JP5042457B2 - Cement-based structure reinforcing multilayer sheet and method for reinforcing cement-based structure using the sheet - Google Patents

Cement-based structure reinforcing multilayer sheet and method for reinforcing cement-based structure using the sheet Download PDF

Info

Publication number
JP5042457B2
JP5042457B2 JP2005059158A JP2005059158A JP5042457B2 JP 5042457 B2 JP5042457 B2 JP 5042457B2 JP 2005059158 A JP2005059158 A JP 2005059158A JP 2005059158 A JP2005059158 A JP 2005059158A JP 5042457 B2 JP5042457 B2 JP 5042457B2
Authority
JP
Japan
Prior art keywords
yarn
sheet
cement
reinforcing
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005059158A
Other languages
Japanese (ja)
Other versions
JP2006240083A (en
Inventor
歴 堀本
明 粕谷
尚 滝澤
治 松永
心一 宮里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Spinning Co Ltd
Kanazawa Institute of Technology (KIT)
Original Assignee
Kurashiki Spinning Co Ltd
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Spinning Co Ltd, Kanazawa Institute of Technology (KIT) filed Critical Kurashiki Spinning Co Ltd
Priority to JP2005059158A priority Critical patent/JP5042457B2/en
Publication of JP2006240083A publication Critical patent/JP2006240083A/en
Application granted granted Critical
Publication of JP5042457B2 publication Critical patent/JP5042457B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Laminated Bodies (AREA)

Description

本発明はセメント系構造物補強用多層シートおよび該シートを用いたセメント系構造物の補強方法に関する。   The present invention relates to a multilayer sheet for reinforcing a cement-based structure and a method for reinforcing a cement-based structure using the sheet.

従来より、セメント系構造物の補強強度を単に向上させるためのセメント系構造物補強用多層シートおよびセメント系構造物の補強方法に関する提案は数多くなされている。しかしながら、地震等によりセメント系構造物に想定値以上の圧縮荷重がかかり、破壊が起きた場合に、セメント破片が飛び散って周辺の住民や建築物に被害を及ぼす破片飛散現象(二次災害)を防止する観点からの提案はほとんどなされていないのが現状である。   Conventionally, many proposals have been made regarding a multilayer sheet for reinforcing a cement-based structure and a method for reinforcing the cement-based structure for simply improving the reinforcing strength of the cement-based structure. However, when a compressive load exceeding the expected value is applied to a cement-based structure due to an earthquake, etc., and the debris breaks down, the debris scattering phenomenon (secondary disaster) that causes the cement debris to scatter and damage surrounding residents and buildings. At present, there are few proposals from the viewpoint of prevention.

例えば、セメント系構造物の補修補強に使用される補強用強化繊維シート基材として、強化繊維を一方向に引き揃えた強化繊維束が低融点ポリマーからなる不織布またはメッシュ状体によって集束、固定されて一方向配列強化繊維シートとされるとともに、この一方向配列強化繊維シートがシート状支持体に接着されてなる補強用強化繊維シート基材が提案されている(特許文献1)。しかしながら、上記シート基材を用いた場合、セメント系構造物に過度の圧縮荷重がかかって破壊が一旦、起きると、セメント破片が飛び散る破片飛散現象が生じた。また、耐荷性能に急激な低下も見られた。   For example, as a reinforcing reinforcing fiber sheet base material used for repair and reinforcement of cement-based structures, a reinforcing fiber bundle in which reinforcing fibers are aligned in one direction is focused and fixed by a nonwoven fabric or a mesh-like body made of a low melting point polymer. In addition, a reinforcing reinforcing fiber sheet base material has been proposed in which a unidirectionally arranged reinforcing fiber sheet is bonded to a sheet-like support (Patent Document 1). However, when the above-mentioned sheet base material is used, once the destruction is caused by applying an excessive compressive load to the cement-based structure, a fragment scattering phenomenon in which the cement fragments are scattered occurs. In addition, there was a sharp drop in load bearing performance.

さらに例えば、連続した樹脂透過性支持体シートと、実質的に一定長さの長繊維とされる強化繊維が前記樹脂透過性支持体シートの長手方向に対して所定の角度をもって且つ前記樹脂透過性支持体シートの長手方向に沿って配列され、前記樹脂透過性支持体シートに保持された強化繊維層とを有することを特徴とする連続したシート形状を成す樹脂未含浸の連続強化繊維シートが提案されている。しかしながら、そのようなシートを用いても、過度の圧縮荷重によるセメント系構造物の破壊時において、破片飛散現象がやはり起こった。
特開平11−959号公報 特開2002−53683号公報
Further, for example, a continuous resin-permeable support sheet and a reinforcing fiber that is a substantially constant length of long fiber have a predetermined angle with respect to the longitudinal direction of the resin-permeable support sheet, and the resin permeability. Proposed non-resin-impregnated continuous reinforcing fiber sheet having a continuous sheet shape, characterized by having a reinforcing fiber layer arranged along the longitudinal direction of the support sheet and held by the resin-permeable support sheet Has been. However, even when such a sheet is used, a fragment scattering phenomenon still occurs when the cementitious structure is broken by an excessive compressive load.
Japanese Patent Laid-Open No. 11-959 JP 2002-53683 A

本発明は、優れた補強を達成するだけでなく、過度の圧縮荷重によるセメント系構造物の破片飛散を防止するセメント系構造物補強用多層シートおよびセメント系構造物の補強方法を提供することを目的とする。   The present invention provides a multilayer sheet for reinforcing a cement-based structure and a method for reinforcing the cement-based structure, which not only achieve excellent reinforcement but also prevent scattering of fragments of the cement-based structure due to excessive compressive load. Objective.

本発明は、糸を引き揃えた糸シートが2層以上積層されてなるセメント系構造物補強用多層シートであって、最上層または最下層の少なくとも一方の最外層の糸シートが有機系繊維糸からなることを特徴とするセメント系構造物補強用多層シートに関する。   The present invention relates to a cement-based structure reinforcing multilayer sheet in which two or more layers of yarn sheets in which yarns are aligned are laminated, wherein the outermost layer yarn sheet of the uppermost layer or the lowermost layer is an organic fiber yarn The present invention relates to a multilayer sheet for reinforcing a cement-type structure.

本発明はまた、上記セメント系構造物補強用多層シートを、有機系繊維糸の糸シートからなる最外層が外側に位置するように、セメント系構造物に被覆することを特徴とするセメント系構造物の補強方法に関する。   The present invention also provides the cement-based structure, wherein the cement-based structure is coated with the above-mentioned multilayer sheet for reinforcing the cement-based structure so that the outermost layer composed of the yarn sheet of the organic fiber yarn is located outside. The present invention relates to a method for reinforcing objects.

本明細書中、セメント系構造物とは、比較的粒度の大きな砂利とセメントを主成分とした、いわゆるコンクリートからなる構造物、および比較的粒度の小さな砂利とセメントを主成分とした、いわゆるモルタルからなる構造物を包含して意味するものとする。   In this specification, the cement-based structure is a so-called concrete structure mainly composed of gravel and cement having a relatively large particle size, and a so-called mortar composed mainly of gravel and cement having a relatively small particle size. It is meant to include a structure consisting of

本発明によれば、セメント系構造物の優れた補強を達成できるだけでなく、セメント系構造物に過度の圧縮荷重が付与されてもセメント系構造物の破片飛散を有効に防止できる。よって、セメント系構造物周辺の住民や建築物に対する二次災害を防ぐことができる。   ADVANTAGE OF THE INVENTION According to this invention, not only the reinforcement | strengthening of a cement-type structure can be achieved, but even if an excessive compressive load is provided to a cement-type structure, the fragment | piece scattering of a cement-type structure can be prevented effectively. Therefore, it is possible to prevent secondary disasters for residents and buildings around cement-based structures.

(セメント系構造物補強用多層シート)
本発明のセメント系構造物補強用多層シート(以下、単に多層シートという)は、糸を引き揃えた糸シートが2層以上積層されてなるものであり、例えば図1に示すような糸シート(3a、3b、3c)が積層されてなっている。図1は本発明の多層シートの構成と製造方法を示すための多層シート製造工程図の一例である。
(Multilayer sheet for cement structure reinforcement)
A multilayer sheet for reinforcing a cement-based structure of the present invention (hereinafter simply referred to as a multilayer sheet) is formed by laminating two or more layers of yarn sheets in which yarns are aligned. For example, a yarn sheet as shown in FIG. 3a, 3b, 3c) are laminated. FIG. 1 is an example of a multilayer sheet manufacturing process diagram for illustrating the structure and manufacturing method of the multilayer sheet of the present invention.

本発明において多層シートは、セメント系構造物への被覆時において最も外側に位置する層の糸シートが有機系繊維糸からなるように、最上層(図1中、3a)または最下層(図1中、3c)の少なくとも一方の最外層の糸シートが有機系繊維糸からなっている。本明細書中、最外層は最上層および最下層を包含する概念で用いるものとし、それらの層のうち、有機系繊維糸の糸シートからなる最外層を特に「有機系最外層」と呼ぶこととする。すなわち本発明の多層シートは有機系最外層を最上層または最下層の一方の位置に有していても良いし、または両方の位置に有していても良い。   In the present invention, the multilayer sheet is composed of the uppermost layer (3a in FIG. 1) or the lowermost layer (FIG. 1) so that the yarn sheet of the outermost layer at the time of coating on the cementitious structure is composed of organic fiber yarns. At least one of the outermost yarn sheets of 3c) is made of an organic fiber yarn. In the present specification, the outermost layer is used in a concept including the uppermost layer and the lowermost layer, and among these layers, the outermost layer composed of a yarn sheet of organic fiber yarn is particularly referred to as an “organic outermost layer”. And That is, the multilayer sheet of the present invention may have the organic outermost layer at one position of the uppermost layer or the lowermost layer, or may have it at both positions.

多層シートが有機系繊維糸からなる有機系最外層を最上層または最下層の少なくとも一方の位置に有することにより、有機系最外層が外側に位置するように、多層シートをセメント系構造物に被覆することができる。これによって、セメント系構造物の補強を達成できるとともに、急激な耐荷性能の低下を防止できるとともに過度の圧縮荷重によるセメント系構造物の破壊時において、セメント系構造物破片が飛び散る破片飛散を有効に防止できる。破片飛散を防止するメカニズムの詳細は明らかではないが、以下のメカニズムに基づくものと考えられる。すなわち、有機系最外層が外側に位置するように多層シートを被覆すると、当該有機系最外層のさらに外側に層は存在しない。そのような状態において当該有機系最外層の有機系繊維糸はセメント系構造物破片の飛散エネルギーを最も有効に吸収できるため、破片飛散を防止できるものと考えられる。最上層および最下層のいずれも有機系繊維糸から構成されず、例えば、無機系繊維糸から構成されると、被覆時において外側に位置する層の糸シートが有機系繊維糸より構成されることはない。その場合、たとえ、他の層の糸シートが有機系繊維糸からなっていても、セメント系構造物破片の飛散エネルギーは有効に吸収されず、破片飛散を防止できない。   The multilayer sheet covers the cementitious structure so that the organic outermost layer is located on the outside by having the organic outermost layer composed of organic fiber yarns in at least one position of the uppermost layer or the lowermost layer. can do. This makes it possible to reinforce the cementitious structure, prevent a sudden drop in load-bearing performance, and effectively prevent the fragmentation of cementitious structure fragments when the cementitious structure breaks down due to excessive compressive load. Can be prevented. The details of the mechanism for preventing fragment scattering are not clear, but are thought to be based on the following mechanism. That is, when the multilayer sheet is coated so that the organic outermost layer is located on the outer side, no layer exists on the outer side of the organic outermost layer. In such a state, since the organic fiber yarn of the organic outermost layer can absorb the scattering energy of the cement-based structure fragment most effectively, it is considered that the fragment scattering can be prevented. Neither the uppermost layer nor the lowermost layer is composed of organic fiber yarns. For example, when composed of inorganic fiber yarns, the yarn sheet of the layer located on the outside at the time of coating is composed of organic fiber yarns. There is no. In that case, even if the yarn sheet of the other layer is made of organic fiber yarns, the scattering energy of the cementitious structure fragments is not effectively absorbed, and the fragment scattering cannot be prevented.

図1において各層を構成する糸2は模式的に示されており、すなわち当該糸を構成する個々の繊維が示されていないが、通常はマルチフィラメント(繊維の束)であり、撚りが加えられていても加えられていなくても良い。   In FIG. 1, the yarns 2 constituting each layer are schematically shown, that is, the individual fibers constituting the yarn are not shown, but are usually multifilaments (bundles of fibers) and twisted. It may or may not be added.

例えば、有機系最外層の糸シートを構成する有機系繊維糸は有機系繊維のマルチフィラメントである。有機系繊維としては、例えば、高強度ポリエチレン繊維、アラミド繊維、ビニロン繊維、ナイロン繊維、ポリエステル繊維、ポリアリレート繊維、PBO(ポリフェニレンベンゾビスオキサゾール)繊維、またはそれらの混合繊維等が使用可能である。使用する有機繊維糸の引張強度は、セメント系構造体補強の観点から1.0GPa以上が好ましい。より好ましくは、引張強度が1.8GPa以上の有機系強化繊維糸である。材質的に好ましくは高強度ポリエチレン繊維、アラミド繊維、ビニロン繊維であり、特に破片飛散防止の観点から好ましくは高強度ポリエチレン繊維である。有機系繊維の太さは本発明の目的が達成される限り特に制限されず、例えば高強度ポリエチレン繊維の場合、通常は55dtex〜5280dtex、好ましくは440dtex〜2640dtexである。アラミド繊維の場合、通常は28dtex〜8330dtex、好ましくは440dtex〜3340detexである。ビニロン繊維の場合、好ましくは1100dtex〜1980dtexである。
本明細書中、有機系繊維糸の引張強度は、JIS L 1013:1999の8.5.1に記載される標準時試験に準じて測定された値を用いている。
For example, the organic fiber yarn constituting the organic outermost layer yarn sheet is a multifilament of organic fibers. As the organic fiber, for example, high-strength polyethylene fiber, aramid fiber, vinylon fiber, nylon fiber, polyester fiber, polyarylate fiber, PBO (polyphenylenebenzobisoxazole) fiber, or a mixed fiber thereof can be used. The tensile strength of the organic fiber yarn used is preferably 1.0 GPa or more from the viewpoint of reinforcing the cement-based structure. More preferably, the organic reinforcing fiber yarn has a tensile strength of 1.8 GPa or more. The material is preferably high-strength polyethylene fiber, aramid fiber, or vinylon fiber, and particularly preferably high-strength polyethylene fiber from the viewpoint of preventing fragment scattering. The thickness of the organic fiber is not particularly limited as long as the object of the present invention is achieved. For example, in the case of a high-strength polyethylene fiber, the thickness is usually 55 dtex to 5280 dtex, preferably 440 dtex to 2640 dtex. In the case of an aramid fiber, it is usually 28 dtex to 8330 dtex, preferably 440 dtex to 3340 detex. In the case of vinylon fiber, it is preferably 1100 dtex to 1980 dtex.
In the present specification, the tensile strength of the organic fiber yarn is a value measured according to the standard time test described in JIS L 1013: 1999, 8.5.1.

有機系最外層以外の層の糸シートは本発明の目的を達成できる限りいかなる糸からなっていてもよいが、破片飛散をより有効に防止する観点から好ましくは有機系繊維糸または無機系繊維糸からなっている。有機系繊維糸からなる糸シートを複数層積層する場合は、有機系最外層の糸シートを構成する有機系繊維糸と有機系最外層以外の層の糸シートを構成する有機系繊維糸について、異なる材質または同材質であっても引張強度等の物性に異なるものを用いるのが好ましい。   The yarn sheet of the layer other than the organic outermost layer may be composed of any yarn as long as the object of the present invention can be achieved. However, from the viewpoint of more effectively preventing fragment scattering, an organic fiber yarn or an inorganic fiber yarn is preferable. It is made up of. When laminating a plurality of yarn sheets made of organic fiber yarns, for the organic fiber yarns constituting the organic fiber yarns constituting the organic outermost layer yarn sheet and the yarn sheets of layers other than the organic outermost layer, It is preferable to use different materials or materials having different physical properties such as tensile strength.

有機系最外層以外の層の糸シートを構成し得る無機系繊維糸は無機系繊維のマルチフィラメントである。無機系繊維としては、例えば、炭素繊維、ガラス繊維、ボロン繊維、鋼繊維またはそれらの混合繊維等が使用可能である。使用する無機繊維糸の引張強度は、セメント系構造体補強の観点から1.5GPa以上が好ましい。より好ましくは、引張強度が1.8GPa以上の無機系強化繊維糸である。材質的に好ましくは炭素繊維、ガラス繊維であり、強度面から特に好ましくは3.0GPa以上の引張強度を有する炭素繊維である。無機系繊維の太さは本発明の目的が達成される限り特に制限されず、炭素繊維の場合、1K〜24Kであり、ガラス繊維の場合、通常は33tex〜4400tex、好ましくは575tex〜2200texである。
本明細書中、炭素繊維の引張強度は、JIS R 7601:1986に記載される試験に準じて測定された値を用いている。
またガラス繊維の引張強度はJIS R 3420:1999に記載されるガラスロービングに関する試験に準じて測定された値を用いている。
The inorganic fiber yarn that can constitute a yarn sheet of a layer other than the organic outermost layer is a multifilament of inorganic fibers. As the inorganic fiber, for example, carbon fiber, glass fiber, boron fiber, steel fiber, or a mixed fiber thereof can be used. The tensile strength of the inorganic fiber yarn used is preferably 1.5 GPa or more from the viewpoint of reinforcing the cement-based structure. More preferably, the inorganic reinforcing fiber yarn has a tensile strength of 1.8 GPa or more. The material is preferably carbon fiber or glass fiber, and particularly preferably carbon fiber having a tensile strength of 3.0 GPa or more from the viewpoint of strength. The thickness of the inorganic fiber is not particularly limited as long as the object of the present invention is achieved. In the case of carbon fiber, it is 1K to 24K, and in the case of glass fiber, it is usually 33 tex to 4400 tex, preferably 575 tex to 2200 tex. .
In this specification, the value measured according to the test described in JISR7601: 1986 is used for the tensile strength of carbon fiber.
Moreover, the value measured according to the test regarding the glass roving described in JISR3420: 1999 is used for the tensile strength of glass fiber.

構造物に対する補強効果を向上させる観点から好ましくは、有機系最外層以外の層のうち少なくとも1の層の糸シートは無機系繊維糸からなるものである。   Preferably, the yarn sheet of at least one layer among the layers other than the organic outermost layer is composed of inorganic fiber yarns from the viewpoint of improving the reinforcing effect on the structure.

本発明の多層シートにおいて、各層の糸シートを構成する糸は各糸シートごとに同一方向に引き揃えられている。多層シートを構成する糸シートの目付は、例えば、有機系繊維糸の糸シートで20〜400g/mが好適であり、より好ましくは、50〜200g/mである。無機系繊維糸の糸シートで50〜800g/mが好適であり、より好ましくは、100〜400g/mである。なお、構造物の補強の目的を達する限り、目開きのあるネット状シートでもよく、また密に引き揃えられたシートであっても良い。 In the multilayer sheet of the present invention, the yarns constituting the yarn sheets of each layer are aligned in the same direction for each yarn sheet. The basis weight of the yarn sheet constituting the multilayer sheet is, for example, preferably 20 to 400 g / m 2 , more preferably 50 to 200 g / m 2 for a yarn sheet of organic fiber yarn. 50 to 800 g / m 2 is suitable for the inorganic fiber yarn sheet, and more preferably 100 to 400 g / m 2 . As long as the purpose of reinforcing the structure is achieved, it may be a net-like sheet with openings, or a sheet that is closely arranged.

本発明の多層シートは当該多層シートを構成する全ての糸シートの糸引き揃え方向が同一であってもよいが、糸の引き揃え方向が異なる少なくとも2層の糸シートが積層されてなることが好ましく、より好ましくは糸の引き揃え方向は、図1に示すように、隣接する糸シート間で異なる。   In the multilayer sheet of the present invention, the yarn aligning directions of all the yarn sheets constituting the multilayer sheet may be the same, but at least two yarn sheets having different yarn aligning directions may be laminated. More preferably, the alignment direction of the yarns is different between adjacent yarn sheets as shown in FIG.

例えば、図1に示す多層シート1では、シートの長手方向αを0°としたとき、糸シート3aの糸引き揃え方向は0°、糸シート3bの糸引き揃え方向はβ°(0<β<90)、糸シート3cの糸引き揃え方向はβ°(−90<β<0)であり、隣接する糸シート間(3aと3b、3bと3c)で糸の引き揃え方向が異なっている。 For example, in the multilayer sheet 1 shown in FIG. 1, when the longitudinal direction α of the sheet is 0 °, the yarn alignment direction of the yarn sheet 3a is 0 °, and the yarn alignment direction of the yarn sheet 3b is β 1 ° (0 < β 1 <90), the yarn alignment direction of the yarn sheet 3c is β 2 ° (−90 <β 2 <0), and the yarn alignment direction between adjacent yarn sheets (3a and 3b, 3b and 3c) Is different.

図1では3層積層型多層シートが示されているが、本発明はこれに限定されるものではなく、2層積層型であっても、4層以上の多層積層型であってもよい。積層数、各層の糸引き揃え方向および各層の構成糸の種類に関する好ましい組み合わせの具体例を以下に示す。本明細書中、n層型(nは2以上の整数)の場合、γ(kは1〜nの整数)は最上層からk番目の層を構成する糸シートの糸引き揃え方向を意味する。またγの後の括弧内に記載の糸は最上層からk番目の層の糸シートを構成する糸を意味する。なお、糸引き揃え方向は図1に示すように、シートの長手方向αを0°(基準)として、反時計回りの方向を正の角度で、時計回りの方向を負の角度で示すものとする。 Although FIG. 1 shows a three-layer laminated type multilayer sheet, the present invention is not limited to this, and it may be a two-layer laminated type or a multilayer laminated type having four or more layers. Specific examples of preferred combinations relating to the number of stacked layers, the yarn alignment direction of each layer, and the types of constituent yarns of each layer are shown below. In this specification, in the case of the n-layer type (n is an integer of 2 or more), γ k (k is an integer of 1 to n) means the yarn alignment direction of the yarn sheet constituting the k-th layer from the top layer. To do. The yarn described in parentheses after γ k means a yarn constituting the k-th layer yarn sheet from the uppermost layer. As shown in FIG. 1, the yarn alignment direction is as follows: the longitudinal direction α of the sheet is 0 ° (reference), the counterclockwise direction is a positive angle, and the clockwise direction is a negative angle. To do.

(1)2層型;γ=0°または90°(有機系強化繊維糸)、γ=0または90°(無機系強化繊維糸);
(2)3層型;γ=0°または90°(有機系強化繊維糸)、γ=30〜60°(無機系強化繊維糸または有機系強化繊維糸)、γ=−30〜−60°(無機系強化繊維糸)、かつγ=−γ
(3)3層型;γ=0°または90°(有機系強化繊維糸)、γ=30〜60°(無機系強化繊維糸)、γ=−30〜−60°(有機系強化繊維糸)、かつγ=−γ
(4)3層型;γ=0°または90°(有機系強化繊維糸)、γ=−30〜−60°(無機系強化繊維糸または有機系強化繊維糸)、γ=30〜60°(無機系強化繊維糸)、かつγ=−γ
(5)3層型;γ=0°または90°(有機系強化繊維糸)、γ=−30〜−60°(無機系強化繊維糸)、γ=30〜60°(有機系強化繊維糸)、かつγ=−γ
(6)3層型;γ=30〜60°(有機系強化繊維糸)、γ=0°または90°(無機系強化繊維糸または有機系強化繊維糸)、γ=−30〜−60°(無機系強化繊維糸)、かつγ=−γ
(7)3層型;γ=30〜60°(有機系強化繊維糸)、γ=0°または90°(無機系強化繊維糸)、γ=−30〜−60°(有機系強化繊維糸)、かつγ=−γ
(8)3層型;γ=−30〜−60°(有機系強化繊維糸)、γ=0°または90°(無機系強化繊維糸または有機系強化繊維糸)、γ=30〜60°(無機系強化繊維糸)、かつγ=−γ
(9)3層型;γ=−30〜−60°(有機系強化繊維糸)、γ=0°または90°(無機系強化繊維糸)、γ=30〜60°(有機系強化繊維糸)、かつγ=−γ
(10)3層型;γ=−30〜−60°(有機系強化繊維糸)、γ=30〜60°(無機系強化繊維糸または有機系強化繊維糸)、γ=0°または90°(無機系強化繊維糸)、かつ−γ=γ
(11)4層型;γ=0°または90°(有機系強化繊維糸)、γ=−30〜−60°(無機系強化繊維糸または有機系強化繊維糸)、γ=30〜60°(無機系強化繊維糸または有機系強化繊維糸)、γ=0°または90°(無機系強化繊維糸)、かつγ=−γ
(12)4層型;γ=0°または90°(有機系強化繊維糸)、γ=−30〜−60°(無機系強化繊維糸)、γ=30〜60°(無機系強化繊維糸)、γ=0°または90°(有機系強化繊維糸)、かつγ=−γ
(13)4層型;γ=0°または90°(有機系強化繊維糸)、γ=−30〜−60°(無機系強化繊維糸)、γ=30〜60°(無機系強化繊維糸)、γ=0°または90°(無機系強化繊維糸)、かつγ=−γ
(1) Two-layer type; γ 1 = 0 ° or 90 ° (organic reinforcing fiber yarn), γ 2 = 0 or 90 ° (inorganic reinforcing fiber yarn);
(2) Three-layer type: γ 1 = 0 ° or 90 ° (organic reinforced fiber yarn), γ 2 = 30 to 60 ° (inorganic reinforced fiber yarn or organic reinforced fiber yarn), γ 3 = −30 −60 ° (inorganic reinforcing fiber yarn), and γ 2 = −γ 3 ;
(3) Three-layer type: γ 1 = 0 ° or 90 ° (organic reinforced fiber yarn), γ 2 = 30 to 60 ° (inorganic reinforced fiber yarn), γ 3 = -30 to -60 ° (organic type) Reinforcing fiber yarn), and γ 2 = −γ 3 ;
(4) Three-layer type: γ 1 = 0 ° or 90 ° (organic reinforced fiber yarn), γ 2 = -30 to -60 ° (inorganic reinforced fiber yarn or organic reinforced fiber yarn), γ 3 = 30 ~ 60 ° (inorganic reinforcing fiber yarn), and γ 2 = -γ 3 ;
(5) Three-layer type: γ 1 = 0 ° or 90 ° (organic reinforced fiber yarn), γ 2 = -30 to -60 ° (inorganic reinforced fiber yarn), γ 3 = 30 to 60 ° (organic type) Reinforcing fiber yarn), and γ 2 = −γ 3 ;
(6) Three-layer type; γ 1 = 30 to 60 ° (organic reinforced fiber yarn), γ 2 = 0 ° or 90 ° (inorganic reinforced fiber yarn or organic reinforced fiber yarn), γ 3 = -30 to 30 −60 ° (inorganic reinforcing fiber yarn), and γ 1 = −γ 3 ;
(7) Three-layer type: γ 1 = 30 to 60 ° (organic reinforcing fiber yarn), γ 2 = 0 ° or 90 ° (inorganic reinforcing fiber yarn), γ 3 = -30 to -60 ° (organic type) Reinforcing fiber yarn), and γ 1 = −γ 3 ;
(8) Three-layer type; γ 1 = −30 to −60 ° (organic reinforcing fiber yarn), γ 2 = 0 ° or 90 ° (inorganic reinforcing fiber yarn or organic reinforcing fiber yarn), γ 3 = 30 ~ 60 ° (inorganic reinforcing fiber yarn), and γ 1 = −γ 3 ;
(9) Three-layer type; γ 1 = −30 to −60 ° (organic reinforcing fiber yarn), γ 2 = 0 ° or 90 ° (inorganic reinforcing fiber yarn), γ 3 = 30 to 60 ° (organic type) Reinforcing fiber yarn), and γ 1 = −γ 3 ;
(10) Three-layer type; γ 1 = −30 to −60 ° (organic reinforcing fiber yarn), γ 2 = 30 to 60 ° (inorganic reinforcing fiber yarn or organic reinforcing fiber yarn), γ 3 = 0 ° Or 90 ° (inorganic reinforcing fiber yarn), and -γ 1 = γ 2 ;
(11) Four-layer type; γ 1 = 0 ° or 90 ° (organic reinforced fiber yarn), γ 2 = -30 to -60 ° (inorganic reinforced fiber yarn or organic reinforced fiber yarn), γ 3 = 30 ~ 60 ° (inorganic reinforcing fiber yarn or organic reinforcing fiber yarn), γ 4 = 0 ° or 90 ° (inorganic reinforcing fiber yarn), and γ 2 = -γ 3 ;
(12) Four-layer type; γ 1 = 0 ° or 90 ° (organic reinforcing fiber yarn), γ 2 = −30 to −60 ° (inorganic reinforcing fiber yarn), γ 3 = 30 to 60 ° (inorganic type) Reinforcing fiber yarn), γ 4 = 0 ° or 90 ° (organic reinforcing fiber yarn), and γ 2 = −γ 3 ;
(13) Four-layer type; γ 1 = 0 ° or 90 ° (organic reinforced fiber yarn), γ 2 = -30 to -60 ° (inorganic reinforced fiber yarn), γ 3 = 30 to 60 ° (inorganic type) Reinforcing fiber yarn), γ 4 = 0 ° or 90 ° (inorganic reinforcing fiber yarn), and γ 2 = −γ 3 .

本発明の多層シートにおいて隣接する糸シート間および同一の糸シートにおいて糸は一体化されている。図1において、糸2は編み針4を用いて編成糸5によって一体化されているが、その方法は多層シートの持ち運び時において分解されない程度に一体化されれば特に制限されない。例えば、低融点ポリマーからなる網状またはシート状の熱融着材を糸シート間に挟み、それらの積層体に熱および圧力を付与して当該ポリマーの溶融・融着によって一体化を達成してもよく、また、補強効果を損なわない範囲で構成糸の一部に保形用熱融着糸を使用しても良い。   In the multilayer sheet of the present invention, the yarns are integrated between adjacent yarn sheets and in the same yarn sheet. In FIG. 1, the yarn 2 is integrated by the knitting yarn 5 using the knitting needle 4, but the method is not particularly limited as long as it is integrated to such an extent that it is not disassembled when the multilayer sheet is carried. For example, a net-like or sheet-like heat sealing material made of a low melting point polymer is sandwiched between yarn sheets, and heat and pressure are applied to these laminates to achieve integration by melting and fusing the polymer. In addition, a heat retaining yarn for shape retention may be used as a part of the constituent yarn as long as the reinforcing effect is not impaired.

編み針を用いて一体化するときの編成糸は、一体化を達成できる限り特に制限されず、例えば、ポリエステル繊維、ナイロン繊維等が使用される。   The knitting yarn when integrating using a knitting needle is not particularly limited as long as integration can be achieved, and for example, polyester fiber, nylon fiber or the like is used.

(セメント系構造物の補強方法)
本発明のセメント系構造物の補強方法は、前記多層シートを、有機系繊維糸の糸シートからなる最外層(前記有機系最外層)が外側に位置するように、セメント系構造物に被覆することを特徴とする。
(Reinforcement method for cement-based structures)
In the method for reinforcing a cementitious structure according to the present invention, the multilayered sheet is coated on the cementitious structure such that the outermost layer (the organic outermost layer) made of an organic fiber yarn sheet is located outside. It is characterized by that.

有機系最外層が多層シートの最上層または最下層のいずれの層に相当する場合であっても、多層シートの有機系最外層が外側に位置するように、多層シートをセメント系構造物に被覆する限り、被覆時における多層シートの表裏は問わない。
例えば、図1に示すような多層シートにおいて最上層(3a)が有機系繊維糸からなり、最下層(3c)が無機系繊維糸からなる場合、当該多層シートは最下層(3c)がセメント系構造物側に、最上層(3a)が外側に位置するように、セメント系構造物に被覆する。
また例えば、図1に示すような多層シートにおいて最上層(3a)が無機系繊維糸からなり、最下層(3c)が有機系繊維糸からなる場合、当該多層シートは最上層(3a)がセメント系構造物側に、最下層(3c)が外側に位置するように、セメント系構造物に被覆する。
また例えば、図1に示すような多層シートにおいて最上層(3a)および最下層(3c)が共に有機系繊維糸からなる場合、当該多層シートは最上層(3a)または最下層(3c)のいずれの層が外側に位置するように、セメント系構造物に被覆してもよい。
Even if the organic outermost layer corresponds to either the uppermost layer or the lowermost layer of the multilayer sheet, the multilayered sheet is coated on the cementitious structure so that the organic outermost layer of the multilayer sheet is located outside. As long as it does, the front and back of the multilayer sheet at the time of covering are not ask | required.
For example, when the uppermost layer (3a) is made of organic fiber yarns and the lowermost layer (3c) is made of inorganic fiber yarns in the multilayer sheet as shown in FIG. 1, the lowermost layer (3c) is cemented. The cement-based structure is coated so that the uppermost layer (3a) is located on the outer side on the structure side.
Further, for example, in the multilayer sheet as shown in FIG. 1, when the uppermost layer (3a) is made of inorganic fiber yarns and the lowermost layer (3c) is made of organic fiber yarns, the uppermost layer (3a) is made of cement. The cementitious structure is coated so that the lowermost layer (3c) is located outside on the system structure side.
Further, for example, in the multilayer sheet as shown in FIG. 1, when both the uppermost layer (3a) and the lowermost layer (3c) are made of organic fiber yarns, the multilayer sheet is either the uppermost layer (3a) or the lowermost layer (3c). The cementitious structure may be coated so that the layer of the material is located outside.

多層シートの被覆方法としては、有機系最外層が外側に位置するように、多層シートを被覆できる限り特に制限されるものではない。多層シートの被覆方法の具体例を図2を用いて簡単に説明する。例えば、図2(A)に示すように、多層シート10の長手方向αがセメント系構造物11の周囲方向(水平方向)を向くように多層シートを被覆してもよい。また例えば、図2(B)に示すように、多層シート10の長手方向αがセメント系構造物11の高さ方向(鉛直方向)を向くように多層シートを被覆してもよい。また例えば、図2(C)に示すように、多層シート10の長手方向αが螺旋形状を描くように多層シートを被覆しても良い。図2(A)〜(C)は鉛直方向に構築されたセメント系構造物11に多層シート10(各層は図示せず)を被覆したときの状態の具体例を示す概略見取り図であり、12は多層シートの継ぎ目(切れ目)を示す。図2(A)〜(C)において多層シート10は一重でセメント系構造物11に被覆しているが、2またはそれ以上重ねて被覆しても良い。   The method for coating the multilayer sheet is not particularly limited as long as the multilayer sheet can be coated so that the organic outermost layer is located outside. A specific example of the multilayer sheet coating method will be briefly described with reference to FIG. For example, as shown in FIG. 2A, the multilayer sheet may be coated such that the longitudinal direction α of the multilayer sheet 10 faces the peripheral direction (horizontal direction) of the cementitious structure 11. Further, for example, as shown in FIG. 2B, the multilayer sheet may be coated such that the longitudinal direction α of the multilayer sheet 10 faces the height direction (vertical direction) of the cementitious structure 11. Further, for example, as shown in FIG. 2C, the multilayer sheet may be covered so that the longitudinal direction α of the multilayer sheet 10 draws a spiral shape. 2 (A) to 2 (C) are schematic sketches showing specific examples of a state when a multilayer structure 10 (each layer is not shown) is coated on a cement-based structure 11 constructed in the vertical direction. The joint (cut) of a multilayer sheet is shown. In FIGS. 2A to 2C, the multilayer sheet 10 is coated on the cementitious structure 11 in a single layer, but may be coated in two or more layers.

本発明においてはセメント系構造物の補強効果をさらに向上させる観点から、多層シートを構成するいずれかの糸シートの糸引き揃え方向が、セメント系構造物が受ける圧縮荷重方向に対する垂直面に沿うように、多層シートをセメント系構造物に被覆することがより好ましい。なお、補強強化に優れる無機系繊維、特に炭素繊維の糸引き揃え方向が圧縮荷重方向に対する垂直面に沿うように被覆するのが、好ましい態様である。   In the present invention, from the viewpoint of further improving the reinforcing effect of the cement-based structure, the yarn alignment direction of any of the yarn sheets constituting the multilayer sheet is along a plane perpendicular to the compressive load direction received by the cement-based structure. Furthermore, it is more preferable to coat the multilayer sheet on the cementitious structure. In addition, it is a preferable aspect that the inorganic fiber, which is excellent in reinforcing reinforcement, particularly the carbon fiber, is coated so that the yarn alignment direction is along a plane perpendicular to the compression load direction.

糸シートの糸引き揃え方向が、セメント系構造物が受ける圧縮荷重方向に対する垂直面に沿うとは、例えば、図2(A)〜(C)において、セメント系構造物11が受ける圧縮荷重方向Xに対する垂直面Yと、多層シート10を構成する糸シートの糸引き揃え方向Zとが、糸引き揃え方向Zの始点が垂直面Y上にないとき、交わらないことを意味する。本発明の多層シートは、当該多層シートを構成するいずれかの糸シートがそのような関係を満たすようにセメント系構造物に被覆することが好ましい。   For example, in FIGS. 2 (A) to 2 (C), the yarn alignment direction of the yarn sheet is along the plane perpendicular to the compression load direction received by the cement-based structure. This means that the vertical plane Y with respect to the yarn alignment direction Z of the yarn sheets constituting the multilayer sheet 10 does not intersect when the starting point of the yarn alignment direction Z is not on the vertical plane Y. The multilayer sheet of the present invention is preferably coated on a cementitious structure so that any yarn sheet constituting the multilayer sheet satisfies such a relationship.

多層シートを被覆するに際しては、通常、多層シートをセメント系構造物に固定できる手段を用いる。そのような固定手段としては特に制限されるものではないが、多層シートをセメント系構造物との接触面全面において固定可能な手段、例えば、接着剤を用いる等すればよい。   When coating the multilayer sheet, a means capable of fixing the multilayer sheet to the cementitious structure is usually used. Such fixing means is not particularly limited, and means capable of fixing the multilayer sheet over the entire contact surface with the cementitious structure, for example, an adhesive may be used.

接着剤としては、例えば、エポキシ系樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、アクリル樹脂、ウレタン樹脂等が使用可能である。エポキシ系樹脂等の接着剤を用いる場合は、セメント系構造物表面へのエポキシ樹脂等の下塗りに先立ってプライマーを塗布しておくことが、セメント系構造物との接着性向上の観点から好ましい。   Examples of the adhesive that can be used include epoxy resins, unsaturated polyester resins, vinyl ester resins, acrylic resins, and urethane resins. In the case of using an adhesive such as an epoxy resin, it is preferable to apply a primer prior to undercoating the epoxy resin or the like on the surface of the cement-based structure from the viewpoint of improving adhesiveness with the cement-based structure.

本発明のセメント系構造物の補強方法において、多層シートは通常、持ち運び容易性と作業容易性の観点からロール形態で使用されるが、所定の寸法に分割された形態で使用されてもよい。   In the method for reinforcing a cement-based structure of the present invention, the multilayer sheet is usually used in the form of a roll from the viewpoint of easy carrying and workability, but may be used in a form divided into predetermined dimensions.

<実施例、参考例および比較例>
(多層シートの製造)
図1に示すような多層シート製造工程によって、表1および表2に示す多層シートを幅200mmで製造した。なお、比較例1および2においては表2に示す繊維からなる単層シートを幅200mmで製造した。編成糸としてはポリエステル繊維糸を用いた。
<Examples , reference examples and comparative examples>
(Manufacture of multilayer sheets)
The multilayer sheets shown in Table 1 and Table 2 were manufactured with a width of 200 mm by the multilayer sheet manufacturing process as shown in FIG. In Comparative Examples 1 and 2, single-layer sheets made of the fibers shown in Table 2 were produced with a width of 200 mm. Polyester fiber yarn was used as the knitting yarn.

(評価サンプルの作製)
まず、コンクリート供試体を作製した。詳しくは、普通ポルトランドセメント360重量部に、細骨材782重量部、最大寸法20mmの粗骨材970重量部を加えて粉体混合した。粉体混合を続けながら水/セメント比50%となるように水を加え混合し、型枠に打設した。24時間養生後、脱型し、28日間の水中養生により、直径100mm×高さ200mmの円柱状コンクリート供試体を得た。なお、コンクリート供試体の表面をグラインダーにて表面処理した。比較例3においては、このときの状態のコンクリート供試体を評価に供した。
(Preparation of evaluation sample)
First, a concrete specimen was prepared. Specifically, 782 parts by weight of fine aggregate and 970 parts by weight of coarse aggregate having a maximum size of 20 mm were added to 360 parts by weight of ordinary Portland cement and mixed with powder. While continuing the powder mixing, water was added and mixed so that the water / cement ratio was 50%, and the mixture was placed in a mold. After curing for 24 hours, the mold was removed, and a columnar concrete specimen having a diameter of 100 mm and a height of 200 mm was obtained by water curing for 28 days. The surface of the concrete specimen was surface treated with a grinder. In Comparative Example 3, the concrete specimen in this state was used for evaluation.

表面処理したコンクリート供試体の側面にエポキシ樹脂系プライマー(品名:ボンドE810L、コニシ(株))を塗布し、24時間静置養生した。その後、コンクリート供試体の側面に、表1に示す多層シートまたは単層シートを、エポキシ樹脂(品名:ボンドE2500、コニシ(株))により図2(A)に示すように被覆した。詳しくは、コンクリート供試体の側面にエポキシ樹脂を下塗りした後、シートを一重で巻き付け、その上にさらにエポキシ樹脂を上塗りした。上塗りは、シートにエポキシ樹脂が十分に含浸するようにローラーにより行った。多層シートの巻き付けは、多層シートの最上層が供試体側に、最下層が外側に位置するように、しかもシートの長手方向(図1中、αの方向)がコンクリート供試体の円周方向(水平方向)に向くように、行った。なお、単層シートの巻き付けは、シートの表裏に関係なく、シートの長手方向(図1中、αの方向)がコンクリート供試体の円周方向(水平方向)に向くように、行った。
シートをコンクリート供試体に被覆した後は、7日間静置養生し、評価した。
An epoxy resin primer (product name: Bond E810L, Konishi Co., Ltd.) was applied to the side surface of the surface-treated concrete specimen, followed by standing curing for 24 hours. Thereafter, a multilayer sheet or a single layer sheet shown in Table 1 was coated on the side surface of the concrete specimen with an epoxy resin (product name: Bond E2500, Konishi Co., Ltd.) as shown in FIG. Specifically, after the epoxy resin was primed on the side surface of the concrete specimen, the sheet was wound in a single layer, and the epoxy resin was further overcoated thereon. The top coating was performed with a roller so that the sheet was sufficiently impregnated with the epoxy resin. The multilayer sheet is wound so that the uppermost layer of the multilayer sheet is on the specimen side and the lowermost layer is on the outer side, and the longitudinal direction of the sheet (direction α in FIG. 1) is the circumferential direction of the concrete specimen ( (Horizontal direction). The single-layer sheet was wound so that the longitudinal direction of the sheet (direction α in FIG. 1) was directed to the circumferential direction (horizontal direction) of the concrete specimen, regardless of the front and back of the sheet.
After the sheet was coated on the concrete specimen, it was allowed to stand for 7 days and evaluated.

(評価方法)
JIS A 1108:1999「コンクリートの圧縮強度試験方法」に準じて載荷試験を行った。
試験手順は以下のとおりである。
1)供試体の上下面及び上下の加圧板の圧縮面を清掃する。
2)供試体を、その中心軸が加圧板の中心と一致するように置く
3)試験機の加圧板と供試体の端面とは、直接密着させる。
4)供試体に衝撃を与えないように一様な速度で荷重を加える(圧縮応力度の増加が毎秒0.6±0.4N/mmになるようにする)。
5)供試体が破壊するまで荷重を加え続ける。
(Evaluation method)
A loading test was conducted in accordance with JIS A 1108: 1999 “Method for testing compressive strength of concrete”.
The test procedure is as follows.
1) Clean the upper and lower surfaces of the specimen and the compression surfaces of the upper and lower pressure plates.
2) Place the specimen so that its central axis coincides with the center of the pressure plate
3) The pressure plate of the testing machine and the end face of the specimen are in direct contact.
4) A load is applied at a uniform speed so as not to give an impact to the specimen (the increase in compressive stress level is 0.6 ± 0.4 N / mm 2 per second).
5) Continue applying the load until the specimen breaks.

以上の試験において破壊したときの荷重(最大荷重)を測定し、その結果を破壊状態とともに表1および表2にまとめて示した。   The load (maximum load) at the time of breaking in the above test was measured, and the results are shown in Table 1 and Table 2 together with the broken state.

Figure 0005042457
Figure 0005042457

Figure 0005042457
Figure 0005042457

表中、多層シートの列において、角度は図1においてと同様に、シートの長手方向αを0°(基準)とした値であり、反時計回りの方向を正の角度で、時計回りの方向を負の角度で示すものである。また括弧内には各層の目付を示す。
炭素繊維糸は12Kのマルチフィラメントを使用する。引張強度は4.1GPaである。
高強度ポリエチレン繊維糸は2640dtexのマルチフィラメントを使用する。引張強度は2.7GPaである。
In the table, in the multilayer sheet row, the angle is a value in which the longitudinal direction α of the sheet is 0 ° (reference) as in FIG. 1, the counterclockwise direction is a positive angle, and the clockwise direction Is indicated by a negative angle. The weight of each layer is shown in parentheses.
The carbon fiber yarn uses a 12K multifilament. The tensile strength is 4.1 GPa.
The high-strength polyethylene fiber yarn uses 2640 dtex multifilament. The tensile strength is 2.7 GPa.

本発明のセメント系構造物補強用多層シートおよびセメント系構造物の補強方法は、例えば高架橋の橋脚のようなセメント系構造物、特に柱状の構造物の補強用シートに適用可能で、補強効果だけでなく、二次災害の防止効果も得られる。   The multilayer sheet for reinforcing a cement-based structure and the method for reinforcing a cement-based structure according to the present invention can be applied to a cement-based structure such as a viaduct of a viaduct, particularly a reinforcing sheet for a columnar structure. In addition, secondary disaster prevention effects can be obtained.

本発明の多層シートの構成と製造方法を示すための多層シート製造工程模式図の一例である。It is an example of the multilayer sheet manufacturing process schematic diagram for showing the structure and manufacturing method of the multilayer sheet of this invention. (A)〜(C)はセメント系構造物に多層シートを被覆したときの状態の具体例を示す概略見取り図である。(A)-(C) are schematic sketches which show the specific example of a state when a cementitious structure is coat | covered with a multilayer sheet.

符号の説明Explanation of symbols

1:多層シート、2:糸、3a:糸シート(最上層)、3b:糸シート(中間層)、3c:糸シート(最下層)、4:編み針、5:編成糸、10:多層シート、11:セメント系構造物、12:継ぎ目(切れ目)、α:多層シートの長手方向。



1: multilayer sheet, 2: yarn, 3a: yarn sheet (uppermost layer), 3b: yarn sheet (intermediate layer), 3c: yarn sheet (lowermost layer), 4: knitting needle, 5: knitting yarn, 10: multilayer sheet, 11: Cement-based structure, 12: seam (cut), α: longitudinal direction of multilayer sheet.



Claims (5)

糸を引き揃えた糸シートが2層以上積層されてなるセメント系構造物補強用多層シートであって、糸の引き揃え方向が異なる少なくとも2層の糸シートが積層され、最上層または最下層の少なくとも一方の最外層の糸シートが有機系繊維糸からなり、該有機系繊維糸の糸シートからなる最外層以外の層のうち少なくとも1の層の糸シートが無機系繊維糸からなり、該多層糸シートは、有機系繊維糸の糸シートからなる最外層が外側に位置してセメント系構造物に接着するように使用されることを特徴とするセメント系構造物補強用多層シート。 A multilayer yarn sheet for reinforcing cement-based structures in which two or more layers of yarn sheets in which yarns are aligned are laminated, wherein at least two layers of yarn sheets having different yarn alignment directions are laminated, the uppermost layer or the lowermost layer at least one of the yarn sheet of the outermost layer is made of organic fiber yarn, Ri yarn sheet at least one layer of the layers other than the outermost layer consisting of yarn sheet organic fiber yarns Do an inorganic fiber yarn, multilayer yarn sheet, organic fiber yarns cementitious structure reinforcing multilayer fiber sheet outermost layer made of the yarn sheet is used to adhere the cementitious structure located outside, characterized in Rukoto of. 有機系繊維糸の糸シートからなる最外層以外の層のうち無機系繊維糸からなる糸シートの層以外の層の糸シートが有機系繊維糸からなることを特徴とする請求項1に記載のセメント系構造物補強用多層シート。 The yarn sheet of a layer other than the layer of the yarn sheet made of an inorganic fiber yarn among the layers other than the outermost layer made of a yarn sheet of the organic fiber yarn is made of an organic fiber yarn. Multilayer yarn sheet for reinforcing cement-based structures. 請求項1または2に記載のセメント系構造物補強用多層シートを、有機系繊維糸の糸シートからなる最外層が外側に位置するように、セメント系構造物に接着することを特徴とするセメント系構造物の補強方法。 The multilayer yarn sheet for reinforcing a cement structure according to claim 1 or 2 is adhered to a cement structure such that an outermost layer made of a yarn sheet of organic fiber yarn is located outside. A method for reinforcing cement-based structures. セメント系構造物補強用多層シートを構成するいずれかの糸シートの糸引き揃え方向が、セメント系構造物が受ける圧縮荷重方向に対する垂直面に沿うように、セメント系構造物補強用多層シートをセメント系構造物に接着することを特徴とする請求項3に記載のセメント系構造物の補強方法。 As stringing alignment direction of one of the yarn sheet constituting the cementitious structure reinforcing multilayer yarn sheet, along a plane perpendicular to the compressive load direction cementitious structure is subjected, multilayer fiber sheet for reinforcing cement-based structure The method for reinforcing a cement-based structure according to claim 3, wherein the method is bonded to the cement-based structure. セメント系構造物が柱状構造物であることを特徴とする請求項3または4に記載のセメント系構造物の補強方法。   The method for reinforcing a cement-based structure according to claim 3 or 4, wherein the cement-based structure is a columnar structure.
JP2005059158A 2005-03-03 2005-03-03 Cement-based structure reinforcing multilayer sheet and method for reinforcing cement-based structure using the sheet Expired - Fee Related JP5042457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005059158A JP5042457B2 (en) 2005-03-03 2005-03-03 Cement-based structure reinforcing multilayer sheet and method for reinforcing cement-based structure using the sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005059158A JP5042457B2 (en) 2005-03-03 2005-03-03 Cement-based structure reinforcing multilayer sheet and method for reinforcing cement-based structure using the sheet

Publications (2)

Publication Number Publication Date
JP2006240083A JP2006240083A (en) 2006-09-14
JP5042457B2 true JP5042457B2 (en) 2012-10-03

Family

ID=37046957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005059158A Expired - Fee Related JP5042457B2 (en) 2005-03-03 2005-03-03 Cement-based structure reinforcing multilayer sheet and method for reinforcing cement-based structure using the sheet

Country Status (1)

Country Link
JP (1) JP5042457B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749053B2 (en) * 2005-06-20 2011-08-17 倉敷紡績株式会社 Method for reinforcing cement-based structure and cement-based structure reinforced by the method
JP2007002432A (en) * 2005-06-21 2007-01-11 Kurabo Ind Ltd Method of reinforcing cement-based structure, and cement-based structure reinforced by the method
KR100980659B1 (en) * 2007-12-28 2010-09-07 성균관대학교산학협력단 Mixing strengthening sheet for powerfulness reinforcement
JP5991913B2 (en) * 2012-12-25 2016-09-14 有限会社岩田工業 Strut reinforcement method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322999A (en) * 1993-05-14 1994-11-22 Tonen Corp Concrete column
JPH08197668A (en) * 1995-01-23 1996-08-06 Honda Motor Co Ltd Lamination structure of fiber reinforced resin
JPH11221872A (en) * 1998-02-09 1999-08-17 Toray Ind Inc Heat insulating fiber material
JP3581334B2 (en) * 2000-05-30 2004-10-27 日鉄コンポジット株式会社 Continuous reinforcing fiber sheet and method for producing the same
JP2002264235A (en) * 2001-03-13 2002-09-18 Toray Ind Inc Reinforcing multishaft stitch cloth and fiber reinforced plastic

Also Published As

Publication number Publication date
JP2006240083A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
Wobbe et al. Flexural capacity of RC beams externally bonded with SRP and SRG
US20060105156A1 (en) Impact reinforced composite panel
WO2015053842A1 (en) Composite textile
JP5042457B2 (en) Cement-based structure reinforcing multilayer sheet and method for reinforcing cement-based structure using the sheet
CN211851012U (en) Shear-resistant reinforcing device for reinforced concrete member
JP4749053B2 (en) Method for reinforcing cement-based structure and cement-based structure reinforced by the method
Dopko Fiber reinforced concrete: Tailoring composite properties with discrete fibers
Al-Shamayleh et al. Shear and flexural strengthening of reinforced concrete beams with variable compressive strength values using externally bonded carbon fiber plates
US20040219845A1 (en) Fabric reinforced cement
JP2013068065A (en) Reinforcing method and reinforcing structural body for concrete structure, and elastic layer formation material for reinforcement of concrete structure
JP2007002432A (en) Method of reinforcing cement-based structure, and cement-based structure reinforced by the method
Al-Salloum et al. Load capacity of concrete masonry block walls strengthened with epoxy-bonded GFRP sheets
Kumar et al. Investigation of HFRC beams retrofitted using GFRP for enhancement in flexural capacity
CN210195320U (en) Composite material structure based on FRP-STF
US20170101774A1 (en) Method of strengthening an existing infrastructure using sprayed-fiber reinforced polymer composite
Jabbar et al. Enhanced interlaminar shear and impact performance of woven carbon/epoxy composites interleaved with needle punched high performance polyethylene fiber nonwoven
Qeshta et al. Flexural behaviour of concrete beams bonded with wire mesh-epoxy composite
JP2014168862A (en) Construction method of composite structure, and composite structure
JP7017736B2 (en) Fiber reinforced resin sheet for spall prevention
Farooq Development of FRP based composite fibre for fibre reinforced cementitious composites
JPH10102791A (en) Surface reinforcement method of concrete structure
Das et al. Investigation of the compressive strength of CFRP wrapped nylon fiber reinforced concrete cylinders
Wille et al. Preliminary investigation on ultra-high performance ferrocement
JP3852085B2 (en) Reinforcing fiber sheet
Shewale et al. Functional performance of textile reinforced mortar in strengthening structural members: A critical review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees