JP2004011011A - Method of recovering cooper from cooper converter slag - Google Patents

Method of recovering cooper from cooper converter slag Download PDF

Info

Publication number
JP2004011011A
JP2004011011A JP2002169652A JP2002169652A JP2004011011A JP 2004011011 A JP2004011011 A JP 2004011011A JP 2002169652 A JP2002169652 A JP 2002169652A JP 2002169652 A JP2002169652 A JP 2002169652A JP 2004011011 A JP2004011011 A JP 2004011011A
Authority
JP
Japan
Prior art keywords
copper
slag
recovering
fe3o4
metal particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002169652A
Other languages
Japanese (ja)
Inventor
Toshihiro Nagato
永戸 敏博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2002169652A priority Critical patent/JP2004011011A/en
Publication of JP2004011011A publication Critical patent/JP2004011011A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the reduction efficiency of Fe304 compared with the reduction by coke of slag produced on a period in copper converter operation as the conventional method, further to improve the recovery rate of Cu components, and to reduce the quantity of exhaust gas at the outlet of the furnace. <P>SOLUTION: In the method of recovering copper from copper converter slag, metallic grains comprising, by mass, ≥70% solid Fe and 1 to 5% C are added to slag in a molten state produced in a slag-making period in copper converter operation, so that Fe3O4 is reduced to FeO, and further, copper components are recovered. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、銅製錬転炉工程において生成するスラグ中に含まれる銅の回収方法に関するものであり、より詳しくは、銅転炉スラグ中のFe3O4を還元し、スラグの粘性を低下させることによってスラグ中の銅分を回収する銅転炉スラグからの銅の回収方法に関するものである。
【0002】
【従来の技術】
銅転炉操業では、溶錬炉から送られるマット中のFeは、酸化・スラグ化により除去している。この時生成する銅転炉スラグには30〜40%のFe3O4が含まれ、スラグの粘性が高いことを主要因として、銅含有率は5〜10%となっている。
【0003】
このため、この銅転炉スラグは銅分の回収を目的として、前工程である溶錬炉への繰り返し処理、あるいは、別の処理工程による銅分回収が行われている。例えば、国内では、銅転炉スラグを固化してから粉砕し、その後浮選により銅分を回収するスラグ選鉱法が主として採用されている。このスラグ選鉱法は、スラグ破砕・摩鉱・選鉱・脱水の多くの工程を要し、回収コストが大きいものとなっている。
【0004】
また、処理の対象とするスラグの成分や性質は若干異なるが、溶融スラグ中に含まれる酸化銅及びFe3O4をコークス、石炭等の固体還元剤または、気体、液体の還元剤をスラグ中に吹込んで還元し、銅品位1%以下のカラミと粗銅を得るスラグの処理法が特開昭53−22115に提案されている。
そして、溶融状態の銅転炉スラグに石油液化ガス(LPG)からなる還元剤とクラッキング反応用の酸素あるいは空気を吹込んで、吹込み管内および吹込み管先端において局部的なスラグ温度の低下を起こすことなく、溶融スラグ中Fe3O4を還元し、溶融スラグの粘性を低下させることによってスラグ中の銅を回収する方法が特開平09−87761に提案されている。
【0005】
上記のコークス、石炭等の固体還元剤あるいは石油液化ガス(LPG)などの気体還元剤を溶融スラグ中に吹込む場合、溶融スラグに比べ還元剤の比重が小さいため、溶融スラグ中での滞留時間が短く、還元効率が40〜70%と低くなる欠点がある。
【0006】
コークス還元の場合、一般的に、還元効率50%、コークス1kgにインジェクションエア1.8Nm3の操業が行われており、1kgのFe3O4をFeOに還元するために、N2、CO2、H2O合計で0.16〜0.20Nm3の排ガスが発生する。
【0007】
LPGの場合、一般的に、還元効率65%、LPG1kgにクラッキングエア0.5Nm3、未燃LPG燃焼のための炉出口でのフリーエア添加の操業が行われており、1kgのFe3O4をFeOに還元するためにN2、CO2、H2O合計で
0.20〜0.25Nm3の排ガスが発生する。
【0008】
この排ガスは、1300〜1500℃から約200℃への冷却処理、還元剤の未燃分であるすすとスラグから発生したZnO等を主成分とするダストの除塵処理を行う必要があり、排ガス量は少ない方が好適である。
また、溶融状態の銅転炉スラグに石油液化ガス(LPG)等の還元剤を吹き込むと同時に、メタリック鉄を70%以上含有する物を添加することにより、Fe3O4をFeOに還元すると共に銅分を回収することを特徴とする銅転炉スラグからの銅の回収方法が 特願2000−253337 に提案されているが、石油液化ガス(LPG)等の還元剤の吹き込みを伴うため、1kgのFe3O4をFeOに還元するためにN2、CO2、H2O合計で0.10〜0.15Nm3の排ガスが発生する。
【0009】
【発明が解決しようとする課題】
銅転炉操業の造カン期に生成する溶融状態のスラグ中の銅を好適に回収する方法であって、また前記処理時に排ガスの発生が少ない方法を得る事をも目的とする。
【0010】
【課題を解決するための手段】
そこで、以下の発明を提案する。
(1)銅転炉操業の造カン期に生成した溶融状態のスラグに固体のFe:70%以上、C:1〜5%含む金属粒を添加することにより、Fe3O4をFeOに還元すると共に銅分を回収する銅転炉スラグからの銅の回収方法。
(2)上記(1)記載の溶融状態のスラグに固体のFe:70%以上、C:1〜5%含む金属粒を添加する炉が、電気炉である銅転炉スラグからの銅の回収方法。
【0011】
(3)固体の金属粒の粒径が15mmφ以下である上記(1)〜(2)記載の銅転炉スラグからの銅の回収方法。
(4)固体の金属粒のCu品位が20%以下である上記(1)〜(3)記載の銅転炉スラグからの銅の回収方法。
【0012】
(5)固体の金属粒が、銑鉄である上記(1)〜(4)記載の銅転炉スラグからの銅の回収方法。
(6)固体の金属粒が、一般廃棄物、産業廃棄物又は、産業廃棄物から産出したもの等を溶融還元した銅を含む銑鉄である上記(1)〜(5)記載の銅転炉スラグからの銅の回収方法。
【0013】
以下、本発明の構成を詳しく説明する。
コークス、石炭等の固体還元剤を銅転炉スラグ還元に使用する場合、比重が小さいことからスラグ中に留まらず、還元効率は一般的に40〜60%である。
また、還元に寄与するコークス中のC,Hは、スラグ中のFe3O4からOを奪いCO2、CO,H2Oガスとして、還元に寄与しないコークス中のC,Hはインジェクションエア・炉出口フリーエアにより燃焼しCO2、CO,H2Oガスとなる。炉出口では、これらCO2、CO,H2Oガスに、インジェクションエア・フリーエア中のN2を加えた、1300〜1500℃の排ガスが発生する。この排ガス中には、コークス中の未燃のC、スラグから発生したZnO等を主成分とするダストが含まれており、ガス冷却・除塵処理のために排ガス量に応じた排ガス処理設備、排ガス処理コストを要する。
【0014】
LPG等の気体の還元剤を使用する場合も、コークス還元時と同様に、排ガス量に応じた排ガス処理設備、排ガス処理コストを要する。
メタリック鉄を70%以上含有する物を還元剤として使用する場合、含有するFeは、
3Fe3O4+Fe=4FeO
の反応によりFe3O4を還元し、しかも、コークス還元の場合に比べ、ガス発生は1/16程度に大きく減少する。
【0015】
また、スラグの比重4〜5に比べてメタリック鉄を70%以上含有する物の比重は6.5〜7と重いため、スラグ内に留まり、還元効率はほぼ100%と推定される。
一方、この比重差ではメタリック鉄を70%以上含有する物が底部に溜まり、溶融スラグ中Fe3O4の還元に寄与しないことが予測される。これを防止するため、メタリック鉄を70%以上含有する物の粒径が15mm以下でなければならない。
【0016】
【作用】
固体のFe:70%以上、C:1〜5%含む、15mmφ以下の金属粒を投入添加するという簡易な方法で、銅転炉スラグ還元処理時の排ガス量を大幅に削減できる。
以下に実施例を示す。
【0017】
【実施例】
(実施例1)
表1に示すように、Cu5.6%、マグネタイト41.0%を含有する銅転炉スラグ0.4kgをアルミナルツボにて、外部抵抗加熱方式の電気炉で1250℃に溶融、保持した。このルツボに上方から挿入した直径16mmのノズルから銑鉄粒を約2.04g/minで60分間連続的に投入した。この銑鉄粒は、一般ゴミの「直接溶融・資源化プラント」から発生した物で、組成はFe82%、C 3.0%、Si4.3%、Cu 4.5%、粒径1mm〜30mmφであり、122.5g投入した。
【0018】
還元後のスラグのFe3O4含有率は、図1及び表1に示すように10.8%、図2に示すようにCu含有率は1.34%であった。この時の還元時間の経過に伴うスラグ中のFe3O4含有率の変化を図1に、スラグ中のCu含有率の変化を図2に実施例として示した。
還元されたFe3O4は、表1に示すように121gであった。下記の計算により示される。
400g×(0.410−0.108)=121g
効率100%時に還元されるFe3O4量162gを計算により求めた。
これにより還元効率は,表1に示したように75%と高い値であることを把握できた。
【0019】
(比較例1)
表1に示すようにCu5.6%、マグネタイト41.0%を含有する銅転炉スラグ0.4kgをアルミナルツボにて、外部抵抗加熱方式の電気炉で1250℃に溶融、保持した。このルツボに上方から挿入した直径16mmのノズルからコークスを0.94g/minで60分間連続的に投入した。
【0020】
還元後のスラグのFe3O4含有率は、図1及び表1に示すように20.9%、Cu含有率は図2にしめすように3.32%であった。この時の還元時間の経過に伴うスラグ中のFe3O4含有率の変化を図1に、スラグ中のCu含有率の変化を図2に比較例1として示した。
以上のデータから算出した推定排ガス量と還元効率の比較を表1に示す。
【0021】
【表1】

Figure 2004011011
(注1)銑鉄粒の反応は、Fe82%、C 3.0%、Si4.3%が、
Fe+1/2O=FeO   Si+O2=SiO2
C+O2=CO2
となると仮定し、これにより還元されるFe3O4量を算出した。
コークスの反応は、C 90.0%が、 C+O2=CO2
となると仮定し、これにより還元されるFe3O4量を決定した。
(注2)排ガス量は、全量フリーエアにより完全燃焼するとして求めた。
【0022】
還元されたFe3O4は、表1に示すように80gであった。下記の計算により示される。
400g×(0.410−0.209)=80g
効率100%時に還元されるFe3O4量490gを計算により求めた。
これにより還元効率は,表1に示したように16%と実施例に較べ低い値であることを把握できた。
また排ガス量についても、実施例の5.9Lに対して、94.8Lと高い値であり好ましい値で無かった。
以上、Fe3O4を還元することにより銅転炉スラグからCu分を回収する方法において、還元剤としてコークスのみを使用する場合に比べて、還元剤の一部に一般ゴミの「直接溶融・資源化プラント」から発生した銑鉄粒を使用することで、図―1に示すようにFe3O4還元効率、図―2に示すようにCu回収効率を悪化させることなく、上表に示すように、排ガス量の大幅な削減、還元効率の向上を達成できることが判明した。
【0023】
【発明の効果】
本発明により、以下の効果を得ることができる。
(1)銅転炉スラグからの銅回収を効率よく行うことができる。
(2)還元剤を安価な金属粒(例えば「直接溶融・資源化プラント」から発生した銑鉄粒)を使用することにより、コークスを用いたときに較べ、コストは安く、還元効率が良い結果を得ることができる。
(3)コークスを使用した場合に較べ、排ガス量が1/16と極めて低い値となる。排ガス処理が非常に簡単にできる。
(4)銅回収率も高い値となる。
【0024】
【図面の簡単な説明】
【図1】実施例、比較例での還元時間に対するスラグ中Fe3O4含有率の変化を示すグラフである。
【図2】実施例、比較例での還元時間に対するスラグ中Cu含有率の変化を示すグラフである。[0001]
[Industrial applications]
The present invention relates to a method for recovering copper contained in slag generated in a copper smelting converter process, and more particularly, to reducing Fe3O4 in copper converter slag and reducing the viscosity of the slag to reduce the slag viscosity. The present invention relates to a method for recovering copper from a copper converter slag for recovering copper content therein.
[0002]
[Prior art]
In the operation of the copper converter, Fe in the mat sent from the smelting furnace is removed by oxidation and slag formation. The copper converter slag generated at this time contains 30 to 40% of Fe3O4, and the copper content is 5 to 10% mainly due to the high viscosity of the slag.
[0003]
For this reason, this copper converter slag is subjected to a repetitive treatment in a smelting furnace, which is a previous step, or a copper treatment in another treatment step, for the purpose of collecting copper. For example, in Japan, a slag beneficiation method in which a copper converter slag is solidified, pulverized, and then copper is recovered by flotation is mainly used. This slag beneficiation method requires many steps of slag crushing, grinding, beneficiation, and dewatering, resulting in high recovery costs.
[0004]
In addition, although the components and properties of the slag to be treated are slightly different, copper oxide and Fe3O4 contained in the molten slag are blown into a solid reducing agent such as coke or coal, or a gas or liquid reducing agent into the slag. Japanese Patent Application Laid-Open No. Sho 53-22115 proposes a method for treating slag which is reduced to obtain lint and blister copper having a copper grade of 1% or less.
Then, a reducing agent composed of petroleum liquefied gas (LPG) and oxygen or air for cracking reaction are blown into the molten copper converter slag to cause a local decrease in slag temperature in the blow pipe and at the blow pipe tip. Japanese Patent Application Laid-Open No. 09-87761 proposes a method of reducing Fe3O4 in molten slag without reducing the viscosity of molten slag to recover copper in slag.
[0005]
When the above-mentioned solid reducing agent such as coke and coal or a gas reducing agent such as petroleum liquefied gas (LPG) is blown into molten slag, the specific gravity of the reducing agent is smaller than that of molten slag, so the residence time in the molten slag. And the reduction efficiency is as low as 40 to 70%.
[0006]
In the case of coke reduction, generally, a reduction efficiency of 50% and an operation of 1.8 Nm3 of injection air for 1 kg of coke are performed. In order to reduce 1 kg of Fe3O4 to FeO, the total of N2, CO2, and H2O is 0.1%. Exhaust gas of 16 to 0.20 Nm3 is generated.
[0007]
In the case of LPG, in general, a reduction efficiency of 65%, cracking air of 0.5 Nm3 for 1 kg of LPG, and addition of free air at a furnace outlet for burning unburned LPG are performed, and 1 kg of Fe3O4 is reduced to FeO. Therefore, exhaust gas of 0.20 to 0.25 Nm3 is generated in total of N2, CO2 and H2O.
[0008]
This exhaust gas needs to be subjected to a cooling treatment from 1300 to 1500 ° C. to about 200 ° C. and a dust removal treatment of dust mainly composed of ZnO or the like generated from soot and slag which is an unburned reducing agent. Is preferably smaller.
In addition, by blowing a reducing agent such as petroleum liquefied gas (LPG) into the molten copper converter slag and adding a substance containing 70% or more of metallic iron, Fe3O4 is reduced to FeO and copper content is reduced. A method of recovering copper from a copper converter slag characterized by recovery is proposed in Japanese Patent Application No. 2000-253337. However, since a reducing agent such as petroleum liquefied gas (LPG) is blown, 1 kg of Fe3O4 is recovered. Exhaust gas of 0.10 to 0.15 Nm3 in total of N2, CO2 and H2O is generated for reduction to FeO.
[0009]
[Problems to be solved by the invention]
A method of suitably recovering copper in molten slag generated during the copper making operation of a copper converter operation, and an object of the present invention is to obtain a method that generates less exhaust gas during the treatment.
[0010]
[Means for Solving the Problems]
Therefore, the following invention is proposed.
(1) Fe3O4 is reduced to FeO by adding metal particles containing solid Fe: 70% or more and C: 1 to 5% to molten slag generated during the copper making operation of the copper converter. Of recovering copper from copper converter slag for recovering waste.
(2) Recovery of copper from a copper converter slag, which is an electric furnace, in which a metal particle containing 70% or more of solid Fe and 1 to 5% of C is added to the molten slag described in (1) above. Method.
[0011]
(3) The method for recovering copper from copper converter slag according to (1) or (2), wherein the solid metal particles have a particle size of 15 mmφ or less.
(4) The method for recovering copper from copper converter slag according to any one of (1) to (3), wherein the Cu grade of the solid metal particles is 20% or less.
[0012]
(5) The method for recovering copper from a copper converter slag according to the above (1) to (4), wherein the solid metal particles are pig iron.
(6) The copper converter slag according to any one of (1) to (5), wherein the solid metal particles are pig iron containing copper which is obtained by melting and reducing general waste, industrial waste, or material produced from industrial waste. For recovering copper from coal.
[0013]
Hereinafter, the configuration of the present invention will be described in detail.
When a solid reducing agent such as coke or coal is used for slag reduction of a copper converter, the specific gravity is small so that the slag does not remain in the slag, and the reduction efficiency is generally 40 to 60%.
C and H in the coke that contribute to the reduction deprive O of Fe3O4 in the slag, and CO and CO as H2O gas. C and H in the coke that do not contribute to the reduction are burned by the injection air and the furnace outlet free air. And CO2, CO, and H2O gas. At the furnace outlet, N2 in the injection air / free air is added to the CO2, CO, H2O gas to generate an exhaust gas at 1300 to 1500C. This exhaust gas contains unburned C in coke, dust mainly composed of ZnO and the like generated from slag, and exhaust gas treatment equipment according to the amount of exhaust gas for gas cooling and dust removal processing. Processing costs are required.
[0014]
When a gaseous reducing agent such as LPG is used, as in the case of coke reduction, exhaust gas treatment equipment and exhaust gas treatment costs corresponding to the amount of exhaust gas are required.
When a material containing 70% or more of metallic iron is used as a reducing agent, the Fe contained is
3Fe3O4 + Fe = 4FeO
The reaction reduces Fe3O4, and gas generation is greatly reduced to about 1/16 as compared with the case of coke reduction.
[0015]
Further, since the specific gravity of the slag containing 70% or more of metallic iron is as high as 6.5 to 7 as compared with the specific gravity of 4 to 5, it remains in the slag, and the reduction efficiency is estimated to be almost 100%.
On the other hand, with this specific gravity difference, it is predicted that a substance containing 70% or more of metallic iron accumulates at the bottom and does not contribute to the reduction of Fe3O4 in the molten slag. In order to prevent this, the particles containing 70% or more of metallic iron must have a particle size of 15 mm or less.
[0016]
[Action]
By a simple method of adding and adding metal particles having a diameter of 15 mm or less and containing 70% or more of solid Fe and 1 to 5% of C, it is possible to greatly reduce the amount of exhaust gas during the slag reduction treatment of the copper converter.
Examples will be described below.
[0017]
【Example】
(Example 1)
As shown in Table 1, 0.4 kg of a copper converter slag containing 5.6% of Cu and 41.0% of magnetite was melted and held at 1250 ° C. in an alumina furnace using an electric furnace of an external resistance heating system. Pig iron particles were continuously introduced into the crucible at a rate of about 2.04 g / min for 60 minutes from a nozzle having a diameter of 16 mm inserted from above. The pig iron particles are generated from a general refuse "direct melting and recycling plant" and have a composition of 82% Fe, 3.0% C, 4.3% Si, 4.5% Cu, and a particle size of 1mm to 30mmφ. Yes, 122.5 g was charged.
[0018]
The Fe3O4 content of the reduced slag was 10.8% as shown in FIG. 1 and Table 1, and the Cu content was 1.34% as shown in FIG. FIG. 1 shows the change in the Fe3O4 content in the slag with the elapse of the reduction time at this time, and FIG. 2 shows the change in the Cu content in the slag as an example.
The amount of reduced Fe3O4 was 121 g as shown in Table 1. It is shown by the following calculation.
400 g x (0.410-0.108) = 121 g
162 g of Fe3O4 reduced at an efficiency of 100% was determined by calculation.
As a result, the reduction efficiency was as high as 75% as shown in Table 1.
[0019]
(Comparative Example 1)
As shown in Table 1, 0.4 kg of a copper converter slag containing 5.6% of Cu and 41.0% of magnetite was melted and held at 1250 ° C. in an alumina furnace using an electric furnace of an external resistance heating system. Coke was continuously charged into this crucible at a rate of 0.94 g / min for 60 minutes from a nozzle having a diameter of 16 mm inserted from above.
[0020]
The Fe3O4 content of the reduced slag was 20.9% as shown in FIG. 1 and Table 1, and the Cu content was 3.32% as shown in FIG. The change of the Fe3O4 content in the slag with the elapse of the reduction time at this time is shown in FIG. 1, and the change of the Cu content in the slag is shown in FIG.
Table 1 shows a comparison between the estimated exhaust gas amount calculated from the above data and the reduction efficiency.
[0021]
[Table 1]
Figure 2004011011
(Note 1) The reaction of pig iron grains is as follows: Fe 82%, C 3.0%, Si 4.3%,
Fe + 1 / 2O 2 = FeO Si + O2 = SiO2
C + O2 = CO2
As a result, the amount of Fe3O4 reduced by this was calculated.
The reaction of coke is as follows: 90.0% of C is C + O2 = CO2
As a result, the amount of Fe3O4 reduced by this was determined.
(Note 2) The amount of exhaust gas was determined assuming complete combustion by free air.
[0022]
The amount of reduced Fe3O4 was 80 g as shown in Table 1. It is shown by the following calculation.
400 g x (0.410-0.209) = 80 g
490 g of Fe3O4 reduced at an efficiency of 100% was determined by calculation.
As a result, as shown in Table 1, the reduction efficiency was 16%, which was lower than that of the example.
Also, the exhaust gas amount was 94.8 L, which was higher than 5.9 L in the example, which was not a preferable value.
As described above, in the method of recovering Cu from copper converter slag by reducing Fe3O4, a part of the reducing agent is used for the "direct melting and recycling plant of general garbage" as compared with the case where only coke is used as the reducing agent. By using the pig iron particles generated from the above, it is possible to significantly reduce the amount of exhaust gas as shown in the above table without deteriorating the Fe3O4 reduction efficiency as shown in Fig. 1 and the Cu recovery efficiency as shown in Fig. 2. It was found that significant reduction and improvement of reduction efficiency could be achieved.
[0023]
【The invention's effect】
According to the present invention, the following effects can be obtained.
(1) Copper can be efficiently recovered from copper converter slag.
(2) By using inexpensive metal particles (eg, pig iron particles generated from a “direct melting and recycling plant”) as a reducing agent, the cost is lower and the reduction efficiency is higher than when coke is used. Obtainable.
(3) As compared with the case where coke is used, the exhaust gas amount is an extremely low value of 1/16. Exhaust gas treatment is very easy.
(4) The copper recovery rate is also high.
[0024]
[Brief description of the drawings]
FIG. 1 is a graph showing a change in Fe3O4 content in slag with respect to reduction time in Examples and Comparative Examples.
FIG. 2 is a graph showing a change in Cu content in slag with respect to reduction time in Examples and Comparative Examples.

Claims (6)

銅転炉操業の造カン期に生成した溶融状態のスラグに固体のFe:70mass%(以下%により示す。)以上、C:1〜5%含む金属粒を添加することにより、Fe3O4をFeOに還元すると共に銅分を回収することを特徴とする銅転炉スラグからの銅の回収方法。Fe3O4 is added to FeO by adding metal particles containing solid Fe: 70 mass% (hereinafter referred to as%) or more and C: 1 to 5% to the molten slag generated during the copper making operation of the copper converter. A method for recovering copper from copper converter slag, comprising reducing and recovering copper. 請求項1の溶融状態のスラグに固体のFe:70%以上、C:1〜5%含む金属粒を添加する炉が、電気炉であることを特徴とする銅転炉スラグからの銅の回収方法。2. The method of claim 1, wherein the furnace for adding metal particles containing 70% or more of solid Fe and 1 to 5% of C to the molten slag is an electric furnace. Method. 固体の金属粒の粒径が15mmφ以下であることを特徴とする請求項1〜2記載の銅転炉スラグからの銅の回収方法。3. The method for recovering copper from copper converter slag according to claim 1, wherein the particle diameter of the solid metal particles is 15 mm [phi] or less. 固体の金属粒のCu品位が20%以下であることを特徴とする請求項1〜3記載の銅転炉スラグからの銅の回収方法。4. The method for recovering copper from copper converter slag according to claim 1, wherein the Cu grade of the solid metal particles is 20% or less. 固体の金属粒が、銑鉄であることを特徴とする請求項1〜4記載の銅転炉スラグからの銅の回収方法。5. The method for recovering copper from copper converter slag according to claim 1, wherein the solid metal particles are pig iron. 固体の金属粒が、一般廃棄物、産業廃棄物又は、産業廃棄物から産出したもの等を溶融還元した銅を含む銑鉄であることを特徴とする請求項1〜5記載の銅転炉スラグからの銅の回収方法。The solid metal particles are municipal waste, industrial waste, or pig iron containing copper obtained by melt-reducing those produced from industrial waste, etc., from the copper converter slag according to claim 1 to 5, Copper recovery method.
JP2002169652A 2002-06-11 2002-06-11 Method of recovering cooper from cooper converter slag Pending JP2004011011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002169652A JP2004011011A (en) 2002-06-11 2002-06-11 Method of recovering cooper from cooper converter slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002169652A JP2004011011A (en) 2002-06-11 2002-06-11 Method of recovering cooper from cooper converter slag

Publications (1)

Publication Number Publication Date
JP2004011011A true JP2004011011A (en) 2004-01-15

Family

ID=30436146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002169652A Pending JP2004011011A (en) 2002-06-11 2002-06-11 Method of recovering cooper from cooper converter slag

Country Status (1)

Country Link
JP (1) JP2004011011A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236069A (en) * 2009-03-31 2010-10-21 Pan Pacific Copper Co Ltd Method and system of dry processing of converter slag in copper smelting
JP2012012707A (en) * 2011-09-22 2012-01-19 Pan Pacific Copper Co Ltd Dry-type treating method and system for converter slag in copper refining
CN102409180A (en) * 2011-11-02 2012-04-11 郴州丰越环保科技有限公司 Metallurgical process for recovering metal copper, lead, zinc and tin from copper refining waste slag
JP2017155260A (en) * 2016-02-29 2017-09-07 パンパシフィック・カッパー株式会社 Method for operating copper smelting furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322115A (en) * 1976-08-12 1978-03-01 Mitsubishi Metal Corp Continuous smelting method for copper
JPS53114705A (en) * 1977-09-21 1978-10-06 Ra Metaro Shimiku Sa Method of recovering metal again from slag produced by separating crude copper from copper containing material
JPS61261445A (en) * 1985-05-14 1986-11-19 Sumitomo Metal Mining Co Ltd Treatment of copper converter slag
JPS6220841A (en) * 1985-07-19 1987-01-29 Dowa Mining Co Ltd Treatment of copper converter slag
JPH09263850A (en) * 1996-03-27 1997-10-07 Sumitomo Metal Mining Co Ltd Operation of copper smelting furnace
JP2001247922A (en) * 2000-03-03 2001-09-14 Nippon Mining & Metals Co Ltd Method for operating copper smelting furnace

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322115A (en) * 1976-08-12 1978-03-01 Mitsubishi Metal Corp Continuous smelting method for copper
JPS53114705A (en) * 1977-09-21 1978-10-06 Ra Metaro Shimiku Sa Method of recovering metal again from slag produced by separating crude copper from copper containing material
JPS61261445A (en) * 1985-05-14 1986-11-19 Sumitomo Metal Mining Co Ltd Treatment of copper converter slag
JPS6220841A (en) * 1985-07-19 1987-01-29 Dowa Mining Co Ltd Treatment of copper converter slag
JPH09263850A (en) * 1996-03-27 1997-10-07 Sumitomo Metal Mining Co Ltd Operation of copper smelting furnace
JP2001247922A (en) * 2000-03-03 2001-09-14 Nippon Mining & Metals Co Ltd Method for operating copper smelting furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010236069A (en) * 2009-03-31 2010-10-21 Pan Pacific Copper Co Ltd Method and system of dry processing of converter slag in copper smelting
JP2012012707A (en) * 2011-09-22 2012-01-19 Pan Pacific Copper Co Ltd Dry-type treating method and system for converter slag in copper refining
CN102409180A (en) * 2011-11-02 2012-04-11 郴州丰越环保科技有限公司 Metallurgical process for recovering metal copper, lead, zinc and tin from copper refining waste slag
JP2017155260A (en) * 2016-02-29 2017-09-07 パンパシフィック・カッパー株式会社 Method for operating copper smelting furnace
WO2017150310A1 (en) * 2016-02-29 2017-09-08 パンパシフィック・カッパー株式会社 Method for running copper smelting furnace
US11603578B2 (en) 2016-02-29 2023-03-14 Pan Pacific Copper Co., Ltd. Operation method of copper smelting furnace

Similar Documents

Publication Publication Date Title
JP5873600B2 (en) Nonferrous metallurgical slag processing method
CN101851704A (en) Method and system of dry processing of converter slag in copper smelting
JP5055285B2 (en) Method for producing hydrogen and / or other gases from steel plant waste and waste heat
JPH11504985A (en) Method for recovering metals from iron oxide containing materials
JP2004011011A (en) Method of recovering cooper from cooper converter slag
JP4387618B2 (en) Method for recovering copper from copper converter slag
JP3705472B2 (en) Method for recovering useful metals from vanadium-containing waste
JP5271477B2 (en) How to reuse converter dust
JPH11152511A (en) Treatment of steelmaking furnace dust and dust pellet
CN109371251B (en) Treatment method of dust containing chromium and nickel
CN110787573A (en) Production method of active silicon powder
KR100642964B1 (en) Method for smelting treatment of fine granular material containing water and iron in copper ps converter
JP4357716B2 (en) Waste melting slag treatment method and apparatus
JP3745996B2 (en) Processing method of aluminum ash
JP2008019510A (en) Method of operating electric arc furnace by using steelmaking dust
JP2007277726A (en) Treatment device and treatment method for zinc-containing iron oxide
JP4205730B2 (en) Copper smelting method to prevent metal elution in slag
JP2002013723A (en) Method and apparatus for treatment of waste molten- slag
JP3747155B2 (en) How to operate a wrought copper furnace
JP2013076149A (en) Recycling system
JP4024647B2 (en) Electric furnace operation method using steelmaking dust
JPH11310834A (en) Method for recovering zinc oxide from iron-making dust
JPH08209211A (en) Method for melting scrap by vertical furnace
JP3806282B2 (en) Method of melting iron-containing cold material
JP2005002426A (en) Method for recovering low melting point metal by using difference of melting point

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060303

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060811

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061013

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424