JP5050604B2 - Carbon material and manufacturing method thereof, secondary battery negative electrode material and non-aqueous electrolyte secondary battery - Google Patents

Carbon material and manufacturing method thereof, secondary battery negative electrode material and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5050604B2
JP5050604B2 JP2007081101A JP2007081101A JP5050604B2 JP 5050604 B2 JP5050604 B2 JP 5050604B2 JP 2007081101 A JP2007081101 A JP 2007081101A JP 2007081101 A JP2007081101 A JP 2007081101A JP 5050604 B2 JP5050604 B2 JP 5050604B2
Authority
JP
Japan
Prior art keywords
carbon material
metal compound
secondary battery
pitch
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007081101A
Other languages
Japanese (ja)
Other versions
JP2008239391A (en
Inventor
徹 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2007081101A priority Critical patent/JP5050604B2/en
Publication of JP2008239391A publication Critical patent/JP2008239391A/en
Application granted granted Critical
Publication of JP5050604B2 publication Critical patent/JP5050604B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a carbon material from which a negative electrode material for a nonaqueous electrolyte secondary cell excellent in charging and discharging characteristics can be manufactured, to provide a negative electrode material for a secondary cell using the carbon material obtained by the above method, and to provide a nonaqueous electrolyte secondary cell. <P>SOLUTION: The carbon material is obtained by compounding phenols, formaldehydes, a catalyst, a metal compound and a pitch-base material and then carbonizing and shows the moisture absorptivity of not more than 1.0% after being kept at 40&deg;C and 90% RH humidity for 7 days, and a density of 1.5 to 2.2 g/cm<SP>3</SP>, and contains the metal compound in an amount of 0.1 to 20.0%. The method for manufacturing the carbon material includes steps of: (a) preparing a monomer blend by using phenols, formaldehydes, a catalyst, a metal compound and a pitch-based material; and (b) carbonizing the monomer blend. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、炭素材及びその製造方法、二次電池用負極材並びに非水電解質二次電池に関するものである。   The present invention relates to a carbon material and a method for producing the same, a negative electrode material for a secondary battery, and a nonaqueous electrolyte secondary battery.

炭素材は、リチウムイオン二次電池用負極、コンデンサー用電極、電解用電極、活性炭など多様な範囲の用途に用いられており、今後更なる開発が期待されている分野である。
これらの炭素材は、従来、椰子殻、石炭コークス、石炭又は石油ピッチ、フラン樹脂、フェノール樹脂などを原料としている(例えば、特許文献1参照。)。しかし、これらの原料から得られた従来の炭素材は、表面に形成される細孔径のバラツキが大きく、また各々の細孔容積が大きいため、特に非水電解質二次電池用の負極材として用いた場合に、充放電容量やサイクル性などにおいてその特性が充分ではない場合があった。また黒鉛材と比較して、難黒鉛材は吸湿性が高く、取り扱い性に問題が生じる可能性があった。
Carbon materials are used in a wide range of applications such as negative electrodes for lithium ion secondary batteries, capacitor electrodes, electrodes for electrolysis, and activated carbon, and are areas where further development is expected in the future.
These carbon materials are conventionally made from coconut shell, coal coke, coal or petroleum pitch, furan resin, phenol resin, and the like (for example, see Patent Document 1). However, the conventional carbon materials obtained from these raw materials have a large variation in pore diameter formed on the surface, and each pore volume is large, so that they are particularly used as negative electrode materials for non-aqueous electrolyte secondary batteries. In some cases, the characteristics are not sufficient in terms of charge / discharge capacity and cycleability. Moreover, compared with the graphite material, the non-graphite material has a high hygroscopic property, which may cause a problem in handling.

特開平05−043345号公報JP 05-043345 A

本発明は、充放電特性に優れた非水電解質二次電池用の負極材を製造することができる炭素材及びその製造方法、前記炭素材を用いた二次電池用負極材、及び、非水電解質二次電池を提供するものである。   The present invention relates to a carbon material capable of producing a negative electrode material for a non-aqueous electrolyte secondary battery excellent in charge / discharge characteristics, a method for producing the same, a negative electrode material for a secondary battery using the carbon material, and a non-aqueous material. An electrolyte secondary battery is provided.

このような目的は、以下の本発明[1]〜[8]によって達成される。
[1] フェノール類、ホルムアルデヒド類、金属化合物及びピッチ系材料を必須成分として配合してなるモノマー配合物を炭化処理してなる炭素材であって、温度40℃、湿度90%RHの条件下7日後の吸湿率が1.0%以下であり、炭素材の密度が1.5〜2.2g/cm3であり、金属分を0.1〜15.0%含有することを特徴とする炭素材。
[2] 前記フェノール類は、フェノール、レゾルシノール、クレゾール、ブチルフェノール、トリメチルフェノール、メラミン、アニリン及びメトキシフェノールからなる群より選ばれる1種以上である[1]項記載の炭素材。
[3] 前記ホルムアルデヒド類は、ホルムアルデヒド、パラホルムアルデヒド、ベンゾフェノン及びベンズアルデヒドからなる群より選ばれる1種以上である[1]又は[2]項記載の炭素材。
[4] 前記金属化合物は、アルカリ金属化合物及び/又は遷移金属化合物である[1]〜[3]項のいずれか1項に記載の炭素材。
[5] 前記ピッチ系材料は、アセトン抽出率が1〜50%である[1]〜[4]項のいずれか1項に記載の炭素材。
[6] 下記(a)及び(b)工程を有することを特徴とする炭素材の製造方法。
(a)フェノール類、ホルムアルデヒド類、金属化合物及びピッチ系材料を用いてモノマー配合物を調整する工程。
(b)前記モノマー配合物を炭化処理する工程。
[7] [1]〜[5]項のいずれか1項に記載の炭素材を含有することを特徴とする二次電池用負極材。
[8] [7]項に記載の二次電池用負極材を用いることを特徴とする非水電解質二次電池。
Such an object is achieved by the following present inventions [1] to [8].
[1] A carbon material obtained by carbonizing a monomer composition obtained by blending phenols, formaldehydes, a metal compound and a pitch-based material as essential components, under conditions of a temperature of 40 ° C. and a humidity of 90% RH 7 The charcoal is characterized in that the moisture absorption after the day is 1.0% or less, the density of the carbon material is 1.5 to 2.2 g / cm 3 , and the metal content is 0.1 to 15.0%. Material.
[2] The carbon material according to [1], wherein the phenol is at least one selected from the group consisting of phenol, resorcinol, cresol, butylphenol, trimethylphenol, melamine, aniline and methoxyphenol.
[3] The carbon material according to [1] or [2], wherein the formaldehyde is at least one selected from the group consisting of formaldehyde, paraformaldehyde, benzophenone, and benzaldehyde.
[4] The carbon material according to any one of [1] to [3], wherein the metal compound is an alkali metal compound and / or a transition metal compound.
[5] The carbon material according to any one of [1] to [4], wherein the pitch-based material has an acetone extraction rate of 1 to 50%.
[6] A method for producing a carbon material, comprising the following steps (a) and (b):
(A) The process of adjusting a monomer compound using phenols, formaldehydes, a metal compound, and a pitch-type material.
(B) A step of carbonizing the monomer blend.
[7] A negative electrode material for a secondary battery, comprising the carbon material according to any one of items [1] to [5].
[8] A non-aqueous electrolyte secondary battery using the negative electrode material for a secondary battery according to the item [7].

本発明によれば、難黒鉛材でありながら低吸湿性の炭素材を得ることができる。このような炭素材は、フェノール類とホルムアルデヒド類とピッチ系材料及び金属化合物とを混合してモノマー配合物を調整し、これを炭化処理することにより得ることができる。
そして、本発明の炭素材を用いることにより、充放電特性及び耐吸湿性に優れた非水電解質二次電池用負極材を得ることができる。
According to the present invention, it is possible to obtain a carbon material having low hygroscopicity while being a non-graphite material. Such a carbon material can be obtained by mixing a phenol, a formaldehyde, a pitch-based material, and a metal compound to prepare a monomer composition, and carbonizing it.
And the negative electrode material for nonaqueous electrolyte secondary batteries excellent in charging / discharging characteristics and moisture absorption resistance can be obtained by using the carbon material of the present invention.

以下に、本発明の炭素材、その製造方法(以下、単に「製造方法」ということがある)、前記炭素材を用いた二次電池用負極材、及び、非水電解質二次電池について詳細に説明する。   Hereinafter, the carbon material of the present invention, a production method thereof (hereinafter sometimes simply referred to as “production method”), a negative electrode material for a secondary battery using the carbon material, and a nonaqueous electrolyte secondary battery will be described in detail. explain.

本発明の炭素材は、フェノール類、ホルムアルデヒド類、金属化合物及びピッチ系材料を必須成分として配合してなるモノマー配合物を炭化処理してなる炭素材であって、温度40℃、湿度90%RHの条件下7日後の吸湿率が1.0%以下であり、炭素材の密度が1.5〜2.2g/cm3であり、金属化合物を0.1%以上15.0%以下含有することを特徴とする炭素材である。
本発明の炭素材は、密度が1.5〜2.2g/cm3である一般的な難黒鉛剤でありながら、前記条件下での吸湿率が1.0%以下であることにより、ハンドリング時に吸湿することにより電池特性が劣化することを防止できるという優れた特徴を有するものである。
The carbon material of the present invention is a carbon material obtained by carbonizing a monomer compound comprising phenols, formaldehydes, a metal compound and a pitch-based material as essential components, and has a temperature of 40 ° C. and a humidity of 90% RH. The moisture absorption rate after 7 days under the above conditions is 1.0% or less, the density of the carbon material is 1.5 to 2.2 g / cm 3 , and contains a metal compound of 0.1% or more and 15.0% or less. It is a carbon material characterized by this.
Although the carbon material of the present invention is a general non-graphite agent having a density of 1.5 to 2.2 g / cm 3 , the moisture absorption rate under the above conditions is 1.0% or less. It has an excellent characteristic that battery characteristics can be prevented from deteriorating due to occasional moisture absorption.

本発明のモノマー配合物に用いるフェノール類モノマーとしては特に限定されないが、例えば、フェノール、レゾルシノール、クレゾール、ブチルフェノール、トリメチルフェノール、メラミン、アニリン、メトキシフェノールなどが挙げられる。 Although it does not specifically limit as a phenolic monomer used for the monomer compound of this invention, For example, phenol, resorcinol, cresol, butylphenol, trimethylphenol, melamine, aniline, methoxyphenol etc. are mentioned.

本発明のモノマー配合物に用いるホルムアルデヒド類モノマーとしては特に限定されないが、例えば、ホルムアルデヒド、パラホルムアルデヒド、ベンゾフェノン、ベンズアルデヒドなどが挙げられる。 Although it does not specifically limit as a formaldehyde monomer used for the monomer compound of this invention, For example, formaldehyde, paraformaldehyde, benzophenone, benzaldehyde, etc. are mentioned.

本発明のモノマー配合物に用いるピッチ系材料は特に限定されないが、タールピッチに酸化合物を添加した後に、200〜600℃の高温で、数日〜数10日間かけて炭化処理を行い得られるものである。
本発明のモノマー配合物に用いるピッチ系材料のアセトン抽出率は1〜50%であるものが好ましく、さらに好ましくは、3〜30%である。
アセトン抽出率が前記下限値未満であると、ほぼ固形化しており各モノマーとの反応性が十分ではない為に本発明の効果が得られない。また前記上限値を超えると、急速な加熱を行う為にピッチ系材料の重合反応が十分に行われず、添加した分の効果が十分に得られてこない。
またピッチ系材料の添加量は特に限定されないが、通常はフェノール100重量部に対して1〜50重量部であり、好ましくは3〜30重量部である。
ここでピッチ系材料の添加量が前記下限値未満であると、添加量が少なすぎる為に本発明の効果は見られない。また前記上限値を超えると、フェノール樹脂合成の効果が薄れてしまう為、半発明における十分な効果が確認出来ない。
The pitch-based material used in the monomer composition of the present invention is not particularly limited, but can be obtained by carbonizing at a high temperature of 200 to 600 ° C. for several days to several tens of days after adding an acid compound to tar pitch. It is.
The pitch extraction material used in the monomer blend of the present invention preferably has an acetone extraction rate of 1 to 50%, more preferably 3 to 30%.
If the acetone extraction rate is less than the lower limit, the effect of the present invention cannot be obtained because the composition is almost solid and the reactivity with each monomer is not sufficient. On the other hand, if the upper limit is exceeded, rapid polymerization is not performed, and the polymerization reaction of the pitch-based material is not sufficiently performed, and the effect of the added amount is not sufficiently obtained.
The addition amount of the pitch-based material is not particularly limited, but is usually 1 to 50 parts by weight, preferably 3 to 30 parts by weight with respect to 100 parts by weight of phenol.
Here, when the addition amount of the pitch-based material is less than the lower limit value, the effect of the present invention is not seen because the addition amount is too small. On the other hand, if the upper limit is exceeded, the effect of synthesizing the phenol resin is diminished, so that a sufficient effect in the half invention cannot be confirmed.

本発明のモノマー配合物に用いる金属化合物としては特に限定されないが、例えばリチウム水酸化物、酸化リチウム、ナトリウム水酸化物、水酸化マグネシウムなどのアルカリ金属化合物、酸化鉄、酸化亜鉛、酸化チタンなどの遷移金属化合物などが挙げられる。
ここで金属化合物の添加量は特に限定されないが、通常はフェノール100重量部に対して0.1〜15.0重量部であり、さらに好ましくは0.5〜10.0重量部である。金属化合物の添加量を前記範囲とすることにより、(b)工程において炭素材表面に細孔を好適量形成させることができる。
Although it does not specifically limit as a metal compound used for the monomer compound of this invention, For example, alkali metal compounds, such as lithium hydroxide, lithium oxide, sodium hydroxide, magnesium hydroxide, iron oxide, zinc oxide, titanium oxide, etc. Examples include transition metal compounds.
Although the addition amount of a metal compound is not specifically limited here, Usually, it is 0.1-15.0 weight part with respect to 100 weight part of phenol, More preferably, it is 0.5-10.0 weight part. By setting the addition amount of the metal compound within the above range, a suitable amount of pores can be formed on the surface of the carbon material in the step (b).

金属化合物の量が上記上限値を超えると、(b)工程における縮合反応時に、酸化合物の触媒としての効果が過大となるために細孔容積が小さくなる傾向がある。一方、上記下限値未満では、酸化合物の触媒としての効果が過小となるために、細孔容積の適度な減少が起こりにくくなり、細孔容積が大きくなる傾向がある。このように、フェノールに対する酸化合物の量を調整することにより、炭素材表面に形成される細孔容積を制御することができる。   When the amount of the metal compound exceeds the above upper limit, the effect of the acid compound as a catalyst is excessive during the condensation reaction in the step (b), and the pore volume tends to be small. On the other hand, if the amount is less than the above lower limit value, the effect of the acid compound as a catalyst is excessively small, so that an appropriate decrease in the pore volume is less likely to occur, and the pore volume tends to increase. Thus, the pore volume formed on the carbon material surface can be controlled by adjusting the amount of the acid compound relative to the phenol.

本発明に用いるモノマー配合物は、前記のフェノール類、ホルムアルデヒド類、金属化合物及びピッチ系材料を必須成分として配合してなるものであるが、このほか、添加剤を配合することができる。
ここで用いられる添加剤としては特に限定されないが、例えば、200〜800℃にて炭化処理した炭素材前駆体、黒鉛及び黒鉛変性剤、含窒素化合物、含酸素化合物、芳香族化合物、及び、非鉄金属元素などを挙げることができる。
上記添加剤は、モノマー配合物に用いるフェノール類等の種類や性状などにより、単独あるいは2種類以上を併用することができる。
The monomer blend used in the present invention is formed by blending the above-mentioned phenols, formaldehydes, metal compounds and pitch-based materials as essential components, but in addition, additives can be blended.
Although it does not specifically limit as an additive used here, For example, the carbon material precursor carbonized at 200-800 degreeC, a graphite and graphite modifier, a nitrogen-containing compound, an oxygen-containing compound, an aromatic compound, and nonferrous A metal element etc. can be mentioned.
The above additives may be used alone or in combination of two or more depending on the types and properties of phenols used in the monomer blend.

本発明の炭素材の製造方法は、下記(a)並びに(b)工程を有するものである。
(a)フェノール類、ホルムアルデヒド類、金属化合物及びピッチ系材料を必須成分としてモノマー配合物を調整する工程。
(b)前記モノマー配合物を炭化処理する工程。
本発明の製造方法の第1工程である(a)の工程について説明する。
本発明に用いるモノマー配合物の調製方法としては特に限定されないが、例えば、前記のフェノール類、ホルムアルデヒド類、金属化合物及びピッチ系材料と、必要により添加剤とを所定の比率で配合し、これらを溶融混合する方法、これらの成分を溶媒に溶解して混合する方法、あるいは、これらの成分を粉砕して混合する方法などにより調製することができる。
The method for producing a carbon material of the present invention includes the following steps (a) and (b).
(A) A step of preparing a monomer blend using phenols, formaldehydes, metal compounds and pitch-based materials as essential components.
(B) A step of carbonizing the monomer blend.
The step (a) which is the first step of the production method of the present invention will be described.
The method for preparing the monomer blend used in the present invention is not particularly limited. For example, the above-described phenols, formaldehydes, metal compounds and pitch-based materials and, if necessary, additives are blended in a predetermined ratio, and these are blended. It can be prepared by a melt mixing method, a method in which these components are dissolved and mixed in a solvent, or a method in which these components are pulverized and mixed.

モノマー配合物の調製のための装置としては特に限定されないが、例えば、溶融混合を行う場合には、混練ロール、単軸あるいは二軸ニーダーなどの混練装置を用いることができる。また、溶解混合を行う場合は、例えば、ヘンシェルミキサー、ディスパーザなどの混合装置を用いることができる。そして、粉砕混合を行う場合には、例えば、ハンマーミル、ジェットミルなどの装置を用いることができる。
このようにして得られたモノマー配合物は、複数種類の成分を物理的に混合しただけのものであってもよいし、モノマー配合物の調製段階で付与されるエネルギーによりその一部を化学的に反応させたものであってもよい。
The apparatus for preparing the monomer blend is not particularly limited. For example, when melt mixing is performed, a kneading apparatus such as a kneading roll, a single screw or a twin screw kneader can be used. Moreover, when performing melt | dissolution mixing, mixing apparatuses, such as a Henschel mixer and a disperser, can be used, for example. And when performing pulverization mixing, apparatuses, such as a hammer mill and a jet mill, can be used, for example.
The monomer blend obtained in this way may be one obtained by physically mixing a plurality of types of components, or part of the monomer blend is chemically treated by the energy imparted during the preparation of the monomer blend. It may have been reacted with.

また、モノマー配合物を予備炭化処理することが好ましい。予備炭化処理の方法としては特に限定されないが、モノマー配合材料を、例えば、1〜200℃/時で400〜600℃まで昇温して、これを0.1〜50時間、好ましくは0.5〜10時間処理することができる。   Moreover, it is preferable to pre-carbonize the monomer blend. Although it does not specifically limit as a method of a preliminary carbonization process, For example, it heats up a monomer compounding material to 400-600 degreeC at 1-200 degreeC / hour, and this is 0.1 to 50 hours, Preferably it is 0.5 It can be processed for 10 hours.

本発明の製造方法において、第2工程は、第1工程で得られた炭素材前駆体を炭化処理する(b)工程である。
上記(b)工程における炭化処理の条件としては特に限定されないが、例えば、常温から1〜200℃/時間で昇温して、800〜3000℃で0.1〜50時間、好ましくは0.5〜10時間保持して行うことができる。炭化処理時の雰囲気としては例えば、窒素、ヘリウムガスなどの不活性雰囲気下、もしくは不活性ガス中に微量の酸素が存在するような、実質的に不活性な雰囲気下で行うことができる。
このような炭化処理時の温度、時間等の条件は、炭素材の特性を最適なものにするため適宜調整することができる。
In the production method of the present invention, the second step is a step (b) in which the carbon material precursor obtained in the first step is carbonized.
Although it does not specifically limit as the conditions of the carbonization process in the said (b) process, For example, it heats up at 1-200 degreeC / hour from normal temperature, 0.1 to 50 hours at 800-3000 degreeC, Preferably it is 0.5 For 10 hours. As an atmosphere during the carbonization treatment, for example, an inert atmosphere such as nitrogen or helium gas, or a substantially inert atmosphere in which a trace amount of oxygen is present in the inert gas can be used.
Conditions such as temperature and time during the carbonization can be adjusted as appropriate in order to optimize the characteristics of the carbon material.

本発明の炭素材が、二次電池用負極材に好適に用いることができる理由は、明確ではないが、以下のように推測される。
通常、熱硬化性樹脂あるいはその硬化物を炭化する過程においては、三次元架橋反応、熱分解反応、及び、環縮合反応により炭素材骨格の架橋度が変化するが、通常は炭素材全体に対して一定に架橋度が保たれない為、細孔径のばらつきが大きい炭素材表面が形成され、細孔容積自体も大きくなり吸湿性が高くなる要因となる。
The reason why the carbon material of the present invention can be suitably used for the negative electrode material for secondary batteries is not clear, but is presumed as follows.
Usually, in the process of carbonizing the thermosetting resin or its cured product, the degree of crosslinking of the carbon material skeleton changes due to the three-dimensional crosslinking reaction, thermal decomposition reaction, and ring condensation reaction. Since the degree of cross-linking cannot be kept constant, a carbon material surface having a large variation in pore diameter is formed, and the pore volume itself is increased, resulting in increased hygroscopicity.

これに対して、本発明の炭素材においては、フェノール類、ホルムアルデヒド類をモノマーで含有することにより、またピッチ系材料を含有することにより、重縮合反応において、比較的に層構造が均一的に形成される働きを示し、細孔径のコントロールが行われるものと推測される。従って炭素材の難黒鉛性を保持しながら吸湿性を低下させることが可能になる。
また、必要に応じて、モノマー配合物に混合する金属化合物及びピッチ系材料の量を調整することにより、炭素材表面に形成される細孔容積の大きさを制御することができ、目的とする電池特性に応じた炭素材を得ることが可能となる。
In contrast, the carbon material of the present invention has a relatively uniform layer structure in the polycondensation reaction by containing phenols and formaldehyde as monomers, and by containing a pitch-based material. It is presumed that the function to be formed is shown and the pore diameter is controlled. Accordingly, it is possible to reduce the hygroscopicity while maintaining the non-graphite property of the carbon material.
Moreover, if necessary, the size of the pore volume formed on the surface of the carbon material can be controlled by adjusting the amount of the metal compound and the pitch-based material mixed in the monomer composition. It becomes possible to obtain a carbon material according to battery characteristics.

また、炭化処理における過程において、特に熱分解反応や環縮合反応が起こる段階で、金属化合物が触媒として機能し、炭素材を形成する炭素環の縮合が促進され、細孔容積が小さくなると考えられ、よって吸湿性が抑えられるものと考えられる。
ここで、ピッチ系材料及び金属化合物が同時に存在した状態で縮合重合反応から炭化縮合反応へと進むことにより、より細孔容積の大きさが制御出来ることになる。
例えば合成したフェノール樹脂を用いた状態よりも、ピッチ系材料及び又は金属化合物はより各モノマーとの近接することにより、添加することによる効果は促進されて、細孔容積は更に低下することになり、結果として低吸湿性を有する炭素材が得られることとなる。
この理由として、添加した金属化合物原子がピッチ系材料の表面に付着して触媒作用を有する為、フェノール類との反応性及び相溶性が向上して、相乗効果をもたらしたものと推測される。
Also, in the process of carbonization, the metal compound functions as a catalyst, especially at the stage where a thermal decomposition reaction or a ring condensation reaction occurs, and it is considered that the condensation of the carbocycle forming the carbon material is promoted and the pore volume is reduced. Therefore, it is thought that hygroscopicity is suppressed.
Here, by proceeding from the condensation polymerization reaction to the carbonization condensation reaction in the state where the pitch-based material and the metal compound exist at the same time, the size of the pore volume can be further controlled.
For example, when the pitch-based material and / or metal compound is closer to each monomer than in the case of using a synthesized phenol resin, the effect of adding it is promoted, and the pore volume is further reduced. As a result, a carbon material having low hygroscopicity is obtained.
This is presumably because the added metal compound atoms adhere to the surface of the pitch-based material and have a catalytic action, so that the reactivity and compatibility with phenols is improved, resulting in a synergistic effect.

本発明の製造方法によれば、例えば、炭化温度を高くするなどの手段により炭素材の吸湿性を制御する方法などに比べると、より低温で炭化処理を行って得られる炭素材を低コストで得ることができる。   According to the production method of the present invention, for example, a carbon material obtained by performing carbonization treatment at a lower temperature can be produced at a lower cost than a method of controlling the hygroscopicity of the carbon material by means such as increasing the carbonization temperature. Obtainable.

次に、本発明の二次電池用負極材について説明する。
本発明の二次電池用負極材は、上記本発明の製造方法により得られた炭素材を含有することを特徴とするものである。
本発明の二次電池用負極材は特に限定されないが、例えば、本発明の炭素材100重量部に対し、ポリエチレン、ポリプロピレン等を含むフッ素系高分子、ブチルゴム,ブタジエンゴム等のゴム状高分子等の有機高分子結着剤1〜30重量部、及びN−メチル−2−ピロリドン、ジメチルホルムアミド等の粘度調整用溶剤を適量添加して混練し、ペースト状にした混合物を圧縮成形、ロール成形等によりシート状、ペレット状等に成形して得ることができる。また、粘度調整用溶剤にてスラリー状にした混合物を銅箔、ニッケル箔等の集電体に塗布成形して得ることもできる。
Next, the negative electrode material for secondary batteries of the present invention will be described.
The negative electrode material for secondary batteries of the present invention is characterized by containing the carbon material obtained by the production method of the present invention.
The negative electrode material for a secondary battery of the present invention is not particularly limited. For example, a fluorine-based polymer containing polyethylene, polypropylene, etc., a rubbery polymer such as butyl rubber, butadiene rubber, etc. with respect to 100 parts by weight of the carbon material of the present invention. 1 to 30 parts by weight of an organic polymer binder and an appropriate amount of a viscosity adjusting solvent such as N-methyl-2-pyrrolidone and dimethylformamide are added and kneaded to form a paste-like mixture by compression molding, roll molding, etc. Can be obtained by molding into a sheet shape, a pellet shape or the like. Moreover, it can also obtain by apply | coating shaping | molding the mixture made into the slurry form with the solvent for viscosity adjustments on collectors, such as copper foil and nickel foil.

次に、本発明の非水電解質二次電池について説明する。
本発明の非水電解質二次電池は、上記本発明の二次電池負極材を用いることを特徴とするものである。
本発明の非水電解質二次電池に上記二次電池用負極材を適用する場合は特に限定されないが、例えば、二次電池用負極材を、セパレータを介して正極材と対向して配置し、電解液を用いることにより非水電解質二次電池が得られる。
Next, the nonaqueous electrolyte secondary battery of the present invention will be described.
The nonaqueous electrolyte secondary battery of the present invention is characterized by using the secondary battery negative electrode material of the present invention.
When the above-mentioned negative electrode material for a secondary battery is applied to the nonaqueous electrolyte secondary battery of the present invention, it is not particularly limited.For example, the negative electrode material for a secondary battery is disposed to face the positive electrode material via a separator, A nonaqueous electrolyte secondary battery can be obtained by using the electrolytic solution.

正極材としては特に限定されないが、例えば、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物等の複合酸化物やポリアニリン、ポリピロール等の導電性高分子等を用いることができる。セパレータとしては特に限定されないが、例えば、ポリエチレン、ポリプロピレン等の微多孔質フィルム、不織布等を用いることができる。電解液としては特に限定されないが、例えば、非水系溶媒に電解質となるリチウム塩を溶解したものを用いることができる。電解質としては特に限定されないが、例えば、LiClO4,LiPF6等のリチウム金属塩、テトラアルキルアンモニウム塩等を用いることができる。非水系溶媒としては、特に限定されないが、例えば、プロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン等の環状エステル類、ジメチルカーボネート、ジエチルカーボネート等の鎖状エステル類、ジメトキシエタン等のエーテル類等の混合物等を用いることができる。また、上記塩類をポリエチレンオキサイド、ポリアクリロニトリル等に混合された固体電解質を用いることもできるが特に限定されるものではない。 Although it does not specifically limit as a positive electrode material, For example, conductive polymers, such as complex oxides, such as lithium cobalt oxide, lithium nickel oxide, and lithium manganese oxide, polyaniline, polypyrrole, etc. can be used. Although it does not specifically limit as a separator, For example, microporous films, such as polyethylene and a polypropylene, a nonwoven fabric, etc. can be used. Although it does not specifically limit as electrolyte solution, For example, what melt | dissolved lithium salt used as electrolyte in a non-aqueous solvent can be used. No particular limitation is imposed on the electrolyte, for example, it can be used LiClO 4, lithium metal salt such as LiPF 6, tetraalkylammonium salts, and the like. The non-aqueous solvent is not particularly limited. For example, a mixture of cyclic esters such as propylene carbonate, ethylene carbonate and γ-butyrolactone, chain esters such as dimethyl carbonate and diethyl carbonate, ethers such as dimethoxyethane, and the like. Can be used. A solid electrolyte obtained by mixing the above salts with polyethylene oxide, polyacrylonitrile or the like may be used, but is not particularly limited.

以下、本発明を実施例により説明する。しかし、本発明は実施例に限定されるものではない。又、実施例、比較例で示される「部」は「重量部」、「%」は「重量%」を示す。   Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited to the examples. In the examples and comparative examples, “part” indicates “part by weight”, and “%” indicates “% by weight”.

実施例及び比較例で用いた原材料は以下のとおりである。
(1)ノボラック型フェノール樹脂:住友ベークライト社製・「PR−53195」、重量平均分子量約3000
(2)ピッチ系材料
タールピッチに5%ホウ酸を添加した後に、400℃まで10日間かけて窒素雰囲気下で炭化を行い、ピッチ系材料を得た。
この材料のアセトン抽出率は8%であった。
The raw materials used in the examples and comparative examples are as follows.
(1) Novolac type phenolic resin: “PR-53195” manufactured by Sumitomo Bakelite Co., Ltd., weight average molecular weight of about 3000
(2) Pitch-based material After adding 5% boric acid to tar pitch, carbonization was performed in a nitrogen atmosphere over 10 days up to 400 ° C. to obtain a pitch-based material.
The acetone extraction rate of this material was 8%.

1.炭素材の製造
<実施例1>
(1)モノマー配合物の調整
フェノール100部、90%パラホルムアルデヒド354部、水酸化ナトリウム1部、ピッチ系材料20部を溶液混合してモノマー配合物を調整した。
(2)炭素材の製造
上記で得られた配合物を、室温から100℃/時間で昇温して、1000℃に到達後、さらに10時間保持して炭化処理を行い、炭素材を得た。
1. Production of carbon material <Example 1>
(1) Preparation of monomer composition 100 parts of phenol, 354 parts of 90% paraformaldehyde, 1 part of sodium hydroxide, and 20 parts of pitch-based material were mixed in solution to prepare a monomer composition.
(2) Production of carbon material The composition obtained above was heated from room temperature to 100 ° C./hour, and after reaching 1000 ° C., it was further carbonized by holding for 10 hours to obtain a carbon material. .

<実施例2>
実施例(1)モノマー配合物の調整、において、水酸化ナトリウム5部、ピッチ系材料30部を用いた以外は、実施例1と同様にして、モノマー配合物の調整、及び、炭素材を得た。
<Example 2>
Example (1) Preparation of monomer blend In the same manner as in Example 1 except that 5 parts of sodium hydroxide and 30 parts of pitch-based material were used, and the preparation of the monomer blend and a carbon material were obtained. It was.

<実施例3>
実施例(1)モノマー配合物の調整、において、水酸化ナトリウム10部、ピッチ系材料50部を用いた以外は、実施例1と同様にして、モノマー配合物の調整、及び、炭素材を得た。
<Example 3>
Example (1) Preparation of monomer compound In the same manner as in Example 1, except that 10 parts of sodium hydroxide and 50 parts of pitch-based material were used, a monomer compound and a carbon material were obtained. It was.

<比較例1>
実施例(1)モノマー配合物の調整、において、水酸化ナトリウム、ピッチ系材料は共に用いず、それ以外、実施例1と同様にして、モノマー配合物の調整、及び、炭素材を得た。
<Comparative Example 1>
In Example (1) Preparation of monomer blend, neither sodium hydroxide nor pitch-based material was used. Otherwise, the preparation of monomer blend and a carbon material were obtained in the same manner as in Example 1.

<比較例2>
実施例(1)モノマー配合物の調整、において、水酸化ナトリウム0部、ピッチ系材料20部を用いた以外は、実施例1と同様にして、モノマー配合物の調整、及び、炭素材を得た。
<Comparative example 2>
Example (1) Preparation of monomer blend In the same manner as in Example 1 except that 0 part of sodium hydroxide and 20 parts of pitch-based material were used, the monomer blend was prepared and a carbon material was obtained. It was.

<比較例3>
実施例(1)モノマー配合物の調整、において、水酸化ナトリウム1部、ピッチ系材料0部を用いた以外は、実施例1と同様にして、モノマー配合物の調整、及び、炭素材を得た。
<Comparative Example 3>
Example (1) Preparation of monomer compound In the same manner as in Example 1, except that 1 part of sodium hydroxide and 0 part of pitch-based material were used, a monomer compound was prepared, and a carbon material was obtained. It was.

<比較例4>
(1)組成物の調製
ノボラック型フェノール樹脂100部、ヘキサメチレンテトラミン10部を粉砕混合して樹脂組成物を調製した。
得られた樹脂組成物を、100℃から5時間かけて昇温して、200℃に到達後、さらに1時間保持して硬化処理した後、振動ボールミルで平均粒径20μmに粉砕して、樹脂組成物の硬化物を得た。
(2)炭素材の製造
上記で得られた樹脂組成物の硬化物を、室温から10℃/時間で昇温して、1000℃に到達後、さらに10時間保持して炭化処理を行い、炭素材を得た。
<Comparative example 4>
(1) Preparation of composition 100 parts of novolak type phenol resin and 10 parts of hexamethylenetetramine were pulverized and mixed to prepare a resin composition.
The obtained resin composition was heated from 100 ° C. over 5 hours, and after reaching 200 ° C., it was further cured by holding for 1 hour, and then pulverized to an average particle size of 20 μm with a vibration ball mill, A cured product of the composition was obtained.
(2) Production of carbon material The cured product of the resin composition obtained above is heated from room temperature at 10 ° C./hour, and after reaching 1000 ° C., it is further carbonized by holding for 10 hours. I got the material.

2.樹脂組成物及び炭素材の評価
実施例及び比較例で得られた炭素材について下記の評価を行った。
結果を表1に示す。
2. Evaluation of Resin Composition and Carbon Material The following evaluations were performed on the carbon materials obtained in Examples and Comparative Examples.
The results are shown in Table 1.

(1)樹脂組成物の配合
実施例、比較例で用いた樹脂組成物の配合を示した。
(2)ピッチ系材料の添加量
モノマー配合物を調製する際に用いた原料から算出した。
(3)炭素材の密度の評価
炭素材の密度は、以下の方法で測定した。
ブタノール密度を測定する為の一定の容器に対して、炭素材を10g加えた後、液密度(25℃)0.81ml/gのブタノールに浸漬させたあと、25℃にて2時間浸した。その後、以下の計算式により、炭素材の密度(ブタノール密度)を測定した。
密度(g/cm3)=試料量(g)/[容器体積(ml)−(ブタノール量(g)/液密度)]
(4)炭素材中の金属含有量
炭素材を大気下で、800℃×3時間で灰化させて、以下の計算式より灰分量を算出した。更に、それぞれの灰分は金属酸化物と仮定して、炭素材中に含有する金属量を算出した。
灰分量(%)=燃焼後の試料量(g)/燃焼前の試料量(g)×100
(1) Blending of resin composition The blending of resin compositions used in Examples and Comparative Examples was shown.
(2) Pitch-based material addition amount Calculated from the raw materials used when preparing the monomer blend.
(3) Evaluation of density of carbon material The density of the carbon material was measured by the following method.
After adding 10 g of carbon material to a certain container for measuring the butanol density, it was immersed in butanol having a liquid density (25 ° C.) of 0.81 ml / g and then immersed at 25 ° C. for 2 hours. Thereafter, the density of the carbon material (butanol density) was measured by the following calculation formula.
Density (g / cm 3) = sample amount (g) / [container volume (ml) − (butanol amount (g) / liquid density)]
(4) Metal content in carbon material The carbon material was incinerated at 800 ° C. for 3 hours in the air, and the ash content was calculated from the following formula. Further, assuming that each ash was a metal oxide, the amount of metal contained in the carbon material was calculated.
Ash content (%) = Sample amount after combustion (g) / Sample amount before combustion (g) × 100

3.二次電池用負極材としての評価
(1)二次電池評価用二極式コインセルの製造
実施例及び比較例で得られた炭素材100部に対して、結合剤としてポリフッ化ビニリデン10部、希釈溶媒としてN−メチル−2−ピロリドンを適量加え混合し、スラリー状の負極混合物を調製した。調製した負極スラリー状混合物を18μmの銅箔の両面に塗布し、その後、110℃で1時間真空乾燥した。真空乾燥後、ロールプレスによって電極を加圧成形した。これを直径16.156mmの円形として切り出し負極を作製した。
正極はリチウム金属を用いて二極式コインセルにて評価を行った。電解液として体積比が1:1のエチレンカーボネートとジエチルカーボネートの混合液に過塩素酸リチウムを1モル/リットル溶解させたものを用いた。
3. Evaluation as negative electrode material for secondary battery (1) Production of bipolar coin cell for secondary battery evaluation 10 parts of polyvinylidene fluoride as a binder with respect to 100 parts of carbon material obtained in Examples and Comparative Examples, diluted An appropriate amount of N-methyl-2-pyrrolidone as a solvent was added and mixed to prepare a slurry-like negative electrode mixture. The prepared negative electrode slurry-like mixture was applied to both sides of 18 μm copper foil, and then vacuum-dried at 110 ° C. for 1 hour. After vacuum drying, the electrode was pressure-formed by a roll press. This was cut out as a circle having a diameter of 16.156 mm to produce a negative electrode.
The positive electrode was evaluated with a bipolar coin cell using lithium metal. As the electrolytic solution, a solution obtained by dissolving 1 mol / liter of lithium perchlorate in a mixed solution of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1 was used.

(2)充電容量、放電容量の評価
充電条件は、電流25mA/gの定電流で1mVになるまで充電した後、1mV保持で1.25mA/g以下まで電流が減衰したところを充電終止とした。放電条件は 1.25mAh/g以下に電流が減衰するまでとした。また、放電条件のカットオフ電位は、2.5Vとした。
(2) Evaluation of charging capacity and discharging capacity The charging condition was that charging was terminated at a constant current of 25 mA / g until it reached 1 mV, and then the current was attenuated to 1.25 mA / g or less with 1 mV holding. . The discharge conditions were set until the current was attenuated to 1.25 mAh / g or less. The cut-off potential under discharge conditions was 2.5V.

(3)充放電効率の評価
上記(2)で得られた値をもとに、下記式により算出した。
充放電効率(%)=[放電容量/充電容量]×100
(3) Evaluation of charge / discharge efficiency Based on the value obtained in the above (2), the charge / discharge efficiency was calculated by the following formula.
Charge / discharge efficiency (%) = [discharge capacity / charge capacity] × 100

4.吸湿性の評価
(1)炭素材の乾燥条件
真空条件下にて、130℃にて5時間乾燥を行った。
(2)吸湿条件
温度40℃、湿度90%の条件にて、7日後の質量の増加分を計算した。
吸湿率(%)=(吸湿後の重量−吸湿前の重量)/(吸湿前の重量)×100
4). Evaluation of hygroscopicity (1) Drying conditions of carbon material Drying was performed at 130 ° C. for 5 hours under vacuum conditions.
(2) Hygroscopic condition The increase in mass after 7 days was calculated under conditions of a temperature of 40 ° C. and a humidity of 90%.
Moisture absorption rate (%) = (weight after moisture absorption−weight before moisture absorption) / (weight before moisture absorption) × 100

Figure 0005050604
Figure 0005050604

実施例1〜3はいずれも、本発明の製造方法により得られた炭素材であり、これを用いた炭素材を二次電池の負極材として用いた評価では、放電容量、充放電効率とも、ピッチ系材料及び金属化合物を用いていない比較例1と比べて同等であり、尚且つ低吸湿性を示す結果となった。
また樹脂を合成してから同様の手法を用いた比較例2に対しても同様の結果を示した。
特に、ピッチ系材料及び金属化合物を用いた場合、それぞれ独立して用いた場合よりも、併用して用いた方がより効果が得られる結果となった。
Each of Examples 1 to 3 is a carbon material obtained by the production method of the present invention. In the evaluation using the carbon material using the carbon material as a negative electrode material for a secondary battery, both the discharge capacity and the charge and discharge efficiency are The result was equivalent to that of Comparative Example 1 in which no pitch-based material and metal compound were used, and also showed low hygroscopicity.
Moreover, the same result was shown also with respect to the comparative example 2 which used the same method after synthesize | combining resin.
In particular, when a pitch-based material and a metal compound were used, the effect was obtained more effectively when used in combination than when used independently.

本発明の炭素材の製造方法により得られる炭素材は、リチウムイオン二次電池用負極、コンデンサー用電極、電解用電極、活性炭など多様な範囲の用途に合わせて好適に用いることができるものである。   The carbon material obtained by the method for producing a carbon material according to the present invention can be suitably used for various purposes such as a negative electrode for a lithium ion secondary battery, an electrode for a capacitor, an electrode for electrolysis, and activated carbon. .

Claims (7)

フェノール類、ホルムアルデヒド類、金属化合物及びピッチ系材料を必須成分として配合してなるモノマー配合物を炭化処理してなる炭素材であって、
前記金属化合物はアルカリ金属化合物及び/又は遷移金属化合物であり、
前記ピッチ系材料は、アセトン抽出率が1〜50%であり、かつ前記フェノール類100重量部に対して1〜50重量部含有されており、
該炭素材は温度40℃、湿度90%RHの条件下7日後の吸湿率が1.0%以下であり、炭素材の密度が1.5〜2.2g/cm3であり、金属分を0.1〜15.0%含有する
ことを特徴とする炭素材。
A carbon material obtained by carbonizing a monomer composition obtained by blending phenols, formaldehydes, metal compounds and pitch-based materials as essential components,
The metal compound is an alkali metal compound and / or a transition metal compound,
The pitch-based material has an acetone extraction rate of 1 to 50% and 1 to 50 parts by weight with respect to 100 parts by weight of the phenols,
The carbon material has a moisture absorption rate of 1.0% or less after 7 days under the conditions of a temperature of 40 ° C. and a humidity of 90% RH, and the density of the carbon material is 1.5 to 2.2 g / cm 3. Carbon material characterized by containing 0.1 to 15.0%.
前記フェノール類は、フェノール、レゾルシノール、クレゾール、ブチルフェノール、トリメチルフェノール、メラミン、アニリン及びメトキシフェノールからなる群より選ばれる1種以上である請求項1記載の炭素材。 The carbon material according to claim 1, wherein the phenol is at least one selected from the group consisting of phenol, resorcinol, cresol, butylphenol, trimethylphenol, melamine, aniline and methoxyphenol. 前記ホルムアルデヒド類は、ホルムアルデヒド、パラホルムアルデヒド、ベンゾフェノン及びベンズアルデヒドからなる群より選ばれる1種以上である請求項1又は2記載の炭素材。 The carbon material according to claim 1 or 2, wherein the formaldehyde is at least one selected from the group consisting of formaldehyde, paraformaldehyde, benzophenone, and benzaldehyde. 前記金属化合物は、アルカリ金属化合物である請求項1〜3のいずれか1項に記載の炭素材。 The metal compound, carbon material according to claim 1 is an alkali metal compound. 下記(a)及び(b)工程を有することを特徴とする炭素材の製造方法。
(a)フェノール類、ホルムアルデヒド類、金属化合物及びピッチ系材料を用いてモノマー配合物を調整する工程であって、
前記金属化合物はアルカリ金属化合物及び/又は遷移金属化合物であり、
前記ピッチ系材料は、アセトン抽出率が1〜50%であり、かつ前記フェノール類100重量部に対して1〜50重量部含有されている。
(b)前記モノマー配合物を下記条件において炭化処理する工程。
昇温速度:1〜200℃/時間
処理温度:800〜3000℃
処理時間:0.1〜50時間
処理雰囲気:不活性な雰囲気下
The manufacturing method of the carbon material characterized by having the following (a) and (b) process.
(A) adjusting the monomer composition using phenols, formaldehydes, metal compounds and pitch-based materials,
The metal compound is an alkali metal compound and / or a transition metal compound,
The pitch-based material has an acetone extraction rate of 1 to 50% and 1 to 50 parts by weight with respect to 100 parts by weight of the phenols.
(B) A step of carbonizing the monomer blend under the following conditions .
Temperature increase rate: 1 to 200 ° C./hour
Processing temperature: 800-3000 ° C
Processing time: 0.1 to 50 hours
Processing atmosphere: Inert atmosphere
請求項1〜のいずれか1項に記載の炭素材を含有することを特徴とする二次電池用負極材。 A negative electrode material for a secondary battery comprising the carbon material according to any one of claims 1 to 4 . 請求項に記載の二次電池用負極材を用いることを特徴とする非水電解質二次電池。 A nonaqueous electrolyte secondary battery using the negative electrode material for a secondary battery according to claim 6 .
JP2007081101A 2007-03-27 2007-03-27 Carbon material and manufacturing method thereof, secondary battery negative electrode material and non-aqueous electrolyte secondary battery Expired - Fee Related JP5050604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081101A JP5050604B2 (en) 2007-03-27 2007-03-27 Carbon material and manufacturing method thereof, secondary battery negative electrode material and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081101A JP5050604B2 (en) 2007-03-27 2007-03-27 Carbon material and manufacturing method thereof, secondary battery negative electrode material and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2008239391A JP2008239391A (en) 2008-10-09
JP5050604B2 true JP5050604B2 (en) 2012-10-17

Family

ID=39911174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081101A Expired - Fee Related JP5050604B2 (en) 2007-03-27 2007-03-27 Carbon material and manufacturing method thereof, secondary battery negative electrode material and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5050604B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009033739A1 (en) * 2009-07-17 2011-01-27 Evonik Degussa Gmbh Nanostructured silicon-carbon composites for battery electrodes
JP5365611B2 (en) * 2010-11-26 2013-12-11 住友ベークライト株式会社 Carbon material for lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101342941B1 (en) * 2011-10-07 2013-12-19 인하대학교 산학협력단 Menufacture of high specific surface area and heteroatom-activated carbons
JP2013222551A (en) * 2012-04-13 2013-10-28 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode, and lithium ion secondary battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543345A (en) * 1991-08-06 1993-02-23 Mitsui Petrochem Ind Ltd Production of active carbon porous body
JP3624578B2 (en) * 1995-11-25 2005-03-02 ソニー株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP3835713B2 (en) * 1996-12-19 2006-10-18 住友ベークライト株式会社 Carbon material
JP4215633B2 (en) * 2002-12-19 2009-01-28 Jfeケミカル株式会社 Method for producing composite graphite particles
JP4254947B2 (en) * 2003-03-28 2009-04-15 日本電気株式会社 Carbon material, method for producing the same, and secondary battery using the carbon material as a negative electrode active material
JP2005060158A (en) * 2003-08-11 2005-03-10 Sumitomo Osaka Cement Co Ltd Carbon material and its production method
JP4967316B2 (en) * 2005-06-28 2012-07-04 日立化成工業株式会社 Carbon particle for lithium secondary battery negative electrode, carbon negative electrode for lithium secondary battery using the same, and lithium secondary battery

Also Published As

Publication number Publication date
JP2008239391A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP2006264993A (en) Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell
KR101938236B1 (en) Negative electrode slurry for secondary battery for improving dispensability and reducing resistance and negative electrode comprising the same
JP5365611B2 (en) Carbon material for lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5761008B2 (en) Negative electrode mixture, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN114174384B (en) Pre-dispersion composition, and electrode and secondary battery including the same
JP2011100594A (en) Conduction aid composition for lithium ion battery, method of manufacturing the same, electrode mixture composition for lithium ion battery, method of manufacturing the electrode mixture composition, and lithium ion battery
JP6528497B2 (en) Binder composition for lithium ion secondary battery silicon-based negative electrode and slurry composition for lithium ion secondary battery silicon-based negative electrode
JP2014132592A (en) Negative electrode material, negative electrode active material, negative electrode, and alkali metal ion battery
JP5050604B2 (en) Carbon material and manufacturing method thereof, secondary battery negative electrode material and non-aqueous electrolyte secondary battery
JP4899396B2 (en) Carbon material, and negative electrode material and non-aqueous electrolyte secondary battery for secondary battery using the same
JP2008047456A (en) Carbon material and its manufacturing method, negative electrode material for secondary battery, and nonaqueous electrolyte secondary battery
JP4660146B2 (en) Carbon material, secondary battery negative electrode material and non-aqueous electrolyte secondary battery
JP2013182706A (en) Precursor for negative electrode, manufacturing method of precursor for negative electrode, production method of material for negative electrode, electrode and lithium ion secondary battery
JP5681753B2 (en) Negative electrode material, negative electrode active material, negative electrode and alkali metal ion battery
KR20150107928A (en) Aqueous binder composition for negative electrode of lithium battery comprising lithiumpolyacrylate and conductive polymer
JP2006264991A (en) Method of manufacturing carbon material, carbon material, negative electrode material for secondary cell and non-aqueous electrolyte secondary cell
JP5017897B2 (en) Carbon material, secondary battery negative electrode material, and non-aqueous electrolyte secondary battery
JP5031981B2 (en) Carbon material precursor, carbon material, negative electrode material for secondary battery and nonaqueous electrolyte secondary battery using the same
JP4170006B2 (en) Carbon material and negative electrode material for secondary battery using the same
JP4838991B2 (en) Non-aqueous electrolyte secondary battery negative electrode carbon material, secondary battery negative electrode material using the same, and non-aqueous electrolyte secondary battery
JP2006089349A (en) Method for producing carbon material, negative electrode material for secondary battery, and nonaqueous electrolyte secondary battery
KR101673171B1 (en) Negative electrode active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JPH11343109A (en) Carbon material and its production, negative pole for lithium secondary battery and lithium secondary battery
JP2016136452A (en) Carbon material for sodium ion secondary battery, active material for sodium ion secondary battery negative electrode, sodium ion secondary negative electrode, sodium ion secondary battery, resin composition for sodium ion secondary battery negative electrode, and method of manufacturing carbon material for sodium ion secondary battery negative electrode
JPWO2017110796A1 (en) Carbon material for secondary battery negative electrode, active material for secondary battery negative electrode, secondary battery negative electrode and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees