JP2005272985A - FePtP BULK ALLOY - Google Patents

FePtP BULK ALLOY Download PDF

Info

Publication number
JP2005272985A
JP2005272985A JP2004091875A JP2004091875A JP2005272985A JP 2005272985 A JP2005272985 A JP 2005272985A JP 2004091875 A JP2004091875 A JP 2004091875A JP 2004091875 A JP2004091875 A JP 2004091875A JP 2005272985 A JP2005272985 A JP 2005272985A
Authority
JP
Japan
Prior art keywords
phase
feptp
alloy
coercive force
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004091875A
Other languages
Japanese (ja)
Inventor
Masato Onuma
正人 大沼
Kundig Andreas
キュンディグ・アンドレアス
Nobuo Abe
信雄 阿部
Tadakatsu Okubo
忠勝 大久保
Kazuhiro Houno
和博 宝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004091875A priority Critical patent/JP2005272985A/en
Publication of JP2005272985A publication Critical patent/JP2005272985A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an FePtP bulk alloy having high coercive force. <P>SOLUTION: The ternary alloy of Fe-Pt-P is in a bulk form and its composition formula exists within a composition range connecting Fe<SB>15</SB>Pt<SB>70</SB>P<SB>15</SB>, Fe<SB>15</SB>Pt<SB>50</SB>P<SB>35</SB>, Fe<SB>55</SB>Pt<SB>10</SB>P<SB>35</SB>, and Fe<SB>70</SB>Pt<SB>15</SB>P<SB>15</SB>, and is indicated by Fe<SB>100-X-Y</SB>Pt<SB>x</SB>P<SB>y</SB>(15<X<60, 15<Y<35) and a P<SB>2</SB>Pt phase not solid-solutionized with L1<SB>0</SB>-FePt phase and Fe is at least formed in the alloy structure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この出願の発明は、FePtPバルク合金に関するものである。さらに詳しくは、この出願
の発明は、高保磁力を有するFePtPバルク合金に関するものである。
The invention of this application relates to an FePtP bulk alloy. More specifically, the invention of this application relates to a FePtP bulk alloy having a high coercive force.

FePtバルク合金については、冷却速度の向上や圧延などの加工プロセスにより組織をナノメートルスケールまで微細化することによって4.5kOe程度の保磁力が得られている(たとえば、非特許文献1参照)。最近、FeおよびPtのシートを複数枚重ね、圧延を繰り返すというプロセスにより10kOe程度の保磁力が得られている(たとえば、非特許文献2参
照)。これらの技術では、基本的にL10-FePt組織に、加工や熱処理により微細な双晶や逆位相界面を導入し、それをピンニングサイトとして保磁力を向上させるという手法がとられている。
As for FePt bulk alloy, a coercive force of about 4.5 kOe is obtained by refining the structure down to the nanometer scale by improving the cooling rate or rolling or the like (for example, see Non-Patent Document 1). Recently, a coercive force of about 10 kOe has been obtained by a process of stacking a plurality of Fe and Pt sheets and repeating rolling (see, for example, Non-Patent Document 2). In these techniques, basically, a technique is adopted in which fine twins or antiphase interfaces are introduced into the L1 0 -FePt structure by processing or heat treatment, and this is used as a pinning site to improve the coercive force.

また、最近、厚さ数ナノメートルの極薄膜の研究により、20kOe以上の保磁力を得る
ためには、粒径50nm以下で個々の粒子が孤立していることが重要であることが明らかにされた(たとえば、非特許文献3参照)。薄膜では、単磁区粒子を分散させることにより反磁区の核生成を抑制し、回転磁化によって磁化反転を起こさせるようなナノ構造を作ることにより大きな保磁力を実現している。
K. Watanabe and H. Masumoto, Trans., JIM, 24. 627(1983) N.H. Hai et al., J.Magn. Magn. Mater. 262, 353(2003) T. Shima et al., App. Phys. Lett. 81, 1050(2002)
Recently, research on ultrathin films with a thickness of several nanometers has revealed that it is important that individual particles are isolated with a particle size of 50 nm or less in order to obtain a coercive force of 20 kOe or more. (For example, see Non-Patent Document 3). In a thin film, a large coercive force is realized by creating a nanostructure that suppresses nucleation of diamagnetic domains by dispersing single domain particles and causes magnetization reversal by rotational magnetization.
K. Watanabe and H. Masumoto, Trans., JIM, 24. 627 (1983) NH Hai et al., J. Magn. Magn. Mater. 262, 353 (2003) T. Shima et al., App. Phys. Lett. 81, 1050 (2002)

したがって、バルク体でも上記と類似した構造が得られれば、20kOeを超える高保磁
力が得られる可能性がある。
Therefore, if a structure similar to the above is obtained even in a bulk body, a high coercive force exceeding 20 kOe may be obtained.

この出願の発明は、このような事情に鑑みてなされたものであり、高保磁力を有するFePtPバルク合金を提供することを解決すべき課題としている。   The invention of this application has been made in view of such circumstances, and an object to be solved is to provide an FePtP bulk alloy having a high coercive force.

この出願の発明は、上記の課題を解決するものとして、第1には、Fe-Pt-Pの3元合金
で、バルク状であり、組成式が、組成図でFe15Pt70P15, Fe15Pt50P35, Fe55Pt10P35およ
びFe70Pt15P15を結ぶ組成範囲内にあり、かつFe100-X-YPtxPy(15<X<70,15<
Y<35)で示され、合金組織にL10-FePt相とFeが固溶していないP2Pt相が少なくとも形成されていることを特徴とするFePtPバルク合金を提供する。
The invention of this application is to solve the above-mentioned problems. First, it is a ternary alloy of Fe—Pt—P, which is bulky, and the composition formula is Fe 15 Pt 70 P 15 , Fe 15 Pt 50 P 35 , Fe 55 Pt 10 P 35 and Fe 70 Pt 15 P 15 are within the composition range connecting, and Fe 100-XY Pt x P y (15 <X <70, 15 <
Provided is an FePtP bulk alloy represented by Y <35), wherein at least an L1 0 -FePt phase and a P 2 Pt phase in which Fe is not dissolved are formed in the alloy structure.

Fe元素の分布がほぼ均一である場合には大きな保磁力は得られない。Fe元素が不均一に分布し、非磁性P2Pt相が形成されることが重要である。 When the distribution of Fe element is almost uniform, a large coercive force cannot be obtained. It is important that the Fe element is unevenly distributed and a nonmagnetic P 2 Pt phase is formed.

この出願の発明は、第2には、上記第1のFePtPバルク合金において、合金組織を形成
する相の粒径が100μm以下であるFePtPバルク合金を提供する。
The invention of this application secondly provides an FePtP bulk alloy in which the grain size of the phase forming the alloy structure is 100 μm or less in the first FePtP bulk alloy.

非磁性P2Pt相が形成される場合でも組織が粗大化しては大きな保磁力は得られにくい。非磁性P2Pt相も含めた複相組織の粒径が100μm以下であることが好ましい。 Even when a nonmagnetic P 2 Pt phase is formed, it is difficult to obtain a large coercive force if the structure becomes coarse. The particle diameter of the multiphase structure including the nonmagnetic P 2 Pt phase is preferably 100 μm or less.

この出願の発明によれば、高保磁力を有するFePtPバルク合金が提供される。   According to the invention of this application, an FePtP bulk alloy having a high coercive force is provided.

以下、実施例を示し、この出願の発明のFePtPバルク合金についてさらに詳しく説明す
る。
Hereinafter, examples will be shown, and the FePtP bulk alloy of the invention of this application will be described in more detail.

図1(a)にこの出願の発明において高保磁力材料となりうる合金の組成範囲を示した。図1(b)は得られたFePtPバルク合金の一例を示した写真である。FePtP合金には3元共晶が存在し、3元共晶付近で融点が低下する。このため、たとえば液体急冷を行うことによりリボン状試料の作製が可能となり、また、射出鍛造によってもナノ結晶が分散した組織が得られるものと考えられる。   FIG. 1A shows the composition range of an alloy that can be a high coercive force material in the invention of this application. FIG. 1B is a photograph showing an example of the obtained FePtP bulk alloy. A ternary eutectic exists in the FePtP alloy, and the melting point decreases near the ternary eutectic. For this reason, for example, it is considered that a ribbon-like sample can be produced by performing liquid quenching, and a structure in which nanocrystals are dispersed can be obtained by injection forging.

上記組成範囲においてFePtPバルク合金は、図2に示したX線回折測定に示されるよう
に、液体急冷直後に組織は、L10-FePt規則相とP2Pt相の2相から主として構成されることが確認された。
In the above composition range, the FePtP bulk alloy has a structure mainly composed of two phases of L1 0 -FePt ordered phase and P 2 Pt phase immediately after liquid quenching as shown in the X-ray diffraction measurement shown in FIG. It was confirmed.

以下、Fe35Pt35P30合金を例にあげ、組織と磁気特性との関係を示す。 Hereinafter, the Fe 35 Pt 35 P 30 alloy is taken as an example to show the relationship between the structure and the magnetic properties.

図2に示したX線回折の結果、急冷のままの試料(単ロール法を用いた液体急冷法においてCuロールの回転速度を30m/s〜40m/s)と急冷後熱処理(200℃/sの加熱速度で500℃〜800℃の温度範囲に10秒間保持)を行った試料では、回折ピークの幅に差は見られ
るものの、ピーク位置には変化がなく、いずれもL10-FePt規則相とP2Pt相の2相が主構成相であることが分かる。第3相として、微量のリン化鉄の存在が、熱処理前ではX線回折により、また、熱処理後は電子回折により確かめられた。このように主構成相には熱処理前後でほとんど差が見られないのに対し、図3に示した磁化曲線は熱処理前後で大きく異なっている。図3にas-quenchedとして示した液体急冷ままの試料ではほとんど保磁力が
現れない。これに対し、annealedとして示した熱処理後の試料では磁化曲線に20kOeとい
うきわめて大きな保磁力が出現し、98kOeまで磁場を印加しても磁化曲線を飽和させる
ことができない。しかし、急冷のままの試料では、20kOe程度の磁場中で試料の磁化を
飽和させることは困難である。このことは、X線回折データにも示されるように、急冷のままでもすでにL10-FePt規則相が存在していることを裏付けている。したがって、L10-FePt規則相の存在だけでは高保磁力は得られないと結論される。
As a result of the X-ray diffraction shown in FIG. 2, the sample as it was rapidly cooled (Cu roll rotation speed of 30 to 40 m / s in the liquid quenching method using the single roll method) and the heat treatment after quenching (200 ° C./s) In the sample that was held in the temperature range of 500 ° C to 800 ° C for 10 seconds at a heating rate of 5 ° C, there was a difference in the width of the diffraction peak, but there was no change in the peak position, both of which were L1 0 -FePt ordered phase It can be seen that the two phases of P 2 and P 2 Pt are the main constituent phases. As a third phase, the presence of a small amount of iron phosphide was confirmed by X-ray diffraction before heat treatment and by electron diffraction after heat treatment. Thus, while there is almost no difference in the main constituent phase before and after the heat treatment, the magnetization curves shown in FIG. 3 are greatly different before and after the heat treatment. The coercive force hardly appears in the sample with the liquid rapidly cooled as shown as as-quenched in FIG. On the other hand, in the sample after heat treatment indicated as annealed, a very large coercive force of 20 kOe appears in the magnetization curve, and the magnetization curve cannot be saturated even when a magnetic field is applied up to 98 kOe. However, it is difficult to saturate the magnetization of a sample in a magnetic field of about 20 kOe with a sample that is rapidly cooled. This confirms that the L1 0 -FePt ordered phase already exists even when quenched, as shown in the X-ray diffraction data. Therefore, it is concluded that high coercivity cannot be obtained only by the presence of the L1 0 -FePt ordered phase.

そこで、高保磁力の原因について検討を行った。図4(a)は急冷のままの試料の透過電子顕微鏡像であり、組織はきわめて微細(粒径およそ20nm)である。熱処理を行った試料の組織は、図4(b)に示したように、50nm程度まで大きくなっている。したがって、20kOeという高保磁力を得るためには、微細なL10-FePt規則相の存在だけでは不十分
であることが分かる。
Therefore, the cause of the high coercive force was examined. FIG. 4 (a) is a transmission electron microscope image of the rapidly cooled sample, and the structure is extremely fine (particle size is approximately 20 nm). As shown in FIG. 4B, the structure of the heat-treated sample is increased to about 50 nm. Therefore, it can be seen that the presence of a fine L1 0 -FePt ordered phase is not sufficient to obtain a high coercive force of 20 kOe.

次に、熱処理前後の元素の分布状態をエネルギーフィルター電子顕微鏡により調べた。   Next, the distribution state of the elements before and after the heat treatment was examined with an energy filter electron microscope.

PtとPは、エネルギーギャップ位置が近接しており、両者の分布を検討することは難し
いため、Fe元素の分布状態を調べた。その結果を図5に示した。図5(a)に示した熱処理前の試料では、Fe元素の分布はほぼ一様であり、P2Pt相にもL10-FePt相と同等な濃度でFeが固溶している。一方、図5(b)に示した熱処理後の試料では、Fe元素の分布はきわめて不均一であり、Fe元素がほぼ欠損した領域、中間的領域、Feリッチな領域の3種類が観察される。X線回折および電子回折の結果から、各領域は、P2Pt相、L10-FePt相、リン化鉄相の3相であると判明した。したがって、20kOeの高保磁力の出現には、熱処理に
より完全にFeを排出した非磁性P2Pt相の存在が不可欠であると結論される。非磁性P2Pt相
の存在が、L10-FePt相を磁気的に孤立化させるかあるいは非磁性P2Pt相の存在によるFe濃度の大きな差が強力なピンニングサイトとして働いているかなどの理由により、20kOe
という巨大な保磁力がもたらされたと推測される。
Since Pt and P are close to each other in the energy gap position, it is difficult to study the distribution of both, so the distribution state of Fe element was investigated. The results are shown in FIG. In the sample before heat treatment shown in FIG. 5A, the distribution of Fe element is almost uniform, and Fe is dissolved in the P 2 Pt phase at a concentration equivalent to that of the L1 0 -FePt phase. On the other hand, in the sample after the heat treatment shown in FIG. 5B, the distribution of the Fe element is extremely non-uniform, and three types of regions, a region where the Fe element is almost lost, an intermediate region, and a Fe-rich region are observed. . From the results of X-ray diffraction and electron diffraction, each region was found to be three phases of P 2 Pt phase, L1 0 -FePt phase, and iron phosphide phase. Therefore, it can be concluded that the presence of a nonmagnetic P 2 Pt phase from which Fe has been completely discharged by heat treatment is indispensable for the appearance of a high coercive force of 20 kOe. Reason such as whether the presence of a non-magnetic P 2 Pt phase, a large difference in the Fe concentration due to the presence of L1 0 -FePt phase whether to magnetically isolate or nonmagnetic P 2 Pt phase is working as a strong pinning sites 20kOe
It is estimated that a huge coercive force was brought about.

以上からは、急冷後の熱処理の有効性が理解されるが、Feを含まない非磁性P2Pt相とL10-FePt規則相との混相組織は、冷却速度を抑制することでも実現される。たとえば、単ロール法においてCuロールの回転速度(冷却速度に対応する)を20m/sにした場合、リボ
ン状試料は熱処理なしで20kOeという高保磁力を示した。
From the above, the effectiveness of heat treatment after quenching is understood, but the mixed phase structure of non-magnetic P 2 Pt phase and L1 0 -FePt ordered phase not containing Fe can also be realized by suppressing the cooling rate . For example, when the rotation speed of the Cu roll (corresponding to the cooling speed) is 20 m / s in the single roll method, the ribbon-like sample showed a high coercive force of 20 kOe without heat treatment.

FePtPバルク合金の形状についてはリボン状に限られることはなく、射出鍛造によるた
とえば直径2mmのロッド状とすることもできる。この場合、200℃/sの加熱速度で800℃以上の高温に10秒間保持することにより、5kOeの保磁力が得られた。このようにバルク
合金の形状により熱処理条件が異なるが、これは主に組織のスケールに基づいていると考えられる。すなわち、粒径数10nmのリボン状合金では、P2Pt相に過飽和に固溶していたFe元素が排出されるのに必要な拡散距離が短く、このため、低温、短時間で高保磁力が得られるのに対し、粒径100nm前後のロッド状合金では、P2Pt相に過飽和に固溶していたFe
元素が排出されるのに必要な拡散距離が長いため、高温、長時間の熱処理が必要になると考えられる。
The shape of the FePtP bulk alloy is not limited to a ribbon shape, and may be a rod shape having a diameter of 2 mm, for example, by injection forging. In this case, a coercive force of 5 kOe was obtained by holding at a high temperature of 800 ° C. or higher for 10 seconds at a heating rate of 200 ° C./s. Thus, although the heat treatment conditions differ depending on the shape of the bulk alloy, it is considered that this is mainly based on the scale of the structure. That is, in the ribbon-like alloy having a particle size of several tens of nanometers, the diffusion distance required for discharging the super-saturated Fe element dissolved in the P 2 Pt phase is short. On the other hand, in the rod-shaped alloy with a particle size of around 100 nm, Fe that had been supersaturated in the P 2 Pt phase
Since the diffusion distance necessary for discharging the elements is long, it is considered that heat treatment for a long time at a high temperature is required.

もちろん、この出願の発明は、以上の実施例によって限定されるものではない。作製条件、熱処理条件等の細部については様々な態様が可能であることはいうまでもない。   Of course, the invention of this application is not limited by the above embodiments. It goes without saying that various modes are possible for details such as manufacturing conditions and heat treatment conditions.

以上詳しく説明したとおり、この出願の発明によって、高保磁力を有するFePtPバルク
合金が提供される。FePtPバルク合金は、高保磁力とともに高耐食性をも有し、また、人
体への害がほとんどないPを構成元素としていることから、FePtバルク合金と同様に、義
歯用磁性アタッチメントの磁石構造体材料をはじめ、他の生体材料に適用可能である。また、過酷な条件で使用される電気モーターにも適用可能でもある。
As described in detail above, the invention of this application provides a FePtP bulk alloy having a high coercive force. FePtP bulk alloy has high coercive force and high corrosion resistance, and since P is a constituent element that has almost no harm to the human body, the magnetic structure material for magnetic attachments for dentures is similar to FePt bulk alloy. First, it can be applied to other biomaterials. It is also applicable to electric motors used in harsh conditions.

(a)は、組成探査を行った範囲(黒い四角)とP2Pt相とL10-FePt規則相の混相組織が得られた領域を示す図である。(b)は、実施例で得られた試料の一例を示した写真である。(A) is a diagram showing the region where mixed phase structure was obtained in the range (black squares) and P 2 Pt phase and L1 0 -FePt ordered phase of performing composition exploration. (B) is a photograph showing an example of the sample obtained in the example. 急冷のままの試料(as-q)と873K(600℃)で10秒間熱処理を行った試料のX線回折図形である。It is an X-ray diffraction pattern of the sample (as-q) with rapid cooling and the sample heat-treated at 873 K (600 ° C.) for 10 seconds. 急冷のままの試料(as-quenched)と873K(600℃)で10秒間熱処理を行った試料(annealed)の磁化曲線である。It is a magnetization curve of the sample (as-quenched) with rapid cooling, and the sample (annealed) which heat-processed for 10 second at 873K (600 degreeC). (a)は、急冷のままの試料(as-quenched)の透過電子顕微鏡像および電子回折図形である。(b)は、873K(600℃)で10秒間熱処理を行った試料(annealed)の透過電子顕微鏡像および電子回折図形である。(A) is a transmission electron microscope image and an electron diffraction pattern of a sample (as-quenched) as quenched. (B) is a transmission electron microscope image and an electron diffraction pattern of a sample (annealed) heat-treated at 873 K (600 ° C.) for 10 seconds. (a)は、急冷のままの試料(as-quenched)のFe元素の分布状態を示したエネルギーフィルター電子顕微鏡像である。(b)は、873K(600℃)で10秒間熱処理を行った試料(annealed)のFe元素の分布状態を示したエネルギーフィルター電子顕微鏡像である。(A) is the energy filter electron microscope image which showed the distribution state of Fe element of the sample (as-quenched) with rapid cooling. (B) is the energy filter electron microscope image which showed the distribution state of Fe element of the sample (annealed) heat-processed for 10 second at 873K (600 degreeC).

Claims (2)

Fe-Pt-Pの3元合金で、バルク状であり、組成式が、組成図でFe15Pt70P15, Fe15Pt50P35, Fe55Pt10P35およびFe70Pt15P15を結ぶ組成範囲内にあり、かつFe100-X-YPtxPy(15
<X<70,15<Y<35)で示され、合金組織にL10-FePt相とFeが固溶していないP2Pt相が少なくとも形成されていることを特徴とするFePtPバルク合金。
Fe-Pt-P ternary alloy, bulky, and composition formula is Fe 15 Pt 70 P 15 , Fe 15 Pt 50 P 35 , Fe 55 Pt 10 P 35 and Fe 70 Pt 15 P 15 And within the composition range connecting the Fe 100-XY Pt x P y (15
<X <70, 15 <Y <35) FePtP bulk alloy characterized in that at least an L1 0 -FePt phase and a P 2 Pt phase in which Fe is not dissolved are formed in the alloy structure.
合金組織を形成する相の粒径が100μm以下である請求項1記載のFePtPバルク合金。

The FePtP bulk alloy according to claim 1, wherein the grain size of the phase forming the alloy structure is 100 µm or less.

JP2004091875A 2004-03-26 2004-03-26 FePtP BULK ALLOY Pending JP2005272985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004091875A JP2005272985A (en) 2004-03-26 2004-03-26 FePtP BULK ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004091875A JP2005272985A (en) 2004-03-26 2004-03-26 FePtP BULK ALLOY

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008100931A Division JP5062754B2 (en) 2008-04-09 2008-04-09 FePtP ternary alloy

Publications (1)

Publication Number Publication Date
JP2005272985A true JP2005272985A (en) 2005-10-06

Family

ID=35172963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004091875A Pending JP2005272985A (en) 2004-03-26 2004-03-26 FePtP BULK ALLOY

Country Status (1)

Country Link
JP (1) JP2005272985A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031441A (en) * 2010-07-28 2012-02-16 Ishifuku Metal Ind Co Ltd METHOD FOR MANUFACTURING Fe/Co-Pt BASED SINTERED ALLOY
JP2017535062A (en) * 2014-09-02 2017-11-24 ノースイースタン・ユニバーシティ Rare earth-free permanent magnetic material based on Fe-Ni

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031441A (en) * 2010-07-28 2012-02-16 Ishifuku Metal Ind Co Ltd METHOD FOR MANUFACTURING Fe/Co-Pt BASED SINTERED ALLOY
JP2017535062A (en) * 2014-09-02 2017-11-24 ノースイースタン・ユニバーシティ Rare earth-free permanent magnetic material based on Fe-Ni

Similar Documents

Publication Publication Date Title
Herzer et al. Round table discussion: Present and future applications of nanocrystalline magnetic materials
Yu et al. Magnetic domains and coercivity in FeCo soft magnetic alloys
TW201704496A (en) FeNi alloy composition containing L10-type FeNi ordered phase and produce method, FeNi alloy composition having amorphous main phase, parent alloy of amorphous member, amorphous member, magnetic material, and method for producing magnetic material
Castle et al. High coercivity, anisotropic, heavy rare earth-free Nd-Fe-B by Flash Spark Plasma Sintering
Bhoi et al. Evolution of microstructure and magnetic properties of nanocrystalline Fe70− xCuxCo30 alloy prepared by mechanical alloying
Fabris et al. Effects of postdeposition heat treatment on the structural and magnetic properties of CoFe2O4 nanoparticles produced by pulsed laser deposition
Dupuis et al. Bottom-up strategies for the assembling of magnetic systems using nanoclusters
Chau et al. Investigation of nanocomposite materials with ultrasoft and high performance hard magnetic properties
JP5062754B2 (en) FePtP ternary alloy
Tong et al. Investigations on low energy product of MnAl magnets through recoil curves
Das et al. Structure, magnetic morphology and magnetization correlations in pulsed laser deposited CoFe2O4 (111) thin films
JP2005272985A (en) FePtP BULK ALLOY
Shukla et al. Magnetic nanostructures: Synthesis, properties, and applications
Chen et al. Weak ferromagnetism and spin-glass state with nanosized nickel carbide
Gopalan et al. Mechanically milled and spark plasma sintered FePt-based bulk magnets with high coercivity
Del Bianco et al. Coexistence of exchange bias effect and giant magnetoresistance in a Ni/NiO nanogranular sample
Jiménez-Villacorta et al. Tuning exchange anisotropy in nanocomposite AgMn alloys
Xiao et al. Phase transformation and magnetic properties of Fe–Pt-based bulk alloys
Qian et al. Phase transformation and magnetic properties of MnAl powders prepared by elemental-doping and salt-assisted ball milling
Krishnan et al. Magnetism and magnetization structure of c‐axis oriented single‐crystal cobalt films grown epitaxially on rigid underlayers
Artieda-Guzman et al. Magnetic behaviour of nanocrystalline Cu–Fe–Co/Al2O3 composite powders obtained by mechanical alloying
Rheem et al. Fabrication of FePt/FeCo/FePt exchange-spring trilayer with very thin FeCo layer for high-resolution MFM tips
Wang et al. Structural evolution mechanism of early-stage nanocrystallization of Finemet amorphous ribbons
Hou et al. The origin of coercivity enhancement in the Co77Zr18Cr3B2 magnet
Tamura et al. Preparation of FePt Nanoparticles by Pulsed Plasma in Liquid Method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060308

A131 Notification of reasons for refusal

Effective date: 20071009

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080617