JP5063352B2 - 高移動性バルク・シリコンpfet - Google Patents

高移動性バルク・シリコンpfet Download PDF

Info

Publication number
JP5063352B2
JP5063352B2 JP2007532586A JP2007532586A JP5063352B2 JP 5063352 B2 JP5063352 B2 JP 5063352B2 JP 2007532586 A JP2007532586 A JP 2007532586A JP 2007532586 A JP2007532586 A JP 2007532586A JP 5063352 B2 JP5063352 B2 JP 5063352B2
Authority
JP
Japan
Prior art keywords
region
single crystal
crystal silicon
dielectric layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007532586A
Other languages
English (en)
Other versions
JP2008514016A5 (ja
JP2008514016A (ja
Inventor
アンダーソン、ブレント、エー
ランゼロッティ、ルイス、ディー
ノワーク、エドワード、ジェイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JP2008514016A publication Critical patent/JP2008514016A/ja
Publication of JP2008514016A5 publication Critical patent/JP2008514016A5/ja
Application granted granted Critical
Publication of JP5063352B2 publication Critical patent/JP5063352B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823878Complementary field-effect transistors, e.g. CMOS isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • H01L29/41783Raised source or drain electrodes self aligned with the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8213Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using SiC technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本発明は、電界効果トランジスタ(FET)に関し、さらに具体的には、高移動性p−チャネル電界効果トランジスタ(PFET)及び高移動性PFETの製造方法に関する。
相補型金属酸化物シリコン(CMOS)技術が、多くの集積回路に使用されている。CMOS技術には、しばしばNFETに短絡されるn−チャネル金属酸化物シリコン電界効果トランジスタ(n−MOSFET)、及び、しばしばPFETに短絡されるp−チャネル金属酸化物シリコン電界効果トランジスタ(p−MOSFET)が使用される。従来のNFET及びPFETは、当業者には公知であり、単結晶シリコン内に形成されたチャネル領域の両側にソース領域及びドレイン領域を備え、ゲート電極がゲート誘電体層の上部に形成され、ゲート誘電体層自体はチャネル領域の上部に形成される。
NFET及びPNFETが高性能回路に使用されるときには、NFETとPFETとの間のキャリア移動度の差を克服して、PFETに回路全体のスイッチング速度を制限させないようにするために、PFETはNFETより大きなものとなる必要がある。PFETにおける正孔移動度は、NFETの電子移動度の約25%である。極めて多くの用途において、近代的な集積回路が、より小さなものとなって、より消費電力が少ないことを必要とされるときに、より大きなPFETは、より多くのシリコン領域及びより多くの電力を必要とする。
そのため、従来のPFETに比べて減少されたシリコン面積および電力消費での高速のスイッチング速度をもつ改良されたPFETと、改良されたPFETと同時に製造されることができるNFETとの両方が必要である。
本発明は、PFETチャネル内に応力を誘起することによって、従来のPFETに比べて減少されたシリコン面積及び電力消費での高速のスイッチング速度をもつ改良されたPFETと、改良されたPFETと同時に製造されることができるNFETとの両方を提供する。
本発明の第1の態様は、電界効果トランジスタであって、ゲート誘電体層の上面に形成されたゲート電極を備え、ゲート誘電体層は単結晶シリコン・チャネル領域の上面にあり、単結晶シリコン・チャネル領域はGe含有層の上面にあり、Ge含有層は単結晶シリコン基板の上面にあり、Ge含有層は単結晶シリコン基板の上面の第1誘電体層と第2誘電体層との間にある。
本発明の第2の態様は、電界効果トランジスタの製造方法であって、(a)上面に形成された単結晶Ge含有層と、単結晶Ge含有層の上面に形成された単結晶シリコン層とを有する単結晶シリコン基板を準備するステップと、(b)単結晶シリコン層の上面にゲート誘電体層を形成するステップと、(c)誘電体層の上面にゲート電極を形成するステップと、(d)単結晶シリコン・アイランドを形成するように単結晶シリコン層を除去し、単結晶シリコン層及び単結晶Ge含有層がゲート電極によって保護されていないゲート電極の下に単結晶シリコン・アイランドを形成するように単結晶Ge含有層の全体より少ない部分を除去するステップと、(e)単結晶シリコン・アイランドの下に単結晶Ge含有アイランドを形成するように、ゲート電極によって保護されていない単結晶Ge含有層のすべての残存部分と、ゲート電極の下の単結晶Ge含有層の全体より少ない部分とを酸化するステップであって、単結晶Ge含有アイランドの第1側面に第1誘電体層を有し、単結晶Ge含有アイランドの反対側の第2側面に第2誘電体層を有し、第1誘電体層及び第2誘電体層の各々がゲート電極の下に延びるステップと、(f)第1誘電体層の上部にポリシリコン・ソース領域を形成し、第2誘電体層の上部にポリシリコン・ドレイン領域を形成し、ポリシリコン・ソース領域及びポリシリコン・ドレイン領域が、単結晶シリコン・チャネル・アイランドの両側面に当接するステップとを含む。
本発明の特徴は、添付の特許請求の範囲に説明されている。しかしながら、本発明自体は、添付図と併せて読むときに、図示された実施形態の詳細な説明の参照によって、最も良く理解されるであろう。
図1は、本発明に従ったPFET100の断面図である。図1は、PFET100のチャネル長さ方向に沿った断面図である。図1において、PFET100は、ゲート105と、ゲート105の下のN−ドープ単結晶シリコン領域110と、浅いトレンチ分離部(STI)115(PFET100に結合するが、厳密にはPFET100の一部分ではない)に当接したP―ドープ・ポリシリコン・ソース領域120Aと、単結晶シリコン領域110の中に延び(点線で境界を示された)、ゲート105の下に延びた単結晶シリコン・ソース領域125Aと、STI115に当接したP−ドープ・ポリシリコン・ドレイン領域120Bと、ポリシリコン・ドレイン領域120Bに当接し、単結晶シリコン領域110の中に延び(点線で境界を示された)、ゲート105の下に延びたP−ドープ単結晶シリコン・ドレイン領域125Bとを含む。さらに、PFET100は、ポリシリコン・ソース領域120A及び単結晶シリコン・ソース領域125Aの下にあって、STI115からゲート105の下まで延びた埋込誘電体層130Aと、ドレイン領域120B及び単結晶シリコン・ドレイン領域125Bの下にあって、STI115からゲート105の下まで延びた埋込誘電体層130Bとを含む。さらにまた、PFET100は、単結晶シリコン領域110の下にあって、埋込誘電体層130Aと130Bとの間に延びる単結晶Ge含有層135と、埋込誘電体層130A及び130B並びにGe含有層135の下のN−ウェル145と、埋込誘電体層130A及び130B並びにGe含有層135の下にあって、STI115によって結合された単結晶シリコンN−ウェル145の中の(シリコン基板150の中の)逆行性(retrograde)N−型イオン注入ピーク140とを含む。
ポリシリコン・ソース領域120A及び単結晶シリコン・ソース領域125Aが物理的及び電気的に接触し、構造的及び電気的にPFET100のソースを構成することを理解されたい。同様に、ポリシリコン・ドレイン領域120B及び単結晶シリコン・ドレイン領域125Bが物理的及び電気的に接触し、構造的及び電気的にPFET100のドレインを構成することを理解されたい。
ゲート105は、単結晶シリコン領域110の上面160の上のゲート誘電体層155と、ゲート誘電体層155の上面170の上のP−ドープ又はアンドープ・ポリシリコン・ゲート電極165と、ゲート電極165の上面180の上のキャップ層175とを含む。任意の側壁絶縁層185A及び185Bが、ゲート電極165の両側の側壁190A及び190Bにそれぞれ形成され、誘電体スペーサ195A及び195Bが、対応する側壁絶縁層185A及び185Bのそれぞれの外側面200A及び200Bに形成される。スペーサ195A及び195Bの下に延びるゲート誘電体層155が、図1に示される。代替的に、ゲート誘電体層は、スペーサ195A及び195Bの下に部分的に延びてもよいし、全く延びていなくてもよい。
チャネル領域205は、単結晶シリコン領域110の中に画定される。チャネル領域205は、単結晶シリコン・ソース領域125Aと単結晶シリコン・ドレイン領域125Bとの間の、基板150の上面160付近の部分を含むことができ、又は、チャネル領域205は、単結晶シリコン・ソース領域125Aと単結晶シリコン・ドレイン領域125Bとの間の、単結晶シリコン領域110のすべてを含むことができる。単結晶シリコン領域110は、図1に示されるように、スペーサ195A及び195Bの下に延び、又は、スペーサ195A及び195Bの下にあって、スペーサ195A及び195Bを超えてSTI115まで延びることができる。
埋込誘電体層130Aは、第1領域210A及び第2領域215Aを含む。第2領域215Aは、第1領域210Aより厚い。第1領域210Aは、スペーサ195Aの下の第2領域215Aと接触するまで、STI115からポリシリコン・ソース領域120Aの下で延びる。第2領域215Aは、第1領域210Aから、スペーサ195Aの下で、ゲート105の下のGe含有層135まで延びる。
埋込誘電体層130Bは、第1領域210B及び第2領域215Bを含む。第2領域215Bは、第1領域210Bより厚い。第1領域210Bは、スペーサ195Bの下の第2領域215Bと接触するまで、STI115からポリシリコン・ドレイン領域120Bの下で延びる。第2領域215Bは、第1領域210Bから、スペーサ195Bの下で、ゲート105の下のGe含有層135まで延びる。
第2領域215Aの上面220Aは、スペーサ195Aの下でポリシリコン・ソース領域120Aと接触するように、Ge含有層135から上方に(基板150の表面160に向かって)傾斜する。第2領域215Aの下面225Aは、スペーサ195Aの下で第1領域210Aと接触するように、Ge含有層135から下方に(基板150の表面160から離れるように)傾斜する。第2領域215Bの上面220Bは、スペーサ195Bの下でポリシリコン・ドレイン領域120Bと接触するように、Ge含有層135から上方に傾斜する。第2領域215Bの下面225Bは、スペーサ195Bの下で第1領域210Bと接触するように、Ge含有層135から下方に傾斜する。
埋込誘電体層130Aの第2領域215Aの上面220A、及び、埋込誘電体層130Bの第2領域215Bの上面220Bの上方傾斜は、平らな状態(基板150の上面160に関して)からほぼ50%程度であり、単結晶シリコン領域110及びチャネル領域205の結晶格子に対して、約50メガパスカルから約1000メガパスカルの応力を与える。PFETのシリコン格子における応力は、正孔移動度を高めることが示されており、そのため、PFETのシリコン領域を減少させるために好都合に使用することができるPFETのドレイン電流は、特定のPFETドレイン定格電流を必要とする。
図2から図17までは、図1のPFET100の製造を示す断面図である。図2において、単結晶シリコン基板150は、単結晶シリコン基板150の上面230に形成されたGe含有層135と、Ge含有層135の上面235に形成された単結晶シリコン層240とを有する。単結晶シリコン基板は、モノクリスタル・シリコン基板又はバルク・シリコン基板とも呼ばれる。第1の実施例において、Ge含有層135は、Xが約0.15から約0.5までに等しいSi(1−X)Geを含む。第2の実施例において、Ge含有層135は、Xが約0.15から約0.5までに等しく、Yが約0から約0.1までに等しいSi(1−X−Y)Geを含む。単結晶SiGe層は、SiH及びGeHを用いる低圧化学気相堆積法(low pressure chemical vapor deposition;LPCVD)によって、エピタキシャルに形成されてもよい。単結晶SiGeC層は、SiH、GeH及びCHSiH又はCの組み合わせを用いるLPCVDによって、エピタキシャルに形成されてもよい。一実施例において、Ge含有層135は、約10nmから約100nmまでの厚さである。単結晶シリコン層は、SiH及び/又はH2を用いるLPCVDによって、エピタキシャルに形成されてもよい。一実施例において、単結晶シリコン層240は、約5nmから約50nmまでの厚さである。
図3において、STI115が形成される。STI115は、単結晶シリコン層240の上面245から、単結晶シリコン層240を通り、単結晶Ge含有層135を通って、基板150の中に延びる。STI115は、反応性イオン・エッチング(reactive ion etching;RIE)によって単結晶Ge含有層135を通って基板150の中へとトレンチを形成し、結果物としてのトレンチを充填するためにSiO又はテトラエトキシシラン(TEOS)酸化物のような絶縁体を堆積し、過剰な絶縁体を除去するために単結晶シリコン層240の上面245に至るまで化学的機械研磨(chemical−mechanical polishing;CMP)することによって、形成することができる。
図4において、ヒ素又はリンのようなN−ドーパントのイオン注入によって、N−ウェル145が基板150内に形成される。N−ウェル145は、STI115の下に延びるように図示されているが、N−ウェル145は、STIとほぼ水平であるか又はSTIより浅くてもよい。
図5において、ヒ素のようなN−ドーパントを使用して、逆行性イオン注入が実施される。逆行性イオン注入は、イオン注入が実施される材料の表面の下にピーク濃度を有するイオン注入として定義される。逆行性イオン注入のピーク140は、Ge含有層135の上面235の下の距離Dに位置される。
図6において、ゲート誘電体層155が、単結晶シリコン層240の上面245に形成される。一実施例において、ゲート誘電体層155は、堆積されたSiO又は熱SiOを含むが、当業者には公知のあらゆるゲート誘電体とすることができる。N−ドープ又はアンドープのポリシリコン層250は、ゲート誘電体層155の上面170に形成される。ポリシリコンは、SiH(及び、製造のこの時点でゲートがドープされるべきなら、必要に応じてAsH4又はPH4)を使用するCVDによって形成することができる。キャップ層175は、ポリシリコン層250の上面255に形成される。一実施例において、キャップ層175は、熱SiO層の上のTEOS酸化物層を含む。
図7において、フォトリソグラフィ・プロセスが実施され、キャップ層175がパターン化されて、ポリシリコン層250(図6を参照のこと)の望ましくない部分をエッチ・アウェイして残存キャップ層175の下にゲート電極165を形成するためのハードマスクとして使用される。
図8において、任意の側壁絶縁層185が、ゲート電極165の側壁190に形成される。その後、単結晶シリコン層240の中にエクステンション/ハロ領域260を形成するために、例えばホウ素を使用する任意のP−ドーパント・エクステンション・イオン注入、及び/又は、例えばヒ素を使用する任意のN−ドーパント・ハロ・イオン注入が実施される。エクステンション及びハロ注入は、単結晶シリコン層240の上面245に関して90°以外の角度で実施されてもよい。ハロ及びエクステンション注入は、ゲート電極165の下に広がるが、ゲート電極の下に延びる埋込誘電体層130A及び130Bのそれぞれの厚い領域215A及び215Bの範囲(図1を参照のこと)まで広がらないように実施される。ハロ及びエクステンション注入は浅い注入であり、Ge含有層135の下に広がらない。
代替的に、エクステンション及び/又はハロ・イオン注入は、ゲート電極165の形成後、しかし側壁絶縁層185の形成前に、実施されてもよい。
図9において、スペーサ195は、側壁絶縁層185の外側面200に形成される。スペーサ195は、Si、SiO又はこれらの組み合わせを含むことができる。例えば、スペーサ195は、各スペーサがSiO又はSiのいずれかから形成される、複数のオーバーレイ・スペーサを含むことができる。さらに、上述されたハロ及びエクステンション・イオン注入の1つ又は両方は、代替的に、スペーサ195の形成後に実施されてもよい。スペーサは、材料のコンフォーマル層を堆積し、その後、RIEプロセスを実施することによって形成される。ゲート電極165及びスペーサ195によって保護されていないゲート誘電体層155は、RIEプロセス又は別のプロセスによって除去されることもできる。
図10において、単結晶シリコン層240の、ゲート電極165及びスペーサ195によって保護されていない部分が除去される。Ge含有層135も、単結晶シリコン層240が除去された領域におけるGe含有層が陥凹するようにエッチングされ、そのため、Ge含有層135は、この領域においてゲート電極165及びスペーサ195の下の部分よりも薄くなる。一実施例において、ゲート電極165及びスペーサ195によって保護されていないGe含有層135は、その元の厚さの半分まで薄くされる。第2の実施例において、ゲート電極165及びスペーサ195によって保護されていないGe含有層135は、約5nmから約50nmまでの間に薄くされる。単結晶シリコン層240及びGe含有層135のエッチングは、キャップ層175、スペーサ195及びSTI115の材料に関連するSi、SiGe及びSiGeCを選択的にエッチングするRIEプロセスを用いて達成することができる。キャップ層175、スペーサ195及びSTI115が、酸化シリコンの形態である実施例において、適切なRIEプロセスは、CF及びOの混合物を利用する。
図11において、Ge含有層135は、Si及びGeの酸化物を含む埋込誘電体層130を形成するように酸化される。一実施例において、HO水蒸気とOとの混合物を使用して、約600℃以下で酸化が実施される。これらの条件において、単結晶SiGe及び単結晶SiGeCは、単結晶シリコンより約40倍速く酸化する。酸化中、酸化されたSiGe又はSiGeCの体積は、元の表面より下にある体積の約40%、及び、元の表面より上にある体積の60%をほぼ兼ねている。また、Ge含有層135は、スペーサ195及びゲート電極165の下では、Ge含有層135がゲート電極165及びスペーサ195によって保護されていない、形成されたSiGe酸化物又はSiGeC酸化物の厚さに等しい距離にわたって、水平方向に酸化する。Ge含有層135は、スペーサ195及びゲート電極165の下において、Ge含有層が露出された場所よりも厚かったことも記憶されるべきである。そのため、埋込誘電体層130は、スペーサ195の下において、ゲート電極165の下に部分的に延びる厚い領域215と、埋込誘電体層130がスペーサ195及びゲート電極165の下にない薄い領域210とを含む。一実施例において、埋込誘電体層130の薄い領域210は、約10nmから約100nmまでの厚さであり、埋込誘電体層130の厚い領域215は、約10nmから約200nmまでの厚さであり、スペーサ195の下に約10nmから約200nmまで延びる。
酸化の後、残存Ge含有層135のみが、ゲート電極165の下でアイランドとなる。また、SiOの薄い層265が、単結晶シリコン層240の露出縁部に形成される。酸化プロセスの効果は、埋込誘電体層130の厚い領域215とスペーサ195の下のゲート誘電体層155との間の単結晶シリコン層240の領域が歪むこと、すなわち、結晶格子が正常から変形することである。
図12において、SiO(図11を参照のこと)の薄い層265が、単結晶シリコン領域240の露出縁部270まで除去される。
図13において、エピタキシャル・シリコン領域275が、単結晶シリコン領域240の縁部270(図12を参照のこと)に成長させられる。上述のように、SiHを使用するLPCVDによって、エピタキシャルSiを成長させることができる。
図14において、ポリシリコン層280が、キャップ層175及びスペーサ195を覆うのに十分な厚さに形成される。上述のように、ポリシリコン層280は、P−型ドープ又はアンドープとすることができる。単結晶シリコン層240のエピタキシャル領域275(図13を参照のこと)は、わずかにサイズを増すことができ、結果として単結晶シリコン領域110(図1も参照のこと)となる。
図15において、ポリシリコン層280の上面285が、キャップ層175の上面290と同一平面になるように、CMPプロセスが実施される。
図16において、RIEエッチ・バック・プロセスが実施され、そのため、ポリシリコン層280(図15を参照のこと)がスペーサ195から除去され、ゲート誘電体層155の端部及びSTI115の上面295が露出される。ポリシリコン層280は、単結晶シリコン領域110、埋込誘電体層130及びSTI115によって画定されたスペースに残存する。
図17において、任意のP−型(例えばホウ素)イオン注入が、残存ポリシリコン層280(図16を参照のこと)においてP−ドープ・ポリシリコン・ソース/ドレイン120を形成するように実施される。P−型イオン注入はまた、ゲート電極165をドープするために使用されてもよい。ポリシリコン層280が、堆積されるときにP−ドープされる場合には、このP−型イオン注入は省略されることがあり、又は、ゲート電極165にP−型イオン注入が所望されるかどうかに依存しないこともある。
図1に戻って、PEFT100の構造は、PEFTのいくつかの動作パラメータを改善する。第1に、ゲート電極165の下、特定的には、ゲート電極の側壁190A及び190B付近の比較的浅い単結晶シリコン領域110が、閾値下の電圧の振れ(SSWING)の減少、ドレイン誘起障壁負荷の減少、及び、より正確な閾値電圧(V)制御のような改善された短チャネル特性をもたらす。第2に、比較的深いポリシリコン・ソース及びドレイン領域120A及び120Bが、より低いソース/ドレイン抵抗をもたらす。第3に、埋込誘電体層130A及び130Bが、より低いソース/ドレイン静電容量(従来のバルク・シリコンPFETに比べて)をもたらす。第4に、埋込誘電体層130Aの第2領域215Aと埋込誘電体層130Bの第2領域215Bとの間のGe含有層135が(高いGeドープ・レベルのため)、N−ウェル145の電圧バイアスによってVの制御を可能とする。これらの改善された動作パラメータは、十分に速いPFETをもたらし(本発明のPFETとほぼ等しいチャネル幅及びチャネル長の従来のバルク・シリコンPEFTと比較したとき)、短いチャネル長のデバイスにおいて、ドレイン領域の飽和電流(IDSAT)に約42%までの増加をもたらすことが、経験的に示されてきた。本発明に従ったPFETの製造が、本質的に完了する。
図18から図21までは、上述されたPFETプロセスに対するいくつかの変更によって、単独に、又は、PFET100(図1を参照のこと)と同時に製造することができるNFET300(図22を参照のこと)の製造を示す断面図である。これらの変更を記載する前に、PFET及びNFETの両方が同じ基板に製造されるときに、NFETのためにだけ必要とされるイオン注入の間、PFETはイオン注入から保護され、PFETのためにだけ必要とされるイオン注入の間、NFETはイオン注入から保護されることが、当業者には公知であることを理解されたい。しばしばこの保護は、フォトレジスト層によって与えられる。そのため、以下の記載においては、PFET及びNFETが本発明に従って同時に製造される場合には、こうしたステップがPFETに関連して行われ、こうしたステップがまたNFETに関連して行われることが、PFET製造のこれまでの記載であることを、理解されるべきである。
単独での、又は、PFET(図1を参照のこと)と同時のNFET300(図22を参照のこと)の製造が、図2から2Mまでに示され、上述されたPFET100(図1を参照のこと)の製造と同様であるが、すぐ下に記載された違いがある。
図4において、N−ウェル145は、ホウ素のようなP−ドーパントのイオン注入によって形成されたP−ウェルによって置換される。図5において、N−ドープ逆行性イオン注入は、ホウ素のようなP−ドーパント種を使用するP−ドーパント逆行性イオン注入で置換される。図8において、P−ドーパント・エクステンション・イオン注入は、ヒ素のようなN−ドーパント種を使用するN−ドーパント・エクステンション・イオン注入で置換され、任意のN−ドーパント・ハロ・イオン注入は、ホウ素のようなP−ドーパント種を使用するP−ドーパント・エクステンション・イオン注入で置換される。
図10及び図11に示されたプロセスの間に、図18及び図19に示されたプロセスが実施される。図18において、スペーサ195、キャップ層175及びゲート電極165によって保護されない埋込誘電体層130の薄い領域210を除去するように、方向性RIEが実施される。また、代替的にSiから、又は、Si及びSiOの層からキャップ層175が形成されてもよい。図19において、シリコン基板の露出部分を除去し、誘電体層130の厚い領域215をアンダーカットするように、等方性シリコン・エッチングが実施される。STI115は、アンダーカットされない。アンダーカットされた誘電体層130の厚い領域215の下からシリコンを除去するステップは、単結晶シリコン領域110及びチャネル領域205(図22を参照のこと)の中にすでに誘起された応力のほとんど又はすべてを除去する。
NFETについて、図13は図20で置換され、図16は図21で置換される。図20において、エピタキシャル・シリコン領域275が、単結晶シリコン領域240の縁部270(図12を参照のこと)に成長させられ、エピタキシャル層285が、シリコン基板150の露出表面に成長させられる。上述のように、SiHを使用するLPCVDによって、エピタキシャルSiを成長させることができる。図21において、RIEエッチ・バック・プロセスが実施され、ポリシリコン層280(図15を参照のこと)が、スペーサ195、ゲート誘電体層155の露出端部及びSTI115の上面295から除去される。ポリシリコン層290は、単結晶シリコン領域110、埋込誘電体層130の厚い領域215、エピタキシャル層285及びSTI115によって画定されたスペースに残る。
図17において、N−ドープ・ソース/ドレイン120を形成するために、任意のP−型イオン注入が、任意のN−型イオン注入(例えばヒ素を使用する)で置換される。本発明に従うNFETの製造が、本質的に完了する。
図22は、本発明に従った、単独に、又は、図1のPFET100と同時に製造されることができるNFET300の断面図である。図22は、いくつかの違いを除いて、図1と同様である。第1に、単結晶領域110が、N−ドープの代わりにP−ドープされ、ソース及びドレイン領域120A及び120Bが、P−ドープの代わりにN−ドープされ、単結晶領域125A及び125Bが、P−ドープの代わりにN−ドープされ、N−ウェル145が、P−ウェル145で置換される。第2に、構造的に、誘電体層130A及び130Bのそれぞれの厚い領域215A及び215Bのみとなり、エピタキシャル層285A及び285Bが、誘電体層130A及び130Bのそれぞれの薄い領域210A及び210B(図1を参照のこと)ではなく、それぞれのポリシリコン・ソース/ドレイン領域120A及び120Bとシリコン基板150との間に挟まり、エピタキシャル層285A及び285Bは、誘電体層130A及び130Bのそれぞれの厚い領域215A及び215Bの下に延びる。ソース120A及びドレイン120Bからのソース/ドレイン・ドーパント種は、それぞれのエピタキシャル層285A及び285Bの中に延びてもよいし、延びなくてもよい。
したがって、本発明は、従来のPFETに比べて減少されたシリコン面積及び電力消費での速いスイッチング速度をもつ改良されたPFETと、改良されたPFETと同時に製造することができるNFETとの両方を提供する。
本発明の実施形態の説明が、本発明の理解のために上記されている。本発明は、ここに記載された特定的な実施形態に限定されないが、現在、当業者には明白になり得るような様々な修正、再配列及び代用が、本発明の範囲を逸脱することなく可能であることが理解されるだろう。そのため、特許請求の範囲は、本発明の真の精神及び範囲に含まれるようなすべてのこうした修正及び変更をカバーすることを意味している。
本発明に従うPFET100の断面図である。 図1のPFET100の製造を示す断面図である。 図1のPFET100の製造を示す断面図である。 図1のPFET100の製造を示す断面図である。 図1のPFET100の製造を示す断面図である。 図1のPFET100の製造を示す断面図である。 図1のPFET100の製造を示す断面図である。 図1のPFET100の製造を示す断面図である。 図1のPFET100の製造を示す断面図である。 図1のPFET100の製造を示す断面図である。 図1のPFET100の製造を示す断面図である。 図1のPFET100の製造を示す断面図である。 図1のPFET100の製造を示す断面図である。 図1のPFET100の製造を示す断面図である。 図1のPFET100の製造を示す断面図である。 図1のPFET100の製造を示す断面図である。 図1のPFET100の製造を示す断面図である。 単独に、又は、図1のPFET100と同時に製造することができる図22のNFET300の製造を示す断面図である。 単独に、又は、図1のPFET100と同時に製造することができる図22のNFET300の製造を示す断面図である。 単独に、又は、図1のPFET100と同時に製造することができる図22のNFET300の製造を示す断面図である。 単独に、又は、図1のPFET100と同時に製造することができる図22のNFET300の製造を示す断面図である。 本発明に従って、単独に、又は、図1のPFET100と同時に製造することができるNFET300の断面図である。

Claims (9)

  1. P型電界効果トランジスタであって、
    ゲート誘電体層の上面に形成されたゲート電極であって、前記ゲート誘電体層は単結晶シリコン・チャネル領域の上面上にあり、
    前記単結晶シリコン・チャネル領域の両側面においてPドープ・ポリシリコン・ソース領域及び単結晶シリコン・ソース領域からなるソース領域と、Pドープ・ポリシリコン・ドレイン領域及び単結晶シリコン・ドレイン領域からなるドレイン領域とがあり、
    前記単結晶シリコン・チャネル領域に各々が当接する、前記単結晶シリコン・ソース領域及び前記単結晶シリコン・ドレイン領域があり、
    前記単結晶シリコン・チャネル領域はGe含有層の上面上にあり、
    前記Ge含有層は単結晶シリコン基板の上面上にあり、
    前記Ge含有層は前記単結晶シリコン基板の前記上面上で、かつ、それぞれ前記ソース領域及び前記ドレイン領域の下に延びる第1誘電体層と第2誘電体層との間にあり、
    前記第1誘電体層が、前記単結晶シリコン・チャネル領域と前記単結晶シリコン・ソース領域との第1側面の下に延び、及び、前記第2誘電体層が、前記単結晶シリコン・チャネル領域と前記単結晶シリコン・ドレイン領域との第2側面の下に延び
    前記第1側面下及び第2側面下に位置する前記第1及び第2誘電体層の上面傾斜部分が、前記チャネル領域の結晶格子内に応力を誘起する、前記P型電界効果トランジスタ。
  2. 前記単結晶シリコン・チャネル領域の下の前記第1誘電体層の第1領域が、第1の厚さを有し、
    前記Pドープ・ポリシリコン・ソース領域の下の前記第1誘電体層の第2領域が、第2の厚さを有し、前記第1の厚さが前記第2の厚さより厚く、
    前記単結晶シリコン・チャネル領域の下の前記第2誘電体層の第1領域が、第1の厚さを有し、
    前記Pドープ・ポリシリコン・ドレイン領域の下の前記第2誘電体層の第2領域が、第2の厚さを有し、前記第1の厚さが前記第2の厚さより厚い、
    請求項に記載の電界効果トランジスタ。
  3. 前記単結晶シリコン・ソース領域及び前記単結晶シリコン・ドレイン領域の各々が、前記ゲート電極の下に延びる、請求項に記載の電界効果トランジスタ。
  4. 前記単結晶シリコン・チャネル領域の下の前記第1誘電体層の第1領域が、第1の厚さを有し、
    前記Pドープ・ポリシリコン・ソース領域の下の前記第1誘電体層の第2領域が、第2の厚さを有し、前記第1の厚さが前記第2の厚さより厚く、
    前記単結晶シリコン・チャネル領域の下の前記第2誘電体層の第1領域が、第1の厚さを有し、
    前記Pドープ・ポリシリコン・ドレイン領域の下の前記第2誘電体層の第2領域が、第2の厚さを有し、前記第1の厚さが前記第2の厚さより厚く、
    前記単結晶シリコン・ソース領域が、前記第1誘電体層の前記第1領域を超えて、前記Pドープ・ポリシリコン・ソース領域の中に延び、
    前記単結晶シリコン・ドレイン領域が、前記第2誘電体層の前記第1領域を超えて、前記Pドープ・ポリシリコン・ドレイン領域の中に延びる、
    請求項に記載の電界効果トランジスタ。
  5. 前記単結晶シリコン・ソース領域が、前記第1誘電体層の前記第1領域を超えて、前記単結晶シリコン・チャネル領域の中に延びず、
    前記単結晶シリコン・ドレイン領域が、前記第2誘電体層の前記第1領域を超えて、前記単結晶シリコン・チャネル領域の中に延びない、
    請求項に記載の電界効果トランジスタ。
  6. 前記第1及び第2誘電体層の下面が、前記Ge含有層の下面を超えて、前記単結晶シリコン基板の中に延びる、請求項1〜のいずれか一項に記載の電界効果トランジスタ。
  7. 前記Ge含有層が、Xが、0.15から0.5までに等しいSi(1−X)Ge、又は、Xが0.15から0.5までに等しく、Yが0から0.1までに等しいSi(1−X−Y)Geを含む、請求項1〜のいずれか一項に記載の電界効果トランジスタ。
  8. 前記第1誘電体層と第2誘電体層の各々が、シリコン酸化物とゲルマニウム酸化物とを含む、請求項1〜のいずれか一項に記載の電界効果トランジスタ。
  9. 前記ポリシリコン・ソース及び前記ポリシリコン・ドレインに当接する誘電体分離部
    さらに含み、前記第1及び第2誘電体層前記誘電体分離部に当接する、
    請求項1〜のいずれか一項に記載の電界効果トランジスタ。
JP2007532586A 2004-09-20 2005-09-19 高移動性バルク・シリコンpfet Expired - Fee Related JP5063352B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/711,453 US7078722B2 (en) 2004-09-20 2004-09-20 NFET and PFET devices and methods of fabricating same
US10/771,453 2004-09-20
PCT/US2005/033472 WO2006034189A2 (en) 2004-09-20 2005-09-19 High-mobility bulk silicon pfet

Publications (3)

Publication Number Publication Date
JP2008514016A JP2008514016A (ja) 2008-05-01
JP2008514016A5 JP2008514016A5 (ja) 2008-10-23
JP5063352B2 true JP5063352B2 (ja) 2012-10-31

Family

ID=36073000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007532586A Expired - Fee Related JP5063352B2 (ja) 2004-09-20 2005-09-19 高移動性バルク・シリコンpfet

Country Status (7)

Country Link
US (2) US7078722B2 (ja)
EP (1) EP1792346B1 (ja)
JP (1) JP5063352B2 (ja)
KR (1) KR100968182B1 (ja)
CN (1) CN100505301C (ja)
TW (1) TW200625633A (ja)
WO (1) WO2006034189A2 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8450806B2 (en) * 2004-03-31 2013-05-28 International Business Machines Corporation Method for fabricating strained silicon-on-insulator structures and strained silicon-on insulator structures formed thereby
KR100669556B1 (ko) * 2004-12-08 2007-01-15 주식회사 하이닉스반도체 반도체 소자 및 그 제조 방법
KR100607785B1 (ko) * 2004-12-31 2006-08-02 동부일렉트로닉스 주식회사 스플릿 게이트 플래시 이이피롬의 제조방법
US7332443B2 (en) * 2005-03-18 2008-02-19 Infineon Technologies Ag Method for fabricating a semiconductor device
US20060226453A1 (en) * 2005-04-12 2006-10-12 Wang Everett X Methods of forming stress enhanced PMOS structures
US20070045707A1 (en) * 2005-08-31 2007-03-01 Szu-Yu Wang Memory device and manufacturing method thereof
CN100442476C (zh) * 2005-09-29 2008-12-10 中芯国际集成电路制造(上海)有限公司 用于cmos技术的应变感应迁移率增强纳米器件及工艺
JP2007281038A (ja) * 2006-04-03 2007-10-25 Toshiba Corp 半導体装置
US7482656B2 (en) * 2006-06-01 2009-01-27 International Business Machines Corporation Method and structure to form self-aligned selective-SOI
US7557000B2 (en) * 2006-11-20 2009-07-07 Semiconductor Manufacturing International (Shanghai) Corporation Etching method and structure using a hard mask for strained silicon MOS transistors
US7829407B2 (en) 2006-11-20 2010-11-09 International Business Machines Corporation Method of fabricating a stressed MOSFET by bending SOI region
CN101226899A (zh) * 2007-01-19 2008-07-23 中芯国际集成电路制造(上海)有限公司 在硅凹陷中后续外延生长应变硅mos晶片管的方法和结构
JP2009094458A (ja) * 2007-05-25 2009-04-30 Tokyo Electron Ltd 薄膜およびその薄膜を用いた半導体装置の製造方法
CN101364545B (zh) 2007-08-10 2010-12-22 中芯国际集成电路制造(上海)有限公司 应变硅晶体管的锗硅和多晶硅栅极结构
US8101500B2 (en) * 2007-09-27 2012-01-24 Fairchild Semiconductor Corporation Semiconductor device with (110)-oriented silicon
US8329564B2 (en) * 2007-10-26 2012-12-11 International Business Machines Corporation Method for fabricating super-steep retrograde well MOSFET on SOI or bulk silicon substrate, and device fabricated in accordance with the method
US7541629B1 (en) * 2008-04-21 2009-06-02 International Business Machines Corporation Embedded insulating band for controlling short-channel effect and leakage reduction for DSB process
US8106459B2 (en) 2008-05-06 2012-01-31 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs having dielectric punch-through stoppers
US8048723B2 (en) 2008-12-05 2011-11-01 Taiwan Semiconductor Manufacturing Company, Ltd. Germanium FinFETs having dielectric punch-through stoppers
KR20090126849A (ko) * 2008-06-05 2009-12-09 주식회사 동부하이텍 반도체 소자 및 이를 위한 sti 형성 방법
US8263462B2 (en) 2008-12-31 2012-09-11 Taiwan Semiconductor Manufacturing Company, Ltd. Dielectric punch-through stoppers for forming FinFETs having dual fin heights
US8293616B2 (en) * 2009-02-24 2012-10-23 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of fabrication of semiconductor devices with low capacitance
CN102024761A (zh) * 2009-09-18 2011-04-20 中芯国际集成电路制造(上海)有限公司 用于形成半导体集成电路器件的方法
US8940589B2 (en) * 2010-04-05 2015-01-27 Taiwan Semiconductor Manufacturing Company, Ltd. Well implant through dummy gate oxide in gate-last process
CN102237396B (zh) * 2010-04-27 2014-04-09 中国科学院微电子研究所 半导体器件及其制造方法
US8828850B2 (en) 2010-05-20 2014-09-09 Taiwan Semiconductor Manufacturing Company, Ltd. Reducing variation by using combination epitaxy growth
US9263339B2 (en) * 2010-05-20 2016-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. Selective etching in the formation of epitaxy regions in MOS devices
US8383474B2 (en) * 2010-05-28 2013-02-26 International Business Machines Corporation Thin channel device and fabrication method with a reverse embedded stressor
US8835994B2 (en) * 2010-06-01 2014-09-16 International Business Machines Corporation Reduced corner leakage in SOI structure and method
CN101924138B (zh) * 2010-06-25 2013-02-06 中国科学院上海微***与信息技术研究所 防止浮体及自加热效应的mos器件结构及其制备方法
CN104282570B (zh) * 2013-07-08 2017-04-05 中芯国际集成电路制造(上海)有限公司 半导体器件的制备方法
CN104425280B (zh) * 2013-09-09 2018-08-14 中芯国际集成电路制造(上海)有限公司 半导体器件结构及其形成方法
US9837538B2 (en) * 2016-03-25 2017-12-05 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
CN107946367B (zh) * 2017-11-20 2021-04-27 京东方科技集团股份有限公司 一种薄膜晶体管的制作方法及薄膜晶体管
CN108037131B (zh) * 2017-12-21 2020-10-16 上海华力微电子有限公司 一种对插塞缺陷进行检测的方法
US11049873B2 (en) * 2018-09-24 2021-06-29 Sunrise Memory Corporation Epitaxial monocrystalline channel for storage transistors in 3-dimensional memory structures and methods for formation thereof
US11094822B1 (en) * 2020-01-24 2021-08-17 Globalfoundries U.S. Inc. Source/drain regions for transistor devices and methods of forming same
US11764225B2 (en) 2021-06-10 2023-09-19 Globalfoundries U.S. Inc. Field effect transistor with shallow trench isolation features within source/drain regions

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2817285B2 (ja) * 1989-11-29 1998-10-30 日本電気株式会社 電界効果型トランジスタ
US5461243A (en) 1993-10-29 1995-10-24 International Business Machines Corporation Substrate for tensilely strained semiconductor
JP2778553B2 (ja) * 1995-09-29 1998-07-23 日本電気株式会社 半導体装置およびその製造方法
JPH09283766A (ja) * 1996-04-18 1997-10-31 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
KR100226794B1 (ko) * 1996-06-10 1999-10-15 김영환 모스펫 제조방법
US6399970B2 (en) 1996-09-17 2002-06-04 Matsushita Electric Industrial Co., Ltd. FET having a Si/SiGeC heterojunction channel
US5906951A (en) 1997-04-30 1999-05-25 International Business Machines Corporation Strained Si/SiGe layers on insulator
JP3423859B2 (ja) * 1997-06-20 2003-07-07 三洋電機株式会社 電界効果型半導体装置の製造方法
US5963817A (en) * 1997-10-16 1999-10-05 International Business Machines Corporation Bulk and strained silicon on insulator using local selective oxidation
US6143593A (en) 1998-09-29 2000-11-07 Conexant Systems, Inc. Elevated channel MOSFET
FR2791180B1 (fr) * 1999-03-19 2001-06-15 France Telecom Dispositif semi-conducteur a courant de fuite reduit et son procede de fabrication
WO2001027685A2 (en) * 1999-10-14 2001-04-19 Stratos Product Development Company Llc Virtual imaging system
JP2001203348A (ja) * 2000-01-18 2001-07-27 Sharp Corp 半導体装置及びその製造方法
JP3851752B2 (ja) 2000-03-27 2006-11-29 株式会社東芝 半導体装置の製造方法
US6509586B2 (en) 2000-03-31 2003-01-21 Fujitsu Limited Semiconductor device, method for fabricating the semiconductor device and semiconductor integrated circuit
JP2001338988A (ja) * 2000-05-25 2001-12-07 Hitachi Ltd 半導体装置及びその製造方法
US20020179946A1 (en) 2000-10-19 2002-12-05 Yoshiro Hara P-channel field-effect transistor
FR2818012B1 (fr) * 2000-12-12 2003-02-21 St Microelectronics Sa Dispositif semi-conducteur integre de memoire
WO2002052652A1 (fr) 2000-12-26 2002-07-04 Matsushita Electric Industrial Co., Ltd. Composant a semi-conducteur et son procede de fabrication
US6563152B2 (en) * 2000-12-29 2003-05-13 Intel Corporation Technique to obtain high mobility channels in MOS transistors by forming a strain layer on an underside of a channel
JP2002237590A (ja) 2001-02-09 2002-08-23 Univ Tohoku Mos型電界効果トランジスタ
US6646322B2 (en) 2001-03-02 2003-11-11 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6723661B2 (en) 2001-03-02 2004-04-20 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6677192B1 (en) 2001-03-02 2004-01-13 Amberwave Systems Corporation Method of fabricating a relaxed silicon germanium platform having planarizing for high speed CMOS electronics and high speed analog circuits
US6593641B1 (en) 2001-03-02 2003-07-15 Amberwave Systems Corporation Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits
US6972245B2 (en) 2002-05-15 2005-12-06 The Regents Of The University Of California Method for co-fabricating strained and relaxed crystalline and poly-crystalline structures
US6833556B2 (en) 2002-08-12 2004-12-21 Acorn Technologies, Inc. Insulated gate field effect transistor having passivated schottky barriers to the channel
JP2004118563A (ja) 2002-09-26 2004-04-15 Fuji Photo Film Co Ltd 文字画像処理方法および装置並びにプログラム
US6818952B2 (en) 2002-10-01 2004-11-16 International Business Machines Corporation Damascene gate multi-mesa MOSFET
DE10246718A1 (de) * 2002-10-07 2004-04-22 Infineon Technologies Ag Feldeffekttransistor mit lokaler Source-/Drainisolation sowie zugehöriges Herstellungsverfahren
US6707106B1 (en) 2002-10-18 2004-03-16 Advanced Micro Devices, Inc. Semiconductor device with tensile strain silicon introduced by compressive material in a buried oxide layer
US6717216B1 (en) 2002-12-12 2004-04-06 International Business Machines Corporation SOI based field effect transistor having a compressive film in undercut area under the channel and a method of making the device
US6825529B2 (en) 2002-12-12 2004-11-30 International Business Machines Corporation Stress inducing spacers
US6974981B2 (en) 2002-12-12 2005-12-13 International Business Machines Corporation Isolation structures for imposing stress patterns
US6627515B1 (en) * 2002-12-13 2003-09-30 Taiwan Semiconductor Manufacturing Company Method of fabricating a non-floating body device with enhanced performance
US6919258B2 (en) * 2003-10-02 2005-07-19 Freescale Semiconductor, Inc. Semiconductor device incorporating a defect controlled strained channel structure and method of making the same
US7923782B2 (en) * 2004-02-27 2011-04-12 International Business Machines Corporation Hybrid SOI/bulk semiconductor transistors

Also Published As

Publication number Publication date
US20060160292A1 (en) 2006-07-20
US20060060856A1 (en) 2006-03-23
US7078722B2 (en) 2006-07-18
EP1792346B1 (en) 2012-06-13
KR20070051901A (ko) 2007-05-18
EP1792346A4 (en) 2009-09-09
KR100968182B1 (ko) 2010-07-07
CN101023530A (zh) 2007-08-22
CN100505301C (zh) 2009-06-24
WO2006034189A2 (en) 2006-03-30
WO2006034189A3 (en) 2006-05-04
EP1792346A2 (en) 2007-06-06
US7374988B2 (en) 2008-05-20
JP2008514016A (ja) 2008-05-01
TW200625633A (en) 2006-07-16

Similar Documents

Publication Publication Date Title
JP5063352B2 (ja) 高移動性バルク・シリコンpfet
US7410859B1 (en) Stressed MOS device and method for its fabrication
JP4493343B2 (ja) 歪みフィンfet構造および方法
US8455307B2 (en) FINFET integrated circuits and methods for their fabrication
US7288802B2 (en) Virtual body-contacted trigate
US7670914B2 (en) Methods for fabricating multiple finger transistors
US20130020640A1 (en) Semiconductor device structure insulated from a bulk silicon substrate and method of forming the same
JP2009503851A (ja) 応力mosデバイスの製造方法
US20080064173A1 (en) Semiconductor device, cmos device and fabricating methods of the same
JP2004241755A (ja) 半導体装置
WO2004097943A1 (ja) 半導体装置とその製造方法
US10014406B2 (en) Semiconductor device and method of forming the same
JP5968708B2 (ja) 半導体装置
US20060226495A1 (en) Structure and Method of Three Dimensional Hybrid Orientation Technology
JP2009522800A (ja) 半導体装置の製造方法およびこの方法によって得られた半導体装置
US20090085075A1 (en) Method of fabricating mos transistor and mos transistor fabricated thereby
JP2015095568A (ja) 半導体装置
JP6574885B2 (ja) 半導体装置の製造方法
KR20050087541A (ko) 핀형 전계 효과 트랜지스터 및 이의 제조 방법
KR100214491B1 (ko) 반도체소자 및 그 제조방법
CN116261321A (zh) 半导体结构及其形成方法
US20060205138A1 (en) Method to selectively form SiGe P type electrode and polysilicon N type electrode through planarization
JP2005276989A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120423

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

RD12 Notification of acceptance of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7432

Effective date: 20120423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120719

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20120719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees