as diethylenetriamine and NN-dimethylaminopropylamine; ethers such as dimethyl ether, ethylene oxide and tetrahydrofuran (THF); N-methylpyrrolidone (NMP) and dimethyl Examples include amides such as formamide and dimethylacetamide; aprotic polar solvents such as hexamethylphosphalamide and dimethylsulfoxide. In particular, when an aqueous medium is used, it is preferable to add a dispersion medium together with the thickener and make a slurry using a latex such as SBR. In addition, these dispersion media may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
The thickness of the positive electrode active material layer is preferably 10 μm to 200 μm.

正極集電体の材質としては特に制限は無く、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。薄膜がこの範囲よりも薄いと集電体として必要な強度が不足することがある。逆に、薄膜がこの範囲よりも厚いと取り扱いづらくなる。
There is no restriction | limiting in particular as a material of a positive electrode electrical power collector, A well-known thing can be used arbitrarily. Specific examples include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum; and carbon materials such as carbon cloth and carbon paper. Of these, metal materials, particularly aluminum, are preferred.
Examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal in the case of a metal material. A thin film, a carbon cylinder, etc. are mentioned. Of these, metal thin films are preferred. In addition, you may form a thin film suitably in mesh shape. The thickness of the thin film is arbitrary, but is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and usually 1 mm or less, preferably 100 μm or less, more preferably 50 μm or less. If the thin film is thinner than this range, the strength required for the current collector may be insufficient. Conversely, if the thin film is thicker than this range, it becomes difficult to handle.

なお、塗布・乾燥によって得られた正極活物質層は、ローラープレス等により圧密して正極活物質の充填密度を上げるのが好ましい。   Note that the positive electrode active material layer obtained by coating and drying is preferably consolidated by a roller press or the like to increase the packing density of the positive electrode active material.

〔III.リチウム二次電池〕
次に、本発明のリチウム二次電池について説明する。
本発明のリチウム二次電池は、リチウムを吸蔵・放出可能な正極及び負極、並びに、リチウム塩を電解質として含有する有機電解液を備えたリチウム二次電池であって、正極が、本発明の粒子を用いて作製されたリチウム二次電池用正極であることを特徴とする。
[III. Lithium secondary battery)
Next, the lithium secondary battery of the present invention will be described.
The lithium secondary battery of the present invention is a lithium secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting lithium, and an organic electrolyte containing a lithium salt as an electrolyte, wherein the positive electrode is a particle of the present invention. It is the positive electrode for lithium secondary batteries produced using this, It is characterized by the above-mentioned.

本発明のリチウム二次電池に用いる負極は、リチウムを吸蔵・放出することが可能なものであれば他に制限は無い。また、その製造方法も任意であるが、例えば、負極集電体上に負極活物質層を形成させることにより製造すればよい。   The negative electrode used in the lithium secondary battery of the present invention is not limited as long as it can occlude and release lithium. Moreover, the manufacturing method is arbitrary, For example, what is necessary is just to manufacture by forming a negative electrode active material layer on a negative electrode collector.

負極集電体の材質としては公知のものを任意に用いることができる。具体例としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。金属材料の形状としては、金属箔、金属円柱、金属コイル、金属板、金属薄膜等が挙げられ、炭素材料の形状としては、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。薄膜がこの範囲よりも薄いと集電体として必要な強度が不足することがある。逆に、この範囲よりも厚いと取り扱いづらくなる。   As the material of the negative electrode current collector, known materials can be arbitrarily used. Specific examples include metal materials such as copper, nickel, stainless steel, and nickel-plated steel; and carbon materials such as carbon cloth and carbon paper. Examples of the shape of the metal material include a metal foil, a metal cylinder, a metal coil, a metal plate, and a metal thin film. Examples of the shape of the carbon material include a carbon plate, a carbon thin film, and a carbon cylinder. Of these, metal thin films are preferred. In addition, you may form a thin film suitably in mesh shape. The thickness of the thin film is arbitrary, but is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and usually 1 mm or less, preferably 100 μm or less, more preferably 50 μm or less. If the thin film is thinner than this range, the strength required for the current collector may be insufficient. Conversely, if it is thicker than this range, it becomes difficult to handle.

負極活物質層に含まれる負極活物質は、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば任意であるが、通常は安全性の高さの面からリチウムを吸蔵、放出できる炭素材料が用いられる。   The negative electrode active material contained in the negative electrode active material layer may be any material as long as it can electrochemically occlude and release lithium ions, but is usually carbon that can occlude and release lithium from the viewpoint of high safety. Material is used.

炭素材料としては、例えば、人造黒鉛、天然黒鉛等の黒鉛(グラファイト)や、様々な熱分解条件での有機物の熱分解物が挙げられる。有機物の熱分解物としては、石炭系コークス、石油系コークス、石炭系ピッチの炭化物、石油系ピッチの炭化物、石炭系又は石油系のピッチを酸化処理したものの炭化物、ニードルコークス、ピッチコークス、フェノール樹脂、結晶セルロース等の炭化物等及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等が挙げられる。これらのうち、黒鉛、特に種々の原料から得た易黒鉛性ピッチに高温熱処理を施すことによって製造された人造黒鉛若しくは精製天然黒鉛又はこれらの黒鉛にピッチを含む黒鉛材料等であって種々の表面処理を施したものが好ましい。これらの炭素材料は、それぞれ1種を単独で用いても、2種以上を組み合わせて用いてもよい。   Examples of the carbon material include graphite (graphite) such as artificial graphite and natural graphite, and organic pyrolysis products under various pyrolysis conditions. Organic pyrolysis products include coal-based coke, petroleum-based coke, coal-based pitch carbide, petroleum-based pitch carbide, carbonized products obtained by oxidizing coal-based or petroleum-based pitch, needle coke, pitch coke, and phenol resin. And carbides such as crystalline cellulose and the like, carbon materials obtained by partially graphitizing these, furnace black, acetylene black, pitch-based carbon fibers, and the like. Among these, graphite, especially artificial graphite or purified natural graphite produced by subjecting easily graphitizable pitch obtained from various raw materials to high-temperature heat treatment, graphite material containing pitch in these graphite, etc., and various surfaces What processed is preferable. One of these carbon materials may be used alone, or two or more thereof may be used in combination.

黒鉛材料としては、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、通常0.335nm以上0.34nm以下、特に0.337nm以下であるものが好ましい。黒鉛材料の灰分は、黒鉛材料の重量に対して、通常1重量%以下、好ましくは0.5重量%以下、より好ましくは0.1重量%以下である。学振法によるX線回折で求めた黒鉛材料の結晶子サイズ(Lc)は、通常30nm以上、好ましくは50nm以上、より好ましくは100nm以上である。レーザー回折・散乱法により求めた黒鉛材料のメジアン径は、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、特に好ましくは7μm以上であり、通常100μm以下、好ましくは50μm以下、より好ましくは40μm以下、特に好ましくは30μm以下である。   As the graphite material, those in which the d value (interlayer distance) of the lattice plane (002 plane) obtained by X-ray diffraction by the Gakushin method is usually 0.335 nm or more and 0.34 nm or less, and particularly preferably 0.337 nm or less. . The ash content of the graphite material is usually 1% by weight or less, preferably 0.5% by weight or less, more preferably 0.1% by weight or less, based on the weight of the graphite material. The crystallite size (Lc) of the graphite material determined by X-ray diffraction by the Gakushin method is usually 30 nm or more, preferably 50 nm or more, more preferably 100 nm or more. The median diameter of the graphite material determined by the laser diffraction / scattering method is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, particularly preferably 7 μm or more, and usually 100 μm or less, preferably 50 μm or less, more preferably. It is 40 μm or less, particularly preferably 30 μm or less.

また、黒鉛材料のBET法比表面積は、通常0.5m2/g以上、好ましくは0.7m2/g以上、より好ましくは1.0m2/g以上、特に好ましくは1.5m2/g以上であり、通常25.0m2/g以下、好ましくは20.0m2/g以下、より好ましくは15.0m2/g以下、特に好ましくは10.0m2/g以下である。アルゴンレーザー光を用いたラマンスペクトル分析で、1580cm-1〜1620cm-1の範囲で検出されるピークPAの強度IAと、1350〜1370cm-1の範囲で検出されるピークPBの強度IBとの強度比IA/IBが、0以上0.5以下であるものが好ましく、ピークPAの半価幅は26cm-1以下、特に25cm-1以下が好ましい。 The BET specific surface area of the graphite material is usually 0.5 m 2 / g or more, preferably 0.7 m 2 / g or more, more preferably 1.0 m 2 / g or more, and particularly preferably 1.5 m 2 / g. or more, usually 25.0 m 2 / g or less, preferably 20.0 m 2 / g or less, more preferably 15.0 m 2 / g or less, particularly preferably 10.0 m 2 / g or less. The intensity I A of the peak P A detected in the range of 1580 cm −1 to 1620 cm −1 and the intensity I of the peak P B detected in the range of 1350 to 1370 cm −1 in the Raman spectrum analysis using an argon laser beam. intensity ratio I a / I B of B is preferably not more than 0 and 0.5 or less, the peak half width of P a is 26cm -1 or less, especially 25 cm -1 or less.

炭素材料以外の負極活物質としては、例えば、酸化錫や酸化ケイ素などの金属酸化物;リチウム単体やリチウムアルミニウム合金等のリチウム合金などが挙げられる。これらは、それぞれ1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよく、炭素材料と組み合わせて用いてもよい。   Examples of the negative electrode active material other than the carbon material include metal oxides such as tin oxide and silicon oxide; and lithium alloys such as lithium alone and lithium aluminum alloys. These may be used individually by 1 type, may be used in combination of 2 or more types, and may be used in combination with a carbon material.

負極活物質層は、正極活物質層と同様にして形成させればよい。すなわち、前述の負極活物質及び結着剤、並びに所望により増粘剤及び導電材を、分散媒でスラリー化したものを負極集電体に塗布し、乾燥することにより形成させることができる。分散媒、結着剤、導電材及び増粘剤としては、正極活物質と同じものを用いることができる。   The negative electrode active material layer may be formed in the same manner as the positive electrode active material layer. That is, it can be formed by applying the above-described negative electrode active material and binder, and, if desired, a thickener and a conductive material slurryed with a dispersion medium to a negative electrode current collector and drying. As the dispersion medium, the binder, the conductive material, and the thickener, the same materials as the positive electrode active material can be used.

電解質としては、例えば、有機電解液、高分子固体電解質、ゲル状電解質、無機固体電解質等が挙げられ、これらのうち有機電解液が好ましい。   Examples of the electrolyte include organic electrolytes, polymer solid electrolytes, gel electrolytes, inorganic solid electrolytes, etc. Among these, organic electrolytes are preferable.

有機電解液に用いる有機溶媒には公知のいずれのものも用いることができる。例えば、ジメチルカーボネート、ジエチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート等のカーボネート類;テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル等のエーテル類;4−メチル−2−ペンタノン等のケトン類;スルホラン、メチルスルホラン等のスルホラン系化合物;ジメチルスルホキシド等のスルホキシド化合物;γ−ブチロラクトン等のラクトン類;アセトニトリル、プロピオニトリル、ベンゾニトリル、ブチロニトリル、バレロニトリル等のニトリル類;1,2−ジクロロエタン等の塩素化炭化水素類;アミン類;エステル類;ジメチルホルムアミド等のアミド類;リン酸トリメチル、リン酸トリエチル等のリン酸エステル化合物等が挙げられる。これらは単独で用いても、2種類以上を併用してもよい。   Any known organic solvent can be used for the organic electrolyte. For example, carbonates such as dimethyl carbonate, diethyl carbonate, propylene carbonate, ethylene carbonate, vinylene carbonate; tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1, Ethers such as 1,3-dioxolane, 4-methyl-1,3-dioxolane and diethyl ether; ketones such as 4-methyl-2-pentanone; sulfolane compounds such as sulfolane and methyl sulfolane; sulfoxide compounds such as dimethyl sulfoxide Lactones such as γ-butyrolactone; nitriles such as acetonitrile, propionitrile, benzonitrile, butyronitrile, valeronitrile; chlorinated hydrocarbons such as 1,2-dichloroethane; amines Esters, amides such as dimethylformamide; trimethyl phosphate, phosphoric acid ester compounds such as triethyl phosphate. These may be used alone or in combination of two or more.

有機電解液は、電解質を解離させるため、25℃における比誘電率が20以上である高誘電率溶媒を含んでいるのが好ましい。中でも、エチレンカーボネート、プロピレンカーボネート、及びそれらの水素原子をハロゲン等の他の元素又はアルキル基等で置換した有機溶媒を含んでいるのが好ましい。有機電解液全体に占める高誘電率溶媒の電解液の割合は、通常20重量%以上、好ましくは30重量%以上、より好ましくは40重量%以上である。また、有機電解液には、CO2、N2O、CO、SO2等のガスやポリサルファイドSx 2-など負極表面にリチウムイオンの効率良い充放電を可能にする良好な被膜を形成する添加剤を、任意の割合で添加してもよい。 The organic electrolytic solution preferably contains a high dielectric constant solvent having a relative dielectric constant of 20 or more at 25 ° C. in order to dissociate the electrolyte. Among these, it is preferable to include ethylene carbonate, propylene carbonate, and an organic solvent in which hydrogen atoms thereof are substituted with other elements such as halogen or alkyl groups. The ratio of the electrolyte solution of the high dielectric constant solvent to the whole organic electrolyte solution is usually 20% by weight or more, preferably 30% by weight or more, more preferably 40% by weight or more. In addition to organic electrolytes, CO 2 , N 2 O, CO, SO 2 and other gases and polysulfide S x 2− such as polysulfide S x 2− are added to form a good coating that enables efficient charge and discharge of lithium ions on the negative electrode surface. You may add an agent in arbitrary ratios.

溶質となるリチウム塩は、従来公知の任意のものを用いることができる。具体例としては、LiClO4、LiAsF6、LiPF6、LiBF4、LiB(C654、LiCl、LiBr、CH3SO3Li、CF3SO3Li、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33、LiN(SO3CF32等が挙げられる。これらの溶質は1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。 Any conventionally known lithium salt can be used as the solute. Specific examples include LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, LiN (SO 2 CF 3 ) 2. , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 , LiN (SO 3 CF 3 ) 2 and the like. These solutes may be used alone or in combination of two or more in any combination and ratio.

電解液中におけるリチウム塩の濃度は、通常0.5mol/L以上1.5mol/L以下である。この濃度が、高くても低くても伝導度が低下し、電池特性が低下することがある。したがって、下限が0.75mol/L以上、上限が1.25mol/L以下が好ましい。   The concentration of the lithium salt in the electrolytic solution is usually 0.5 mol / L or more and 1.5 mol / L or less. Whether the concentration is high or low, the conductivity may decrease, and the battery characteristics may deteriorate. Therefore, the lower limit is preferably 0.75 mol / L or more and the upper limit is 1.25 mol / L or less.

有機電解液に用いる無機固体電解質としては、電解質として用いることが知られている結晶質・非晶質の任意のものを用いることができる。結晶質の無機固体電解質としては、例えば、LiI、Li3N、Li(1+χ)1 χTi(2-χ)(PO43(M1=Al、Sc、Y、La)、Li(0.5-3χ)RE(0.5+χ)TiO3(RE=La、Pr、Nd、Sm)等が挙げられる(なお、χは0≦χ≦2を満たす数を表わす。)。非晶質の無機固体電解質としては、例えば、4.9LiI−34.1Li2O−61B25、33.3Li2O−66.7SiO2等の酸化物ガラス等が挙げられる。これらは任意の1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で用いてもよい。 As the inorganic solid electrolyte used for the organic electrolytic solution, any crystalline or amorphous one known to be used as an electrolyte can be used. Examples of the crystalline inorganic solid electrolyte include LiI, Li 3 N, Li (1 + χ) M 1 χ Ti (2-χ) (PO 4 ) 3 (M 1 = Al, Sc, Y, La), Li (0.5-3χ) RE (0.5 + χ) TiO 3 (RE = La, Pr, Nd, Sm) and the like are mentioned (note that χ represents a number satisfying 0 ≦ χ ≦ 2). Examples of the amorphous inorganic solid electrolyte include oxide glasses such as 4.9LiI-34.1Li 2 O-61B 2 O 5 and 33.3Li 2 O-66.7SiO 2 . Any one of these may be used alone, or two or more may be used in any combination and ratio.

二次電池は、電極同士の短絡を防止するため正極と負極の間に非水電解質を保持するセパレータを備えているのが好ましい。   The secondary battery preferably includes a separator that holds a nonaqueous electrolyte between the positive electrode and the negative electrode in order to prevent a short circuit between the electrodes.

セパレータの材質や形状は、使用する有機電解液に対して安定で、かつ保液性に優れ、更に電極同士の短絡を確実に防止できるものであれば任意である。例えば、各種の高分子材料からなる微多孔性のフィルム、シート、不織布等が挙げられる。高分子材料としては、例えば、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリブテン等のポリオレフィン高分子が挙げられる。化学的及び電気化学的な安定性の点からはポリオレフィン系高分子が好ましく、電池の自己閉塞温度の点からはポリエチレンが好ましい。ポリエチレンとしては、高温形状維持性に優れる超高分子ポリエチレンが好ましい。ポリエチレンの分子量は、50万以上500万以下が好ましい。分子量が小さいと高温時の形状が維持できなくなることがある。したがって、分子量は100万以上、特に150万が好ましい。逆に、分子量が大きすぎると流動性が低くなり、加熱時セパレータの穴が閉塞しないことがある。したがって、分子量は400万以下、特に300万以下が好ましい。   The material and shape of the separator are arbitrary as long as they are stable with respect to the organic electrolyte used, have excellent liquid retention, and can reliably prevent short-circuiting between electrodes. Examples thereof include microporous films, sheets and nonwoven fabrics made of various polymer materials. Examples of the polymer material include polyolefin polymers such as nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene, and polybutene. Polyolefin polymers are preferable from the viewpoint of chemical and electrochemical stability, and polyethylene is preferable from the viewpoint of the self-closing temperature of the battery. As the polyethylene, ultra high molecular weight polyethylene excellent in high temperature shape maintenance is preferable. The molecular weight of polyethylene is preferably 500,000 to 5,000,000. If the molecular weight is small, the shape at high temperature may not be maintained. Accordingly, the molecular weight is preferably 1,000,000 or more, particularly 1.5 million. On the other hand, if the molecular weight is too large, the fluidity is lowered, and the hole of the separator may not be blocked during heating. Accordingly, the molecular weight is preferably 4 million or less, particularly 3 million or less.

リチウム二次電池の形状は、一般的に採用されている各種形状の中から、その用途に応じて適宜選択することができる。形状としては、例えば、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等が挙げられる。リチウム二次電池は、目的とする電池の形状に合わせ公知の方法により組み立てればよい。   The shape of the lithium secondary battery can be appropriately selected from various shapes generally employed according to the application. Examples of the shape include a cylinder type in which a sheet electrode and a separator are spiral, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, a coin type in which a pellet electrode and a separator are stacked, and the like. What is necessary is just to assemble a lithium secondary battery by a well-known method according to the shape of the target battery.

以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を逸脱しない限り、以下の実施例に制約されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited to a following example, unless it deviates from the summary.

〔リチウム複合酸化物粒子の製造〕
<実施例1>
ニッケル原料としてNiO、コバルト原料としてCo(OH)2、及び、マンガン原料としてMn34を、Ni:Co:Mn=0.33:0.33:0.33のモル比となるように秤量し、これに純水を加えてスラリーとし、攪拌しながら、循環式媒体攪拌型湿式ビーズミルを用いて、スラリー中の固形分をメジアン径0.3μmに湿式粉砕した。
[Production of lithium composite oxide particles]
<Example 1>
NiO as a nickel raw material, Co (OH) 2 as a cobalt raw material, and Mn 3 O 4 as a manganese raw material are weighed so as to have a molar ratio of Ni: Co: Mn = 0.33: 0.33: 0.33. Then, pure water was added thereto to form a slurry, and while stirring, the solid content in the slurry was wet pulverized to a median diameter of 0.3 μm using a circulating medium agitation type wet bead mill.

スラリーをスプレードライヤーにより噴霧乾燥し、ニッケル原料、コバルト原料、マンガン原料のみからなる、粒径約5μmのほぼ球状の造粒粒子を得た。得られた造粒粒子に、メジアン径3μmのLiOH粉末を、Ni、Co、及びMnの合計モル数に対するLiのモル数の比が1.05となるように添加し、ハイスピードミキサーにて混合して、ニッケル原料、コバルト原料、マンガン原料の造粒粒子とリチウム原料との混合粉を得た。   The slurry was spray-dried with a spray dryer to obtain substantially spherical granulated particles having a particle size of about 5 μm and consisting only of nickel raw material, cobalt raw material and manganese raw material. LiOH powder with a median diameter of 3 μm was added to the resulting granulated particles so that the ratio of the number of moles of Li to the total number of moles of Ni, Co, and Mn was 1.05, and mixed with a high speed mixer. Thus, a mixed powder of granulated particles of nickel raw material, cobalt raw material, manganese raw material and lithium raw material was obtained.

この混合粉を空気流通下、950℃で12時間焼成(昇降温速度5℃/min)した後、解砕し、目開き45μmの篩を通し、リチウム複合酸化物粒子(以下、適宜「実施例1のリチウム複合酸化物粒子」という。)を得た。   This mixed powder was calcined at 950 ° C. for 12 hours under air flow (climbing temperature rate 5 ° C./min), then crushed, passed through a sieve having an opening of 45 μm, and lithium composite oxide particles (hereinafter referred to as “Examples” as appropriate). 1 lithium composite oxide particles).

<比較例1>
LiOH・H2O、NiO、Co(OH)2及びMn34を、Li:Ni:Co:Mn=1.05:0.33:0.33:0.33のモル比となるように秤量し、実施例1と同様の手順で湿式粉砕した。得られたスラリーを、スプレードライヤーにより噴霧乾燥することにより、ニッケル原料、コバルト原料、マンガン原料及びリチウム原料を含む、粒径約10μmのほぼ球状の造粒粒子を得た。この造粒粒子を空気流通下、実施例1と同様に焼成、解砕することにより、リチウム複合酸化物粒子(以下「比較例1のリチウム複合酸化物粒子」という。)を得た。
<Comparative Example 1>
LiOH.H 2 O, NiO, Co (OH) 2 and Mn 3 O 4 are set to have a molar ratio of Li: Ni: Co: Mn = 1.05: 0.33: 0.33: 0.33. The sample was weighed and wet-ground by the same procedure as in Example 1. The obtained slurry was spray-dried with a spray dryer to obtain substantially spherical granulated particles having a particle size of about 10 μm, including a nickel raw material, a cobalt raw material, a manganese raw material, and a lithium raw material. The granulated particles were fired and pulverized in the same manner as in Example 1 under air flow to obtain lithium composite oxide particles (hereinafter referred to as “lithium composite oxide particles of Comparative Example 1”).

<比較例2>
Ni(OH)2、Co(OH)2及びMn34を、Ni:Co:Mn=0.33:0.33:0.33のモル比となるように秤量し、実施例1と同様の手順で湿式粉砕した後、得られたスラリーをスプレードライヤーにより噴霧乾燥することにより、ニッケル原料、コバルト原料及びマンガン原料のみを含む、粒径約10μmのほぼ球状の造粒粒子を得た。得られた造粒粒子に、メジアン径3μmのLiOH粉末を実施例1と同様の手順で添加・混合して、ニッケル原料、コバルト原料、マンガン原料の造粒粒子とリチウム原料との混合粉を得た。得られた混合粉を空気流通下、950℃で12時間焼成(昇降温速度5℃/min)した後、解砕し、再度空気流通下、950℃で12時間焼成(昇降温速度5℃/min)し、目開き45μmの篩を通すことにより、リチウム複合酸化物粒子(以下「比較例2のリチウム複合酸化物粒子」という。)を得た。
<Comparative example 2>
Ni (OH) 2 , Co (OH) 2 and Mn 3 O 4 were weighed so as to have a molar ratio of Ni: Co: Mn = 0.33: 0.33: 0.33, and the same as in Example 1. After the wet pulverization according to the above procedure, the obtained slurry was spray-dried with a spray dryer to obtain substantially spherical granulated particles having a particle size of about 10 μm and containing only nickel raw material, cobalt raw material and manganese raw material. LiOH powder with a median diameter of 3 μm is added to and mixed with the obtained granulated particles in the same procedure as in Example 1 to obtain a mixed powder of nickel raw material, cobalt raw material, granulated particles of manganese raw material and lithium raw material. It was. The obtained mixed powder was calcined at 950 ° C. for 12 hours under air flow (climbing temperature rate 5 ° C./min), then crushed, and again fired at 950 ° C. for 12 hours under air flow (climbing temperature rate 5 ° C./min min) and passing through a sieve having an opening of 45 μm to obtain lithium composite oxide particles (hereinafter referred to as “lithium composite oxide particles of Comparative Example 2”).

<比較例3>
添加・混合するLiOH粉末の量を、(Ni+Co+Mn)に対してLiが1.1のモル比となるようにした以外は、比較例2と同様の手順により、粒径約10μmのリチウム複合酸化物粒子を得た。この粒子を、更に空気流通下、1100℃で10時間焼成(昇降温速度5℃/min)した。なお、1100℃焼成後の粒子について組成分析を行なったところ、Li/(Ni+Co+Mn)のモル比が、仕込み時の1.1に対して、0.98に減少していた。この1100℃焼成後の粒子に、更にメジアン径3μmのLiOH粉末を(Ni+Co+Mn)に対してLiのモル比が0.12となるように追加で添加し、乾式混合した後、空気流通下、950℃で10時間焼成(昇降温速度5℃/min)し、目開き45μmの篩いを通すことにより、リチウム複合酸化物粒子(以下「比較例3のリチウム複合酸化物粒子」という。)を得た。
なお、得られた比較例3のリチウム複合酸化物粒子について組成分析を行なったところ、Li/(Ni+Co+Mn)のモル比は1.11であった。
<Comparative Example 3>
Lithium composite oxide having a particle size of about 10 μm was made in the same manner as in Comparative Example 2 except that the amount of LiOH powder added and mixed was such that Li had a molar ratio of 1.1 to (Ni + Co + Mn). Particles were obtained. The particles were further calcined at 1100 ° C. for 10 hours (5 ° C./min heating / cooling rate) under air flow. In addition, when the composition analysis was performed about the particle | grains after 1100 degreeC baking, the molar ratio of Li / (Ni + Co + Mn) was reducing to 0.98 with respect to 1.1 at the time of preparation. To the particles after firing at 1100 ° C., LiOH powder having a median diameter of 3 μm was additionally added so that the molar ratio of Li to (Ni + Co + Mn) was 0.12, and after dry-mixing, under an air flow, 950 Lithium composite oxide particles (hereinafter referred to as “lithium composite oxide particles of Comparative Example 3”) were obtained by firing at 5 ° C. for 10 hours (heating rate 5 ° C./min) and passing through a sieve having an opening of 45 μm. .
In addition, when the composition analysis was conducted about the obtained lithium composite oxide particle of Comparative Example 3, the molar ratio of Li / (Ni + Co + Mn) was 1.11.

〔リチウム複合酸化物粒子の評価〕
<各種物性の測定>
得られた実施例1及び比較例1〜3のリチウム複合酸化物粒子について、メジアン径、BET比表面積、一次粒子径、タップ密度を測定した。メジアン径の測定は、粒度分布計(HORIBA社製LA−920)を用いて行なった。BET比表面積の測定は、カンタクローム社製オートソーブ1を用いて行なった。一次粒子径の測定は、SEM観察によって行なった。タップ密度の測定は、10mlガラス製メスシリンダーに粒子5gを入れ、200回タップして行なった。結果を表1に示す。
[Evaluation of lithium composite oxide particles]
<Measurement of various physical properties>
With respect to the obtained lithium composite oxide particles of Example 1 and Comparative Examples 1 to 3, the median diameter, BET specific surface area, primary particle diameter, and tap density were measured. The median diameter was measured using a particle size distribution meter (LA-920 manufactured by HORIBA). The BET specific surface area was measured using an autosorb 1 manufactured by Cantachrome. The primary particle diameter was measured by SEM observation. The tap density was measured by placing 5 g of particles in a 10 ml glass graduated cylinder and tapping 200 times. The results are shown in Table 1.

<低温負荷特性の測定>
上記の実施例1及び比較例1〜3のリチウム複合酸化物粒子(以下、実施例1及び比較例1〜3のリチウム複合酸化物粒子を区別せずに述べる場合、適宜「正極材」という)を用いて、以下の方法でそれぞれ電池を作製し、低温負荷特性を測定した。
<Measurement of low temperature load characteristics>
Lithium composite oxide particles of Example 1 and Comparative Examples 1 to 3 (hereinafter referred to as “positive electrode material” where appropriate when the lithium composite oxide particles of Example 1 and Comparative Examples 1 to 3 are described without distinction) Each battery was prepared by the following method and the low temperature load characteristics were measured.

正極材を75重量%、アセチレンブラックを20重量%、ポリテトラフルオロエチレンパウダーを5重量%の割合で秤量したものを乳鉢で十分混合し、薄くシート状にしたものを12mmφの円盤状に打ち抜いた。この際、全体の重量が約17mgになるように調整した。これをAlのエキスパンドメタルに圧着して正極とした。   A cathode material 75% by weight, acetylene black 20% by weight, and polytetrafluoroethylene powder weighed at a ratio of 5% by weight were mixed thoroughly in a mortar, and a thin sheet was punched into a 12 mmφ disk. . At this time, the total weight was adjusted to about 17 mg. This was crimped to Al expanded metal to obtain a positive electrode.

負極活物質として平均粒径約8〜10μmの黒鉛粉末(d002=3.35A)を用い、バインダーとしてポリフッ化ビニリデンを用いた。これらを重量比(負極活物質:バインダー)で92.5:7.5の割合となるように秤量し、N−メチルピロリドン溶媒中で混合して、負極合材スラリーを得た。得られたスラリーを20μm厚さの銅箔の片面に塗布して乾燥し、直径12φmmの円形に打ち抜き0.5ton/cm2でプレス処理したものを負極とした。 Graphite powder (d 002 = 3.35 A) having an average particle size of about 8 to 10 μm was used as the negative electrode active material, and polyvinylidene fluoride was used as the binder. These were weighed in a weight ratio (negative electrode active material: binder) of 92.5: 7.5 and mixed in an N-methylpyrrolidone solvent to obtain a negative electrode mixture slurry. The obtained slurry was applied to one side of a 20 μm-thick copper foil, dried, punched into a circle having a diameter of 12 mm, and pressed at 0.5 ton / cm 2 to form a negative electrode.

正極と負極との容量バランス比Rは、1.2〜1.5の範囲内となるように設計した。容量バランス比Rとしては、負極がLi金属を析出することなくLiイオンを吸蔵できる容量をQa(mAh/g)、正極がLiイオンを放出できる容量をQc(mAh/g)とし、更に負極及び正極の活物質の重量をそれぞれWa(g)、Wc(g)とした場合に、R=(Qa×Wa)/(Qc×Wc)で表わされる値を用いた。Qa及びQcの測定法としては、正極ないし負極と、対極Li金属、セパレータ、電解液を使用し、2032型コインセルを組み、出来る限り低い電流密度、例えば20mA/g(活物質)以下で、負極は自然電位から下限5mVまでの放電(Li吸蔵)容量、正極は自然電位から4.2Vまでの充電容量を測定することで求めた。 The capacity balance ratio R between the positive electrode and the negative electrode was designed to be in the range of 1.2 to 1.5. The capacity balance ratio R, and the capacitance of the negative electrode can occlude Li ion without precipitating Li metal Q a (mAh / g), the capacity positive electrode capable of releasing Li ions Q c (mAh / g), further When the weights of the negative electrode and positive electrode active materials were W a (g) and W c (g), values represented by R = (Q a × W a ) / (Q c × W c ) were used. . Q a and Q c are measured by using a positive electrode or negative electrode, a counter electrode Li metal, a separator, and an electrolytic solution, assembling a 2032 type coin cell, and at a current density as low as possible, for example, 20 mA / g (active material) or less. The negative electrode was determined by measuring the discharge (Li storage capacity) from the natural potential to the lower limit of 5 mV, and the positive electrode was measured by measuring the charge capacity from the natural potential to 4.2 V.

上記正極、負極を組み合わせ、非水電解液溶液としてはエチレンカーボネート(EC)+ジメチルカーボネート(DMC)+エチルメチルカーボネート(EMC)(体積比3:3:4)の混合溶媒に、LiPF6を1モル/Lとなるように溶解したものを用いて、コインセルを組んだ。得られたコインセルについて、出来る限り低い電流密度で、充電上限電圧4.1V、放電下限電圧3.0Vとして、充放電2サイクルの初期コンディショニングを行い、その際の2サイクル目における正極活物質単位重量当たりの放電容量〔Qd(mAh/g)〕を測定した。 The above positive electrode and negative electrode are combined, and as a non-aqueous electrolyte solution, LiPF 6 is added to a mixed solvent of ethylene carbonate (EC) + dimethyl carbonate (DMC) + ethyl methyl carbonate (EMC) (volume ratio 3: 3: 4). A coin cell was assembled using a material dissolved so as to be mol / L. The obtained coin cell was subjected to initial conditioning for two cycles of charge and discharge at a current density as low as possible with a charge upper limit voltage of 4.1 V and a discharge lower limit voltage of 3.0 V. The positive electrode active material unit weight in the second cycle at that time Per unit discharge capacity [Qd (mAh / g)] was measured.

引き続いて、電池を十分緩和した後、1時間率電流値〔1C(mA)〕=〔Qd(mAh/g)×正極活物質重量(g)として、1/(3C)の定電流により72分間充電を行なった。次いで、1時間静置した後、−30℃の低温雰囲気に1時間以上保持した。その後、1/4Cで10秒間放電したときの電流値(I)、及び、放電直前のOCV(Open Circuit Voltage)と放電10秒後のOCVとの差(ΔV)を測定し、次式により抵抗(R)を算出した。
R=ΔV/I
Subsequently, after the battery was sufficiently relaxed, the current value of 1 hour rate [1 C (mA)] = [Q d (mAh / g) × positive electrode active material weight (g) was set to 72 at a constant current of 1 / (3 C). Charged for a minute. Subsequently, after leaving still for 1 hour, it hold | maintained in the low temperature atmosphere of -30 degreeC for 1 hour or more. Then, the current value (I) when discharged at 1/4 C for 10 seconds and the difference (ΔV) between OCV (Open Circuit Voltage) immediately before discharge and OCV after 10 seconds after discharge were measured, (R) was calculated.
R = ΔV / I

表1に、実施例1及び比較例1〜3の正極材をそれぞれ正極活物質として使用した電池について測定した抵抗値を示す。抵抗値が小さいほど、低温負荷特性が良好であることを表す。   In Table 1, the resistance value measured about the battery which used the positive electrode material of Example 1 and Comparative Examples 1-3 as a positive electrode active material, respectively is shown. The smaller the resistance value, the better the low temperature load characteristic.

<塗布性の測定>
実施例1及び比較例1の正極材について、それぞれの塗布性を以下の方法により測定した。
正極材を85重量%、アセチレンブラックを10重量%、ポリビニリデンフルオライドを5重量%、更に正極材に対して0.3重量%のシュウ酸二水和物を、N−メチルピロリドンに混合、分散し、スラリーとした。ポリビニリデンフルオライドとシュウ酸二水和物は、予めN−メチルピロリドンに溶解させたものを用いた。正極材、アセチレンブラック及びポリビニリデンフルオライドの合計重量の全スラリー重量に対する割合が42重量%となるように調整し、得られたスラリーの25℃におけるせん断速度20s-1での粘度を、E型粘度計にて測定した。測定はスラリー作製当日(初日)及び作製の翌日(2日目)に行なった。作製後のスラリーは密閉して、室温、常圧条件下で保存した。
表1に、実施例1及び比較例1の正極材をスラリーとした場合の粘度の値を示す。粘度が低い程、塗布性が良好であることを表す。
<Measurement of coatability>
About the positive electrode material of Example 1 and Comparative Example 1, each coating property was measured with the following method.
85% by weight of the positive electrode material, 10% by weight of acetylene black, 5% by weight of polyvinylidene fluoride, and 0.3% by weight of oxalic acid dihydrate based on the positive electrode material were mixed with N-methylpyrrolidone. Dispersed into a slurry. As polyvinylidene fluoride and oxalic acid dihydrate, those previously dissolved in N-methylpyrrolidone were used. The ratio of the total weight of the positive electrode material, acetylene black and polyvinylidene fluoride to the total slurry weight was adjusted to 42% by weight, and the viscosity of the obtained slurry at a shear rate of 20 s −1 at 25 ° C. Measured with a viscometer. The measurement was performed on the day of slurry preparation (first day) and the next day (second day) of preparation. The prepared slurry was sealed and stored at room temperature under normal pressure.
Table 1 shows viscosity values when the positive electrode materials of Example 1 and Comparative Example 1 are used as slurry. It represents that applicability | paintability is so favorable that a viscosity is low.

Figure 2005123180
Figure 2005123180

<データの評価>
表1に明らかなように、本発明の規定範囲に比べてタップ密度が低い比較例1の正極材では、−30℃での抵抗値は良好であるものの、スラリー粘度が著しく高い。このことは、低温負荷特性は良好であるが、塗布性が悪いことを示している。
また、本発明の規定範囲に比べてタップ密度が高い比較例2の正極材では、−30℃の抵抗値が高く、低温負荷特性が悪いことを示している。
更に、本発明の規定範囲に比べて一次粒子径が大きく、タップ密度が高い比較例3の正極材では、−30℃の抵抗値が高く、低温負荷特性が悪いことを示している。
これらの比較例に対して、一次粒子径及びタップ密度がともに本発明の規定範囲を満たす実施例1の正極材は、−30℃での抵抗値及びスラリー粘度がともに低く、塗布性と低温負荷特性の双方に優れていることが分かる。
<Evaluation of data>
As is apparent from Table 1, the positive electrode material of Comparative Example 1 having a lower tap density than the specified range of the present invention has a good resistance value at −30 ° C., but has a very high slurry viscosity. This indicates that the low-temperature load characteristics are good, but the applicability is poor.
Further, the positive electrode material of Comparative Example 2 having a higher tap density than the specified range of the present invention has a high resistance value of −30 ° C., indicating that the low-temperature load characteristics are poor.
Furthermore, the positive electrode material of Comparative Example 3 having a large primary particle diameter and a high tap density as compared with the specified range of the present invention has a high resistance value of −30 ° C., indicating that the low-temperature load characteristics are poor.
Compared to these comparative examples, the positive electrode material of Example 1 in which both the primary particle diameter and the tap density satisfy the specified range of the present invention has a low resistance value and a slurry viscosity at −30 ° C. It turns out that it is excellent in both characteristics.

本発明のリチウム二次電池用正極材用リチウム複合酸化物粒子は、結着剤と共に集電体上に活物質層を形成させてリチウム二次電池用正極とすることによって、携帯用電子機器、通信機器及び自動車用動力源などの各種リチウム二次電池用途に用いることができるので、その工業的価値は極めて大きい。   The lithium composite oxide particles for a positive electrode material for a lithium secondary battery according to the present invention form a positive electrode for a lithium secondary battery by forming an active material layer on a current collector together with a binder, Since it can be used for various lithium secondary battery applications such as communication devices and automobile power sources, its industrial value is extremely high.

Claims (6)

一次粒子の集合粒子として構成される、リチウム二次電池正極材用リチウム複合酸化物粒子であって、
比表面積が0.4m2/g以上、2m2/g以下であり、
一次粒子径が0.5μm以上、2μm以下であり、且つ、
タップ密度が1.4g/cm3以上、1.8g/cm3以下である
ことを特徴とする、リチウム二次電池正極材用リチウム複合酸化物粒子。
Lithium composite oxide particles for a lithium secondary battery positive electrode material configured as aggregated particles of primary particles,
The specific surface area is 0.4 m 2 / g or more and 2 m 2 / g or less,
The primary particle size is 0.5 μm or more and 2 μm or less, and
A lithium composite oxide particle for a lithium secondary battery positive electrode material, wherein the tap density is 1.4 g / cm 3 or more and 1.8 g / cm 3 or less.
少なくともNi及びCoを含有する
ことを特徴とする、請求項1記載のリチウム二次電池正極材用リチウム複合酸化物粒子。
The lithium composite oxide particles for a lithium secondary battery positive electrode material according to claim 1, comprising at least Ni and Co.
下記組成式(1)で表わされる組成を有する
LixNi(1-y-z)Coyz2 組成式(1)
{上記組成式(1)において、Mは、Mn,Al,Fe,Ti,Mg,Cr,Ga,Cu,Zn及びNbから選ばれる少なくとも1種の元素を表わす。また、xは0<x≦1.2を満たす数を表わし、yは0.05≦y≦0.5を満たす数を表わし、zは0.01≦z≦0.5を満たす数を表わす。}
ことを特徴とする、請求項2記載のリチウム二次電池正極材用リチウム複合酸化物粒子。
It has a composition represented by the following composition formula (1)
Li x Ni (1-yz) Co y M z O 2 composition formula (1)
{In the above composition formula (1), M represents at least one element selected from Mn, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb. X represents a number satisfying 0 <x ≦ 1.2, y represents a number satisfying 0.05 ≦ y ≦ 0.5, and z represents a number satisfying 0.01 ≦ z ≦ 0.5. . }
The lithium composite oxide particles for a lithium secondary battery positive electrode material according to claim 2, characterized in that:
リチウム原料、ニッケル原料、コバルト原料及び元素Mの原料を用いて、請求項3記載のリチウム複合酸化物粒子を製造する方法であって、
ニッケル原料、コバルト原料及び元素Mの原料を湿式粉砕し、
得られた粉砕物を噴霧乾燥により造粒し、
得られた造粒物を更にリチウム原料と乾式混合し、
得られた乾式混合物を焼成する
ことを特徴とする、リチウム複合酸化物粒子の製造方法。
A method for producing lithium composite oxide particles according to claim 3, using a lithium raw material, a nickel raw material, a cobalt raw material, and a raw material of element M,
Nickel raw material, cobalt raw material and element M raw material are wet crushed,
The obtained pulverized product is granulated by spray drying,
The resulting granulated product is further dry mixed with the lithium raw material,
A method for producing lithium composite oxide particles, wherein the obtained dry mixture is fired.
集電体と、該集電体上に設けられた正極活物質層とを備えるリチウム二次電池用正極であって、
該正極活物質層が、少なくとも、請求項1〜3の何れか一項に記載のリチウム二次電池正極材用リチウム複合酸化物粒子と、結着剤とを含有する
ことを特徴とする、リチウム二次電池用正極。
A positive electrode for a lithium secondary battery comprising a current collector and a positive electrode active material layer provided on the current collector,
The positive electrode active material layer contains at least the lithium composite oxide particles for a lithium secondary battery positive electrode material according to any one of claims 1 to 3 and a binder. Secondary battery positive electrode.
リチウムを吸蔵・放出可能な正極及び負極、並びに、リチウム塩を電解質として含有する有機電解液を備えたリチウム二次電池であって、
該正極が、請求項5記載のリチウム二次電池用正極である
ことを特徴とする、リチウム二次電池。
A lithium secondary battery comprising a positive and negative electrodes capable of inserting and extracting lithium, and an organic electrolyte containing a lithium salt as an electrolyte,
A lithium secondary battery, wherein the positive electrode is a positive electrode for a lithium secondary battery according to claim 5.
JP2004278954A 2003-09-26 2004-09-27 Lithium compound oxide particle for positive electrode material of lithium secondary battery and its manufacturing method, and lithium secondary battery positive electrode using them and the lithium secondary battery Pending JP2005123180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004278954A JP2005123180A (en) 2003-09-26 2004-09-27 Lithium compound oxide particle for positive electrode material of lithium secondary battery and its manufacturing method, and lithium secondary battery positive electrode using them and the lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003336337 2003-09-26
JP2004278954A JP2005123180A (en) 2003-09-26 2004-09-27 Lithium compound oxide particle for positive electrode material of lithium secondary battery and its manufacturing method, and lithium secondary battery positive electrode using them and the lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2005123180A true JP2005123180A (en) 2005-05-12

Family

ID=34622121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004278954A Pending JP2005123180A (en) 2003-09-26 2004-09-27 Lithium compound oxide particle for positive electrode material of lithium secondary battery and its manufacturing method, and lithium secondary battery positive electrode using them and the lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2005123180A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005238A (en) * 2005-06-27 2007-01-11 Mitsubishi Chemicals Corp Moisture concentration control method of sprayed and dried powder and its application to lithium secondary battery
WO2007010915A1 (en) * 2005-07-21 2007-01-25 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing same
JP2007053083A (en) * 2005-07-21 2007-03-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and method of manufacturing same
WO2007055087A1 (en) * 2005-10-20 2007-05-18 Mitsubishi Chemical Corporation Lithium secondary cell and nonaqueous electrolytic solution for use therein
JP2007280723A (en) * 2006-04-05 2007-10-25 Hitachi Metals Ltd Manufacturing method of positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and nonaqueous lithium secondary battery using it
JP2008186753A (en) * 2007-01-31 2008-08-14 Hitachi Maxell Ltd Positive electrode active material for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery, and lithium secondary battery
JP2008257992A (en) * 2007-04-04 2008-10-23 Sumitomo Metal Mining Co Ltd Positive-electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
WO2010023531A2 (en) 2008-08-29 2010-03-04 Saft Groupe S.A. Lithiated oxide for a positive electrode of an alkali battery
WO2010064504A1 (en) * 2008-12-05 2010-06-10 日鉱金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for secondary battery using the positive electrode active material, and lithium ion secondary battery using the secondary battery positive electrode
WO2011021480A1 (en) * 2009-08-21 2011-02-24 日清エンジニアリング株式会社 Process for production of positive electrode material for secondary batteries
CN102246333A (en) * 2009-09-18 2011-11-16 松下电器产业株式会社 Electrode for non-aqueous electrolyte secondary cell, method for producing same, and non-aqueous electrolyte secondary cell
JP2012206930A (en) * 2011-03-16 2012-10-25 Nippon Chem Ind Co Ltd Method for producing lithium-nickel-manganese-cobalt composite oxide
US8551658B2 (en) 2005-09-28 2013-10-08 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide
KR20160063991A (en) * 2014-11-27 2016-06-07 도요타지도샤가부시키가이샤 Method of manufacturing positive electrode for lithium ion secondary battery
CN110010850A (en) * 2005-10-20 2019-07-12 三菱化学株式会社 Lithium secondary battery and nonaqueous electrolytic solution used in it
CN117326600A (en) * 2023-11-28 2024-01-02 北京中科海钠科技有限责任公司 Layered oxide positive electrode material and preparation method and application thereof
JP7437995B2 (en) 2020-03-30 2024-02-26 日産自動車株式会社 Non-aqueous electrolyte secondary battery
CN117326600B (en) * 2023-11-28 2024-04-26 北京中科海钠科技有限责任公司 Layered oxide positive electrode material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034538A (en) * 2001-05-17 2003-02-07 Mitsubishi Chemicals Corp Method for producing lithium nickel manganese complex oxide
JP2003051311A (en) * 2001-05-31 2003-02-21 Mitsubishi Chemicals Corp Lithium transition metal compound oxide, manufacturing method of positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2003092108A (en) * 2001-07-12 2003-03-28 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2003137554A (en) * 2001-10-31 2003-05-14 Mitsubishi Chemicals Corp Method for producing lithium/transition metal-base complex oxide powder and lithium/transition metal-base complex oxide powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034538A (en) * 2001-05-17 2003-02-07 Mitsubishi Chemicals Corp Method for producing lithium nickel manganese complex oxide
JP2003051311A (en) * 2001-05-31 2003-02-21 Mitsubishi Chemicals Corp Lithium transition metal compound oxide, manufacturing method of positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP2003092108A (en) * 2001-07-12 2003-03-28 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2003137554A (en) * 2001-10-31 2003-05-14 Mitsubishi Chemicals Corp Method for producing lithium/transition metal-base complex oxide powder and lithium/transition metal-base complex oxide powder

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007005238A (en) * 2005-06-27 2007-01-11 Mitsubishi Chemicals Corp Moisture concentration control method of sprayed and dried powder and its application to lithium secondary battery
WO2007010915A1 (en) * 2005-07-21 2007-01-25 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing same
JP2007053083A (en) * 2005-07-21 2007-03-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and method of manufacturing same
US8551658B2 (en) 2005-09-28 2013-10-08 Agc Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide
EP3217463A1 (en) 2005-10-20 2017-09-13 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
EP2560229A2 (en) 2005-10-20 2013-02-20 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
US11769871B2 (en) 2005-10-20 2023-09-26 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
CN113594543A (en) * 2005-10-20 2021-11-02 三菱化学株式会社 Lithium secondary battery and nonaqueous electrolyte used therein
EP3840101A1 (en) 2005-10-20 2021-06-23 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
EP3557684A2 (en) 2005-10-20 2019-10-23 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
CN110010850A (en) * 2005-10-20 2019-07-12 三菱化学株式会社 Lithium secondary battery and nonaqueous electrolytic solution used in it
WO2007055087A1 (en) * 2005-10-20 2007-05-18 Mitsubishi Chemical Corporation Lithium secondary cell and nonaqueous electrolytic solution for use therein
US9112236B2 (en) 2005-10-20 2015-08-18 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
KR101345052B1 (en) 2005-10-20 2013-12-26 미쓰비시 가가꾸 가부시키가이샤 2 lithium secondary cell and nonaqueous electrolytic solution for use therein
EP1939971A1 (en) 2005-10-20 2008-07-02 Mitsubishi Chemical Corporation Lithium secondary cell and nonaqueous electrolytic solution for use therein
JP2007280723A (en) * 2006-04-05 2007-10-25 Hitachi Metals Ltd Manufacturing method of positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and nonaqueous lithium secondary battery using it
JP2008186753A (en) * 2007-01-31 2008-08-14 Hitachi Maxell Ltd Positive electrode active material for lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery, and lithium secondary battery
JP2008257992A (en) * 2007-04-04 2008-10-23 Sumitomo Metal Mining Co Ltd Positive-electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
US8530091B2 (en) 2008-08-29 2013-09-10 Saft Lithiated oxide for a positive electrode of an alkaline accumulator
WO2010023531A2 (en) 2008-08-29 2010-03-04 Saft Groupe S.A. Lithiated oxide for a positive electrode of an alkali battery
FR2935545A1 (en) * 2008-08-29 2010-03-05 Saft Groupe Sa LITHIUM OXIDE FOR POSITIVE ELECTRODE OF ALKALINE BATTERY
WO2010023531A3 (en) * 2008-08-29 2010-05-20 Saft Groupe S.A. Method for producing a lithiated oxide for a positive electrode of an alkaline battery
WO2010064504A1 (en) * 2008-12-05 2010-06-10 日鉱金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for secondary battery using the positive electrode active material, and lithium ion secondary battery using the secondary battery positive electrode
KR101250710B1 (en) * 2008-12-05 2013-04-03 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode active material for lithium ion battery, positive electrode for secondary battery using the positive electrode active material, and lithium ion secondary battery using the secondary battery positive electrode
JPWO2010064504A1 (en) * 2008-12-05 2012-05-10 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for secondary battery using the positive electrode active material, and lithium ion secondary battery using the positive electrode for secondary battery
TWI484688B (en) * 2008-12-05 2015-05-11 Jx Nippon Mining & Metals Corp Positive electrode active material for a lithium ion battery, a positive electrode for a secondary battery using the positive electrode active material, and a lithium ion secondary battery using a positive electrode of a secondary battery
JP4584351B2 (en) * 2008-12-05 2010-11-17 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for secondary battery using the positive electrode active material, and lithium ion secondary battery using the positive electrode for secondary battery
JP2011044364A (en) * 2009-08-21 2011-03-03 Nisshin Engineering Co Ltd Method of manufacturing positive electrode material for secondary battery
WO2011021480A1 (en) * 2009-08-21 2011-02-24 日清エンジニアリング株式会社 Process for production of positive electrode material for secondary batteries
CN102246333A (en) * 2009-09-18 2011-11-16 松下电器产业株式会社 Electrode for non-aqueous electrolyte secondary cell, method for producing same, and non-aqueous electrolyte secondary cell
JP2012206930A (en) * 2011-03-16 2012-10-25 Nippon Chem Ind Co Ltd Method for producing lithium-nickel-manganese-cobalt composite oxide
US10050256B2 (en) 2014-11-27 2018-08-14 Toyota Jidosha Kabushiki Kaisha Method of manufacturing positive electrode for lithium ion secondary battery
KR101716587B1 (en) * 2014-11-27 2017-03-14 도요타지도샤가부시키가이샤 Method of manufacturing positive electrode for lithium ion secondary battery
KR20160063991A (en) * 2014-11-27 2016-06-07 도요타지도샤가부시키가이샤 Method of manufacturing positive electrode for lithium ion secondary battery
JP7437995B2 (en) 2020-03-30 2024-02-26 日産自動車株式会社 Non-aqueous electrolyte secondary battery
CN117326600A (en) * 2023-11-28 2024-01-02 北京中科海钠科技有限责任公司 Layered oxide positive electrode material and preparation method and application thereof
CN117326600B (en) * 2023-11-28 2024-04-26 北京中科海钠科技有限责任公司 Layered oxide positive electrode material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR100727332B1 (en) Lithium composite oxide particle for lithium secondary battery positive electrode material and containing the same, positive electrode for lithium secondary battery and lithium secondary battery
JP4752244B2 (en) Layered lithium nickel manganese based composite oxide powder for lithium secondary battery positive electrode material, lithium secondary battery positive electrode using the same, and lithium secondary battery
KR101858763B1 (en) Positive electrode material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
JP2005123179A (en) Lithium compound oxide particle for lithium secondary battery positive electrode material, and lithium secondary battery positive electrode using the same, and the lithium secondary battery
JP4301875B2 (en) Lithium nickel manganese cobalt-based composite oxide for lithium secondary battery positive electrode material, positive electrode for lithium secondary battery using the same, and lithium secondary battery
JP5359140B2 (en) Lithium transition metal compound powder, method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5428251B2 (en) Lithium transition metal compound powder, positive electrode for lithium secondary battery and lithium secondary battery using the same
KR100946610B1 (en) Layered lithium nickel manganese cobalt composite oxide powder for material of positive electrode of lithium secondary battery, process for producing the same, positive electrode of lithium secondary battery therefrom, and lithium secondary battery
JP4613943B2 (en) Lithium transition metal-based compound powder, method for producing the same, spray-dried body as a pre-fired body, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5343347B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP4591717B2 (en) Lithium nickel manganese cobalt based composite oxide powder for lithium secondary battery positive electrode material, method for producing the same, spray-dried powder, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5157071B2 (en) Lithium nickel manganese cobalt composite oxide powder for lithium secondary battery positive electrode material, method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2011105594A (en) Nickel-manganese-cobalt based complex oxide, laminar lithium-nickel-manganese-cobalt based complex oxide, positive electrode material for lithium secondary batteries, positive electrode using the material, and lithium secondary battery
JP2009117261A (en) Positive-electrode active material for lithium secondary battery, and positive electrode and lithium secondary battery using positive electrode active material
JP2007214138A (en) Layered lithium-nickel-based composite oxide powder for lithium secondary battery positive electrode material and its manufacturing method, positive electrode for lithium secondary battery, and lithium secondary battery
JP4997700B2 (en) Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2009295465A (en) Positive electrode active material for lithium secondary battery and manufacturing method
JP2010278015A (en) Lithium-nickel-manganese-cobalt-based compound oxide powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, and positive electrode for lithium rechargeable battery, and lithium rechargeable battery using the powder
JP2005123180A (en) Lithium compound oxide particle for positive electrode material of lithium secondary battery and its manufacturing method, and lithium secondary battery positive electrode using them and the lithium secondary battery
JP4003759B2 (en) Layered lithium nickel composite oxide powder for positive electrode material of lithium secondary battery and method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery
JP4591716B2 (en) Lithium transition metal compound powder for positive electrode material of lithium secondary battery, production method thereof, spray-dried product, and calcined precursor, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2005336004A (en) Nickel manganese cobalt based multiple oxide, lamellar lithium nickel manganese cobalt based multiple oxide, lithium secondary cell positive electrode material, positive electrode for lithium secondary cell and lithium secondary cell using the same
JP2005141983A (en) Layered lithium nickel base composite oxide powder for positive electrode material of lithium secondary battery, its manufacturing method, positive electrode for lithium secondary battery, and lithium secondary battery
JP2006278031A (en) Manufacturing method of cathode material for lithium secondary battery and cathode material for lithium secondary battery as well as cathode for lithium secondary battery and lithium secondary battery using the same
JP4797332B2 (en) Lithium transition metal composite oxide powder for lithium secondary battery positive electrode active material, lithium secondary battery positive electrode and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426