JP2004349076A - Electrode material for polymer electrolyte fuel cell, and manufacturing method of the same - Google Patents

Electrode material for polymer electrolyte fuel cell, and manufacturing method of the same Download PDF

Info

Publication number
JP2004349076A
JP2004349076A JP2003143705A JP2003143705A JP2004349076A JP 2004349076 A JP2004349076 A JP 2004349076A JP 2003143705 A JP2003143705 A JP 2003143705A JP 2003143705 A JP2003143705 A JP 2003143705A JP 2004349076 A JP2004349076 A JP 2004349076A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
particle size
particles
powder
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003143705A
Other languages
Japanese (ja)
Inventor
Takeshi Yonamine
毅 与那嶺
Yoshihiro Hori
堀  喜博
Eiichi Yasumoto
栄一 安本
Shinya Kosako
慎也 古佐小
Makoto Uchida
誠 内田
Akihiko Yoshida
昭彦 吉田
Hideo Kasahara
英男 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003143705A priority Critical patent/JP2004349076A/en
Publication of JP2004349076A publication Critical patent/JP2004349076A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode material preventing the deterioration of a fuel cell under high humidification operation by improving gas permeation property of a catalyst layer. <P>SOLUTION: The electrode material for a polymer electrolyte fuel cell is composed of powder, and the powder is made of aggregated particles and hydrogen ion conductive polymer electrolyte covering the aggregated particles. The aggregated particle is made of a carbon particle carrying noble metal, and a grain size distribution of the powder has only one grain diameter peak. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高分子電解質型燃料電池用電極材料に関する。
【0002】
【従来の技術】
燃料電池は、水素を含有する燃料ガスと、空気など酸素を含有する酸化剤ガスとを、電気化学的に反応させることで、電力と熱とを同時に発生させるものである。その一般的な構造は、まず、水素イオンを選択的に輸送する高分子電解質膜の両面に、白金等の貴金属を担持した炭素粒子を主成分とする触媒層を形成する。次に、触媒層の外面に、ガス通気性と電子伝導性とを併せ持つガス拡散層を形成する。このガス拡散層と触媒反応層との組み合わせが電極となる。
【0003】
次に、供給するガスが外にリークしたり、2種類のガスが互いに混合しないように、電極の周囲には高分子電解質膜を挟んでシール材やガスケットを配置する。予めシール材やガスケットを電極および高分子電解質膜と一体化したものを電解質膜−電極接合体(MEA)と呼ぶ。MEAの外側には、これを機械的に固定するとともに、隣接したMEAを互いに電気的に直列に接続するための導電性セパレータを配置する。セパレータのMEAとの接触面には、電極に燃料ガスまたは酸化剤ガスを供給し、生成ガスや余剰ガスを運び去るためのガス流路を形成する。ガス流路はセパレータと別に設けることもできるが、セパレータの表面に溝を設けてガス流路とする方式が一般的である。
【0004】
ガス拡散層は、例えば撥水処理を施したカーボンペーパやカーボンクロスなどを用いて形成される。また、触媒層や高分子電解質膜の保湿を目的として、触媒層とガス拡散層との界面に、撥水カーボン層を設けることもある。撥水カーボン層は、炭素粒子と、界面活性剤を含んだポリテトラフルオロエチレン粒子の分散液(以下、PTFE分散液)を用いて形成される。まず、炭素粒子とPTFE分散液とを混合し、これを乾燥もしくは濾過して、炭素粒子とポリテトラフルオロエチレン粒子との混合物を調製する。この混合物を水または有機溶媒と混合して、インクを調製し、そのインクをガス拡散層となるカーボンペーパやカーボンクロスの片面に塗工する。塗工法には、スクリーン印刷法、スプレー塗工法、ドクターブレード法、ロールコーター法などが採用される。その後、インクが塗工されたガス拡散層を300〜400℃程度の温度で焼成し、界面活性剤を焼散させることにより、撥水カーボン層が得られる。撥水カーボン層は、触媒層に隣接させて配置する。
【0005】
触媒層は、一般に、貴金属を担持した炭素粒子と、水素イオン伝導性高分子電解質とを用いて形成される。高分子電解質は、エタノールなどのアルコールに溶解または分散させたものが用いられる。まず、白金などの貴金属を担持した炭素粒子と高分子電解質の溶液または分散液とを混合し、これにイソプロピルアルコールやブチルアルコールなどの比較的高沸点の有機溶媒を添加して、触媒インクを調製する。この触媒インクを、ガス拡散層や高分子電解質膜上に塗工し、乾燥することにより、触媒層が形成される。ここでも、塗工法には、スクリーン印刷法、スプレー塗工法、ドクターブレード法、ロールコーター法などが採用される。別の触媒インクの調製法として、高分子電解質の溶液または分散液を、スプレードライ方式で、貴金属を担持した炭素粒子の表面に噴霧し、乾燥し、得られた粉末を高沸点溶媒に分散させる方法も行われている。
【0006】
ところで、水素イオン伝導性高分子電解質を用いた燃料電池においては、電気化学的反応を促進させ、高性能化を達成することが求められている。燃料電池の高性能化に向けた取組みは色々行われているが、その中のひとつに触媒層の改善がある。触媒層においては、水素イオン伝導経路、電子伝導経路および反応ガスの通気性が確保されていることが重要である。水素イオン伝導経路を確保するためには、貴金属を担持した炭素粒子が水素イオン伝導性高分子電解質で被覆されている必要がある。そして、電解質が水素イオン伝導性を維持するために湿潤していることも必要である。また、反応ガスの通気性を維持するためには、貴金属を担持した炭素粒子が電解質で薄く被覆されている必要がある。
【0007】
【発明が解決しようとする課題】
上述のように、高分子電解質型燃料電池を実用化するためには、さらなる高性能化が必要である。しかしながら、水素イオン伝導性高分子電解質で被覆され、貴金属を担持した炭素粒子の大きさは様々である。様々な大きさの粒子からなる粉末を用いて触媒層を形成した場合、城の石垣のように緻密な構造になる傾向がある。そのため、反応ガスの通気性が損なわれ、電池性能の低下を引き起こす。この傾向は、触媒層内の水分量が多くなる燃料電池の高加湿運転時において、特に顕著となる。
【0008】
【課題を解決するための手段】
上記問題を解決するには、触媒層を形成する粉末の構成粒子の大きさを揃え、高加湿運転時における触媒層のガス通気性を向上させることが有効と考えられる。
そこで、本発明は、粉末からなる電極材料であって、前記粉末は、凝集粒子および前記凝集粒子を被覆する水素イオン伝導性高分子電解質からなり、前記凝集粒子は、貴金属を担持した炭素粒子からなり、前記粉末の粒度分布は、粒径ピークを1つだけ有する高分子電解質型燃料電池用電極材料に関する。
【0009】
体積基準の粒度分布において、前記粒径ピークは2〜20μmの範囲にあることが好ましい。また、前記粉末の全体積を100%とした時に、最多頻度を示す粒径の50%以下の粒径を有する粒子の累積体積頻度が50%以下であることが好ましい。
前記粉末に含まれる前記電解質の重量と、前記貴金属を除く前記炭素粒子の重量との比:F/Cは、0.3≦F/C≦1.0を満たすことが好ましい。
【0010】
本発明は、また、(a)貴金属を担持した炭素粒子からなる凝集粒子を乾燥雰囲気中に流動させる工程、(b)水素イオン伝導性高分子電解質の溶液または分散液を、乾燥雰囲気中を流動している前記凝集粒子に噴霧する工程、(c)乾燥雰囲気中を流動している前記凝集粒子の粉砕と造粒を並行して行う工程を有し、前記工程(b)と前記工程(c)とを順不同もしくは同時に行う高分子電解質型燃料電池用電極材料の製造方法に関する。
【0011】
本発明は、さらに、水素イオン伝導性高分子電解質膜および前記電解質膜を挟む一対の電極からなる電解質膜−電極接合体、ならびに前記接合体の両面に配置されたそれぞれガス流路を有する一対の導電性セパレータからなる燃料電池であって、前記一対の電極が、それぞれ触媒層およびガス拡散層からなり、前記触媒層が粉末からなり、前記粉末が凝集粒子および前記凝集粒子を被覆する水素イオン伝導性高分子電解質からなり、前記凝集粒子が貴金属を担持した炭素粒子からなり、前記粉末の粒度分布は、粒径ピークを1つだけ有する高分子電解質型燃料電池に関する。
【0012】
【発明の実施の形態】
本発明の高分子電解質型燃料電池用電極材料は粉末からなり、前記粉末の粒度分布は粒径ピークを1つだけ有する。粒径ピークが複数ある場合には、粉末の構成粒子の大きさが揃わず、触媒層のガス通気性を向上させることができない。
前記粉末は、凝集粒子および前記凝集粒子を被覆する水素イオン伝導性高分子電解質からなり、前記凝集粒子は、貴金属を担持した炭素粒子からなる。入手可能な凝集粒子の平均粒径は、通常、0.1〜1μmである。
【0013】
前記凝集粒子は、例えば、一次粒子の平均粒径が30〜40nmの炭素粒子を用いて調製される。一次粒子は、通常、凝集して二次粒子を形成している。このような炭素粒子を、例えば、貴金属塩溶液に浸漬し、溶液から取り出した粒子を乾燥し、還元することにより、貴金属を担持した炭素粒子が得られる。炭素粒子上に担持された貴金属の粒径は、通常、1〜5nmである。また、貴金属は、炭素粒子100重量部あたり、40〜50重量部を担持させることが好ましい。
【0014】
炭素粒子には、カーボンブラック、黒鉛粉末、アセチレンブラックなどが用いられる。また、貴金属には、白金、ルテニウムなどが用いられる。凝集粒子を被覆する水素イオン伝導性高分子電解質には、パーフルオロカーボンスルホン酸、パーフルオロカーボンスルホン酸の塩などが好ましく用いられる。なお、水素イオン伝導性高分子電解質のスルホン酸基あたりの単位重量(EW)は、例えば800〜1100mg当量である。
【0015】
体積基準の粒度分布において、前記粒径ピークは2〜20μm、さらには5〜15μmの範囲にあることが好ましい。粒径ピークが2μm未満にある場合には、触媒層が緻密になり、通気性が損なわれる結果、電池性能が低下することとなり、20μmを超える場合には、炭素同士の接点が少なくなる。炭素表面を被覆した水素イオン伝導性高分子電解質が炭素−炭素接点にある場合、電子伝導性は低下する。炭素−炭素同士の接点が少ない場合、電子伝導性の低い部分を迂回するルートが少なくなるため、電子伝導性が低下し、電池特性は低下することとなる。また、前記粉末の全体積を100%とした時に、最多頻度を示す粒径の50%以下の粒径を有する粒子の累積体積頻度が50%以下、さらには30%以下であることが好ましい。前記累積体積頻度が50%を超えると、粒径の小さいものが多くなり、触媒層形成時、石垣のように緻密な構造となる。
【0016】
前記粉末に含まれる前記電解質の重量と、前記貴金属を除く前記炭素粒子の重量との比:F/Cは、0.3≦F/C≦1.0、さらには0.5≦F/C≦0.8を満たすことが好ましい。F/Cが3未満では、炭素を被覆する水素イオン伝導性高分子電解質が少ないため、水素イオン伝導性が低下し、電池性能が低下することとなり、1を超えると、含水性のある水素イオン伝導性高分子電解質が増加して、触媒層中の水の含有量が増え、通気性が低下し、電池性能が低下することとなる。
【0017】
次に、図1を参照しながら上記電極材料の製造方法の一例について説明する。図1は、電極材料の製造装置の一例の構造を示す概念図である。この装置はスプレードライ式装置である。この装置は、貴金属を担持した炭素粒子からなる凝集粒子を導入する粉末流動槽1を有し、粉末流動槽1の下部にはガス導入口4を有し、上部にはガス排出口13を有する。粉末流動槽1は略円柱状であり、その底部付近には、金属フィルタ5とスリットを有する造粒プレート6が設けられている。
【0018】
ガス導入口4からは、一定温度に加熱されたガスが供給され、金属フィルタ5と造粒プレート6のスリットを通過して、粉末流動槽1の内部を流通する。導入されたガスによって、凝集粒子は粉末流動槽1の内部に吹き上がり、槽内を流動するとともに加熱される。ガスは、粉末流動槽1の上部に設けられたバグフィルタ10を通過して、ガス排出口13から外部に排出される。ガスの流れ方向を矢印a、b、cで示す。
【0019】
粉末流動槽1の中程には、造粒プレート6と対面するように、高圧スプレー3が設けられている。貯留槽2には、高圧スプレー3に送るための水素イオン伝導性高分子電解質の溶液または分散液が貯蔵されている。粉末流動槽1の内部を流動している凝集粒子に対し、高圧スプレー3から溶液または分散液を噴霧することにより、凝集粒子には水素イオン伝導性高分子電解質の溶液または分散液が付着する。しかし、粉末流動槽1の内部にはガスが流通しているため、溶液または分散液で湿った凝集粒子は、やがて乾燥し、水素イオン伝導性高分子電解質が付着した凝集粒子となる。
【0020】
ガスにより吹き上げられた粒子は、やがて造粒プレート6の上面に沈降し、造粒プレート6の上部を回動する撹拌羽根7によって、撹拌され、造粒と粉砕が繰り返される。粉末流動槽1の内壁には、圧縮ガス噴射ノズル(パルスジェット)8が設けられており、撹拌羽根7の中心部に位置する円錐状の衝突ターゲット9に向けて、高圧ジェットを間欠的に噴射することができる。これにより、流動状態にある粒子はさらに細かく粉砕される。なお、バグフィルタ10に付着した粒子は、圧縮ガス供給部11から間欠噴射されるガスによって、粉末流動槽1の内部に戻すことができる。
【0021】
図1の装置によれば、貴金属を担持した炭素粒子からなる凝集粒子を流動させ、粉砕しながら、水素イオン伝導性高分子電解質の溶液または分散液をこれに噴霧することができる。しかも噴霧する溶液または分散液の量を制御することで、F/Cを制御することが可能である。また、導入された加熱ガスによって、粒子の乾燥と同時に水素イオン伝導性高分子電解質の加熱処理を行うことが可能である。これに粒子を細かく粉砕する工程が加わることで、溶液または分散液が付着しにくい部分に担持された貴金属にも水素イオン伝導性高分子電解質が付着することが可能となる。また、造粒工程が加わることで、最終生成物である粉末からなる電極材料の粒径と粒度分布を制御することが可能である。
【0022】
【実施例】
次に、本発明を実施例に基づいて具体例を説明する。
《実施例1》
(i)電極材料の調製
図1に示したようなスプレードライ式装置を用いて、貴金属を担持した炭素粒子を、水素イオン伝導性高分子電解質で被覆して、粉末からなる電極材料を調製した。具体的には、まず、30nmの平均一次粒子径を有する炭素粒子であるケッチェンブラックEC(オランダ国、AKZO Chemie社製)に、平均粒径約30Åの白金粒子を50重量%(残り50重量%は炭素)担持して、空気極側の粒子Aとした。燃料極側の粒子Bにも、粒子Aと同じものを用いた。
【0023】
図1で示した装置を用い、粒子A、Bの表面に、それぞれ水素イオン伝導性高分子電解質を被覆した。ここで、水素イオン伝導性高分子電解質の分散液には、パーフルオロエチレン系高分子電解質の分散液(デュポン社製SE10072)を用いた。分散液における高分子電解質の濃度は10重量%とした。各粉末に含まれる前記電解質の重量と、炭素粒子であるケッチェンブラックECの重量との比:F/Cは、0.8に設定した。
【0024】
装置の運転条件は、以下の通りとした。
粉末AまたはBの量:40g
高分子電解質の分散液(SE10072):160g
高圧スプレーによる分散液の噴霧速度:2g/分
流通ガス:窒素ガス
ガス導入口の温度:100℃
窒素ガス流量:0.06m/分
造粒プレートと撹拌羽根の回転速度:300rpm
高圧ジェット噴射:12秒に1回の間隔で0.5秒間噴射
高圧ジェット粉砕回数:900回
【0025】
なお、高分子電解質の分散液の噴霧は、粉末流動槽に粒子A、Bを導入した後、定常状態になってから開始した。造粒プレートと撹拌羽根は、粉末流動槽に粒子A、Bを導入した後、直ちに回転させ、高分子電解質の噴霧が終了して粒子が乾燥するまで回転を続けた。また、高圧ジェット噴射も粉末流動槽に粒子A、Bを導入した後、直ちに開始し、高分子電解質の噴霧が終了して粒子が乾燥するまで続けた。従って、本実施例では、高分子電解質の分散液を乾燥雰囲気中を流動している粒子に噴霧する工程と、乾燥雰囲気中を流動している粒子の粉砕と造粒を並行して行う工程とを、同時に行ったことになる。
【0026】
粉末A、Bを用いて調製した高分子電解質で被覆された粉末を、それぞれ電極材料A、Bとする。電極材料A、Bの表面を、それぞれEPMAで観察した結果、水素イオン伝導性高分子電解質で粒子表面が被覆されていた。電極材料A、Bの粒径をMICROTRAC粒度分布計(日機装(株)製)で測定したところ、粒度分布における粒径ピークはひとつだけであった。また、体積基準の粒度分布において、前記粒径ピークは10μm(最多頻度を示す粒径が10μm)であった。さらに、電極材料A、Bの全体積を100%とした時に、最多頻度を示した粒径(10μm)の50%以下の粒径(5μm以下)を有する粒子の累積体積頻度は25%であった。
【0027】
(ii)電解質膜−電極接合体(MEA)の作製
電極材料A、Bを、それぞれ窒素雰囲気中でエチレングリコールと混合し、ペースト状の触媒インクA、Bをそれぞれ調製した。次に、外寸20cm×32cmの水素イオン伝導性高分子電解質膜(デュポン社製のナフィオン112)の一方の面に触媒インクA、他方の面に触媒インクBを、それぞれスクリーン印刷法で塗布し、空気極側触媒層および燃料極側触媒層を形成した。各触媒層に含まれる貴金属量は0.5mg/cmとなるように調整した。
【0028】
次に、電極のガス拡散層となるカーボンペーパを撥水処理した。まず、外寸16cm×20cm、厚さ360μmの導電性カーボン不織布(東レ(株)製、TGP―H―120)を用意した。このカーボン不織布を、フッ素樹脂の水性分散液(ダイキン工業(株)製、ネオフロンND1)に含浸した後、これを乾燥し、400℃で30分加熱することで、撥水性を与えた。撥水処理したカーボン不織布の片面に、導電性炭素粒子とポリテトラフルオロエチレン(以下、PTFE)微粉末とを分散させた水性インクを、スクリーン印刷法で塗布し、撥水性カーボン層を形成した。このとき撥水性カーボン層の一部がカーボン不織布中に埋め込まれた。
【0029】
空気極側触媒層と燃料極側触媒層とを有する水素イオン伝導性高分子電解質膜を、一対の撥水性カーボン層を形成したカーボン不織布で挟持した。このとき撥水性カーボン層を内側に向けて触媒層と対面させた。そして、全体をホットプレスで接合し、電解質膜−電極接合体(MEA)とした。得られたMEAの周縁部の高分子電解質膜がはみ出した部分には、ゴム製ガスケットを接合し、冷却水、燃料ガスおよび酸化剤ガスを流通させるためのマニホールド穴をMEAに形成した。
【0030】
(iii)燃料電池の組み立て
外寸20cm×32cm、厚さ1.3mmで、所定のガス流路および/または冷却水流路が形成された樹脂含浸黒鉛板からなるセパレータを準備した。各流路の深さは0.5mmとした。そして、一対のセパレータでMEAを挟持した。このときMEAの空気極側にセパレータの酸化剤ガス流路を、燃料極側にセパレータの燃料ガス流路を対面させ、これを単電池とした。この単電池を2セル積層した後、冷却水流路を形成した一対のセパレータで挟み込んだ。このようなパターンを繰り返して、100セルが積層された電池スタックを作製した。電池スタックの両端部には、ステンレス鋼製の集電板と絶縁板を順次に配し、次いで、端板と締結ロッドで全体を固定した。締結圧はセパレータの面積あたり15kgf/cmとした。
【0031】
(iv)評価
得られた燃料電池を70℃に保持し、燃料極側に65℃の露点となるよう加湿・加温した水素ガスをガス利用率70%で供給した。また、空気極側には、65℃の露点となるよう加湿・加温した空気をガス利用率40%で供給した。この電池スタックを電流密度0.7A/cmの条件で連続運転し、出力特性の時間変化を測定した。その結果、本実施例の電池は1000時間以上にわたって、約14.6kW(65V―224A)の電池出力を維持することを確認した。
【0032】
尚、高圧ジェット噴射の間隔を10秒に1回に変更し、高圧ジェット粉砕回数1000回にし、それ以外は同じ条件で試作した粉末は、粒径ピークが2μm、最多頻度を示す粒径の50%以下の粒径を有する粒子の累積体積頻度は30%であった。フルスタック電池の特性は、約14.3kW(64V−224A)の電池出力を維持することを確認した。
【0033】
また、高圧ジェット噴射の間隔を14秒に1回に変更し、高圧ジェット粉砕回数800回とし、それ以外は同じ条件で試作した粉末は、粒径ピークが20μm、最多頻度を示す粒径の50%以下の粒径を有する粒子の累積体積頻度は、45%であった。フルスタック電池の特性は、約14.8kW(66V−224A)の電池出力を維持することを確認した。
【0034】
また、高分子電解質の分散液を60gにし、高圧ジェット粉砕回数500回とし、それ以外は同じ条件で試作したF/Cが0.3の粉末は、粒径ピークが10μm、最多頻度を示す粒径の50%以下の粒径を有する粒子の累積体積頻度は、40%であった。フルスタック電池の特性は、約13.9kW(62V−224A)の電池出力を維持することを確認した。
【0035】
また、高分子電解質の分散液を200gにし、高圧ジェット粉砕回数を1000回とし、それ以外は同じ条件で試作したF/Cが1.0の粉末は、粒径ピークが10μm、最多頻度を示す粒径の50%以下の粒径を有する粒子の累積体積頻度は、20%であった。フルスタック電池の特性は、約14.1kW(63V−224A)の電池出力を維持することを確認した。
【0036】
尚、本実施例では、粉末A、Bをエチレングリコールと混合して触媒インクを調製したが、塗工用インク溶媒として、ブタノール、イソプロパノール、ヘキサン、ヘプタン等を用いても同様の高性能が得られることを確認した。
【0037】
《実施例2》
実施例1と同様の粒子A、Bを調製し、図1で示した装置を用い、粒子A、Bの表面に、それぞれ水素イオン伝導性高分子電解質を被覆した。ここでも、水素イオン伝導性高分子電解質の分散液には、パーフルオロエチレン系高分子電解質の分散液(デュポン社製SE10072)を用いた。また、各粉末に含まれる前記電解質の重量と、炭素粒子であるケッチェンブラックECの重量との比:F/Cは、0.8に設定した。
【0038】
装置の運転条件は、次の条件以外は実施例1と同様とした。
高圧ジェット噴射:8秒に1回の間隔で0.5秒間噴射
高圧ジェット粉砕回数:1000回
【0039】
粉末A、Bを用いて上記条件で調製した高分子電解質で被覆された粉末を、それぞれ電極材料A7、B7とする。電極材料A7、B7の粒径を実施例1と同様に測定したところ、粒度分布における粒径ピークはひとつだけであった。また、体積基準の粒度分布において、前記粒径ピークは1μm(最多頻度を示す粒径が1μm)であった。さらに、電極材料A7、B7の全体積を100%とした時に、最多頻度を示した粒径(1μm)の50%以下の粒径(0.5μm以下)を有する粒子の累積体積頻度は40%であった。
【0040】
電極材料A7、B7を用いたこと以外は、実施例1と同様の燃料電池を作製し、実施例1と同じ条件で、その燃料電池の評価を行った。その結果、本実施例の電池は1000時間以上にわたって、約13.2kW(59V―224A)の電池出力を維持することを確認した。
【0041】
尚、高圧ジェット噴射の間隔を16秒に1回に変更し、高圧ジェット粉砕回数を500回にし、それ以外は実施例2と同じ条件で試作した粉末は、粒径ピークが30μm、最多頻度を示す粒径の50%以下の粒径を有する粒子の累積体積頻度は、40%であった。フルスタック電池の特性は、約13.4kW(60V−224A)の電池出力を維持することを確認した。
【0042】
また、高圧ジェット噴射の間隔を12秒に1回に変更し、高圧ジェット粉砕回数を400回にし、それ以外は実施例2と同じ条件で試作した粉末は、粒径ピークが10μm、最多頻度を示す粒径の50%以下の粒径を有する粒子の累積体積頻度は、55%であった。フルスタック電池の特性は、約13.4kW(60V−224A)の電池出力を維持することを確認した。
【0043】
また、高圧ジェット噴射の間隔を12秒に1回に変更し、高圧ジェット粉砕回数を500回にし、高分子電解質の分散液を40gにし、それ以外は実施例2と同じ条件で試作したF/Cが0.2の粉末は、粒径ピークが10μm、最多頻度を示す粒径の50%以下の粒径を有する粒子の累積体積頻度は40%であった。フルスタック電池の特性は、約13.2kW(59V−224A)の電池出力を維持することを確認した。
【0044】
また、高圧ジェット噴射の間隔を12秒に1回に変更し、高圧ジェット粉砕回数を1200回にし、高分子電解質の分散液を220gにし、それ以外は実施例2と同じ条件で試作したF/Cが1.1の粉末は、粒径ピークが10μm、最多頻度を示す粒径の50%以下の粒径を有する粒子の累積体積頻度は40%であった。フルスタック電池の特性は、約13.4kW(60V−224A)の電池出力を維持することを確認した。
【0045】
《比較例1》
実施例1で用いた粒子Aを10gビーカーに投入し、F/Cが0.8となるように、高分子電解質の分散液(デュポン社製SE10072)40gを混合後、超音波攪拌し、溶媒を真空乾燥により完全に除去することにより、試料粉末を得た。上記試料粉末をコーヒーミルで10分間粉砕したものを電極材料として、実施例1と同等の方法で、触媒層を作製し、MEAを作製した。
【0046】
この時、得られた電極材料の粒径を、実施例1と同等の方法で測定したところ、粒度分布における粒径ピークは26μmと8μmに二つ現れた。この試料粉末を用いて、実施例1と同様の燃料電池を作製し、実施例1と同じ条件で、その燃料電池の評価を行った。その結果、本比較例の電池は1000時間以上にわたって、約12.5kW(56V−224A)であった。
【0047】
《比較例2》
実施例1と同様に粒子Aを調製し、図1で示した装置を用い、粒子Aの表面にそれぞれ水素イオン伝導性高分子電解質を被覆した。但し、装置の運転条件は、次の条件以外は、実施例1と同様にした。
高圧ジェット噴射:12秒に1回の間隔で0.5秒間噴射
高圧ジェット粉砕回数:50回
【0048】
得られた試料粉末を実施例1と同様に観察した結果、水素イオン伝導性高分子電解質により粒子が被覆されていた。また、得られた試料粉末を実施例1と同様に測定したところ、粒度分布における粒径ピークは19μmと8μmに二つ現れた。この試料粉末を用いて、実施例1と同様の燃料電池を作製し、実施例1と同じ条件で、その燃料電池の評価を行った。その結果、本比較例の電池は1000時間以上にわたって、約12.3kW(55V−224A)であった。
【0049】
表1に、実施例1、2の電極材料の最多頻度を示す粒径R(μm)、最多頻度を示す粒径の50%以下の粒径を有する粒子の累積体積頻度P(%)、F/C値、所定の燃料電池の1000時間後の電流密度0.7A/cmの時の電力(kW)と電圧(V)を示す。また、合わせて、比較例1、2の電極材料の最多頻度を示す粒径R(μm)、F/C値、所定の燃料電池の1000時間後の電流密度0.7A/cmの時の電力(kW)と電圧(V)を示す。
【0050】
【表1】

Figure 2004349076
【0051】
実施例1と実施例2の全てが、比較例1または比較例2よりも優れているのは、実施例1、2では、電極材料の粒径ピークが1つしかないためと考えられる。比較例1では、電極材料の粒径ピークが2つあるため、形成された触媒層が緻密となり、反応ガスの通気性が抑制されるが、実施例1、2では、このような緻密さが緩和され、反応ガスの通気性が改善されていると考えられる。
【0052】
図2に、緻密な触媒層の様子を概念的に示す。触媒層は、貴金属23を担持した炭素粒子22からなり、炭素粒子22は一般に凝集粒子を形成しており、凝集粒子の表面は高分子電解質24で被覆されている。電極材料に占める小さい粒子25の割合が大きいと、平均的な大きさを有する凝集粒子同士の隙間に、小さい粒子25が侵入して、石垣状に緻密な触媒層を形成するものと考えられる。
【0053】
次に、実施例1において、F/Cが同じ場合、粒径が大きいもの程、電池性能が高いのは、電極材料の粒径が小さいもの程、緻密な触媒層が形成され、反応ガスの拡散性が阻害されるためと考えられる。実施例2において、粒径が1μmで電池性能が低下しているのも同じ原因と考えられる。
【0054】
次に、実施例2において、F/Cが0.8で最多頻度を示す粒径Rが30μmの場合、粒径Rが実施例1と比較して大きいにもかかわらず、電池性能は実施例1よりも低くなっている。これは、触媒層が緻密でないことによる正の効果よりも、次に述べる負の効果が優位となるために、電池性能が低下しているものと思われる。
【0055】
粒径Rが大きくなりすぎると、炭素同士の接点が少なくなる。炭素表面を被覆する水素イオン伝導性高分子電解質が炭素−炭素接点にある場合、電子伝導性は低下するが、炭素−炭素同士の接点が少ないため、電子伝導性の低い部分を迂回するルートが少なくなる。そのため、全体的に電子伝導性が低下し、電池特性は低下する。以上のことから、粒径Rが30μmの場合には、粒径Rが大きいにもかかわらず、電池性能が低下しているものと考えられる。
【0056】
次に、実施例1と実施例2において、粒径RとF/Cが同じ場合、最多頻度を示す粒径の50%以下の粒径を有する粒子の累積体積頻度Pが大きい方が、小さい場合よりも電池性能が低くなっている。これは、累積体積頻度Pが大きい場合には、小さい粒子が相対的に多くなるためと考えられる。これにより、触媒層が緻密になりやすく、反応ガスの通気性が抑制され、電池性能が低下しているものと考えられる。
【0057】
実施例2において、粒径Rが10μmの場合、F/Cの違いにより電池性能が異なっているのは、以下の理由と考えられる。すなわち、F/Cが0.3未満では、炭素を被覆する水素イオン伝導性高分子電解質が少ないため、水素イオン伝導性が低下し、電池性能が低下すると考えられる。一方、F/Cが1.0を超えると、含水性のある水素イオン伝導性高分子電解質が増加し過ぎ、触媒層中の水の含有量が増え、通気性が低下し、電池性能が低下すると考えられる。
【0058】
尚、上記実施例においては、図1の装置を用いて電極材料の粒度分布を制御したが、例えば、水素イオン伝導性高分子電解質で被覆された状態の貴金属を担持した炭素粒子を調製した後、ふるい等を用いて粒度分布を制御してもよい。
【0059】
【発明の効果】
以上のように、本発明によれば、触媒層のガス通気性を向上させることができ、高加湿運転における燃料電池の性能低下を制御することができる。
【図面の簡単な説明】
【図1】本発明の電極材料の製造に好適な装置の一例の構造を示す概念図である。
【図2】緻密な触媒層の断面模式図である。
【符号の説明】
1 粉末流動槽
2 水素イオン伝導性高分子電解質の溶液または分散液の貯留槽
3 高圧スプレー
4 ガス導入口
5 金属フィルタ
6 造粒プレート
7 撹拌羽根
8 圧縮ガス噴射ノズル
9 衝突ターゲット
10 バグフィルタ
11 圧縮ガス供給部
13 ガス排出口
22 炭素粒子
23 貴金属
24 水素イオン伝導性高分子電解質
25 小さい粒子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrode material for a polymer electrolyte fuel cell.
[0002]
[Prior art]
A fuel cell generates electric power and heat simultaneously by electrochemically reacting a fuel gas containing hydrogen with an oxidizing gas containing oxygen such as air. In the general structure, first, a catalyst layer mainly composed of carbon particles carrying a noble metal such as platinum is formed on both surfaces of a polymer electrolyte membrane that selectively transports hydrogen ions. Next, a gas diffusion layer having both gas permeability and electron conductivity is formed on the outer surface of the catalyst layer. The combination of the gas diffusion layer and the catalytic reaction layer becomes an electrode.
[0003]
Next, a sealing material or a gasket is arranged around the electrode with a polymer electrolyte membrane interposed therebetween so that the supplied gas does not leak outside or the two types of gases do not mix with each other. A material in which a sealing material or a gasket is integrated with an electrode and a polymer electrolyte membrane in advance is called an electrolyte membrane-electrode assembly (MEA). Outside the MEA, a conductive separator for mechanically fixing the MEA and electrically connecting adjacent MEAs to each other in series is arranged. A gas flow path for supplying a fuel gas or an oxidizing gas to the electrode and carrying away generated gas and surplus gas is formed on a surface of the separator that contacts the MEA. Although the gas flow path can be provided separately from the separator, a method in which a groove is provided on the surface of the separator to form a gas flow path is generally used.
[0004]
The gas diffusion layer is formed using, for example, water-repellent carbon paper or carbon cloth. A water-repellent carbon layer may be provided at the interface between the catalyst layer and the gas diffusion layer for the purpose of keeping the catalyst layer and the polymer electrolyte membrane moist. The water-repellent carbon layer is formed using a dispersion of carbon particles and polytetrafluoroethylene particles containing a surfactant (hereinafter, PTFE dispersion). First, the carbon particles and the PTFE dispersion are mixed and dried or filtered to prepare a mixture of the carbon particles and the polytetrafluoroethylene particles. This mixture is mixed with water or an organic solvent to prepare an ink, and the ink is applied to one surface of carbon paper or carbon cloth to be a gas diffusion layer. As the coating method, a screen printing method, a spray coating method, a doctor blade method, a roll coater method, or the like is employed. Thereafter, the gas diffusion layer coated with the ink is baked at a temperature of about 300 to 400 ° C. to evaporate the surfactant, thereby obtaining a water-repellent carbon layer. The water-repellent carbon layer is disposed adjacent to the catalyst layer.
[0005]
The catalyst layer is generally formed using carbon particles supporting a noble metal and a hydrogen ion conductive polymer electrolyte. A polymer electrolyte dissolved or dispersed in an alcohol such as ethanol is used. First, a catalyst ink is prepared by mixing carbon particles carrying a noble metal such as platinum and a solution or dispersion of a polymer electrolyte, and adding a relatively high boiling point organic solvent such as isopropyl alcohol or butyl alcohol to the mixture. I do. The catalyst ink is applied on a gas diffusion layer or a polymer electrolyte membrane and dried to form a catalyst layer. Here, as the coating method, a screen printing method, a spray coating method, a doctor blade method, a roll coater method, or the like is employed. As another method for preparing the catalyst ink, a solution or dispersion of a polymer electrolyte is sprayed onto the surface of the noble metal-supported carbon particles by a spray-drying method and dried, and the obtained powder is dispersed in a high boiling point solvent. A method has also been implemented.
[0006]
By the way, in a fuel cell using a hydrogen ion conductive polymer electrolyte, it is required to promote an electrochemical reaction and achieve high performance. Various efforts have been made to improve the performance of fuel cells, one of which is to improve the catalyst layer. In the catalyst layer, it is important that the hydrogen ion conduction path, the electron conduction path, and the gas permeability of the reaction gas are secured. In order to secure a hydrogen ion conduction path, it is necessary that carbon particles supporting a noble metal are coated with a hydrogen ion conductive polymer electrolyte. It is also necessary that the electrolyte be wet to maintain proton conductivity. Further, in order to maintain the gas permeability of the reaction gas, the carbon particles supporting the noble metal need to be thinly coated with the electrolyte.
[0007]
[Problems to be solved by the invention]
As described above, in order to put a polymer electrolyte fuel cell into practical use, it is necessary to further improve its performance. However, the size of the carbon particles coated with the hydrogen ion conductive polymer electrolyte and carrying the noble metal varies. When a catalyst layer is formed using powders of particles of various sizes, the structure tends to be as dense as a stone wall of a castle. For this reason, the gas permeability of the reaction gas is impaired, and the battery performance is reduced. This tendency is particularly remarkable during a high humidification operation of the fuel cell in which the amount of water in the catalyst layer is large.
[0008]
[Means for Solving the Problems]
In order to solve the above problem, it is considered effective to make the size of the constituent particles of the powder forming the catalyst layer uniform and to improve the gas permeability of the catalyst layer during the high humidification operation.
Therefore, the present invention is an electrode material made of powder, wherein the powder is made of aggregated particles and a hydrogen ion conductive polymer electrolyte covering the aggregated particles, and the aggregated particles are made of carbon particles supporting a noble metal. The particle size distribution of the powder relates to an electrode material for a polymer electrolyte fuel cell having only one particle size peak.
[0009]
In the volume-based particle size distribution, the particle size peak is preferably in the range of 2 to 20 μm. When the total volume of the powder is 100%, it is preferable that the cumulative volume frequency of particles having a particle size of 50% or less of the particle size showing the most frequent frequency is 50% or less.
The ratio of the weight of the electrolyte contained in the powder to the weight of the carbon particles excluding the noble metal: F / C preferably satisfies 0.3 ≦ F / C ≦ 1.0.
[0010]
The present invention also provides (a) a step of flowing agglomerated particles composed of noble metal-supported carbon particles in a dry atmosphere, and (b) flowing a solution or dispersion of a hydrogen ion conductive polymer electrolyte in a dry atmosphere. Spraying the aggregated particles, and (c) simultaneously grinding and granulating the aggregated particles flowing in a dry atmosphere, wherein the step (b) and the step (c) are performed. ) Is performed in any order or at the same time, and a method for producing an electrode material for a polymer electrolyte fuel cell.
[0011]
The present invention further provides an electrolyte membrane-electrode assembly comprising a hydrogen ion conductive polymer electrolyte membrane and a pair of electrodes sandwiching the electrolyte membrane, and a pair of gas channels respectively disposed on both surfaces of the assembly. A fuel cell comprising a conductive separator, wherein the pair of electrodes each comprises a catalyst layer and a gas diffusion layer, the catalyst layer comprises a powder, and the powder covers agglomerated particles and a hydrogen ion conductor covering the agglomerated particles. The present invention relates to a polymer electrolyte fuel cell comprising a conductive polymer electrolyte, wherein the aggregated particles comprise carbon particles carrying a noble metal, and the particle size distribution of the powder has only one particle size peak.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The electrode material for a polymer electrolyte fuel cell of the present invention comprises a powder, and the particle size distribution of the powder has only one particle size peak. When there are a plurality of particle size peaks, the sizes of the constituent particles of the powder are not uniform, and the gas permeability of the catalyst layer cannot be improved.
The powder is composed of aggregated particles and a hydrogen ion conductive polymer electrolyte covering the aggregated particles, and the aggregated particles are composed of carbon particles carrying a noble metal. The average particle size of the available aggregated particles is usually 0.1 to 1 μm.
[0013]
The agglomerated particles are prepared, for example, using carbon particles having an average primary particle size of 30 to 40 nm. The primary particles are usually aggregated to form secondary particles. Such carbon particles are immersed in, for example, a noble metal salt solution, and the particles taken out of the solution are dried and reduced to obtain carbon particles carrying the noble metal. The particle size of the noble metal supported on the carbon particles is usually 1 to 5 nm. Preferably, the noble metal carries 40 to 50 parts by weight per 100 parts by weight of the carbon particles.
[0014]
As the carbon particles, carbon black, graphite powder, acetylene black and the like are used. Platinum, ruthenium, or the like is used as the noble metal. Perfluorocarbon sulfonic acid, a salt of perfluorocarbon sulfonic acid, or the like is preferably used as the proton conductive polymer electrolyte covering the aggregated particles. The unit weight (EW) per sulfonic acid group of the proton conductive polymer electrolyte is, for example, 800 to 1100 mg equivalent.
[0015]
In the volume-based particle size distribution, the particle size peak is preferably in the range of 2 to 20 μm, more preferably 5 to 15 μm. When the particle size peak is less than 2 μm, the catalyst layer becomes dense and the gas permeability is impaired, resulting in a decrease in battery performance. When the particle size peak exceeds 20 μm, the number of carbon-carbon contacts decreases. When the proton conductive polymer electrolyte coated on the carbon surface is at the carbon-carbon contact, the electron conductivity is reduced. When the number of contacts between carbon and carbon is small, the number of routes that bypass parts having low electron conductivity is reduced, so that electron conductivity is reduced and battery characteristics are deteriorated. When the total volume of the powder is 100%, the cumulative volume frequency of particles having a particle diameter of 50% or less of the particle diameter showing the most frequent frequency is preferably 50% or less, more preferably 30% or less. If the cumulative volume frequency exceeds 50%, the number of particles having a small particle size increases, and a dense structure like a stone wall is formed at the time of forming the catalyst layer.
[0016]
The ratio of the weight of the electrolyte contained in the powder to the weight of the carbon particles excluding the noble metal: F / C is 0.3 ≦ F / C ≦ 1.0, more preferably 0.5 ≦ F / C. It is preferable to satisfy ≦ 0.8. If the F / C is less than 3, the amount of the hydrogen ion conductive polymer electrolyte coating the carbon is small, so that the hydrogen ion conductivity is reduced and the battery performance is reduced. As the amount of the conductive polymer electrolyte increases, the content of water in the catalyst layer increases, the air permeability decreases, and the battery performance decreases.
[0017]
Next, an example of a method for manufacturing the electrode material will be described with reference to FIG. FIG. 1 is a conceptual diagram showing the structure of an example of an apparatus for manufacturing an electrode material. This device is a spray-dry type device. This apparatus has a powder flow tank 1 for introducing aggregated particles made of carbon particles carrying a noble metal, a gas inlet 4 at a lower part of the powder flow tank 1, and a gas outlet 13 at an upper part. . The powder fluidization tank 1 has a substantially cylindrical shape, and a metal filter 5 and a granulation plate 6 having slits are provided near the bottom thereof.
[0018]
A gas heated to a certain temperature is supplied from the gas inlet 4 and passes through the metal filter 5 and the slit of the granulation plate 6 and flows through the inside of the powder flowing tank 1. The agglomerated particles are blown up into the powder flowing tank 1 by the introduced gas, flow in the tank, and are heated. The gas passes through a bag filter 10 provided on the upper part of the powder fluidization tank 1 and is discharged from the gas discharge port 13 to the outside. The directions of gas flow are indicated by arrows a, b, and c.
[0019]
A high-pressure spray 3 is provided in the middle of the powder fluidization tank 1 so as to face the granulation plate 6. The storage tank 2 stores a solution or dispersion of a hydrogen ion conductive polymer electrolyte to be sent to the high-pressure spray 3. By spraying a solution or dispersion from the high-pressure spray 3 on the aggregated particles flowing inside the powder fluidization tank 1, the solution or dispersion of the hydrogen ion conductive polymer electrolyte adheres to the aggregated particles. However, since gas flows through the inside of the powder fluidization tank 1, the aggregated particles wetted with the solution or the dispersion eventually dry and become aggregated particles to which the hydrogen ion conductive polymer electrolyte is attached.
[0020]
The particles blown up by the gas eventually settle on the upper surface of the granulation plate 6 and are stirred by the stirring blade 7 rotating on the upper portion of the granulation plate 6, and the granulation and pulverization are repeated. A compressed gas injection nozzle (pulse jet) 8 is provided on the inner wall of the powder flow tank 1, and a high-pressure jet is intermittently injected toward a conical collision target 9 located at the center of the stirring blade 7. can do. Thereby, the particles in the fluidized state are further finely pulverized. The particles adhering to the bag filter 10 can be returned to the inside of the powder flowing tank 1 by gas intermittently injected from the compressed gas supply unit 11.
[0021]
According to the apparatus shown in FIG. 1, a solution or dispersion of a hydrogen ion conductive polymer electrolyte can be sprayed on the aggregated particles composed of carbon particles carrying a noble metal while flowing and pulverizing the particles. In addition, by controlling the amount of the solution or dispersion to be sprayed, it is possible to control the F / C. In addition, by the introduced heating gas, it is possible to heat the hydrogen ion conductive polymer electrolyte simultaneously with drying the particles. The addition of the step of finely pulverizing the particles allows the hydrogen ion conductive polymer electrolyte to adhere to the noble metal carried on the portion where the solution or the dispersion liquid is unlikely to adhere. Further, by adding the granulation step, it is possible to control the particle size and the particle size distribution of the electrode material composed of the powder as the final product.
[0022]
【Example】
Next, specific examples of the present invention will be described based on examples.
<< Example 1 >>
(I) Preparation of electrode material
Using a spray-dry type apparatus as shown in FIG. 1, carbon particles carrying a noble metal were coated with a hydrogen ion conductive polymer electrolyte to prepare an electrode material composed of a powder. Specifically, first, 50% by weight of platinum particles having an average particle diameter of about 30 ° was added to Ketjen Black EC (manufactured by AKZO Chemie, the Netherlands) which is carbon particles having an average primary particle diameter of 30 nm by 50% by weight (the remaining 50% by weight). % Is carbon) to obtain particles A on the air electrode side. The same particles A as the particles A were used for the particles B on the fuel electrode side.
[0023]
Using the apparatus shown in FIG. 1, the surfaces of the particles A and B were each coated with a proton conductive polymer electrolyte. Here, as a dispersion of the hydrogen ion conductive polymer electrolyte, a dispersion of a perfluoroethylene-based polymer electrolyte (SE10072 manufactured by DuPont) was used. The concentration of the polymer electrolyte in the dispersion was 10% by weight. The ratio F / C between the weight of the electrolyte contained in each powder and the weight of Ketjen Black EC as carbon particles was set to 0.8.
[0024]
The operating conditions of the device were as follows.
Amount of powder A or B: 40 g
Dispersion of polymer electrolyte (SE10072): 160 g
Spraying speed of dispersion by high pressure spray: 2 g / min
Distribution gas: Nitrogen gas
Gas inlet temperature: 100 ° C
Nitrogen gas flow rate: 0.06m 3 / Min
Rotation speed of granulation plate and stirring blade: 300 rpm
High pressure jet injection: Inject every 0.5 seconds for 12 seconds
High-pressure jet pulverization: 900 times
[0025]
Note that the spraying of the polymer electrolyte dispersion liquid was started after the particles A and B were introduced into the powder fluidization tank, and then after a steady state was reached. The granulation plate and the stirring blade were rotated immediately after the particles A and B were introduced into the powder fluidization tank, and continued to rotate until the spraying of the polymer electrolyte was completed and the particles were dried. The high-pressure jet injection was also started immediately after the particles A and B were introduced into the powder fluidization tank, and continued until the spraying of the polymer electrolyte was completed and the particles were dried. Therefore, in the present embodiment, a step of spraying the dispersion of the polymer electrolyte onto the particles flowing in the dry atmosphere, and a step of performing the pulverization and granulation of the particles flowing in the dry atmosphere in parallel Are performed at the same time.
[0026]
The powders coated with the polymer electrolyte prepared using the powders A and B are referred to as electrode materials A and B, respectively. As a result of observing the surfaces of the electrode materials A and B with EPMA, the particle surfaces were covered with the hydrogen ion conductive polymer electrolyte. When the particle sizes of the electrode materials A and B were measured with a MICROTRAC particle size distribution analyzer (manufactured by Nikkiso Co., Ltd.), there was only one particle size peak in the particle size distribution. In the volume-based particle size distribution, the particle size peak was 10 μm (the particle size indicating the highest frequency was 10 μm). Further, assuming that the total volume of the electrode materials A and B is 100%, the cumulative volume frequency of particles having a particle size (50 μm or less) of 50% or less of the particle size (10 μm) showing the most frequent frequency is 25%. Was.
[0027]
(Ii) Preparation of electrolyte membrane-electrode assembly (MEA)
The electrode materials A and B were each mixed with ethylene glycol in a nitrogen atmosphere to prepare paste-like catalyst inks A and B, respectively. Next, a catalyst ink A was applied to one surface of a hydrogen ion conductive polymer electrolyte membrane (Nafion 112 manufactured by DuPont) and a catalyst ink B was applied to the other surface by a screen printing method, each having an outer size of 20 cm × 32 cm. Thus, an air electrode side catalyst layer and a fuel electrode side catalyst layer were formed. The amount of noble metal contained in each catalyst layer is 0.5 mg / cm 2 It was adjusted to be.
[0028]
Next, water repellency treatment was performed on carbon paper to be a gas diffusion layer of the electrode. First, a conductive carbon nonwoven fabric (TGP-H-120, manufactured by Toray Industries, Inc.) having an outer size of 16 cm × 20 cm and a thickness of 360 μm was prepared. This carbon nonwoven fabric was impregnated with an aqueous dispersion of a fluororesin (NEOFLON ND1 manufactured by Daikin Industries, Ltd.), and then dried and heated at 400 ° C. for 30 minutes to give water repellency. An aqueous ink in which conductive carbon particles and polytetrafluoroethylene (hereinafter, PTFE) fine powder were dispersed was applied to one surface of the water-repellent carbon nonwoven fabric by a screen printing method to form a water-repellent carbon layer. At this time, a part of the water-repellent carbon layer was embedded in the carbon nonwoven fabric.
[0029]
A hydrogen ion conductive polymer electrolyte membrane having an air electrode side catalyst layer and a fuel electrode side catalyst layer was sandwiched between carbon nonwoven fabrics on which a pair of water repellent carbon layers was formed. At this time, the water-repellent carbon layer faced the catalyst layer facing inward. Then, the whole was joined by hot pressing to obtain an electrolyte membrane-electrode assembly (MEA). A rubber gasket was joined to a portion of the obtained MEA where the polymer electrolyte membrane protruded, and a manifold hole for flowing cooling water, fuel gas, and oxidizing gas was formed in the MEA.
[0030]
(Iii) Assembly of fuel cell
A separator made of a resin-impregnated graphite plate having an outer size of 20 cm × 32 cm and a thickness of 1.3 mm and having a predetermined gas channel and / or cooling water channel was prepared. The depth of each channel was 0.5 mm. Then, the MEA was sandwiched between a pair of separators. At this time, the oxidizing gas flow path of the separator faced the air electrode side of the MEA, and the fuel gas flow path of the separator faced the fuel electrode side, thereby forming a unit cell. After stacking two single cells, the single cell was sandwiched between a pair of separators having a cooling water channel formed therein. By repeating such a pattern, a battery stack in which 100 cells were stacked was produced. A current collector plate and an insulating plate made of stainless steel were sequentially arranged at both ends of the battery stack, and then the whole was fixed with an end plate and a fastening rod. Fastening pressure is 15kgf / cm per area of separator 2 And
[0031]
(Iv) Evaluation
The obtained fuel cell was maintained at 70 ° C., and humidified and heated hydrogen gas was supplied to the fuel electrode side at a dew point of 65 ° C. at a gas utilization rate of 70%. Further, humidified and heated air was supplied to the air electrode side at a dew point of 65 ° C. at a gas utilization rate of 40%. The current density of the battery stack was 0.7 A / cm. 2 Was operated continuously under the following conditions, and the time change of the output characteristics was measured. As a result, it was confirmed that the battery of this example maintained a battery output of about 14.6 kW (65 V-224 A) for 1000 hours or more.
[0032]
In addition, the interval of the high pressure jet injection was changed to once every 10 seconds, the number of times of high pressure jet pulverization was set to 1000 times, and the powder produced under the same conditions other than the above had a particle size peak of 2 μm and a particle size of % Of the particles having a particle size of 30% or less was 30%. The characteristics of the full stack battery were confirmed to maintain a battery output of about 14.3 kW (64 V-224 A).
[0033]
In addition, the interval of the high pressure jet injection was changed to once every 14 seconds, the number of times of high pressure jet pulverization was set to 800 times, and the powder produced under the same conditions other than the above had a particle size peak of 20 μm and a particle size of 50 which showed the most frequent. The cumulative volume frequency of particles having a particle size of less than or equal to 45% was 45%. The characteristics of the full stack battery were confirmed to maintain a battery output of about 14.8 kW (66V-224A).
[0034]
Also, a powder having a F / C of 0.3, which was made under the same conditions except that the dispersion of the polymer electrolyte was 60 g and the number of times of high-pressure jet pulverization was 500 times, was 10 μm, The cumulative volume frequency of the particles having a particle size of 50% or less of the diameter was 40%. The characteristics of the full stack battery were confirmed to maintain a battery output of about 13.9 kW (62V-224A).
[0035]
In addition, a powder having an F / C of 1.0 produced under the same conditions except that the dispersion of the polymer electrolyte was 200 g, the number of times of high-pressure jet pulverization was 1,000 times, and the other conditions were the same, showed a particle size peak of 10 μm and the highest frequency. The cumulative volume frequency of particles having a particle size of 50% or less of the particle size was 20%. The characteristics of the full stack battery were confirmed to maintain a battery output of about 14.1 kW (63 V-224A).
[0036]
In this example, the catalyst ink was prepared by mixing powders A and B with ethylene glycol. However, the same high performance was obtained by using butanol, isopropanol, hexane, heptane, etc. as the coating ink solvent. I confirmed that
[0037]
<< Example 2 >>
Particles A and B were prepared in the same manner as in Example 1, and the surfaces of the particles A and B were coated with a proton conductive polymer electrolyte using the apparatus shown in FIG. Here, a dispersion of a perfluoroethylene-based polymer electrolyte (SE10072 manufactured by DuPont) was used as the dispersion of the hydrogen ion conductive polymer electrolyte. Further, the ratio of the weight of the electrolyte contained in each powder to the weight of Ketjen Black EC, which is a carbon particle, F / C was set to 0.8.
[0038]
The operating conditions of the apparatus were the same as in Example 1 except for the following conditions.
High pressure jet injection: Inject every 0.5 seconds for once every 8 seconds
High-pressure jet pulverization: 1000 times
[0039]
The powders coated with the polymer electrolyte prepared under the above conditions using the powders A and B are referred to as electrode materials A7 and B7, respectively. When the particle sizes of the electrode materials A7 and B7 were measured in the same manner as in Example 1, there was only one particle size peak in the particle size distribution. In the volume-based particle size distribution, the particle size peak was 1 μm (the particle size indicating the most frequent frequency was 1 μm). Further, assuming that the total volume of the electrode materials A7 and B7 is 100%, the cumulative volume frequency of particles having a particle diameter (0.5 μm or less) of 50% or less of the particle diameter (1 μm) showing the most frequent frequency is 40%. Met.
[0040]
A fuel cell similar to that of Example 1 was manufactured except that the electrode materials A7 and B7 were used, and the fuel cell was evaluated under the same conditions as in Example 1. As a result, it was confirmed that the battery of this example maintained a battery output of about 13.2 kW (59 V-224 A) for 1000 hours or more.
[0041]
The interval of high-pressure jet injection was changed to once every 16 seconds, the number of high-pressure jet pulverizations was changed to 500 times, and the powder produced as a prototype under the same conditions as in Example 2 had a particle size peak of 30 μm and the most frequent The cumulative volume frequency of particles having a particle size of 50% or less of the particle size shown was 40%. The characteristics of the full stack battery were confirmed to maintain a battery output of about 13.4 kW (60 V-224 A).
[0042]
Also, the interval of high-pressure jet injection was changed to once every 12 seconds, the number of high-pressure jet pulverization was set to 400 times, and the powder produced as a prototype under the same conditions as in Example 2 had a particle size peak of 10 μm and the most frequent The cumulative volume frequency of particles having a particle size of 50% or less of the particle size shown was 55%. The characteristics of the full stack battery were confirmed to maintain a battery output of about 13.4 kW (60 V-224 A).
[0043]
The interval between high pressure jet injections was changed to once every 12 seconds, the number of high pressure jet pulverizations was set to 500, the dispersion of the polymer electrolyte was set to 40 g, and the F / F was prototyped under the same conditions as in Example 2 except for that. The powder having a C of 0.2 had a particle size peak of 10 μm, and the cumulative volume frequency of particles having a particle size of 50% or less of the particle size showing the most frequent frequency was 40%. The characteristics of the full stack battery were confirmed to maintain a battery output of about 13.2 kW (59 V-224 A).
[0044]
Further, the interval of the high-pressure jet injection was changed to once every 12 seconds, the number of high-pressure jet pulverization was set to 1200 times, the dispersion of the polymer electrolyte was set to 220 g, and the F / F was prototyped under the same conditions as in Example 2 except for that. The powder having a C of 1.1 had a particle size peak of 10 μm, and the cumulative volume frequency of particles having a particle size of 50% or less of the particle size showing the most frequent frequency was 40%. The characteristics of the full stack battery were confirmed to maintain a battery output of about 13.4 kW (60 V-224 A).
[0045]
<< Comparative Example 1 >>
10 g of the particles A used in Example 1 were put into a beaker, and 40 g of a polymer electrolyte dispersion (SE10072 manufactured by DuPont) was mixed so that the F / C became 0.8, followed by ultrasonic stirring, and the solvent was removed. Was completely removed by vacuum drying to obtain a sample powder. A catalyst layer was prepared in the same manner as in Example 1 by using the sample powder crushed by a coffee mill for 10 minutes as an electrode material to prepare an MEA.
[0046]
At this time, when the particle size of the obtained electrode material was measured by the same method as in Example 1, two particle size peaks in the particle size distribution appeared at 26 μm and 8 μm. Using this sample powder, a fuel cell similar to that of Example 1 was manufactured, and the fuel cell was evaluated under the same conditions as in Example 1. As a result, the battery of this comparative example had a power of about 12.5 kW (56V-224A) for 1000 hours or more.
[0047]
<< Comparative Example 2 >>
Particle A was prepared in the same manner as in Example 1, and the surface of the particle A was coated with a hydrogen ion conductive polymer electrolyte using the apparatus shown in FIG. However, the operating conditions of the apparatus were the same as in Example 1 except for the following conditions.
High pressure jet injection: Inject every 0.5 seconds for 12 seconds
High-pressure jet pulverization: 50 times
[0048]
As a result of observing the obtained sample powder in the same manner as in Example 1, the particles were coated with the hydrogen ion conductive polymer electrolyte. Further, when the obtained sample powder was measured in the same manner as in Example 1, two particle size peaks in the particle size distribution appeared at 19 μm and 8 μm. Using this sample powder, a fuel cell similar to that of Example 1 was manufactured, and the fuel cell was evaluated under the same conditions as in Example 1. As a result, the battery of this comparative example was about 12.3 kW (55 V-224 A) for over 1000 hours.
[0049]
Table 1 shows the particle size R (μm) indicating the most frequent of the electrode materials of Examples 1 and 2, the cumulative volume frequency P (%) of particles having a particle size of 50% or less of the particle size indicating the most frequent, F / C value, current density 0.7 A / cm after 1000 hours in a given fuel cell 2 The power (kW) and the voltage (V) at the time are shown. In addition, the particle size R (μm) indicating the most frequent frequency of the electrode materials of Comparative Examples 1 and 2, the F / C value, and the current density of a predetermined fuel cell after 1,000 hours of 0.7 A / cm 2 The power (kW) and the voltage (V) at the time are shown.
[0050]
[Table 1]
Figure 2004349076
[0051]
It is considered that all of Example 1 and Example 2 are superior to Comparative Example 1 or Comparative Example 2 because Examples 1 and 2 have only one particle size peak of the electrode material. In Comparative Example 1, since there are two particle diameter peaks of the electrode material, the formed catalyst layer becomes dense and the gas permeability of the reaction gas is suppressed. It is considered that the reaction gas was relaxed and the gas permeability of the reaction gas was improved.
[0052]
FIG. 2 conceptually shows a state of the dense catalyst layer. The catalyst layer is composed of carbon particles 22 carrying a noble metal 23, and the carbon particles 22 generally form aggregated particles, and the surface of the aggregated particles is coated with a polymer electrolyte 24. It is considered that when the ratio of the small particles 25 in the electrode material is large, the small particles 25 penetrate into the gaps between the aggregated particles having an average size and form a dense catalyst layer like a stone wall.
[0053]
Next, in Example 1, when the F / C was the same, the larger the particle size and the higher the battery performance, the smaller the particle size of the electrode material. It is considered that the diffusivity is inhibited. In Example 2, it is considered that the same cause is that the battery performance is reduced when the particle size is 1 μm.
[0054]
Next, in Example 2, when the F / C is 0.8 and the most frequent particle size R is 30 μm, the battery performance is higher than that of Example 1 even though the particle size R is larger than that of Example 1. It is lower than 1. This is considered to be due to the fact that the negative effect described below is superior to the positive effect due to the non-dense catalyst layer, so that the battery performance is reduced.
[0055]
If the particle size R is too large, the number of contact points between carbons decreases. When the proton conductive polymer electrolyte covering the carbon surface is at the carbon-carbon contact, electron conductivity is reduced, but since there are few carbon-carbon contacts, there is a route that bypasses the part with low electron conductivity. Less. Therefore, the electron conductivity is reduced as a whole, and the battery characteristics are reduced. From the above, it is considered that when the particle diameter R is 30 μm, the battery performance is reduced despite the large particle diameter R.
[0056]
Next, in Example 1 and Example 2, when the particle size R and F / C are the same, the larger the cumulative volume frequency P of particles having a particle size of 50% or less of the particle size showing the most frequent frequency, the smaller the cumulative volume frequency P is. Battery performance is lower than in the case. This is considered because when the cumulative volume frequency P is large, the number of small particles becomes relatively large. Thereby, it is considered that the catalyst layer tends to be dense, the gas permeability of the reaction gas is suppressed, and the battery performance is lowered.
[0057]
In Example 2, when the particle diameter R is 10 μm, the reason why the battery performance differs due to the difference in F / C is considered as follows. That is, when the F / C is less than 0.3, the amount of the hydrogen ion conductive polymer electrolyte coating the carbon is small, so that the hydrogen ion conductivity is reduced and the battery performance is considered to be reduced. On the other hand, if the F / C exceeds 1.0, the amount of the water-containing hydrogen ion conductive polymer electrolyte increases too much, the content of water in the catalyst layer increases, the air permeability decreases, and the battery performance decreases. It is thought that.
[0058]
In the above embodiment, the particle size distribution of the electrode material was controlled using the apparatus shown in FIG. 1. For example, after preparing carbon particles carrying a noble metal coated with a hydrogen ion conductive polymer electrolyte, The particle size distribution may be controlled using a sieve or a sieve.
[0059]
【The invention's effect】
As described above, according to the present invention, the gas permeability of the catalyst layer can be improved, and the performance of the fuel cell in high humidification operation can be controlled from being degraded.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing the structure of an example of an apparatus suitable for producing an electrode material of the present invention.
FIG. 2 is a schematic cross-sectional view of a dense catalyst layer.
[Explanation of symbols]
1 powder fluidization tank
2 Reservoir for solution or dispersion of proton conductive polymer electrolyte
3 High pressure spray
4 Gas inlet
5 Metal filter
6 Granulation plate
7 stirring blades
8 Compressed gas injection nozzle
9 Collision target
10 Bag Filter
11 Compressed gas supply unit
13 Gas outlet
22 carbon particles
23 precious metals
24 Hydrogen ion conductive polymer electrolyte
25 small particles

Claims (5)

粉末からなる電極材料であって、
前記粉末は、凝集粒子および前記凝集粒子を被覆する水素イオン伝導性高分子電解質からなり、前記凝集粒子は、貴金属を担持した炭素粒子からなり、
前記粉末の粒度分布は、粒径ピークを1つだけ有する高分子電解質型燃料電池用電極材料。
An electrode material made of powder,
The powder is made of aggregated particles and a hydrogen ion conductive polymer electrolyte covering the aggregated particles, the aggregated particles are made of carbon particles supporting a noble metal,
An electrode material for a polymer electrolyte fuel cell, wherein the particle size distribution of the powder has only one particle size peak.
体積基準の粒度分布において、前記粒径ピークが2〜20μmの範囲にあり、前記粉末の全体積を100%とした時に、最多頻度を示す粒径の50%以下の粒径を有する粒子の累積体積頻度が50%以下である請求項1記載の高分子電解質型燃料電池用電極材料。In the volume-based particle size distribution, the particle size peak is in the range of 2 to 20 μm, and when the total volume of the powder is 100%, the accumulation of particles having a particle size of 50% or less of the particle size showing the most frequent frequency 2. The electrode material for a polymer electrolyte fuel cell according to claim 1, wherein the volume frequency is 50% or less. 前記粉末に含まれる前記電解質の重量と、前記貴金属を除く前記炭素粒子の重量との比:F/Cが、0.3≦F/C≦1.0を満たす請求項1または2記載の高分子電解質型燃料電池用電極材料。The ratio according to claim 1 or 2, wherein the ratio of the weight of the electrolyte contained in the powder to the weight of the carbon particles excluding the noble metal: F / C satisfies 0.3 ≦ F / C ≦ 1.0. Electrode material for molecular electrolyte fuel cells. (a)貴金属を担持した炭素粒子からなる凝集粒子を乾燥雰囲気中に流動させる工程、
(b)水素イオン伝導性高分子電解質の溶液または分散液を、乾燥雰囲気中を流動している前記凝集粒子に噴霧する工程、
(c)乾燥雰囲気中を流動している前記凝集粒子の粉砕と造粒を並行して行う工程を有し、
前記工程(b)と前記工程(c)とを順不同もしくは同時に行い、さらに前記工程(c)の粉砕を高圧ガスの間欠噴射によって500回以上行う高分子電解質型燃料電池用電極材料の製造方法。
(A) a step of flowing agglomerated particles composed of carbon particles supporting a noble metal into a dry atmosphere;
(B) spraying a solution or dispersion of a hydrogen ion conductive polymer electrolyte onto the aggregated particles flowing in a dry atmosphere;
(C) a step of simultaneously performing pulverization and granulation of the aggregated particles flowing in a dry atmosphere,
A method for producing an electrode material for a polymer electrolyte fuel cell, wherein the steps (b) and (c) are performed in any order or simultaneously, and the pulverization in the step (c) is performed 500 times or more by intermittent injection of a high-pressure gas.
水素イオン伝導性高分子電解質膜および前記電解質膜を挟む一対の電極からなる電解質膜−電極接合体、ならびに前記接合体の両面に配置されたそれぞれガス流路を有する一対の導電性セパレータからなる燃料電池であって、
前記一対の電極が、それぞれ触媒層およびガス拡散層からなり、前記触媒層が粉末からなり、前記粉末が凝集粒子および前記凝集粒子を被覆する水素イオン伝導性高分子電解質からなり、前記凝集粒子が貴金属を担持した炭素粒子からなり、
前記粉末の粒度分布は、粒径ピークを1つだけ有する高分子電解質型燃料電池。
An electrolyte membrane-electrode assembly comprising a hydrogen ion conductive polymer electrolyte membrane and a pair of electrodes sandwiching the electrolyte membrane, and a fuel comprising a pair of conductive separators each having a gas flow path disposed on both surfaces of the assembly. Battery,
The pair of electrodes are each composed of a catalyst layer and a gas diffusion layer, the catalyst layer is composed of powder, the powder is composed of aggregated particles and a hydrogen ion conductive polymer electrolyte covering the aggregated particles, and the aggregated particles are Consisting of carbon particles carrying a noble metal,
A polymer electrolyte fuel cell having only one particle size peak in the particle size distribution of the powder.
JP2003143705A 2003-05-21 2003-05-21 Electrode material for polymer electrolyte fuel cell, and manufacturing method of the same Pending JP2004349076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143705A JP2004349076A (en) 2003-05-21 2003-05-21 Electrode material for polymer electrolyte fuel cell, and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143705A JP2004349076A (en) 2003-05-21 2003-05-21 Electrode material for polymer electrolyte fuel cell, and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2004349076A true JP2004349076A (en) 2004-12-09

Family

ID=33531407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143705A Pending JP2004349076A (en) 2003-05-21 2003-05-21 Electrode material for polymer electrolyte fuel cell, and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2004349076A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200804A (en) * 2006-01-30 2007-08-09 Toyota Motor Corp Fuel cell
JP2008186784A (en) * 2007-01-31 2008-08-14 Asahi Glass Co Ltd Membrane electrode assembly for polymer electrolyte fuel cell
WO2008096887A1 (en) 2007-02-06 2008-08-14 Toyota Jidosha Kabushiki Kaisha Membrane-electrode assembly and fuel cell comprising the same
WO2009051111A1 (en) * 2007-10-15 2009-04-23 Cataler Corporation Supported catalyst for fuel cell and fuel cells
JP2009238556A (en) * 2008-03-27 2009-10-15 Dainippon Printing Co Ltd Catalyst layer for polymer electrolyte fuel cell
JP2011076739A (en) * 2009-09-29 2011-04-14 Gs Yuasa Corp Gas diffusion layer for solid polymer fuel cell, and manufacturing method thereof
JP2014517985A (en) * 2011-04-25 2014-07-24 ユナイテッド テクノロジーズ コーポレイション Catalyst materials for fuel cells

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200804A (en) * 2006-01-30 2007-08-09 Toyota Motor Corp Fuel cell
JP2008186784A (en) * 2007-01-31 2008-08-14 Asahi Glass Co Ltd Membrane electrode assembly for polymer electrolyte fuel cell
WO2008096887A1 (en) 2007-02-06 2008-08-14 Toyota Jidosha Kabushiki Kaisha Membrane-electrode assembly and fuel cell comprising the same
EP2110876A1 (en) * 2007-02-06 2009-10-21 Toyota Jidosha Kabushiki Kaisha Membrane-electrode assembly and fuel cell comprising the same
EP2110876A4 (en) * 2007-02-06 2012-06-06 Toyota Motor Co Ltd Membrane-electrode assembly and fuel cell comprising the same
US8263285B2 (en) 2007-02-06 2012-09-11 Toyota Jidosha Kabushiki Kaisha Membrane-electrode assembly and fuel cell having the same
WO2009051111A1 (en) * 2007-10-15 2009-04-23 Cataler Corporation Supported catalyst for fuel cell and fuel cells
JP2009238556A (en) * 2008-03-27 2009-10-15 Dainippon Printing Co Ltd Catalyst layer for polymer electrolyte fuel cell
JP2011076739A (en) * 2009-09-29 2011-04-14 Gs Yuasa Corp Gas diffusion layer for solid polymer fuel cell, and manufacturing method thereof
JP2014517985A (en) * 2011-04-25 2014-07-24 ユナイテッド テクノロジーズ コーポレイション Catalyst materials for fuel cells

Similar Documents

Publication Publication Date Title
JP4144686B2 (en) Method for producing polymer electrolyte fuel cell
JP4944345B2 (en) POLYMER ELECTROLYTE FUEL CELL, AND METHOD AND DEVICE FOR PRODUCING THE ELECTRODE
JP2004281305A (en) Fuel cell and its manufacturing method
WO2001017047A1 (en) Polymer electrolyte type fuel cell
JP5534906B2 (en) Membrane electrode assembly and fuel cell
KR100474939B1 (en) Polymer Electrolyte Fuel Cell and manufacture Method for Polymer Electrolyte Fuel Cell
JP5114859B2 (en) Method for producing catalyst electrode for fuel cell
JP4423856B2 (en) Fuel cell and its manufacturing method
JP2003086190A (en) Polymer electrolyte fuel cell and method of manufacture
JP5061452B2 (en) Method for producing fuel cell catalyst
US7005397B2 (en) Electrode for polymer electrolyte fuel cell and method of producing the same
JP2004349076A (en) Electrode material for polymer electrolyte fuel cell, and manufacturing method of the same
Brodt et al. Nanofiber fuel cell electrodes I. Fabrication and performance with commercial Pt/C catalysts
JP2004139789A (en) Catalyst powder for fuel cell and its manufacturing method as well as polyelectrolyte membrane/electrode joint body and polyelectrolyte fuel cell equipped with the same
JP2003282067A (en) Composition and manufacturing method of polymerelectrolyte type fuel cell catalyst layer
JP4686992B2 (en) Solid polymer fuel cell and power generation method thereof
JP2004158290A (en) Polymer electrolyte fuel cell and method of manufacturing its electrode
JP2003282074A (en) Electrode for fuel cell, and manufacturing method of the same
JP2003109601A (en) Catalyst layer for high molecular electrolyte fuel cell and method of manufacturing the same
JP2003282075A (en) Fuel cell, and manufacturing method of the same
WO2014155929A1 (en) Method for manufacturing catalyst layer for fuel cell, catalyst layer for fuel cell, and fuel cell
JP2005285670A (en) Manufacturing method of film/electrode assembly for polymer electrolyte type fuel cell
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell
JP2003045439A (en) Manufacturing method of catalyst for polymer electrolyte fuel cell, electrolyte membrane/electrode assembly using it, and polymer electrolyte fuel cell
JP2003282076A (en) Electrode for fuel cell and manufacturing method of the same, and polymerelectrolyte type fuel cell