JP5055815B2 - Method for forming catalyst layer for electrode of fuel cell and catalyst layer for electrode - Google Patents

Method for forming catalyst layer for electrode of fuel cell and catalyst layer for electrode Download PDF

Info

Publication number
JP5055815B2
JP5055815B2 JP2006112277A JP2006112277A JP5055815B2 JP 5055815 B2 JP5055815 B2 JP 5055815B2 JP 2006112277 A JP2006112277 A JP 2006112277A JP 2006112277 A JP2006112277 A JP 2006112277A JP 5055815 B2 JP5055815 B2 JP 5055815B2
Authority
JP
Japan
Prior art keywords
catalyst
electrolyte membrane
fuel cell
electrode
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006112277A
Other languages
Japanese (ja)
Other versions
JP2007287433A (en
Inventor
智之 夏目
愛 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006112277A priority Critical patent/JP5055815B2/en
Publication of JP2007287433A publication Critical patent/JP2007287433A/en
Application granted granted Critical
Publication of JP5055815B2 publication Critical patent/JP5055815B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、触媒担持カーボン粒子と、電解質と、溶媒とを混合、分散させて触媒インクとし、この触媒インクを電解質膜に塗布する燃料電池の電極用触媒層の形成方法に関する。   The present invention relates to a method for forming a catalyst layer for an electrode of a fuel cell, in which catalyst-supported carbon particles, an electrolyte, and a solvent are mixed and dispersed to form a catalyst ink, and this catalyst ink is applied to an electrolyte membrane.

例えば、固体高分子型の燃料電池は、高分子電解質膜の両面に電極をそれぞれ設けてなる膜電極接合体(MEA:membrane electrode assembly)を、燃料ガス流路または酸化剤ガス流路が形成されたセパレータで挟み込むことで燃料電池単セルを構成し、その燃料電池単セルの複数個を積層することで規定の起電力を発生する燃料電池スタックとしている。   For example, a polymer electrolyte fuel cell has a membrane electrode assembly (MEA) formed by providing electrodes on both sides of a polymer electrolyte membrane, and a fuel gas channel or an oxidant gas channel. A fuel cell stack is formed by sandwiching a plurality of fuel cell single cells by sandwiching them with a separator and generating a prescribed electromotive force.

電極は、例えば高分子電解質膜に接触して設けられる触媒層と、触媒層上のガス拡散層とから構成される。触媒層は、例えば、Pt(白金)などの触媒粒子が表面に担持された触媒担持カーボン粒子と、電解質と、溶媒とを混合し分散させることで製造される触媒インク(スラリー)を、高分子電解質膜の表面に塗布し乾燥させることで形成される(例えば下記特許文献1参照)。   The electrode is composed of, for example, a catalyst layer provided in contact with the polymer electrolyte membrane and a gas diffusion layer on the catalyst layer. The catalyst layer is made of, for example, a catalyst ink (slurry) produced by mixing and dispersing catalyst-carrying carbon particles having catalyst particles such as Pt (platinum) carried on the surface, an electrolyte, and a solvent. It is formed by applying to the surface of the electrolyte membrane and drying (see, for example, Patent Document 1 below).

特開2005−166335号公報JP 2005-166335 A

ところで、上記のような、高分子電解質膜の表面に塗布する触媒インクには、燃料電池の発電性特に初期発電性に効果のあるものと、燃料電池の耐久性に効果のあるものとがあり、このような性能の相違は、電極触媒材料中の電解質成分材料のインク内での分散量や分散状態に影響されると考えられている。   By the way, as described above, the catalyst ink applied to the surface of the polymer electrolyte membrane includes those that are effective for the power generation performance of the fuel cell, particularly the initial power generation performance, and those that are effective for the durability of the fuel cell. Such a difference in performance is considered to be affected by the amount and state of dispersion of the electrolyte component material in the electrode catalyst material in the ink.

そして、通常では、上記した発電性と耐久性の双方の性能を適度に確保した触媒インクを用いて高分子電解質膜に塗布しているが、この場合には、発電性および耐久性のいずれにおいても中間程度の性能を維持していることとなり、結果的に良好な燃料電池性能を確保できていないことになる。   And usually, it is applied to the polymer electrolyte membrane by using the catalyst ink that has ensured both the power generation performance and durability performance as described above, but in this case, in either power generation performance or durability In other words, the intermediate performance is maintained, and as a result, good fuel cell performance cannot be secured.

そこで、本発明は、燃料電池の発電性および耐久性を共に高めて良好な燃料電池性能を確保することを目的としている。   Accordingly, an object of the present invention is to improve fuel generation performance and durability of a fuel cell and to ensure good fuel cell performance.

本発明は、触媒担持カーボン粒子と、電解質と、溶媒とを混合、分散させて触媒インクとし、この触媒インクを電解質膜に塗布する際に、前記触媒担持カーボン粒子の触媒担持率と、前記電解質の量と、前記触媒担持カーボン粒子の粉砕度合いとの少なくとも一つの条件が異なる複数種類の触媒インクを製造し、この複数種類の触媒インクを、前記電解質膜に互いに別々の層となるよう塗り分けして塗布する燃料電池の電極用触媒層の形成方法であって、前記複数種類の触媒インクの前記三つの条件すべてを異なるものとし、この三つの条件すべてが大となる触媒インクが、前記電解質膜側となるよう前記触媒インクを前記電解質膜に塗布することを最も主要な特徴とする。 The present invention includes a catalyst-carrying carbon particles, an electrolyte, and a solvent mixture, is dispersed as a catalyst ink, when applying the catalyst ink to the electrolyte membrane, a catalyst supporting ratio of the catalyst-carrying carbon particles, the electrolyte A plurality of types of catalyst inks having different conditions of at least one of the amount of the catalyst-carrying carbon particles and the degree of pulverization of the catalyst-carrying carbon particles. A method for forming a catalyst layer for an electrode of a fuel cell to be applied , wherein all of the three conditions of the plurality of types of catalyst inks are different from each other, and the catalyst ink in which all of the three conditions become large is the electrolyte. The most important feature is that the catalyst ink is applied to the electrolyte membrane so as to be on the membrane side .

本発明によれば、触媒担持カーボン粒子の触媒担持率と、電解質の量と、触媒担持カーボン粒子の粉砕度合いとの三つの条件すべてを異なるものとした複数種類の触媒インクのうち、三つの条件すべてが大となる触媒インクが電解質膜側となるよう触媒インクを、電解質膜に互いに別々の層となるよう塗り分けして塗布するようにしている。 According to the present invention , the three conditions among the plurality of types of catalyst ink in which all three conditions of the catalyst supporting rate of the catalyst supporting carbon particles, the amount of the electrolyte, and the degree of pulverization of the catalyst supporting carbon particles are different. The catalyst ink is applied separately on the electrolyte membrane so as to be in separate layers so that the catalyst ink that is all large is on the electrolyte membrane side .

ここで、例えば触媒担持カーボン粒子の触媒担持率と、電解質の量と、触媒担持カーボン粒子の粉砕度合いを、いずれも大とした触媒インクは、触媒濃度が高く、多量の電解質によって液水を保持しやすく、粉砕度合いが大きいことからカーボン表面積が大きくなる。この結果、このような触媒インクは、電解質膜と馴染みやすく、カーボン粒子に担持する触媒の表面積が大きくなって反応性が良好となり、発電性が重視されたものとなる。   Here, for example, the catalyst ink in which the catalyst supporting rate of the catalyst supporting carbon particles, the amount of the electrolyte, and the degree of pulverization of the catalyst supporting carbon particles are all large, the catalyst concentration is high, and liquid water is retained by a large amount of electrolyte. The carbon surface area is increased because the degree of pulverization is easy. As a result, such a catalyst ink is easily compatible with the electrolyte membrane, the surface area of the catalyst supported on the carbon particles is increased, the reactivity is improved, and power generation is emphasized.

一方、触媒担持カーボンの触媒担持率と、電解質の量と、触媒担持カーボン粒子の粉砕度合いを、いずれも小とした触媒インクは、上記した触媒インクとは逆に、触媒濃度が低く、液水を保持しにくく、カーボン表面積が小さくなる。この結果、このような触媒インクは、カーボン粒子周囲の液水が少なくなり、起動停止による触媒・カーボンの腐食が抑制され、またカーボン表面積が小さいことから、反応ガスと接触しにくく、起動停止によるカーボンの腐食が抑制され、耐久性が重視されたものとなる。さらに、触媒担持カーボン粒子の粉砕度合いが小さいために、粉砕後の触媒担持カーボン粒子相互間の隙間が大きくなり、反応ガスや液水の拡散性が向上する。   On the other hand, a catalyst ink in which the catalyst supporting rate of the catalyst supporting carbon, the amount of the electrolyte, and the degree of pulverization of the catalyst supporting carbon particles are all small, contrary to the catalyst ink described above, has a low catalyst concentration and liquid water. Is difficult to hold, and the carbon surface area is reduced. As a result, such catalyst ink reduces liquid water around the carbon particles, suppresses corrosion of the catalyst and carbon due to start / stop, and has a small carbon surface area. Carbon corrosion is suppressed and durability is emphasized. Further, since the degree of pulverization of the catalyst-carrying carbon particles is small, the gap between the crushed catalyst-carrying carbon particles is increased, and the diffusibility of the reaction gas and liquid water is improved.

上記したような発電性が重視された触媒インクと、耐久性が重視された触媒インクとを、電解質膜に互いに別々の層となるよう塗り分けして塗布し、その際、複数種類の触媒インクのうち、三つの条件すべてが大となる触媒インクが、電解質膜側となるよう触媒インクを電解質膜に塗布することで、燃料電池の発電性および耐久性を共に高めて良好な燃料電池性能を確保することができる A catalyst ink generation property is emphasized as described above, and a catalyst ink durability is emphasized, and by applying separate application so as to be mutually separate layers to the electrolyte membrane, in which a plurality of types of catalyst ink By applying the catalyst ink to the electrolyte membrane so that the catalyst ink that increases all three conditions is on the electrolyte membrane side , both the power generation performance and durability of the fuel cell are improved, and good fuel cell performance is achieved. Can be secured

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

「燃料電池スタックの全体構成」
まず、燃料電池スタックの全体構成について簡単に説明する。図1は燃料電池スタックの全体構成を示す斜視図、図2は燃料電池単セルの拡大断面図である。
"Overall structure of fuel cell stack"
First, the overall configuration of the fuel cell stack will be briefly described. FIG. 1 is a perspective view showing the overall configuration of a fuel cell stack, and FIG. 2 is an enlarged cross-sectional view of a single fuel cell.

燃料電池スタック1は、図1に示すように、燃料ガス(水素ガス)と酸化剤ガス(酸素)の反応により起電力を生じる単位電池としての燃料電池単セル2を所定数だけ積層した積層体3とされ、その積層体3の両端に集電板4、絶縁板5およびエンドプレート6を配置し、該積層体3をタイロッド7で締め付け、そのタイロッド7の端部にナット14を螺合させることで構成している。   As shown in FIG. 1, a fuel cell stack 1 is a laminate in which a predetermined number of fuel cell single cells 2 as unit cells that generate an electromotive force by reaction of fuel gas (hydrogen gas) and oxidant gas (oxygen) are stacked. 3, the current collector plate 4, the insulating plate 5 and the end plate 6 are arranged at both ends of the laminate 3, the laminate 3 is fastened with a tie rod 7, and a nut 14 is screwed onto the end of the tie rod 7. It consists of that.

この燃料電池スタック1では、燃料ガス、酸化剤ガスおよび冷媒(冷却水)をそれぞれ各燃料電池単セル2のセパレータ(図示は省略する)に形成された各流路に流通させるための燃料ガス導入口8、燃料ガス排出口9、酸化剤ガス導入口10、酸化剤ガス排出口11、冷媒導入口12および冷媒排出口13を、一方のエンドプレート6に形成している。   In this fuel cell stack 1, fuel gas introduction for allowing fuel gas, oxidant gas and refrigerant (cooling water) to flow through each flow path formed in a separator (not shown) of each fuel cell single cell 2. A port 8, a fuel gas outlet 9, an oxidant gas inlet 10, an oxidant gas outlet 11, a refrigerant inlet 12 and a refrigerant outlet 13 are formed in one end plate 6.

かかる構成の燃料電池スタック1においては、燃料ガスは、燃料ガス導入口8より導入されてセパレータに形成された燃料ガス流路を流れ、燃料ガス排出口9より排出される。酸化剤ガスは、酸化剤ガス導入口10より導入されてセパレータに形成された酸化剤ガス流路を流れ、酸化剤ガス排出口11より排出される。冷媒は、冷媒導入口12より導入されてセパレータに形成された冷媒流路を流れ、冷媒排出口13より排出される。   In the fuel cell stack 1 having such a configuration, the fuel gas is introduced from the fuel gas inlet 8, flows through the fuel gas passage formed in the separator, and is discharged from the fuel gas outlet 9. The oxidant gas is introduced from the oxidant gas introduction port 10, flows through the oxidant gas flow path formed in the separator, and is discharged from the oxidant gas discharge port 11. The refrigerant is introduced from the refrigerant introduction port 12, flows through the refrigerant flow path formed in the separator, and is discharged from the refrigerant discharge port 13.

燃料電池単セル2は、図2に示すように、一面側から燃料ガスが供給され、他面側から酸化剤ガスが供給される膜電極接合体(MEA:membrane electrode assembly)15と、この膜電極接合体15の一面に配置されるアノードセパレータ16と、膜電極接合体15の他面に配置されるカソードセパレータ17とから構成され、これらアノードセパレータ16とカソードセパレータ17で膜電極接合体15を挟み込むように積層した構造としている。   As shown in FIG. 2, the fuel cell single cell 2 includes a membrane electrode assembly (MEA) 15 to which fuel gas is supplied from one side and oxidant gas is supplied from the other side, and this membrane An anode separator 16 disposed on one surface of the electrode assembly 15 and a cathode separator 17 disposed on the other surface of the membrane electrode assembly 15, and the membrane electrode assembly 15 is formed by the anode separator 16 and the cathode separator 17. The structure is laminated so as to be sandwiched.

膜電極接合体15は、例えば水素イオン(プロトン)を通す高分子電解質膜である固体高分子電解質膜18と、この固体高分子電解質膜18の一面に設けられるアノード電極19と、固体高分子電解質膜18の他面に設けられるカソード電極20とからなる。アノード電極19は、固体高分子電解質膜18側に配置される触媒層21と、アノードセパレータ16側に配置されるガス拡散層22とからなり、カソード電極20も同様に、固体高分子電解質膜18側に配置される触媒層23と、カソードセパレータ17側に配置されるガス拡散層24とからなる。   The membrane electrode assembly 15 includes, for example, a solid polymer electrolyte membrane 18 that is a polymer electrolyte membrane that allows hydrogen ions (protons) to pass through, an anode electrode 19 provided on one surface of the solid polymer electrolyte membrane 18, and a solid polymer electrolyte. The cathode electrode 20 is provided on the other surface of the film 18. The anode electrode 19 includes a catalyst layer 21 disposed on the solid polymer electrolyte membrane 18 side and a gas diffusion layer 22 disposed on the anode separator 16 side, and the cathode electrode 20 similarly includes the solid polymer electrolyte membrane 18. The catalyst layer 23 is disposed on the side, and the gas diffusion layer 24 is disposed on the cathode separator 17 side.

なお、上記した触媒層21および触媒層23は電極用触媒層を構成している。   The catalyst layer 21 and the catalyst layer 23 described above constitute an electrode catalyst layer.

アノードセパレータ16には、発電に寄与するアクティブ領域(固体高分子電解質膜18と接する中央部分の領域)に、燃料ガスを流通させるための燃料ガス流路25を形成している。一方、カソードセパレータ17には、アクティブ領域に酸化剤ガスを流通させるための酸化剤ガス流路26を形成している。   The anode separator 16 is formed with a fuel gas flow path 25 for allowing the fuel gas to flow in an active region contributing to power generation (a central region in contact with the solid polymer electrolyte membrane 18). On the other hand, the cathode separator 17 is formed with an oxidant gas flow path 26 for circulating an oxidant gas in the active region.

そして、本発明の第1の実施形態として、固体高分子電解質膜18上に形成する触媒層21,23を、図3に示すように、固体高分子電解質膜18側の第1の層21a,23aと、拡散層22,24(図2)側の第2の層21b,23bとの2層構造としている。   As a first embodiment of the present invention, the catalyst layers 21 and 23 formed on the solid polymer electrolyte membrane 18 are, as shown in FIG. 3, the first layers 21a and 21a on the solid polymer electrolyte membrane 18 side. 23a and the second layers 21b and 23b on the diffusion layers 22 and 24 (FIG. 2) side.

ここで、固体高分子電解質膜18側の第1の層21a,23aは、燃料電池の発電性、特に初期発電性を重視した触媒インク53a(図4参照)からなり、一方、拡散層22,24(図2)側の第2の層21b,23bは、燃料電池の耐久性を重視した触媒インク53bからなる。   Here, the first layers 21a and 23a on the side of the solid polymer electrolyte membrane 18 are made of a catalyst ink 53a (see FIG. 4) that emphasizes the power generation property of the fuel cell, particularly the initial power generation property, while the diffusion layers 22, The second layers 21b and 23b on the 24 (FIG. 2) side are made of a catalyst ink 53b that places importance on the durability of the fuel cell.

すなわち、本実施形態では、複数種類の触媒インク53a,53bを、固体高分子電解質膜18に互いに別々の層となるよう塗り分けして塗布していることになる。   That is, in the present embodiment, a plurality of types of catalyst inks 53a and 53b are separately applied to the solid polymer electrolyte membrane 18 so as to be separate layers.

次に、上記した第1の層21a,23aからなる触媒インク53aと、第2の層21b,23bからなる触媒インク53bの相違について説明する。   Next, the difference between the catalyst ink 53a composed of the first layers 21a and 23a and the catalyst ink 53b composed of the second layers 21b and 23b will be described.

ここでの触媒インク53a,53bは、触媒担持カーボン粒子と、電解質と、溶媒とを混合し分散させることで製造する。触媒担持カーボン粒子は、カーボン粒子に白金触媒TEC10E50E(田中貴金属社製)を担持させたもので、電解質は、プロトン伝導物質であるナフィオン(デュポン社製)を使用する。また、溶媒は、純水にイソプロパノールを含有させている。   The catalyst inks 53a and 53b here are manufactured by mixing and dispersing catalyst-carrying carbon particles, an electrolyte, and a solvent. The catalyst-supporting carbon particles are obtained by supporting platinum catalyst TEC10E50E (manufactured by Tanaka Kikinzoku Co., Ltd.) on carbon particles, and the electrolyte is Nafion (manufactured by DuPont) which is a proton conductive material. The solvent contains pure water with isopropanol.

ここで前記した第1の層21a,23aからなる触媒インク53aは、第2の層21b,23bからなる触媒インク53bに比較して、触媒担持カーボン粒子の触媒担持率を高く、電解質の量を多く、触媒担持カーボン粒子の粉砕度合いを大きくして(粒径を小さく)している。   Here, the catalyst ink 53a composed of the first layers 21a and 23a described above has a higher catalyst loading rate of the catalyst-supporting carbon particles and the amount of the electrolyte than the catalyst ink 53b composed of the second layers 21b and 23b. In many cases, the degree of pulverization of the catalyst-supporting carbon particles is increased (the particle size is decreased).

図4(a)は、第1の層21a,23aからなる触媒インク53aの調整工程を、図4(b)は、第2の層21b,23bからなる触媒インク53bの調整工程を、それぞれ示す。   4A shows an adjustment process of the catalyst ink 53a composed of the first layers 21a and 23a, and FIG. 4B shows an adjustment process of the catalyst ink 53b composed of the second layers 21b and 23b. .

図4(a),(b)の工程Iでは、容器27内の溶媒28中にカーボン粒子29A,29Bをそれぞれ投入した状態で粉砕し、この際、図4(a)でのカーボン粒子29Aは、図4(b)でのカーボン粒子29Bよりも触媒担持率を高くしている。   In Step I of FIGS. 4A and 4B, the carbon particles 29A and 29B are pulverized in a state where the carbon particles 29A and 29B are put into the solvent 28 in the container 27, and at this time, the carbon particles 29A in FIG. The catalyst loading rate is higher than that of the carbon particles 29B in FIG.

なお、カーボン粒子29A,29Bを粉砕する際には、ホモジナイザを用いるが、ホモジナイザのほかに、ジェットミル、ボールミル、振動ボールミル、マイクロカッターなどを用いることができる。また、有機溶媒、界面活性剤を加えることにより、粉砕した触媒担持カーボン粒子を高分散の状態に保つことができる。   When the carbon particles 29A and 29B are pulverized, a homogenizer is used. In addition to the homogenizer, a jet mill, a ball mill, a vibrating ball mill, a microcutter, or the like can be used. Further, by adding an organic solvent and a surfactant, the pulverized catalyst-carrying carbon particles can be kept in a highly dispersed state.

次に、工程IIで示すように、図4(a)のカーボン粒子29Aを、粉砕粒子290Aとなるように、図4(b)のカーボン粒子29Bの粉砕粒子290Bに比較して大きく粉砕してその粒径を小さくする。   Next, as shown in Step II, the carbon particles 29A in FIG. 4A are pulverized to be larger than the pulverized particles 290B of the carbon particles 29B in FIG. Reduce the particle size.

粉砕後に、電解質を容器27内に投入するが、この際、電解質の量を、図4(a)では図4(b)に比較して多くして工程IIIの状態で示すような2種類の触媒インク53a,53bが製造される。この際電解質100が、粉砕粒子290Aおよび粉砕粒子290Bの表面に付着した状態となる。   After pulverization, the electrolyte is put into the container 27. At this time, the amount of the electrolyte is increased in FIG. 4 (a) as compared with FIG. Catalyst inks 53a and 53b are manufactured. At this time, the electrolyte 100 is attached to the surfaces of the pulverized particles 290A and the pulverized particles 290B.

「触媒塗布装置の構成」
次に、上記のようにして製造した2種類の触媒インク53a,53bを、固体高分子電解質膜18に塗布するための触媒塗布装置について説明する。
"Configuration of catalyst coating device"
Next, a catalyst coating apparatus for coating the solid polymer electrolyte membrane 18 with the two types of catalyst inks 53a and 53b manufactured as described above will be described.

図5は本実施形態の触媒塗布装置の斜視図、図6は同分解斜視図、図7は同平面図である。   5 is a perspective view of the catalyst coating apparatus of the present embodiment, FIG. 6 is an exploded perspective view thereof, and FIG. 7 is a plan view thereof.

本実施形態の触媒塗布装置は、図5から図7に示すように、固体高分子電解質膜18を内壁面に装着させるドラム30と、ドラム30を、軸芯を中心として円周方向に回転させるとともに軸芯に沿って上下動(移動)させる駆動手段である駆動機構部31と、固体高分子電解質膜18がドラム30の回転による遠心力で該ドラム30の内壁面に貼り付くまで吸引する吸引手段である吸引機構部32と、ドラム30の内側(中心)に挿入され、回転するドラム30の内壁面に装着された固体高分子電解質膜18に触媒インクを塗布する触媒塗布手段であるスプレー33とを備える。   As shown in FIGS. 5 to 7, the catalyst coating apparatus of the present embodiment rotates the drum 30 on which the solid polymer electrolyte membrane 18 is attached to the inner wall surface and the drum 30 in the circumferential direction around the axis. At the same time, the suction is performed until the solid polymer electrolyte membrane 18 is attached to the inner wall surface of the drum 30 by the centrifugal force generated by the rotation of the drum 30 and the driving mechanism 31 that is a driving means that moves up and down (moves) along the axis. A suction mechanism 32 as a means, and a spray 33 as a catalyst application means for applying a catalyst ink to the solid polymer electrolyte membrane 18 inserted on the inner wall (center) of the drum 30 and mounted on the inner wall surface of the rotating drum 30. With.

ドラム30は、図8に平面図で示すように、固体高分子電解質膜18をその内壁面に装着させたときに外にはみ出さない程度の高さを備えた円筒体をほぼ半分に分割した分割構造とし、半円形状をなす一方のドラム分割体34を他方の半円形状をなすドラム分割体35に対して回動軸36を介して開閉自在としている。また、一方のドラム分割体34の先端部34aは、他方のドラム分割体35の先端の結合部37に形成した溝部38に挿入係合され、図示を省略するロック手段にて開かないようにロックされる。   As shown in the plan view of FIG. 8, the drum 30 has a cylindrical body having a height that does not protrude outside when the solid polymer electrolyte membrane 18 is attached to the inner wall surface of the drum 30. With a divided structure, one drum divided body 34 having a semicircular shape can be freely opened and closed with respect to the other drum divided body 35 having a semicircular shape via a rotation shaft 36. Further, the leading end 34a of one drum divided body 34 is inserted and engaged with a groove 38 formed in the coupling portion 37 at the leading end of the other drum divided body 35, and is locked so as not to be opened by a locking means (not shown). Is done.

なお、図8(a)は高分子電解質膜18をドラムに装着する前の状態、同図(b)は高分子電解質膜18に触媒インクを塗布後の状態をそれぞれ示す。   8A shows a state before the polymer electrolyte membrane 18 is mounted on the drum, and FIG. 8B shows a state after the catalyst ink is applied to the polymer electrolyte membrane 18.

他方のドラム分割体35の内壁面39には、図5のA−A線断面図である図9に示すように、固体高分子電解質膜18を吸引して密着装着させるための複数の吸引孔40が形成されている。かかる吸引孔40は、固体高分子電解質膜18のアクティブ領域(発電に寄与する領域)を除くその外周囲を取り囲むようにして形成されている。また、このドラム分割体35は、図5のB−B線断面図である図9(b)に示すように、前記各吸引孔40と連通する空隙部41を、その板厚の中心部に形成した内部空間構造としている。さらに、このドラム分割体35の下端底面には、後述する吸引機構部32の吸引ポンプ50によりエアを吸引するための吸引口となる孔部42が形成されている。かかる孔部42は、前記空隙部41を通して前記吸引孔40と連通している。   As shown in FIG. 9, which is a cross-sectional view taken along line AA of FIG. 5, a plurality of suction holes for sucking and attaching the solid polymer electrolyte membrane 18 to the inner wall surface 39 of the other drum divided body 35 as shown in FIG. 40 is formed. The suction hole 40 is formed so as to surround the outer periphery of the solid polymer electrolyte membrane 18 except for the active region (region contributing to power generation). Further, as shown in FIG. 9B, which is a cross-sectional view taken along the line BB of FIG. 5, the drum divided body 35 has a gap 41 communicating with each suction hole 40 at the center of the plate thickness. The internal space structure is formed. Further, a hole 42 serving as a suction port for sucking air by a suction pump 50 of the suction mechanism portion 32 described later is formed on the bottom surface of the lower end of the drum divided body 35. The hole portion 42 communicates with the suction hole 40 through the gap portion 41.

なお、一方のドラム分割体34の内壁面43には、固体高分子電解質膜18を装着しないため、前記した吸引孔40、空隙部41及び孔部42は形成されていない。   In addition, since the solid polymer electrolyte membrane 18 is not attached to the inner wall surface 43 of the one drum divided body 34, the above-described suction hole 40, gap 41, and hole 42 are not formed.

また、ドラム分割体34、35の内壁面39、43には、固体高分子電解質膜18の片面への触媒インク塗布後にもう片面に触媒インクを塗布する際に、内壁面39、43に塗布済みの触媒粉末が付着しないように静電防止処理と撥水処理を施している。   Further, the inner wall surfaces 39 and 43 of the drum divided bodies 34 and 35 are already applied to the inner wall surfaces 39 and 43 when the catalyst ink is applied to the other surface after the catalyst ink is applied to one surface of the solid polymer electrolyte membrane 18. An antistatic treatment and a water repellent treatment are applied to prevent the catalyst powder from adhering.

駆動機構部31は、前記ドラム30を装着固定させる装着部44を有した回転体45と、この回転体45を、該ドラム30の軸芯を中心として円周方向(図6中矢印X方向)に回転させると共に軸芯に沿って移動(図6中矢印Y方向に上下動)させる駆動部46とからなる。回転体45は、ドラム30のほぼ中心に配置され、その周面に複数設けられた装着部44に前記ドラム30を装着固定させて、当該ドラム30を円周方向に回転させるようになっている。   The drive mechanism 31 includes a rotating body 45 having a mounting portion 44 for mounting and fixing the drum 30, and the rotating body 45 in the circumferential direction (in the direction of arrow X in FIG. 6) around the axis of the drum 30. And a drive unit 46 that moves along the axis (moves up and down in the direction of arrow Y in FIG. 6). The rotating body 45 is disposed substantially at the center of the drum 30, and the drum 30 is mounted and fixed to a plurality of mounting portions 44 provided on the peripheral surface thereof to rotate the drum 30 in the circumferential direction. .

装着部44は、回転体45の外周面から外方へ延びるように放射状に複数設けられている。この装着部44の先端側には、前記ドラム30の下端底面30aを嵌合させて該ドラム30を装着固定する装着凹部47と、ドラム30の外壁面に接する上方へ折れ曲がった位置規制部48とを形成している。そして、装着凹部47には、ドラム分割体35の下端底面に形成された孔部42と連通する開口孔49を形成している。この開口孔49は、装着部44の長手方向に沿ってその内部に形成されたエア通路(図示は省略する)に連通しており、後述する吸引ポンプ50と接続されている。   A plurality of mounting portions 44 are provided radially so as to extend outward from the outer peripheral surface of the rotating body 45. On the front end side of the mounting portion 44, a mounting recess 47 for fitting and fixing the lower end bottom surface 30 a of the drum 30, and a position restricting portion 48 bent upward in contact with the outer wall surface of the drum 30, Is forming. The mounting recess 47 is formed with an opening hole 49 that communicates with a hole 42 formed on the bottom surface of the lower end of the drum divided body 35. The opening hole 49 communicates with an air passage (not shown) formed in the interior of the mounting portion 44 along the longitudinal direction, and is connected to a suction pump 50 described later.

駆動部46は、回転体45を軸芯を中心として回転させる回転機構と、回転体45を軸芯に沿って移動(上下動)させる上下動機構とを備えている。回転機構としては、駆動モータの駆動軸に回転体45を直接取り付けた構成、ベルトやチェーンなどで駆動モータの駆動力を回転体45に伝達する構成、あるいは歯車で駆動モータの駆動力を回転体45に伝達する構成などが使用できる。上下動機構としては、ボールねじとこのボールねじに螺合するナット部材を回転体45に取り付けた構成、スライダレールとこのスライダレールにスライドするスライダを回転体45に取り付けた構成などが使用できる。また、回転機構と上下動機構を一つの機構としたものを駆動部46とすることもできる。なお、本実施形態では、駆動部46の具体的な構成に関しては従来公知の機構がいずれも採用できる。   The drive unit 46 includes a rotating mechanism that rotates the rotating body 45 about the axis, and a vertical movement mechanism that moves (moves up and down) the rotating body 45 along the axis. As the rotation mechanism, a structure in which the rotating body 45 is directly attached to the drive shaft of the drive motor, a structure in which the driving force of the driving motor is transmitted to the rotating body 45 by a belt or a chain, or the driving force of the driving motor by a gear is used as the rotating body. The structure etc. which transmit to 45 can be used. As the vertical movement mechanism, a configuration in which a ball screw and a nut member screwed into the ball screw are attached to the rotating body 45, a configuration in which a slider rail and a slider that slides on the slider rail are attached to the rotating body 45, and the like can be used. Further, the drive unit 46 may be a mechanism in which the rotation mechanism and the vertical movement mechanism are combined into one mechanism. In the present embodiment, any conventionally known mechanism can be employed for the specific configuration of the drive unit 46.

吸引機構部32は、吸引ポンプ50と、この吸引ポンプ50に接続されるホース51に接続する前記した装着部44に形成したエア通路、開口孔49およびドラム分割体35に形成した吸引孔40、空隙部41および孔部42とからなる。吸引ポンプ50でエアを吸引(真空引き)すると、ドラム分割体35の空隙部41内が負圧となり、当該ドラム30の内壁面39に開口する吸引孔40からエアが引かれ、その内壁面39に装着される固体高分子電解質膜18が密着して保持される。 The suction mechanism section 32 includes a suction pump 50 and an air passage formed in the mounting section 44 connected to the hose 51 connected to the suction pump 50, an opening hole 49, and a suction hole 40 formed in the drum divided body 35. It consists of a gap 41 and a hole 42. When air is sucked (evacuated) by the suction pump 50, the inside of the gap 41 of the drum divided body 35 becomes negative pressure, and air is drawn from the suction hole 40 opened in the inner wall surface 39 of the drum 30. The solid polymer electrolyte membrane 18 to be attached to is closely attached and held.

スプレー33は、ノズル52から触媒インクを噴出させるスプレーコータであり、触媒インクを塗布するときにドラム30の中心に侵入し、塗布後は上昇するようになっている。   The spray 33 is a spray coater that ejects the catalyst ink from the nozzle 52, enters the center of the drum 30 when applying the catalyst ink, and rises after the application.

「触媒塗布方法」
次に、固体高分子電解質膜18に触媒インクを塗布する触媒塗布方法について説明する。
"Catalyst application method"
Next, a catalyst application method for applying catalyst ink to the solid polymer electrolyte membrane 18 will be described.

まず、図8(a)に示すように、一方のドラム分割体34を他方のドラム分割体35に対して前記回動軸36を中心に開く。そして、一方のドラム分割体35の内壁面39に、吸引ポンプ50による吸引前に固体高分子電解質膜18を仮止めしやすくするために純水を塗る。次いで、一方のドラム分割体35の内壁面39にのみ固体高分子電解質膜18を装着させる。固体高分子電解質膜18は、純水によって内壁面39に貼り付く。この固体高分子電解質膜18を内壁面39に装着させるに際しては、高分子電解質膜18をドラム30の内壁面に装着させた状態を示す、図5のA−A線位置での断面図である図10(a)に示すように、アクティブ領域54が内壁面39に形成された吸引孔40に掛からないようにする。   First, as shown in FIG. 8A, one drum divided body 34 is opened with respect to the other drum divided body 35 around the rotation shaft 36. Then, pure water is applied to the inner wall surface 39 of one drum divided body 35 in order to make it easy to temporarily fix the solid polymer electrolyte membrane 18 before suction by the suction pump 50. Next, the solid polymer electrolyte membrane 18 is attached only to the inner wall surface 39 of one drum divided body 35. The solid polymer electrolyte membrane 18 is attached to the inner wall surface 39 with pure water. FIG. 6 is a cross-sectional view taken along the line AA in FIG. 5, showing a state in which the polymer electrolyte membrane 18 is attached to the inner wall surface of the drum 30 when the solid polymer electrolyte membrane 18 is attached to the inner wall surface 39. As shown in FIG. 10A, the active region 54 is prevented from being caught by the suction hole 40 formed in the inner wall surface 39.

次に、ドラム分割体34、35を閉じて円筒状とする。そして、ドラム30を、前記した回転体45に設けた装着部44に装着させる。このとき、ドラム分割体35の下端底面30aに形成した孔部42が前記装着部44の開口孔49に対向するようにドラム30の前記装着部44に対する装着位置を調整する。この作業を容易なものとするために、前記孔部42と開口孔49との位置を、ドラム分割体35の外周面にマーキングしておくことが望ましい。   Next, the drum divided bodies 34 and 35 are closed to have a cylindrical shape. Then, the drum 30 is mounted on the mounting portion 44 provided on the rotating body 45 described above. At this time, the mounting position of the drum 30 with respect to the mounting portion 44 is adjusted so that the hole 42 formed in the bottom bottom surface 30 a of the drum divided body 35 faces the opening hole 49 of the mounting portion 44. In order to facilitate this work, it is desirable to mark the positions of the hole 42 and the opening hole 49 on the outer peripheral surface of the drum divided body 35.

次に、駆動部46を駆動して回転体45を円周方向に回転させるとともに吸引ポンプ50を作動させる。回転体45が回転すると、装着部44に装着固定されたドラム30が軸芯を中心として円周方向に回転する。この一方、吸引ポンプ50が作動すると、吸引孔40からエアが引かれて固体高分子電解質膜18が内壁面39に吸着保持される。ドラム30の遠心力で固体高分子電解質膜18が内壁面39に貼り付いたら吸引ポンプ50の作動を停止して吸引を解除する。吸引を解除してもドラム30の遠心力が固体高分子電解質膜18に作用しているので、当該固体高分子電解質膜18が内壁面39から剥がれて落ちることはない。   Next, the drive unit 46 is driven to rotate the rotating body 45 in the circumferential direction and the suction pump 50 is operated. When the rotating body 45 rotates, the drum 30 mounted and fixed on the mounting portion 44 rotates in the circumferential direction about the axis. On the other hand, when the suction pump 50 is operated, air is drawn from the suction hole 40 and the solid polymer electrolyte membrane 18 is adsorbed and held on the inner wall surface 39. When the solid polymer electrolyte membrane 18 adheres to the inner wall surface 39 by the centrifugal force of the drum 30, the operation of the suction pump 50 is stopped and the suction is released. Even if the suction is released, the centrifugal force of the drum 30 acts on the solid polymer electrolyte membrane 18, so that the solid polymer electrolyte membrane 18 is not peeled off from the inner wall surface 39.

そして、ドラム30の回転が一定になったところで、スプレー33をドラム30の中心に侵入させ、ノズル52から前記した第1の層21aを構成する触媒インク53aを、触媒インクを塗布している状態を示す触媒塗布装置の斜視図である図11に示すように、固体高分子電解質膜18の一面に吹き付ける。また、スプレー33による触媒インク53aの吹き付け位置に応じて回転体45を上下動させる。これにより、固体高0分子電解質膜18のアクティブ領域全体に触媒インク53aが吹き付けられることになる。また、ドラム30を回転させながら触媒インク53aを吹き付けると、遠心力によりPtなどの重い触媒はドラム内壁側へ移動し、固体高分子電解質膜18側の触媒濃度が大きくなる。また、触媒インク53に含まれた気泡が表面に浮き上がってくる。そして、触媒インク53aを塗布し終えたらドラム30の回転動作および上下動動作を停止させる。   When the rotation of the drum 30 becomes constant, the spray 33 enters the center of the drum 30 and the catalyst ink 53a constituting the first layer 21a is applied from the nozzle 52 to the catalyst ink. As shown in FIG. 11 which is a perspective view of the catalyst coating apparatus showing the above, it is sprayed on one surface of the solid polymer electrolyte membrane 18. Further, the rotating body 45 is moved up and down according to the spraying position of the catalyst ink 53a by the spray 33. As a result, the catalyst ink 53a is sprayed over the entire active region of the solid high-molecular electrolyte membrane 18. When the catalyst ink 53a is sprayed while the drum 30 is rotated, a heavy catalyst such as Pt moves to the drum inner wall side by centrifugal force, and the catalyst concentration on the solid polymer electrolyte membrane 18 side increases. In addition, bubbles contained in the catalyst ink 53 float on the surface. When the application of the catalyst ink 53a is completed, the rotation operation and the vertical movement operation of the drum 30 are stopped.

なお、図10(b)は触媒インク塗布後の状態を示す、図5のA−A線位置での断面図である。   FIG. 10B is a cross-sectional view taken along the line AA in FIG. 5, showing a state after the application of the catalyst ink.

そして、上記の第1の層21aの上に、第2の層21bを、上記と同様にして塗布し、これにより、前記図3に示したように、固体高分子電解質膜18上の触媒層21は、固体高分子電解質膜18側の触媒インク53aからなる第1の層21aと、この第1の層21a上の触媒インク53bからなる第2の層21aが順次形成された2層状態となる。   Then, the second layer 21b is applied on the first layer 21a in the same manner as described above, whereby the catalyst layer on the solid polymer electrolyte membrane 18 as shown in FIG. 21 is a two-layer state in which a first layer 21a made of the catalyst ink 53a on the solid polymer electrolyte membrane 18 side and a second layer 21a made of the catalyst ink 53b on the first layer 21a are sequentially formed. Become.

次に、塗布した触媒インク53a,53bが乾燥したところで、スプレー33を待避させ、その代わりに、乾燥した触媒層の表面を削り滑らかにする加工を施す状態を示す斜視図である図12に示すように、切削手段である筒状のヤスリ55をドラム30の中心に挿入させる。そして、駆動部46を駆動してドラム30を回転させながらヤスリ55で触媒層21の第2の層21bの表面を削り、当該第2の層21bの表面を滑らかにする。   Next, when the applied catalyst inks 53a and 53b are dried, the spray 33 is withdrawn, and instead, the surface of the dried catalyst layer is shaved and smoothed to show a state in which it is processed as shown in FIG. Thus, the cylindrical file 55 which is a cutting means is inserted into the center of the drum 30. Then, the surface of the second layer 21b of the catalyst layer 21 is shaved with a file 55 while the driving unit 46 is driven to rotate the drum 30 to smooth the surface of the second layer 21b.

ヤスリ掛けが終了したらドラム30を装着部44から取り外し、図8(b)で示すように、ドラム30を開いて触媒層21が片面に形成された固体高分子電解質膜18を内壁面39から取り外す。次に、この触媒層21を貼り付け面として内壁面39に固体高分子電解質膜18を貼り付ける。このとき、内壁面39には静電防止処理と撥水処理が施されているので、塗布済みの触媒粉末が内壁面39に付着してドラム30と導通するのが防止される。   When the file is finished, the drum 30 is removed from the mounting portion 44. As shown in FIG. 8B, the drum 30 is opened and the solid polymer electrolyte membrane 18 having the catalyst layer 21 formed on one side is removed from the inner wall surface 39. . Next, the solid polymer electrolyte membrane 18 is attached to the inner wall surface 39 using the catalyst layer 21 as an attachment surface. At this time, since the inner wall surface 39 has been subjected to antistatic treatment and water repellent treatment, the coated catalyst powder is prevented from adhering to the inner wall surface 39 and being electrically connected to the drum 30.

以下、同様の工程を行い固体高分子電解質膜18の他方の面にも触媒インク53a,53bを塗布して、第1の層23a,第2の層23bからなる2層構造の触媒層23を形成する。   Thereafter, the same process is performed to apply the catalyst inks 53a and 53b to the other surface of the solid polymer electrolyte membrane 18, so that the catalyst layer 23 having a two-layer structure including the first layer 23a and the second layer 23b is formed. Form.

上記した第1の実施形態によれば、固体高分子電解質膜18側に位置する第1の層21a,23aからなる触媒インク53aは、第2の層21b,23bからなる触媒インク53bに比較して、触媒担持カーボン粒子の触媒担持率が高く、電解質の量が多く、触媒担持カーボン粒子の粉砕度合いが大きく(粒径が小さく)なっている。   According to the first embodiment described above, the catalyst ink 53a composed of the first layers 21a and 23a located on the solid polymer electrolyte membrane 18 side is compared with the catalyst ink 53b composed of the second layers 21b and 23b. Thus, the catalyst supporting rate of the catalyst supporting carbon particles is high, the amount of the electrolyte is large, and the degree of pulverization of the catalyst supporting carbon particles is large (the particle size is small).

ここで、例えば触媒担持カーボンの触媒担持率が高いと触媒濃度が高くなり、また吸水性の高い電解質の量が多いと、多量の電解質によって液水を保持しやすく、さらに触媒担持カーボンの粉砕度合いが大きいことからカーボン表面積が大きくなって触媒濃度も高くなる。   Here, for example, if the catalyst loading rate of the catalyst-carrying carbon is high, the catalyst concentration becomes high, and if the amount of the electrolyte having high water absorption is large, liquid water can be easily held by a large amount of electrolyte, and the degree of pulverization of the catalyst-carrying carbon Is large, the carbon surface area is increased and the catalyst concentration is also increased.

この結果、このような触媒インク53aは、固体高分子電解質膜18と馴染みやすく、触媒濃度が高いことから反応性が良好となって、発電性が重視されたものとなり、燃料電池の出力向上に寄与することができる。   As a result, such a catalyst ink 53a is easy to become familiar with the solid polymer electrolyte membrane 18, and since the catalyst concentration is high, the reactivity becomes good and power generation is emphasized, and the output of the fuel cell is improved. Can contribute.

一方、第1の層21a,23aからなる触媒インク53aに比較して、触媒担持カーボン粒子の触媒担持率が低く、電解質の量が少なく、触媒担持カーボンの粉砕度合いが小さい(粒径が大きい)第2の層21b,23bからなる触媒インク53bは、触媒担持カーボン粒子の触媒担持率が低いことから触媒濃度が低く、また電解質の量が少ないことから、液水を保持しにくく、さらに触媒担持カーボンの粉砕度合いが小さいことから、カーボン表面積が小さくなって触媒濃度も低くなる。   On the other hand, compared with the catalyst ink 53a composed of the first layers 21a and 23a, the catalyst supporting carbon particles have a lower catalyst supporting rate, the amount of electrolyte is small, and the degree of pulverization of the catalyst supporting carbon is small (the particle size is large). The catalyst ink 53b composed of the second layers 21b and 23b has a low catalyst concentration because the catalyst-carrying carbon particles have a low catalyst-carrying rate, and also has a small amount of electrolyte, so that it is difficult to hold liquid water. Since the degree of pulverization of carbon is small, the carbon surface area is reduced and the catalyst concentration is also reduced.

この結果、このような触媒インク53bは、カーボン粒子周囲の液水が少なくなり、燃料電池スタック1の起動停止による触媒・カーボンの腐食が抑制され、またカーボン表面積が小さく触媒濃度が低いことから反応ガスと接触しにくく、燃料電池スタック1の起動停止によるカーボンの腐食が抑制され、耐久性が重視されたものとなり、燃料電池の耐久性向上に寄与することができる。   As a result, the catalyst ink 53b reacts because the liquid water around the carbon particles is reduced, the catalyst / carbon corrosion due to the start and stop of the fuel cell stack 1 is suppressed, and the carbon surface area is small and the catalyst concentration is low. It is difficult to come into contact with gas, carbon corrosion due to the start and stop of the fuel cell stack 1 is suppressed, and durability is emphasized, which can contribute to improving the durability of the fuel cell.

さらに、触媒担持カーボン粒子の粉砕度合いが小さいために、粉砕後の触媒担持カーボン粒子相互間の隙間が大きくなり、反応ガスや液水の拡散性が向上する。   Further, since the degree of pulverization of the catalyst-carrying carbon particles is small, the gap between the crushed catalyst-carrying carbon particles is increased, and the diffusibility of the reaction gas and liquid water is improved.

したがって、上記したような発電性を重視した触媒インク53aを固体高分子電解質膜18側に塗布し、一方耐久性を重視した触媒インクと53bを、固体高分子電解質膜18側とは反対のガス拡散層22,24側に、互いに別々の層となるよう塗り分けして塗布することで、燃料電池スタック1の発電性および耐久性を共に高めて良好な燃料電池性能を確保することができる。   Therefore, the above-described catalyst ink 53a focusing on power generation is applied to the solid polymer electrolyte membrane 18 side, while the catalyst ink 53b focusing on durability and 53b are gas opposite to the solid polymer electrolyte membrane 18 side. By separately coating the diffusion layers 22 and 24 so as to be separate layers, it is possible to improve both the power generation performance and durability of the fuel cell stack 1 and to ensure good fuel cell performance.

また、電解質は、触媒担持カーボン粒子の粉砕後に、この粉砕した触媒担持カーボン粒子が混入する溶媒中に投入し分散させている。このため、電解質は、過剰に分散されることを回避して過剰な水分保持を防止し、燃料電池スタック1の起動停止操作時での水と触媒層中のカーボンとの反応を防止して、起動停止時での耐久性を高めることができる。   Further, after the catalyst-carrying carbon particles are pulverized, the electrolyte is charged and dispersed in a solvent in which the pulverized catalyst-carrying carbon particles are mixed. For this reason, the electrolyte avoids excessive water retention by avoiding excessive dispersion, prevents reaction between water and carbon in the catalyst layer during the start / stop operation of the fuel cell stack 1, The durability at the time of starting and stopping can be improved.

さらに、触媒インクの固体高分子電解質膜18への塗布は、遠心力を利用して行うことで、比重の大きい触媒担持カーボン粒子が固体高分子電解質膜18側に寄せられ、固体高分子電解質膜18側の触媒濃度が高くなるような触媒濃度勾配を形成でき、発電性能を高めることができる。   Furthermore, application of the catalyst ink to the solid polymer electrolyte membrane 18 is performed using centrifugal force, so that the catalyst-carrying carbon particles having a large specific gravity are brought closer to the solid polymer electrolyte membrane 18 side, and the solid polymer electrolyte membrane is thus obtained. A catalyst concentration gradient that increases the catalyst concentration on the 18th side can be formed, and power generation performance can be improved.

また、上記のように遠心力を利用して触媒インクを塗布することで、触媒インク中の泡が触媒層21,23の表面に浮き上がり、表面を、乾燥後に研磨することで平滑化しやすくなる。   In addition, by applying the catalyst ink using centrifugal force as described above, bubbles in the catalyst ink float on the surfaces of the catalyst layers 21 and 23, and the surfaces are easily smoothed by polishing after drying.

上述の実施形態では、触媒塗布手段としてスプレー33による塗布として例示したが、図13に示すように、ダイヘッド58をドラム30の内側(中心)に挿入し、そのダイヘッド58から触媒インク53a,53bを固体高分子電解質膜18に塗布するようにしてもよい。   In the above-described embodiment, the application by the spray 33 is exemplified as the catalyst application unit. However, as shown in FIG. 13, the die head 58 is inserted into the inside (center) of the drum 30, and the catalyst inks 53 a and 53 b are discharged from the die head 58. It may be applied to the solid polymer electrolyte membrane 18.

また、上述の実施形態では、吸引手段によってドラム30の内壁面39に固体高分子電解質膜18を吸着保持させたが、静電気により固体高分子電解質膜18を内壁面39に固定させてもよい。   In the above-described embodiment, the solid polymer electrolyte membrane 18 is adsorbed and held on the inner wall surface 39 of the drum 30 by the suction means. However, the solid polymer electrolyte membrane 18 may be fixed to the inner wall surface 39 by static electricity.

また、上述の実施形態では、筒状のヤスリ55を使用したが、図14に示すように、棒59の先端部のみにヤスリ60が形成された切削手段を使用してもよい。   In the above-described embodiment, the cylindrical file 55 is used. However, as shown in FIG. 14, a cutting means in which a file 60 is formed only at the tip of the rod 59 may be used.

また、上述の実施形態では、乾燥後の触媒層21,23の表面をヤスリ55,60で削って滑らかにするようにしたが、図15に示すように、回転軸61の先端に設けた圧延ローラ62を触媒層21,23に押し付けて当該触媒層21,23の表面を平坦にするようにしてもよい。   In the above-described embodiment, the surfaces of the dried catalyst layers 21 and 23 are smoothed by the files 55 and 60. However, as shown in FIG. The roller 62 may be pressed against the catalyst layers 21 and 23 to flatten the surfaces of the catalyst layers 21 and 23.

本発明の第2の実施形態として、固体高分子電解質膜18上に形成する触媒層21,23を、互いに別々の層となるよう塗り分ける際に、図16に示すように、燃料電池の発電性、特に初期発電性を重視した前記触媒インク53aからなる第1の層21α(23α)と、燃料電池の耐久性を重視した前記触媒インク53bからなる第2の層21β(23β)とを、交互に塗り分けるようにしている。   As a second embodiment of the present invention, when the catalyst layers 21 and 23 formed on the solid polymer electrolyte membrane 18 are separately applied to be separate layers, as shown in FIG. The first layer 21α (23α) made of the catalyst ink 53a focusing on the performance, particularly the initial power generation property, and the second layer 21β (23β) made of the catalyst ink 53b focused on the durability of the fuel cell, I try to paint them alternately.

その際、第1,第2の各層21α(23α),21β(23β)の長手方向が、図17(a)に示すように、矢印Gで示す反応ガスの流れ方向と交差していてもよく、また図17(b)に示すように、矢印Gで示す反応ガスの流れ方向に沿っていてもよい。   At that time, the longitudinal direction of each of the first and second layers 21α (23α) and 21β (23β) may intersect the flow direction of the reaction gas indicated by the arrow G as shown in FIG. Also, as shown in FIG. 17 (b), it may be along the flow direction of the reaction gas indicated by the arrow G.

上記のようにして触媒インク53a,53bを塗布する作業は、例えばスクリーン印刷装置を用いて行うことができる。   The operation of applying the catalyst inks 53a and 53b as described above can be performed using, for example, a screen printing apparatus.

第2の実施形態においては、燃料電池の発電性、特に初期発電性を重視した前記触媒インク53aからなる第1の層21α(21β)と、燃料電池の耐久性を重視した前記触媒インク53bからなる第2の層21β(23β)を、固体高分子電解質膜18上に形成しているので、従来のように、燃料電池の初期発電性および耐久性のいずれにおいても中間程度の性能を維持する触媒インクを使用する場合に比較して、燃料電池の発電性および耐久性を共に高めて良好な燃料電池性能を確保することができる。   In the second embodiment, from the first layer 21α (21β) made of the catalyst ink 53a that emphasizes the power generation performance of the fuel cell, particularly the initial power generation performance, and the catalyst ink 53b that emphasizes the durability of the fuel cell. Since the second layer 21β (23β) to be formed is formed on the solid polymer electrolyte membrane 18, the intermediate performance is maintained in both the initial power generation performance and durability of the fuel cell as in the prior art. Compared with the case where catalyst ink is used, both the power generation performance and durability of the fuel cell can be enhanced to ensure good fuel cell performance.

燃料電池スタックの全体構成図である。1 is an overall configuration diagram of a fuel cell stack. 図1の燃料電池スタックにおける燃料電池単セルの拡大断面図である。It is an expanded sectional view of the fuel cell single cell in the fuel cell stack of FIG. 本発明の第1の実施形態に係わる固体高分子電解質膜上に触媒層を形成した状態を示す側面図である。It is a side view which shows the state which formed the catalyst layer on the solid polymer electrolyte membrane concerning the 1st Embodiment of this invention. (a)は、第1の層を形成する触媒インクの調整工程図、(b)は、第2の層を形成する触媒インクの調整工程図である。(A) is the adjustment process figure of the catalyst ink which forms a 1st layer, (b) is the adjustment process figure of the catalyst ink which forms a 2nd layer. 触媒インクを固体高分子電解質膜上に塗布する触媒塗布装置の斜視図である。It is a perspective view of the catalyst coating device which coats catalyst ink on a solid polymer electrolyte membrane. 図5の触媒塗布装置の分解斜視図である。It is a disassembled perspective view of the catalyst coating apparatus of FIG. 図5の触媒塗布装置の平面図である。It is a top view of the catalyst coating apparatus of FIG. 図5の触媒塗布装置におけるドラムの平面図であり、(a)は高分子電解質膜をドラムに装着する前の状態、(b)は高分子電解質膜に触媒インクを塗布後の状態である。FIG. 6 is a plan view of a drum in the catalyst coating apparatus of FIG. 5, (a) is a state before the polymer electrolyte membrane is mounted on the drum, and (b) is a state after the catalyst ink is applied to the polymer electrolyte membrane. (a)は図5のA−A線断面図、(b)は図5のB−B線断面図である。(A) is the sectional view on the AA line of FIG. 5, (b) is the sectional view on the BB line of FIG. (a)は高分子電解質膜をドラムの内壁面に装着させた状態を示す図5のA−A線位置での断面図、(b)は触媒インク塗布後の状態を示す図5のA−A線位置での断面図である。5A is a cross-sectional view taken along the line AA in FIG. 5 showing a state in which the polymer electrolyte membrane is attached to the inner wall surface of the drum, and FIG. 5B is a cross-sectional view taken after application of the catalyst ink in FIG. It is sectional drawing in the A line position. 触媒インクを塗布している状態を示す触媒塗布装置の斜視図である。It is a perspective view of the catalyst application apparatus which shows the state which has apply | coated the catalyst ink. 乾燥後の触媒層をヤスリで削って表面を滑らかにする工程を示す斜視図である。It is a perspective view which shows the process of shaving off the catalyst layer after drying, and smoothing the surface. ダイヘッドを使用して触媒インクを固体高分子電解質膜に塗布する例を示す図である。It is a figure which shows the example which apply | coats catalyst ink to a solid polymer electrolyte membrane using a die head. 先端部のみにヤスリが形成された切削手段を使用した例を示す図である。It is a figure which shows the example using the cutting means in which the file was formed only in the front-end | tip part. 圧延ローラを触媒層に押し付けて表面を平坦にする例を示す図である。It is a figure which shows the example which presses a rolling roller against a catalyst layer, and makes the surface flat. 本発明の第2の実施形態に係わる固体高分子電解質膜上に触媒層を形成した状態を示す平面図である。It is a top view which shows the state which formed the catalyst layer on the solid polymer electrolyte membrane concerning the 2nd Embodiment of this invention. 第2の実施形態における固体高分子電解質膜上に触媒層を形成した状態を示す平面図で、(a)は第1,第2の各層の長手方向が、反応ガスの流れ方向と交差していている状態、(b)は第1,第2の各層の長手方向が、反応ガスの流れ方向に沿っている状態を示す。It is a top view which shows the state which formed the catalyst layer on the solid polymer electrolyte membrane in 2nd Embodiment, (a) is the longitudinal direction of each 1st, 2nd layer crossing the flow direction of a reactive gas. (B) shows the state where the longitudinal direction of each of the first and second layers is along the flow direction of the reaction gas.

符号の説明Explanation of symbols

18 固体高分子電解質膜(電解質膜)
21,23 触媒層
21a,23a 第1の層(別々の層)
21b,23b 第2の層(別々の層)
21α,23α 第1の層(別々の層)
21β,23β 第2の層(別々の層)
28 溶媒
29A,29B 触媒担持カーボン粒子
53a,53b 触媒インク
100 電解質
290A,290B 粉砕後の触媒担持カーボン粒子
18 Solid polymer electrolyte membrane (electrolyte membrane)
21, 23 Catalyst layers 21a, 23a First layer (separate layers)
21b, 23b Second layer (separate layers)
21α, 23α First layer (separate layers)
21β, 23β Second layer (separate layers)
28 Solvent 29A, 29B Catalyst-supported carbon particles 53a, 53b Catalyst ink 100 Electrolyte 290A, 290B Catalyst-supported carbon particles after pulverization

Claims (9)

触媒担持カーボン粒子と、電解質と、溶媒とを混合、分散させて触媒インクとし、この触媒インクを電解質膜に塗布する際に、前記触媒担持カーボン粒子の触媒担持率と、前記電解質の量と、前記触媒担持カーボン粒子の粉砕度合いとの少なくとも一つの条件が異なる複数種類の触媒インクを製造し、この複数種類の触媒インクを、前記電解質膜に互いに別々の層となるよう塗り分けして塗布する燃料電池の電極用触媒層の形成方法であって、前記複数種類の触媒インクの前記三つの条件すべてを異なるものとし、この三つの条件すべてが大となる触媒インクが、前記電解質膜側となるよう前記触媒インクを前記電解質膜に塗布することを特徴とする燃料電池の電極用触媒層の形成方法。   The catalyst-supporting carbon particles, the electrolyte, and the solvent are mixed and dispersed to form a catalyst ink, and when the catalyst ink is applied to the electrolyte membrane, the catalyst-supporting rate of the catalyst-supporting carbon particles, the amount of the electrolyte, A plurality of types of catalyst inks having at least one condition different from the degree of pulverization of the catalyst-carrying carbon particles are manufactured, and the plurality of types of catalyst inks are separately applied to the electrolyte membrane so as to form separate layers. A method for forming a catalyst layer for an electrode of a fuel cell, wherein all three conditions of the plurality of types of catalyst inks are different, and a catalyst ink in which all three conditions are large is on the electrolyte membrane side. A method for forming a catalyst layer for an electrode of a fuel cell, wherein the catalyst ink is applied to the electrolyte membrane. 前記複数種類の触媒インクを、前記電解質膜の互いに異なる面上に塗り分けして塗布することを特徴とする請求項1に記載の燃料電池の電極用触媒層の形成方法。 2. The method for forming a catalyst layer for an electrode of a fuel cell according to claim 1, wherein the plurality of types of catalyst inks are applied separately on different surfaces of the electrolyte membrane. 前記三つの条件すべてを異なるものとし、この三つの条件すべてが大となる触媒インクと、同小となる触媒インクとを、前記電解質膜の互いに異なる面上に塗り分けして塗布することを特徴とする請求項に記載の燃料電池の電極用触媒層の形成方法。 The three conditions are all different, and the catalyst ink that is large for all three conditions and the catalyst ink that is small for the three conditions are separately applied onto different surfaces of the electrolyte membrane. The method for forming a catalyst layer for an electrode of a fuel cell according to claim 2 . 前記三つの条件すべてが大となる触媒インクと、同小となる触媒インクとを、前記電解質膜上に交互に塗り分けして塗布することを特徴とする請求項に記載の燃料電池の電極用触媒層の形成方法。 4. The fuel cell electrode according to claim 3 , wherein a catalyst ink having a large value for all three conditions and a catalyst ink having a small value are applied separately on the electrolyte membrane. 5. For forming a catalyst layer for use. 前記電解質は、前記触媒担持カーボン粒子の粉砕後に、この粉砕した触媒担持カーボン粒子が混入する前記溶媒中に投入することを特徴とする請求項1ないしのいずれか1項に記載の燃料電池の電極用触媒層の形成方法。 The electrolyte, after the grinding of the catalyst-carrying carbon particles, the fuel cell according to any one of claims 1 to 4, characterized in that introducing in the solvent that the crushed catalyst carrying carbon particles are mixed Method for forming electrode catalyst layer. 触媒担持カーボン粒子と、電解質と、溶媒とを混合、分散させて触媒インクとし、この触媒インクが電解質膜に塗布された燃料電池の電極用触媒層において、前記触媒担持カーボン粒子の触媒担持率と、前記電解質の量と、前記触媒担持カーボン粒子の粉砕度合いとの少なくとも一つの条件が異なる複数種類の触媒インクを製造し、この複数種類の触媒インクが、前記電解質膜に互いに別々の層となるよう塗り分けして塗布されていて、前記複数種類の触媒インクの前記三つの条件すべてを異なるものとし、この三つの条件すべてが大となる触媒インクが、前記電解質膜側となるよう前記電解質膜に塗布されていることを特徴とする燃料電池の電極用触媒層。   In the catalyst layer for a fuel cell electrode in which catalyst-supported carbon particles, an electrolyte, and a solvent are mixed and dispersed to form a catalyst ink, and this catalyst ink is applied to the electrolyte membrane, And producing a plurality of types of catalyst inks having different conditions of at least one of the amount of the electrolyte and the degree of pulverization of the catalyst-carrying carbon particles, and the plurality of types of catalyst inks form separate layers on the electrolyte membrane. The electrolyte membrane is applied in such a manner that all three conditions of the plurality of types of catalyst inks are different, and the catalyst ink in which all three conditions are large is on the electrolyte membrane side. A catalyst layer for an electrode of a fuel cell, which is coated on the electrode. 前記複数種類の触媒インクが、前記電解質膜の互いに異なる面上に塗り分けして塗布されていることを特徴とする請求項に記載の燃料電池の電極用触媒層。 The catalyst layer for an electrode of a fuel cell according to claim 6 , wherein the plurality of types of catalyst inks are applied separately on different surfaces of the electrolyte membrane. 前記三つの条件すべてが大きい触媒インクと、同小さい触媒インクとを、前記電解質膜の互いに異なる面上に塗り分けして塗布されていることを特徴とする請求項に記載の燃料電池の電極用触媒層。 8. The electrode of a fuel cell according to claim 7 , wherein a catalyst ink having a large size for all three conditions and a catalyst ink having the same small size are applied separately on different surfaces of the electrolyte membrane. Catalyst layer. 前記三つの条件すべてが大となる触媒インクと、同小となる触媒インクとが、前記電解質膜上に交互に塗り分けして塗布されていることを特徴とする請求項に記載の燃料電池の電極用触媒層。 9. The fuel cell according to claim 8 , wherein a catalyst ink having a large value for all three conditions and a catalyst ink having a small value for the three conditions are alternately applied separately on the electrolyte membrane. The electrode catalyst layer.
JP2006112277A 2006-04-14 2006-04-14 Method for forming catalyst layer for electrode of fuel cell and catalyst layer for electrode Expired - Fee Related JP5055815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006112277A JP5055815B2 (en) 2006-04-14 2006-04-14 Method for forming catalyst layer for electrode of fuel cell and catalyst layer for electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006112277A JP5055815B2 (en) 2006-04-14 2006-04-14 Method for forming catalyst layer for electrode of fuel cell and catalyst layer for electrode

Publications (2)

Publication Number Publication Date
JP2007287433A JP2007287433A (en) 2007-11-01
JP5055815B2 true JP5055815B2 (en) 2012-10-24

Family

ID=38759016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006112277A Expired - Fee Related JP5055815B2 (en) 2006-04-14 2006-04-14 Method for forming catalyst layer for electrode of fuel cell and catalyst layer for electrode

Country Status (1)

Country Link
JP (1) JP5055815B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434051B2 (en) * 2008-11-06 2014-03-05 凸版印刷株式会社 Membrane electrode assembly and polymer electrolyte fuel cell
JP2011216327A (en) * 2010-03-31 2011-10-27 Equos Research Co Ltd Reaction layer for fuel cell
US9486821B2 (en) * 2012-09-28 2016-11-08 Nissan Motor Co., Ltd. Coating apparatus for applying coating material onto sheet member
JP6127692B2 (en) * 2013-04-26 2017-05-17 日産自動車株式会社 Membrane electrode assembly manufacturing apparatus and holding member used for manufacturing membrane electrode assembly
JP6286932B2 (en) * 2013-08-21 2018-03-07 凸版印刷株式会社 Catalyst layer manufacturing apparatus and catalyst layer manufacturing method
CN114420969B (en) * 2022-01-19 2024-02-23 江苏氢导智能装备有限公司 Frame laminating device and five-in-one former

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3245929B2 (en) * 1992-03-09 2002-01-15 株式会社日立製作所 Fuel cell and its application device
JP3555196B2 (en) * 1994-09-19 2004-08-18 トヨタ自動車株式会社 Fuel cell and method of manufacturing the same
KR100437293B1 (en) * 1999-09-21 2004-06-25 마쯔시다덴기산교 가부시키가이샤 Polymer electrolytic fuel cell and method for producing the same
JP2001319663A (en) * 2000-05-08 2001-11-16 Fuji Electric Co Ltd Solid polymer type fuel cell and its manufacturing method
JP4400177B2 (en) * 2003-10-31 2010-01-20 株式会社ジーエス・ユアサコーポレーション Fuel cell electrode
JP2005141966A (en) * 2003-11-05 2005-06-02 Nissan Motor Co Ltd Catalyst-carrying electrode, mea for fuel cell, and the fuel cell

Also Published As

Publication number Publication date
JP2007287433A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
KR100503030B1 (en) Polymer electrolyte fuel cell, method for manufacturing electrode thereof, and manufacturing apparatus
JP5055815B2 (en) Method for forming catalyst layer for electrode of fuel cell and catalyst layer for electrode
JP2008159426A (en) Solid polymer electrolyte fuel cell and manufacturing method therefor
US7285354B2 (en) Polymer electrolyte fuel cell, fuel cell electrode, method for producing electrode catalyst layer, and method for producing polymer electrolyte fuel cell
US20120171597A1 (en) Direct methanol fuel cell and anode used therein
JP4876318B2 (en) Polymer electrolyte fuel cell and manufacturing method thereof
JP5561200B2 (en) Method for producing catalyst and method for controlling characteristics of reaction layer for fuel cell using catalyst
JP2003109606A (en) High molecular electrolyte fuel cell and method of manufacturing the same
WO2005057698A1 (en) Fuel cell
JP4896393B2 (en) Method for producing fuel cell electrode paste, method for producing fuel cell electrode, method for producing membrane electrode assembly of fuel cell, and method for producing fuel cell system
JP2005235706A (en) Electrode for solid polymer fuel cell
JP2008135274A (en) Method of manufacturing fuel cell
JP5425441B2 (en) FORMING MATERIAL FOR FUEL CELL ELECTRODE LAYER, MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL, FUEL CELL, METHOD FOR PRODUCING FORMING MATERIAL FOR ELECTRODE LAYER FOR CELL CELL,
US7005397B2 (en) Electrode for polymer electrolyte fuel cell and method of producing the same
JP2007250539A (en) Catalyst coating method and catalyst coating device
JP2007323824A (en) Manufacturing method of electrode for fuel cell and electrode for fuel cell
JP2009104905A (en) Paste for electrode of fuel cell, electrode, membrane electrode assembly, and method for manufacturing fuel cell system
JP2006286580A (en) Production method of catalyst slurry for fuel cell and membrane electrode assembly
JP5672645B2 (en) Electrocatalyst ink for fuel cell
JP2001160399A (en) Electrode for solid polymer fuel cell and manufacturing method therefore
WO2016170775A1 (en) Method for producing gas diffusion electrode, and method for producing membrane electrode assembly (mea)
JP2004349076A (en) Electrode material for polymer electrolyte fuel cell, and manufacturing method of the same
JP2004158290A (en) Polymer electrolyte fuel cell and method of manufacturing its electrode
JP2007207678A (en) Electrode for polymer electrolyte fuel cell, its manufacturing method, and polymer electrolyte fuel cell
US20220311016A1 (en) Catalyst layer and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5055815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees