JP5062754B2 - FePtP ternary alloy - Google Patents

FePtP ternary alloy Download PDF

Info

Publication number
JP5062754B2
JP5062754B2 JP2008100931A JP2008100931A JP5062754B2 JP 5062754 B2 JP5062754 B2 JP 5062754B2 JP 2008100931 A JP2008100931 A JP 2008100931A JP 2008100931 A JP2008100931 A JP 2008100931A JP 5062754 B2 JP5062754 B2 JP 5062754B2
Authority
JP
Japan
Prior art keywords
phase
feptp
alloy
coercive force
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008100931A
Other languages
Japanese (ja)
Other versions
JP2008231577A (en
Inventor
正人 大沼
キュンディグ・アンドレアス
信雄 阿部
忠勝 大久保
和博 宝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2008100931A priority Critical patent/JP5062754B2/en
Publication of JP2008231577A publication Critical patent/JP2008231577A/en
Application granted granted Critical
Publication of JP5062754B2 publication Critical patent/JP5062754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

この出願の発明は、FePtP3元合金に関するものである。さらに詳しくは、この出願の発明は、高保磁力を有するFePtP3元合金に関するものである。 The invention of this application relates to a FePtP ternary alloy. More specifically, the invention of this application relates to a FePtP ternary alloy having a high coercive force.

FePtP3元合金については、冷却速度の向上や圧延などの加工プロセスにより組織をナノメートルスケールまで微細化することによって4.5kOe程度の保磁力が得られている(たとえば、非特許文献1参照)。最近、FeおよびPtのシートを複数枚重ね、圧延を繰り返すというプロセスにより10kOe程度の保磁力が得られている(たとえば、非特許文献2参照)。これらの技術では、基本的にL10-FePt組織に、加工や熱処理により微細な双晶や逆位相界面を導入し、それをピンニングサイトとして保磁力を向上させるという手法がとられている。 For FePtP ternary alloys, a coercive force of about 4.5 kOe is obtained by refining the structure down to the nanometer scale by improving the cooling rate or rolling, etc. (for example, see Non-Patent Document 1). Recently, a coercive force of about 10 kOe has been obtained by a process of stacking a plurality of Fe and Pt sheets and repeating rolling (see, for example, Non-Patent Document 2). In these techniques, basically, a technique is adopted in which fine twins and antiphase interfaces are introduced into the L10-FePt structure by processing and heat treatment, and these are used as pinning sites to improve the coercive force.

また、最近、厚さ数ナノメートルの極薄膜の研究により、20kOe以上の保磁力を得るためには、粒径50nm以下で個々の粒子が孤立していることが重要であることが明らかにされた(たとえば、非特許文献3参照)。薄膜では、単磁区粒子を分散させることにより反磁区の核生成を抑制し、回転磁化によって磁化反転を起こさせるようなナノ構造を作ることにより大きな保磁力を実現している。
K.Watanabeand H.Masumoto, Trans., JIM, 24.627(1983) N.H.Haietal., J.Magn.Magn.Mater. 262,353(2003) T.Shimaetal., App.Phys.Lett.81,1050(2002)
Recently, research on ultrathin films with a thickness of several nanometers has revealed that it is important that individual particles are isolated with a particle size of 50 nm or less in order to obtain a coercive force of 20 kOe or more. (For example, see Non-Patent Document 3). In a thin film, a large coercive force is realized by creating a nanostructure that suppresses nucleation of diamagnetic domains by dispersing single domain particles and causes magnetization reversal by rotational magnetization.
K. Watanabeand H. Masumoto, Trans., JIM, 24.627 (1983) NHHaietal., J.Magn.Magn.Mater.262,353 (2003) T.Shimaetal., App.Phys.Lett.81,1050 (2002)

したがって、薄膜でなくても上記と類似した構造が得られれば、20kOeを超える高保磁力が得られる可能性がある。 Therefore, if a structure similar to the above is obtained even if it is not a thin film, a high coercive force exceeding 20 kOe may be obtained.

この出願の発明は、このような事情に鑑みてなされたものであり、高保磁力を有するFePtP3元合金を提供することを解決すべき課題としている。 The invention of this application has been made in view of such circumstances, and an object to be solved is to provide an FePtP ternary alloy having a high coercive force.

この出願の発明は、上記の課題を解決するものとして、第1には、FePtP3元合金であって、組成式がFe 35 Pt 35 30 で示される前記合金を、液体急冷法により固化した後、200℃/sの加熱速度で500℃〜800℃の温度範囲に10秒間保持する熱処理を施すことにより、合金組織がL1−FePt相、Feが固溶していないPPt相およびリン化鉄相からなる3相組織となすことを特徴とするFePtP3元合金を提供する。 The invention of this application is to solve the above-mentioned problem. First, after solidifying the alloy having a composition formula of Fe 35 Pt 35 P 30 by a liquid quenching method, the alloy is FePtP ternary alloy. The alloy structure is L1 0 -FePt phase, Fe 2 Pt phase in which Fe is not in solid solution, and phosphorus by heat treatment that is held at a heating rate of 200 ° C./s in a temperature range of 500 ° C. to 800 ° C. for 10 seconds. Provided is a FePtP ternary alloy characterized by having a three-phase structure composed of a ferric phase.

Fe元素の分布がほぼ均一である場合には大きな保磁力は得られない。Fe元素が不均一に分布し、非磁性P2Pt相が形成されることが重要である。 When the distribution of Fe element is almost uniform, a large coercive force cannot be obtained. It is important that the Fe element is unevenly distributed and a nonmagnetic P2Pt phase is formed.

この出願の発明は、第2には、上記第1のFePtP3元合金において、その合金組織を形成する3つ
の相の粒径がそれぞれ100μm以下であることを特徴とする。
The invention of this application is characterized in that, secondly, in the first FePtP ternary alloy, the particle sizes of the three phases forming the alloy structure are each 100 μm or less.

非磁性P2Pt相が形成される場合でも組織が粗大化しては大きな保磁力は得られにくい。
非磁性P2Pt相も含めた複相組織の粒径が100μm以下であることが好ましい。
Even when a nonmagnetic P 2 Pt phase is formed, it is difficult to obtain a large coercive force if the structure becomes coarse.
The particle diameter of the multiphase structure including the nonmagnetic P 2 Pt phase is preferably 100 μm or less.

この出願の発明によれば、高保磁力を有するFePtP3元合金が提供される。 According to the invention of this application, an FePtP ternary alloy having a high coercive force is provided.

図1(a)にこの出願の発明において高保磁力材料となりうる合金の組成範囲を示した。組成式が、組成図でFe15Pt70P15、Fe15Pt50P35、Fe55Pt10P35およびFe70Pt15P15を結ぶ四角形の組成範囲内にあり、かつFe100-X-YPtxPy(15<X<70,15<Y<35)で示されている範囲には、合金組織にL10-FePt相とFeが固溶していないP2Pt相が少なくとも形成されている。
以下、実施例を示し、この出願の発明のFePtP3元合金についてさらに詳しく説明する。
FIG. 1A shows the composition range of an alloy that can be a high coercive force material in the invention of this application. The composition formula is within the square composition range connecting Fe 15 Pt 70 P 15 , Fe 15 Pt 50 P 35, Fe 55 Pt 10 P 35 and Fe 70 Pt 15 P 15 in the composition diagram, and Fe 100-XY Pt In the range indicated by x P y (15 <X <70, 15 <Y <35), at least an L1 0 -FePt phase and a P 2 Pt phase in which Fe is not dissolved are formed in the alloy structure. Yes.
Hereinafter, the FePtP ternary alloy of the invention of this application will be described in more detail with reference to examples.

図1(b)は得られたFePtPバルク合金の一例を示した写真である。FePtP合金には3元共晶が存在し、3元共晶付近で融点が低下する。このため、たとえば液体急冷を行うことによりリボン状試料の作製が可能となり、また、射出鍛造によってもナノ結晶が分散した組織が得られるものと考えられる。 FIG. 1B is a photograph showing an example of the obtained FePtP bulk alloy. A ternary eutectic exists in the FePtP alloy, and the melting point decreases near the ternary eutectic. For this reason, for example, it is considered that a ribbon-like sample can be produced by performing liquid quenching, and a structure in which nanocrystals are dispersed can be obtained by injection forging.

上記組成範囲においてFePtPバルク合金は、図2に示したX線回折測定に示されるように、液体急冷直後に組織は、L10-FePt規則相とP2Pt相の2相から主として構成されることが確認された。 In the above composition range, the FePtP bulk alloy has a structure mainly composed of two phases of L1 0 -FePt ordered phase and P 2 Pt phase immediately after liquid quenching as shown in the X-ray diffraction measurement shown in FIG. It was confirmed.

以下、Fe35Pt35P30合金を例にあげ、組織と磁気特性との関係を示す。 Hereinafter, the Fe 35 Pt 35 P 30 alloy is taken as an example to show the relationship between the structure and the magnetic properties.

図2に示したX線回折の結果、急冷のままの試料(単ロール法を用いた液体急冷法においてCuロールの回転速度を30m/s〜40m/s)と急冷後熱処理(200℃/sの加熱速度で500℃〜800℃の温度範囲に10秒間保持)を行った試料では、回折ピークの幅に差は見られるものの、ピーク位置には変化がなく、いずれもL10-FePt規則相とP2Pt相の2相が主構成相であることが分かる。第3相として、微量のリン化鉄の存在が、熱処理前ではX線回折により、また、熱処理後は電子回折により確かめられた。このように主構成相には熱処理前後でほとんど差が見られないのに対し、図3に示した磁化曲線は熱処理前後で大きく異なっている。図3にas-quenchedとして示した液体急冷ままの試料ではほとんど保磁力が
現れない。これに対し、annealedとして示した熱処理後の試料では磁化曲線に20kOeとい
うきわめて大きな保磁力が出現し、98kOeまで磁場を印加しても磁化曲線を飽和させる
ことができない。しかし、急冷のままの試料では、20kOe程度の磁場中で試料の磁化を
飽和させることは困難である。このことは、X線回折データにも示されるように、急冷のままでもすでにL10-FePt規則相が存在していることを裏付けている。したがって、L10-FePt規則相の存在だけでは高保磁力は得られないと結論される。
As a result of the X-ray diffraction shown in FIG. 2, the sample as it was rapidly cooled (Cu roll rotation speed of 30 to 40 m / s in the liquid quenching method using the single roll method) and the heat treatment after quenching (200 ° C./s) In the sample that was held in the temperature range of 500 ° C to 800 ° C for 10 seconds at a heating rate of 5 ° C, there was a difference in the width of the diffraction peak, but there was no change in the peak position, both of which were L1 0 -FePt ordered phase It can be seen that the two phases of P 2 and P 2 Pt are the main constituent phases. As a third phase, the presence of a small amount of iron phosphide was confirmed by X-ray diffraction before heat treatment and by electron diffraction after heat treatment. Thus, while there is almost no difference in the main constituent phase before and after the heat treatment, the magnetization curves shown in FIG. 3 are greatly different before and after the heat treatment. The coercive force hardly appears in the sample with the liquid rapidly cooled as shown as as-quenched in FIG. On the other hand, in the sample after heat treatment shown as annealed, a very large coercive force of 20 kOe appears in the magnetization curve, and the magnetization curve cannot be saturated even when a magnetic field is applied up to 98 kOe. However, it is difficult to saturate the magnetization of a sample in a magnetic field of about 20 kOe with a sample that is rapidly cooled. This confirms that the L1 0 -FePt ordered phase already exists even when quenched, as shown in the X-ray diffraction data. Therefore, it is concluded that high coercivity cannot be obtained only by the presence of the L1 0 -FePt ordered phase.

そこで、高保磁力の原因について検討を行った。図4(a)は急冷のままの試料の透過電子顕微鏡像であり、組織はきわめて微細(粒径およそ20nm)である。熱処理を行った試料の組織は、図4(b)に示したように、50nm程度まで大きくなっている。したがって、20kOeという高保磁力を得るためには、微細なL10-FePt規則相の存在だけでは不十分
であることが分かる。
Therefore, the cause of the high coercive force was examined. FIG. 4 (a) is a transmission electron microscope image of the rapidly cooled sample, and the structure is extremely fine (particle size is approximately 20 nm). As shown in FIG. 4B, the structure of the heat-treated sample is increased to about 50 nm. Therefore, it can be seen that the presence of a fine L1 0 -FePt ordered phase is not sufficient to obtain a high coercive force of 20 kOe.

次に、熱処理前後の元素の分布状態をエネルギーフィルター電子顕微鏡により調べた。 Next, the distribution state of the elements before and after the heat treatment was examined with an energy filter electron microscope.

PtとPは、エネルギーギャップ位置が近接しており、両者の分布を検討することは難しいため、Fe元素の分布状態を調べた。その結果を図5に示した。図5(a)に示した熱処理前の試料では、Fe元素の分布はほぼ一様であり、P2Pt相にもL10-FePt相と同等な濃度でFeが固溶している。一方、図5(b)に示した熱処理後の試料では、Fe元素の分布はきわめて不均一であり、Fe元素がほぼ欠損した領域、中間的領域、Feリッチな領域の3種類が観察される。X線回折および電子回折の結果から、各領域は、P2Pt相、L10-FePt相、リン化鉄相の3相であると判明した。したがって、20kOeの高保磁力の出現には、熱処理に
より完全にFeを排出した非磁性P2Pt相の存在が不可欠であると結論される。非磁性P2Pt相
の存在が、L10-FePt相を磁気的に孤立化させるかあるいは非磁性P2Pt相の存在によるFe濃度の大きな差が強力なピンニングサイトとして働いているかなどの理由により、20kOe
という巨大な保磁力がもたらされたと推測される。
Since Pt and P are close to each other in the energy gap position, it is difficult to study the distribution of both, so the distribution state of Fe element was investigated. The results are shown in FIG. In the sample before heat treatment shown in FIG. 5A, the distribution of Fe element is almost uniform, and Fe is dissolved in the P 2 Pt phase at a concentration equivalent to that of the L1 0 -FePt phase. On the other hand, in the sample after the heat treatment shown in FIG. 5B, the distribution of Fe element is extremely non-uniform, and three kinds of regions, a region where Fe element is almost lost, an intermediate region, and a Fe-rich region are observed. . From the results of X-ray diffraction and electron diffraction, each region was found to be three phases of P 2 Pt phase, L1 0 -FePt phase, and iron phosphide phase. Therefore, it can be concluded that the presence of a nonmagnetic P 2 Pt phase from which Fe has been completely discharged by heat treatment is essential for the appearance of a high coercive force of 20 kOe. Reason such as whether the presence of a non-magnetic P 2 Pt phase, a large difference in the Fe concentration due to the presence of L1 0 -FePt phase whether to magnetically isolate or nonmagnetic P 2 Pt phase is working as a strong pinning sites 20kOe
It is estimated that a huge coercive force was brought about.

以上からは、急冷後の熱処理の有効性が理解されるが、Feを含まない非磁性P2Pt相とL10-FePt規則相との混相組織は、冷却速度を抑制することでも実現される。たとえば、単ロール法においてCuロールの回転速度(冷却速度に対応する)を20m/sにした場合、リボ
ン状試料は熱処理なしで20kOeという高保磁力を示した。
From the above, the effectiveness of heat treatment after quenching is understood, but the mixed phase structure of non-magnetic P 2 Pt phase and L1 0 -FePt ordered phase not containing Fe can also be realized by suppressing the cooling rate . For example, when the rotation speed of the Cu roll (corresponding to the cooling speed) is 20 m / s in the single roll method, the ribbon-like sample showed a high coercive force of 20 kOe without heat treatment.

FePtPバルク合金の形状についてはリボン状に限られることはなく、射出鍛造によるたとえば直径2mmのロッド状とすることもできる。この場合、200℃/sの加熱速度で800℃以上の高温に10秒間保持することにより、5kOeの保磁力が得られた。このようにバルク
合金の形状により熱処理条件が異なるが、これは主に組織のスケールに基づいていると考えられる。すなわち、粒径数10nmのリボン状合金では、P2Pt相に過飽和に固溶していたFe元素が排出されるのに必要な拡散距離が短く、このため、低温、短時間で高保磁力が得られるのに対し、粒径100nm前後のロッド状合金では、P2Pt相に過飽和に固溶していたFe
元素が排出されるのに必要な拡散距離が長いため、高温、長時間の熱処理が必要になると考えられる。
The shape of the FePtP bulk alloy is not limited to a ribbon shape, and may be a rod shape having a diameter of 2 mm, for example, by injection forging. In this case, a coercive force of 5 kOe was obtained by holding at a high temperature of 800 ° C. or higher for 10 seconds at a heating rate of 200 ° C./s. Thus, although the heat treatment conditions differ depending on the shape of the bulk alloy, it is considered that this is mainly based on the scale of the structure. That is, in the ribbon-shaped alloy having a particle size of several tens of nanometers, the diffusion distance necessary for discharging the super-saturated Fe element dissolved in the P 2 Pt phase is short. On the other hand, in the rod-shaped alloy with a particle size of around 100 nm, Fe that had been supersaturated in the P 2 Pt phase
Since the diffusion distance necessary for discharging the elements is long, it is considered that heat treatment for a long time at a high temperature is required.

もちろん、この出願の発明は、以上の実施例によって限定されるものではない。作製条件、熱処理条件等の細部については様々な態様が可能であることはいうまでもない。 Of course, the invention of this application is not limited by the above embodiments. It goes without saying that various modes are possible for details such as manufacturing conditions and heat treatment conditions.

以上詳しく説明したとおり、この出願の発明によって、高保磁力を有するFePtPバルク合金が提供される。FePtPバルク合金は、高保磁力とともに高耐食性をも有し、また、人体への害がほとんどないPを構成元素としていることから、FePtバルク合金と同様に、義歯用磁性アタッチメントの磁石構造体材料をはじめ、他の生体材料に適用可能である。また、過酷な条件で使用される電気モーターにも適用可能でもある。 As described in detail above, the invention of this application provides a FePtP bulk alloy having a high coercive force. FePtP bulk alloy has high coercive force as well as high corrosion resistance, and has P as a constituent element that has almost no harm to the human body. First, it can be applied to other biomaterials. It is also applicable to electric motors used in harsh conditions.

(a)は、組成探査を行った範囲(黒い四角)とP2Pt相とL10-FePt規則相の混相組織が得られた領域を示す図である。(b)は、実施例で得られた試料の一例を示した写真である。(A) is a diagram showing the region where mixed phase structure was obtained in the range (black squares) and P 2 Pt phase and L1 0 -FePt ordered phase of performing composition exploration. (B) is a photograph showing an example of the sample obtained in the example. 急冷のままの試料(as-q)と873K(600℃)で10秒間熱処理を行った試料のX線回折図形である。It is an X-ray diffraction pattern of the sample (as-q) with rapid cooling and the sample heat-treated for 10 seconds at 873K (600 ° C.) 急冷のままの試料(as-quenched)と873K(600℃)で10秒間熱処理を行った試料(annealed)の磁化曲線である。It is a magnetization curve of the sample (as-quenched) with rapid cooling and the sample (annealed) which heat-processed for 10 second at 873K (600 degreeC). (a)は、急冷のままの試料(as-quenched)の透過電子顕微鏡像および電子回折図形である。(b)は、873K(600℃)で10秒間熱処理を行った試料(annealed)の透過電子顕微鏡像および電子回折図形である。(A) is a transmission electron microscope image and an electron diffraction pattern of a sample (as-quenched) as quenched. (B) is a transmission electron microscope image and an electron diffraction pattern of a sample (annealed) heat-treated at 873 K (600 ° C.) for 10 seconds. (a)は、急冷のままの試料(as-quenched)のFe元素の分布状態を示したエネルギーフィルター電子顕微鏡像である。(b)は、873K(600℃)で10秒間熱処理を行った試料(annealed)のFe元素の分布状態を示したエネルギーフィルター電子顕微鏡像である。(A) is the energy filter electron microscope image which showed the distribution state of Fe element of the sample (as-quenched) with rapid cooling. (B) is the energy filter electron microscope image which showed the distribution state of Fe element of the sample (annealed) which heat-processed for 10 second at 873K (600 degreeC).

Claims (2)

FePtP3元合金であって、組成式がFe 35 Pt 35 30 で示される前記合金を、液体急冷法により固化した後、200℃/sの加熱速度で500℃〜800℃の温度範囲に10秒間保持する熱処理を施すことにより、合金組織がL1−FePt相、Feが固溶していないPPt相およびリン化鉄相からなる3相組織となすことを特徴とするFePtP3元合金。 An FePtP ternary alloy having the composition formula Fe 35 Pt 35 P 30 is solidified by a liquid quenching method and then heated at a heating rate of 200 ° C./s in a temperature range of 500 ° C. to 800 ° C. for 10 seconds. An FePtP ternary alloy characterized in that by performing a heat treatment to be held, the alloy structure becomes a three-phase structure composed of an L1 0 -FePt phase, a P 2 Pt phase in which Fe is not dissolved, and an iron phosphide phase. 前記合金組織を形成する3つの相の粒径がそれぞれ100μm以下であることを特徴とする請求項1記載のFePtP3元合金。   The FePtP ternary alloy according to claim 1, wherein the grain sizes of the three phases forming the alloy structure are each 100 µm or less.
JP2008100931A 2008-04-09 2008-04-09 FePtP ternary alloy Expired - Fee Related JP5062754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008100931A JP5062754B2 (en) 2008-04-09 2008-04-09 FePtP ternary alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008100931A JP5062754B2 (en) 2008-04-09 2008-04-09 FePtP ternary alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004091875A Division JP2005272985A (en) 2004-03-26 2004-03-26 FePtP BULK ALLOY

Publications (2)

Publication Number Publication Date
JP2008231577A JP2008231577A (en) 2008-10-02
JP5062754B2 true JP5062754B2 (en) 2012-10-31

Family

ID=39904724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008100931A Expired - Fee Related JP5062754B2 (en) 2008-04-09 2008-04-09 FePtP ternary alloy

Country Status (1)

Country Link
JP (1) JP5062754B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5601920B2 (en) * 2010-07-28 2014-10-08 石福金属興業株式会社 Method for producing Fe / Co-Pt sintered alloy
JP5937318B2 (en) * 2011-09-01 2016-06-22 石福金属興業株式会社 Magnetic thin film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088103A (en) * 1994-06-17 1996-01-12 Honda Motor Co Ltd Fe-pt alloy for permanent magnet with high coercive force and its manufacturing method
JP3969125B2 (en) * 2001-03-02 2007-09-05 愛知製鋼株式会社 Fe-Pt magnet and method for producing the same
JP4051451B2 (en) * 2002-01-22 2008-02-27 Dowaエレクトロニクス株式会社 Magnetic materials for magnetic recording media

Also Published As

Publication number Publication date
JP2008231577A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
Castle et al. High coercivity, anisotropic, heavy rare earth-free Nd-Fe-B by Flash Spark Plasma Sintering
Ayyappan et al. Effect of initial particle size on phase transformation temperature of surfactant capped Fe3O4 nanoparticles
Peck et al. Magnetic properties of NiO and (Ni, Zn) O nanoclusters
De et al. Memory effects in superparamagnetic and nanocrystalline Fe50Ni50 alloy
Bhoi et al. Evolution of microstructure and magnetic properties of nanocrystalline Fe70− xCuxCo30 alloy prepared by mechanical alloying
Murty et al. Unique properties of nanomaterials
Lu et al. CTAB-mediated synthesis of iron–nickel alloy nanochains and their magnetic properties
Kurichenko et al. Synthesis of FeNi tetrataenite phase by means of chemical precipitation
Lu et al. A method to improving the coercivity of sintered anisotropic Sm-Fe-N magnets
Wang et al. Preparation and magnetic properties of anisotropic (Sm, Pr) Co5/Co composite particles
Wu et al. Magnetic properties and microstructures of α-Fe/Nd2Fe14B nanocomposite microalloyed with Zr
JP5062754B2 (en) FePtP ternary alloy
Rai et al. Magnetically enhanced hard–soft SmCo5–FeNi composites obtained via high energy ball milling and heat treatment
Jia et al. Roadmap towards optimal magnetic properties in L10-MnAl permanent magnets
Liu et al. Permanent magnetic nanoparticles and nanoflakes prepared by surfactant-assisted high-energy ball milling
Chau et al. Investigation of nanocomposite materials with ultrasoft and high performance hard magnetic properties
Tong et al. Investigations on low energy product of MnAl magnets through recoil curves
Mohammadi et al. Mechanochemical synthesis of nanocrystalline Fe and Fe–B magnetic alloys
Shukla et al. Magnetic nanostructures: Synthesis, properties, and applications
Gopalan et al. Mechanically milled and spark plasma sintered FePt-based bulk magnets with high coercivity
Chen et al. Weak ferromagnetism and spin-glass state with nanosized nickel carbide
JP2005272985A (en) FePtP BULK ALLOY
Thomas et al. Nanocrystallites via direct melt spinning of Fe77Ni5. 5Co5. 5Zr7B4Cu for enhanced magnetic softness
Del Bianco et al. Coexistence of exchange bias effect and giant magnetoresistance in a Ni/NiO nanogranular sample
Zhukova et al. Kondo-like behavior and GMR effect in granular Cu90Co10 microwires

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees