JPH08197668A - Lamination structure of fiber reinforced resin - Google Patents

Lamination structure of fiber reinforced resin

Info

Publication number
JPH08197668A
JPH08197668A JP7008105A JP810595A JPH08197668A JP H08197668 A JPH08197668 A JP H08197668A JP 7008105 A JP7008105 A JP 7008105A JP 810595 A JP810595 A JP 810595A JP H08197668 A JPH08197668 A JP H08197668A
Authority
JP
Japan
Prior art keywords
fiber reinforced
cfrp
kfrp
reinforced resin
lamination structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7008105A
Other languages
Japanese (ja)
Inventor
Yuichi Yoshizaki
雄一 吉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP7008105A priority Critical patent/JPH08197668A/en
Priority to EP95118091A priority patent/EP0719635B1/en
Priority to DE69529453T priority patent/DE69529453T2/en
Priority to US08/575,794 priority patent/US5843558A/en
Publication of JPH08197668A publication Critical patent/JPH08197668A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02T50/43
    • Y02T50/433

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE: To improve absorption of impact energy and impact resistance by laminating aromatic polyamide fiber reinforced resin sheets on both sides of a carbon fiber reinforced resin sheet and slanting the direction of the aramid fibers at a specified angle. CONSTITUTION: Carbon fiber reinforced plastic(CFRP) is put between aromatic polyamide fiber reinforced plastic(KFRP) to make lamination structure. In the lamination structure, the direction of carbon fibers in CFRP is made longitudinal to be parallel with the load direction, while in the pair of KFRP on the both sides of CFRP, the direction of the aramid fibers is slanted at ±30 to ±60 deg. from the load direction. To make the lamination structure, prepregs of CFRP and KFRP taken out from a refrigerator are cut into necessary shapes in a clean room, and KFRP are laminated on both sides of CFRP through an adhesive.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば機体材料が繊維
強化プラスチックからなる航空機において、接地衝撃時
等の衝撃エネルギーの吸収に有効な樹脂の積層構造に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin laminated structure which is effective for absorbing impact energy at the time of a ground impact or the like in an aircraft whose body material is fiber reinforced plastic.

【0002】[0002]

【従来の技術】従来、例えば航空機等の構造材料に複合
材等の積層構造を採用した例として、例えば特開昭58
−84825号公報のようにハニカムパネルの表裏面に
繊維強化プラスチックシートを貼着するような技術が知
られている。また、特公昭51−15880号公報に
は、炭素繊維強化プラスチックシートの表裏面にガラス
繊維強化熱可塑性プラスチックシートを被着して積層構
造にするような技術が開示されている。
2. Description of the Related Art Conventionally, as an example in which a laminated structure of a composite material or the like is adopted as a structural material of an aircraft, for example, Japanese Patent Laid-Open No.
There is known a technique in which a fiber-reinforced plastic sheet is attached to the front and back surfaces of a honeycomb panel as disclosed in Japanese Patent Publication No. 84825. Japanese Patent Publication No. 51-15880 discloses a technique in which glass fiber reinforced thermoplastic sheets are attached to the front and back surfaces of a carbon fiber reinforced plastic sheet to form a laminated structure.

【0003】ところで、航空機、ヘリコプタ等の床面の
下部にはクラシュゾーンが設けられるのが一般的であ
り、このクラッシュゾーンでは衝撃荷重によって機体が
壊滅的な損傷を受けないよう、例えば図11に示すよう
な衝撃吸収機構が採用されている。すなわち、この構造
は、例えばアルミ合金製のキール51とリブ52の組合
わせ体からなり、この上に配置される床面等を通じて上
方から下方に向けて衝撃荷重が加わった際、応力が集中
する交差部53の接続コーナ具54の縦方向に複数のノ
ッチ穴55を設けている。そして、所定値以上の衝撃荷
重が加わるとノッチ穴55によって同部に計画的に座屈
を起こさせ衝撃エネルギーを吸収するようにしている。
By the way, a crush zone is generally provided in the lower part of the floor surface of an aircraft, helicopter, etc. In order to prevent the fuselage from being catastrophically damaged by an impact load in this crash zone, for example, FIG. A shock absorbing mechanism as shown is adopted. That is, this structure is composed of a combination of a keel 51 and a rib 52 made of, for example, an aluminum alloy, and stress is concentrated when an impact load is applied downward from above through a floor surface or the like arranged on this. A plurality of notch holes 55 are provided in the vertical direction of the connection corner tool 54 at the intersection 53. Then, when an impact load of a predetermined value or more is applied, the notch hole 55 causes the portion to buckle systematically to absorb the impact energy.

【0004】[0004]

【発明が解決しようとする課題】ところで、航空機等の
構造材に繊維強化プラスチックを採用すると機体の軽量
化が図られる等の利点があるものの、コーナ部に上記の
ようなノッチ穴の衝撃吸収構造を採用しても衝撃吸収面
では効果が十分ではなかった。また、構造破壊を伴うよ
うな衝撃荷重が加わると荷重値は一旦ピークまで上昇し
た後、それより低い値に落ち着き、このピーク荷重は乗
員保護等の見地から出来るだけ低減することが望ましい
が、繊維強化プラスチックのコーナ部にノッチ穴を設け
ても、ピーク荷重を低減させることに限度があった。
By the way, although the use of fiber reinforced plastic as a structural material of an aircraft or the like has the advantage of reducing the weight of the machine body, etc., the impact absorbing structure of the notch hole at the corner portion as described above is provided. However, the effect was not sufficient in terms of shock absorption. Also, when an impact load that causes structural destruction is applied, the load value once rises to the peak and then settles to a lower value, and it is desirable to reduce this peak load as much as possible from the viewpoint of occupant protection etc. Even if a notch hole is provided in the corner portion of the reinforced plastic, there is a limit in reducing the peak load.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
本発明は、衝撃荷重に対してシート面が平行に配設され
る炭素繊維強化樹脂シートの両面に芳香族ポリアミド繊
維強化樹脂シートを被着し、芳香族ポリアミド繊維強化
樹脂シートのアラミド繊維の方向を衝撃荷重方向に対し
て±30〜±60°傾いた方向とした。
In order to solve the above problems, the present invention provides an aromatic polyamide fiber reinforced resin sheet on both sides of a carbon fiber reinforced resin sheet whose sheet surfaces are arranged in parallel to an impact load. The direction of the aramid fiber of the aromatic polyamide fiber reinforced resin sheet was set to a direction inclined by ± 30 to ± 60 ° with respect to the impact load direction.

【0006】[0006]

【作用】一般的に炭素繊維強化プラスチックは引張り強
さ、弾性率等において優れるが、耐衝撃性や破壊靭性に
弱点があるといわれる。そこで、この弱点を芳香族ポリ
アミド繊維強化プラスチックで補い、耐衝撃性を向上さ
せる。この際、アラミド繊維方向を荷重方向から±30
〜±60°傾かせることで、衝撃エネルギー吸収率が向
上し、積層時の面歪みを無くすことが出来ることが確認
された。尚、アラミド繊維の傾斜方向は、±略45°が
最適である。
Function: Carbon fiber reinforced plastics are generally excellent in tensile strength, elastic modulus, etc., but are said to have weaknesses in impact resistance and fracture toughness. Therefore, this weakness is supplemented with an aromatic polyamide fiber reinforced plastic to improve impact resistance. At this time, the aramid fiber direction is ± 30 from the load direction.
It was confirmed that the impact energy absorption rate was improved and the surface strain at the time of stacking could be eliminated by tilting by ± 60 °. The inclination direction of the aramid fiber is optimally ± 45 °.

【0007】[0007]

【実施例】本発明の実施例について添付した図面に基づ
き説明する。ここで、図1は本発明の積層構造を示し、
(A)は積層前、(B)は積層後の繊維方向を説明する
説明図、(C)は断面図、図2は本積層構造を航空機の
床面下部の衝撃吸収構造に適用した構成例図、図3はア
ラミド繊維の方向と衝撃荷重方向との関係を示す説明図
である。
Embodiments of the present invention will be described with reference to the accompanying drawings. Here, FIG. 1 shows a laminated structure of the present invention,
(A) is an explanatory view for explaining the fiber direction before lamination, (B) is an explanatory view for explaining the fiber direction after lamination, (C) is a cross-sectional view, and FIG. 2 is a structural example in which this laminated structure is applied to a shock absorbing structure under the floor of an aircraft. 3 and 4 are explanatory views showing the relationship between the direction of the aramid fiber and the impact load direction.

【0008】本発明の積層構造は、例えば構造部材が複
合材からなる航空機の床面下部の衝撃吸収構造に適用さ
れ、縦方向に大きな衝撃が加わった際に衝撃エネルギー
を吸収することが出来るようにされている。
INDUSTRIAL APPLICABILITY The laminated structure of the present invention is applied to, for example, a shock absorbing structure under the floor surface of an aircraft in which structural members are made of composite material, and can absorb shock energy when a large vertical shock is applied. Has been

【0009】すなわち、航空機の床面下部には、図2に
示すような繊維強化プラスチック(以下、FRPとい
う。)製のキール1とリブ2が面方向を荷重方向と平行
な縦向きにして組み合わされ、このFRPは図1に示す
ように、中央の炭素繊維強化プラッスチック(以下、C
FRPという。)を挟んで両側に芳香族ポリアミド繊維
強化プラスチック(以下、KFRPという。)を被着し
た積層構造としている。そして、この積層構造は中央の
CFRPの炭素繊維の方向が荷重方向と平行な縦方向と
され、これを挟む一対のKFRPは、アラミド繊維aの
方向を荷重方向から±30〜±60゜傾斜させている。
That is, a keel 1 and a rib 2 made of fiber reinforced plastic (hereinafter referred to as FRP) as shown in FIG. 2 are combined in the lower part of the floor of the aircraft so that the plane direction is the vertical direction parallel to the load direction. As shown in FIG. 1, this FRP has a carbon fiber reinforced plastic (hereinafter referred to as C
It is called FRP. ) Is sandwiched between aromatic polyamide fiber reinforced plastics (hereinafter referred to as KFRP) to form a laminated structure. In this laminated structure, the direction of the carbon fiber of the central CFRP is the vertical direction parallel to the load direction, and the pair of KFRPs sandwiching this has the direction of the aramid fiber a inclined by ± 30 to ± 60 ° from the load direction. ing.

【0010】そして、このようなFRPの積層構造を採
用することで、衝撃荷重が加わった時にCFRP層に生
じる急速なクラックの進行をKFRP層で抑制すること
が出来、通常、衝撃荷重に対して弱いCFRP層の圧縮
破壊領域の拡大が図られる。なお、アラミド繊維aの方
向は、衝撃荷重方向から±30〜±60゜傾かせた範囲
で衝撃エネルギーを吸収出来る効率が高いが、本実施例
の場合には、より好ましい±略45゜傾かせている。ま
た、図3は、アラミド繊維aの方向を衝撃荷重方向Fか
ら±30゜傾かせた状態を示している。そして、CFR
P層を挟む一対のKFRP層のアラミド繊維の方向を夫
々同角度傾けることで、積層時に面歪みをなくすことが
出来る。
By adopting such a laminated structure of FRP, the KFRP layer can suppress the rapid progress of cracks which occur in the CFRP layer when an impact load is applied. Expansion of the compressive failure region of the weak CFRP layer is achieved. The direction of the aramid fiber a has a high efficiency of absorbing impact energy in a range tilted from the impact load direction by ± 30 to ± 60 °, but in the case of this embodiment, it is more preferably ± 45 °. ing. Further, FIG. 3 shows a state in which the direction of the aramid fiber a is inclined ± 30 ° from the impact load direction F. And CFR
By tilting the directions of the aramid fibers of the pair of KFRP layers sandwiching the P layer by the same angle, it is possible to eliminate the surface strain during lamination.

【0011】ところで、このような積層構造の製造法に
ついて、図8に基づき簡単に説明する。まず冷凍保管室
からCFRPとKFRPのプリプレグ材を取り出してク
リーン室で必要な形状にカットし(プリプレグ材プリカ
ット)、接着剤を介してCFRPの両側にKFRPを積
層するとともに、CFRPの繊維方向に対してKFRP
の繊維方向をそれぞれ±略45゜づつ斜めに揃える(レ
イアップ)。この際、クリーン室は、例えば温度18〜
27℃、湿度70%で所定圧に予圧されている。
A method of manufacturing such a laminated structure will be briefly described with reference to FIG. First, take out the prepreg material of CFRP and KFRP from the freezer storage room, cut it into a required shape in a clean room (prepreg material pre-cut), stack KFRP on both sides of CFRP via an adhesive, and in the fiber direction of CFRP. KFRP
Align the fiber directions of ± 45 degrees each (lay-up). At this time, the clean room has, for example, a temperature of 18 to
Pre-pressurized to a specified pressure at 27 ° C and 70% humidity.

【0012】そして、このプリプレグ積層物をナイロン
フィルム等で覆い、内部を真空引きする(バギング)。
次いで、これを例えば約120℃で60分程度加熱した
後、圧力を6kgf/cm2 程度まで高めるとともに、加熱温
度を約180℃程度まで昇温して120分程度保持し硬
化させる(オートクレープ硬化)。そして、必要に応じ
て外観検査等を行い、トリミング等の二次加工を行って
製品とする。
Then, the prepreg laminate is covered with a nylon film or the like, and the inside is evacuated (bagging).
Then, for example, after heating this at about 120 ° C for about 60 minutes, the pressure is raised to about 6 kgf / cm 2 , and the heating temperature is raised to about 180 ° C and held for about 120 minutes to cure (autoclave curing). ). Then, if necessary, an appearance inspection or the like is performed, and secondary processing such as trimming is performed to obtain a product.

【0013】次に、以上のような方法で製造したCFR
PとKFRPの積層構造の耐衝撃特性の試験結果につい
て、図4乃至図6に基づき説明する。ここで、図4は試
験に用いた供試体の形状を示し、図5は試験に用いた供
試体の仕様等を示し、図6は比エネルギー吸収量の試験
結果を示すグラフである。
Next, the CFR manufactured by the above method
The test results of the impact resistance characteristics of the laminated structure of P and KFRP will be described based on FIGS. 4 to 6. Here, FIG. 4 shows the shape of the test piece used in the test, FIG. 5 shows the specifications of the test piece used in the test, and FIG. 6 is a graph showing the test result of the specific energy absorption amount.

【0014】まず、図4に示す供試体Tは実際の機体の
フロアキールを参考にして決定し、幅250mm、高さ1
90mmを基準値とした。また、図5に示すように、材質
はアルミ材(AL)、CFRPを積層したもの(CFR
P)、KFRPを積層したもの(KFRP)、ガラス繊
維強化プラスチックを積層したもの(GFRP)、CF
RPの両面にKFRPを積層したもの(CF/KF)、
CFRPの両面にGFRPを積層したもの(CF/G
F)の6種類を用意し、各材料の等価条件として圧縮方
向の曲げ剛性EIが一致するように積層パターン、高さ
等を決定した。
First, the test piece T shown in FIG. 4 was determined with reference to the floor keel of the actual machine, and the width was 250 mm and the height was 1 mm.
90 mm was used as a reference value. Further, as shown in FIG. 5, the material is a laminate of aluminum material (AL) and CFRP (CFR
P), laminated KFRP (KFRP), laminated glass fiber reinforced plastic (GFRP), CF
Laminated KFRP on both sides of RP (CF / KF),
GFRP laminated on both sides of CFRP (CF / G
Six types of F) were prepared, and the lamination pattern, height, etc. were determined so that the bending rigidity EI in the compression direction would be the same, as an equivalent condition for each material.

【0015】この結果、図6に示すように、比エネルギ
ー吸収量(kg・mm/g) は、CF/KFが271kg・mm/g
と一番大きく、CFRP単体のもの、KFRP単体のも
のよりはるかに大きく、アルミの場合の約1.6倍に達
した。ここで、比エネルギー吸収量(kg・mm/g) とは、
図7に示すように、衝撃荷重が加わった時の荷重変位曲
線と最大圧縮変位量δmax によって囲まれる図のハッチ
ング部分の面積(吸収エネルギーEab)を構造体の重量
で除したものとしており、ここで、最大圧縮変位量δma
xとは、一般に構造物が圧縮力によりボトミングしてそ
れ以上エネルギー吸収が行えなくなった時の変位量を意
味するが、ここでは、各材料を比較する実験であるの
で、δmax=90mm を最大圧縮変位量としている。ま
た、このグラフの横軸は偏位量δ(mm)、縦軸は荷重W
(kgf)である。
As a result, as shown in FIG. 6, the specific energy absorption amount (kg · mm / g) is 271 kg · mm / g in CF / KF.
It is the largest and is much larger than that of CFRP alone and KFRP alone, reaching about 1.6 times that of aluminum. Here, the specific energy absorption (kg ・ mm / g) is
As shown in FIG. 7, the area of the hatched portion (absorbed energy Eab) surrounded by the load displacement curve and the maximum compressive displacement amount δmax when an impact load is applied is divided by the weight of the structure. And the maximum compression displacement δma
x generally means the amount of displacement when the structure is bottomed by the compressive force and it is no longer possible to absorb energy, but since it is an experiment comparing each material, δmax = 90 mm is the maximum compression. The amount of displacement is used. The horizontal axis of this graph is the displacement amount δ (mm), and the vertical axis is the load W.
(Kgf).

【0016】ところで、前記図2の衝撃吸収構造の細部
について更に説明すると、上記のような積層構造を有す
るキール1とリブ2は、交差部3においてリブ2端部の
取付フランジ2a面をキール1面に当接させ、複数のリ
ベット4、及び接着剤で接合している。
By the way, further explaining the details of the shock absorbing structure of FIG. 2, the keel 1 and the rib 2 having the above-mentioned laminated structure have the attachment flange 2a surface at the end of the rib 2 at the intersecting portion 3 on the keel 1 side. The surfaces are brought into contact with each other and joined by a plurality of rivets 4 and an adhesive.

【0017】そして、交差部3に臨むリブ2、2の上端
部には、矩形状の切欠き5が形成され、この切欠き5に
隣接してバルジ部6が設けられている。そして、このバ
ルジ部6は、側面の一方側から他方側に向けて膨出する
膨らみで水平方向に長径の長楕円形に形成されている。
そして、この切欠き5とバルジ部6は、縦方向の衝撃荷
重によって交差部3に所定値以上の応力が集中した際、
同部に局部的な座屈を起こさせ、主としてピーク荷重W
p(図7)を低減させるのに効果がある。
A rectangular notch 5 is formed at the upper ends of the ribs 2, 2 facing the intersecting portion 3, and a bulge portion 6 is provided adjacent to the notch 5. And this bulge part 6 is formed in the oblong shape of a major axis in the horizontal direction by the bulge which bulges from one side of a side surface to the other side.
Then, when the notch 5 and the bulge portion 6 concentrate a stress of a predetermined value or more on the intersection portion 3 due to a vertical impact load,
A local buckling is caused in the same part, and the peak load is mainly W
It is effective in reducing p (FIG. 7).

【0018】このような構造のエネルギー吸収率を他の
構成例と比較して試験した結果は、図9の通りである。
このテスト条件としては縦方向の衝突速度8.2m/sを
想定し、また、比較する他の構成例は、グラフの左端
が、A2024T3のアルミ合金材の接続コーナ部にノ
ッチ穴を設けたもの(従来例)であり、グラフの左から
2番目が平板状のCFRPのキールとリブを単に接続し
たものであり、グラフの右から2番目はCFRPのキー
ルとリブの接続コーナ部にノッチ穴を設けたものであ
る。そして、グラフの右端が本案の構成によるものであ
る。また、エネルギー吸収率はある目標値を基準にして
%で示している。
FIG. 9 shows the result of a test in which the energy absorption rate of such a structure is compared with other structural examples.
As a test condition, a vertical impact velocity of 8.2 m / s is assumed, and another configuration example to be compared is that the left end of the graph has a notch hole at the connection corner of the aluminum alloy material of A2024T3. (Conventional example), the second from the left in the graph simply connects the plate-shaped CFRP keel and the rib, and the second from the right in the graph has a notch hole at the connection corner of the CFRP keel and the rib. It is provided. And the right end of the graph is due to the configuration of the present invention. The energy absorption rate is shown in% based on a certain target value.

【0019】この結果、図4に示すように、本案の構造
は、アルミ合金製の接続コーナ部にノッチ穴を設けた場
合のエネルギー吸収率89%に匹敵する程の86.4%
のエネルギー吸収率が得られた。また、重量は、平板状
のCFRPを単に接続した場合の297g、或いはCF
RPの接続コーナ部にノッチ穴を設けた場合の290g
に較べて僅かに重い320gであるが、アルミ合金製の
467gに較べると極めて軽量である。
As a result, as shown in FIG. 4, the structure of the present invention has an energy absorption rate of 86.4%, which is comparable to the energy absorption rate of 89% when a notch hole is provided in the aluminum alloy connection corner.
The energy absorption rate of was obtained. Also, the weight is 297 g when a flat CFRP is simply connected, or CF
290g when notch hole is provided at the connection corner of RP
It weighs slightly more than 320g, but is much lighter than 467g made of aluminum alloy.

【0020】また、繊維強化樹脂の積層構造として、図
10に示すように、中央のCFRPの炭素繊維の方向を
荷重方向と平行な縦方向とし、これを挟む一対のKFR
Pは、片面側のアラミド繊維aの方向を荷重方向から一
方向に30〜60゜傾斜させ、他面側のアラミド繊維a
の方向を荷重方向から反対側に同角度傾斜させてもよ
い。なお、図10では、アラミド繊維aの方向を荷重方
向から一方向に、より好ましい略45゜傾かせている。
Further, as a laminated structure of fiber reinforced resin, as shown in FIG. 10, the direction of the carbon fiber of the central CFRP is set to the vertical direction parallel to the load direction, and a pair of KFRs sandwiching this are arranged.
P is obtained by inclining the direction of the aramid fiber a on one side from the load direction by 30 to 60 ° in one direction, and the aramid fiber a on the other side.
The direction may be tilted at the same angle from the load direction to the opposite side. In addition, in FIG. 10, the direction of the aramid fiber a is tilted in one direction from the load direction, which is more preferably about 45 °.

【0021】尚、以上のような衝撃吸収構造は航空機の
床面下部のみならず、航空機のノーズ部等に適用しても
良く、又は航空機以外の例えば自動車のフロント周り、
リヤ周り等の衝撃荷重のかかる可能性のある箇所に設
け、衝撃を吸収するようにしても良い。
The shock absorbing structure as described above may be applied not only to the lower part of the floor of the aircraft but also to the nose of the aircraft, or around the front of an automobile other than the aircraft, for example,
It may be provided in a place such as a rear part where an impact load may be applied to absorb the impact.

【0022】[0022]

【発明の効果】以上のように本発明の繊維強化樹脂の積
層構造は、炭素繊維強化樹脂シートの両面に芳香族ポリ
アミド繊維強化樹脂シートを被着し、アラミド繊維の方
向を±30〜±60度傾けることで衝撃エネルギーの吸
収率を高めるようにしたため、耐衝撃性を向上させるこ
とが出来る。また、広く乗り物一般に適用すれば効果が
あるが、複合材にて軽量化が図れるため特に航空機等に
は一層有効である。
As described above, in the laminated structure of the fiber reinforced resin of the present invention, the aromatic polyamide fiber reinforced resin sheet is adhered on both sides of the carbon fiber reinforced resin sheet, and the direction of the aramid fiber is ± 30 to ± 60. Since the absorption rate of impact energy is increased by tilting the angle, the impact resistance can be improved. Further, although it is effective when it is widely applied to general vehicles, it is more effective especially for an aircraft or the like because the composite material can reduce the weight.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の積層構造を示し、(A)は積層前、
(B)は積層後の繊維方向を説明する説明図、(C)は
断面図
FIG. 1 shows a laminated structure of the present invention, where (A) is before lamination,
(B) is explanatory drawing explaining the fiber direction after lamination, (C) is sectional drawing.

【図2】本積層構造を航空機の床面下部の衝撃吸収構造
に適用した構成例図
FIG. 2 is a structural example diagram in which this laminated structure is applied to a shock absorbing structure under a floor surface of an aircraft.

【図3】アラミド繊維の方向と衝撃荷重方向との関係を
示す説明図
FIG. 3 is an explanatory view showing the relationship between the direction of aramid fibers and the direction of impact load.

【図4】エネルギー吸収率のテストに用いた供試体の形
状図
FIG. 4 is a shape diagram of the specimen used for the energy absorption rate test.

【図5】各供試体の仕様を説明する表[Fig. 5] Table for explaining the specifications of each specimen

【図6】比エネルギー吸収量の試験結果を説明するグラ
FIG. 6 is a graph explaining the test result of the specific energy absorption amount.

【図7】エネルギー吸収率の概念を説明するグラフFIG. 7 is a graph illustrating the concept of energy absorption rate.

【図8】積層構造の製造方法を示す工程図FIG. 8 is a process chart showing a method for manufacturing a laminated structure.

【図9】本積層構造を採用した衝撃吸収構造のエネルギ
ー吸収率を他例と比較したテスト結果図
FIG. 9 is a test result diagram comparing the energy absorption rate of a shock absorbing structure adopting this laminated structure with other examples.

【図10】別の積層構造を示し、(A)は積層前、
(B)は積層後の繊維方向を説明する説明図、(C)は
断面図
FIG. 10 shows another laminated structure, (A) before laminating,
(B) is explanatory drawing explaining the fiber direction after lamination, (C) is sectional drawing.

【図11】衝撃吸収構造の従来図FIG. 11 Conventional view of shock absorbing structure

【符号の説明】[Explanation of symbols]

1…キール、2…リブ、a…アラミド繊維。 1 ... Keel, 2 ... Rib, a ... Aramid fiber.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年2月10日[Submission date] February 10, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】ところで、このような積層構造の製造法に
ついて、図8に基づき簡単に説明する。まず冷凍保管室
からCFRPとKFRPのプリプレグ材を取り出してク
リーン室で必要な形状にカットし(プリプレグ材プリカ
ット)、接着剤を介してCFRPの両側にKFRPを積
層するとともに、CFRPの繊維方向に対してKFRP
の繊維方向をそれぞれ±略45゜づつ斜めに揃える(レ
イアップ)。この際、クリーン室は、例えば温度18〜
27℃、湿度70%に設定されている。
A method of manufacturing such a laminated structure will be briefly described with reference to FIG. First, take out the prepreg material of CFRP and KFRP from the freezer storage room, cut it into a required shape in a clean room (prepreg material pre-cut), stack KFRP on both sides of CFRP via an adhesive, and in the fiber direction of CFRP. KFRP
Align the fiber directions of ± 45 degrees each (lay-up). At this time, the clean room has, for example, a temperature of 18 to
It is set to 27 ° C and 70% humidity.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】そして、このプリプレグ積層物をナイロン
フィルム等で覆い、内部を真空引きする(バギング)。
次いで、これを例えば約120℃で60分程度加熱した
後、圧力を6kgf/cm2 程度まで高めるとともに、加熱温
度を約180℃程度まで昇温して120分程度保持し硬
化させる(オートクレー硬化)。そして、必要に応じ
て外観検査等を行い、トリミング等の二次加工を行って
製品とする。
Then, the prepreg laminate is covered with a nylon film or the like, and the inside is evacuated (bagging).
Then, this was heated for about 60 minutes, for example at about 120 ° C., to increase the pressure to about 6 kgf / cm 2, the heating temperature was raised to about 180 ° C. and maintained for about 120 minutes to cure (autoclaved Curing). Then, if necessary, an appearance inspection or the like is performed, and secondary processing such as trimming is performed to obtain a product.

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図8[Correction target item name] Figure 8

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図8】 [Figure 8]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 77/10 LQY ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area C08L 77/10 LQY

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 衝撃荷重に対してシート面が平行に配設
される炭素繊維強化樹脂シートの両面に芳香族ポリアミ
ド繊維強化樹脂シートを被着した積層構造であり、前記
芳香族ポリアミド繊維強化樹脂シートのアラミド繊維の
方向を衝撃荷重方向に対して±30〜±60°傾いた方
向としたことを特徴とする繊維強化樹脂の積層構造。
1. A laminated structure in which an aromatic polyamide fiber reinforced resin sheet is adhered to both sides of a carbon fiber reinforced resin sheet, the sheet surfaces of which are arranged parallel to an impact load, and the aromatic polyamide fiber reinforced resin sheet is laminated. A laminated structure of a fiber-reinforced resin, characterized in that the direction of the aramid fibers of the sheet is inclined by ± 30 to ± 60 ° with respect to the impact load direction.
JP7008105A 1994-12-26 1995-01-23 Lamination structure of fiber reinforced resin Pending JPH08197668A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7008105A JPH08197668A (en) 1995-01-23 1995-01-23 Lamination structure of fiber reinforced resin
EP95118091A EP0719635B1 (en) 1994-12-26 1995-11-16 Laminated structure of fiber reinforced plastics and shock-absorbing structure
DE69529453T DE69529453T2 (en) 1994-12-26 1995-11-16 Multi-layer plate made of fiber-reinforced plastic, and shock-absorbing structure
US08/575,794 US5843558A (en) 1994-12-26 1995-12-22 Laminated structure of fiber reinforced plastics and shock-absorbing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7008105A JPH08197668A (en) 1995-01-23 1995-01-23 Lamination structure of fiber reinforced resin

Publications (1)

Publication Number Publication Date
JPH08197668A true JPH08197668A (en) 1996-08-06

Family

ID=11684029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7008105A Pending JPH08197668A (en) 1994-12-26 1995-01-23 Lamination structure of fiber reinforced resin

Country Status (1)

Country Link
JP (1) JPH08197668A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238836A (en) * 2004-01-26 2005-09-08 Toray Ind Inc Frp structure
JP2006240083A (en) * 2005-03-03 2006-09-14 Kurabo Ind Ltd Multilayer sheet for reinforcing cement structure and method for reinforcing cement structure using the sheet
JP2006341651A (en) * 2005-06-07 2006-12-21 Kawasaki Heavy Ind Ltd Shock-resistant structure of aircraft
JP2007112432A (en) * 2005-10-21 2007-05-10 Agusta Spa Helicopter collapsible deck
JP2007168122A (en) * 2005-12-19 2007-07-05 Toyota Motor Corp Fiber reinforced plastic structure
JP2007276676A (en) * 2006-04-10 2007-10-25 Liberty Trading:Kk Harness for windsurfing
WO2008117911A1 (en) * 2007-03-26 2008-10-02 Lg Electronics Inc. Reinforcing component for refrigerator
JP2011079358A (en) * 2009-10-02 2011-04-21 Washi Kosan Co Ltd Wheel made of light alloy with reinforced portion on inner rim surface
JP2011130759A (en) * 2009-11-26 2011-07-07 Globeride Inc Fishing line guide
WO2011132292A1 (en) * 2010-04-22 2011-10-27 トヨタ自動車株式会社 Energy absorption structure
JP2012240401A (en) * 2011-05-24 2012-12-10 Teijin Ltd Sandwich material
JP2014054764A (en) * 2012-09-12 2014-03-27 Teijin Ltd Base material for fiber-reinforced plastic molding and impact resistance fiber-reinforced plastic
JP2015199315A (en) * 2014-04-10 2015-11-12 日産自動車株式会社 fiber-reinforced composite material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160255U (en) * 1983-10-14 1986-04-23
JPS62146619A (en) * 1985-12-03 1987-06-30 レグラス・エス・ピ−・エ− Multilayer structure
JPH02134232A (en) * 1988-09-26 1990-05-23 Tech Textiles Ltd Continuous molding method of reinforced product
JPH02169633A (en) * 1988-12-22 1990-06-29 Nec Corp Fiber-reinforced composite material
JPH04218179A (en) * 1990-04-23 1992-08-07 Mitsubishi Kasei Corp Tapered pipe-like body
JPH08174726A (en) * 1994-12-26 1996-07-09 Honda Motor Co Ltd Shock-absorbing structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160255U (en) * 1983-10-14 1986-04-23
JPS62146619A (en) * 1985-12-03 1987-06-30 レグラス・エス・ピ−・エ− Multilayer structure
JPH02134232A (en) * 1988-09-26 1990-05-23 Tech Textiles Ltd Continuous molding method of reinforced product
JPH02169633A (en) * 1988-12-22 1990-06-29 Nec Corp Fiber-reinforced composite material
JPH04218179A (en) * 1990-04-23 1992-08-07 Mitsubishi Kasei Corp Tapered pipe-like body
JPH08174726A (en) * 1994-12-26 1996-07-09 Honda Motor Co Ltd Shock-absorbing structure

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005238836A (en) * 2004-01-26 2005-09-08 Toray Ind Inc Frp structure
JP2006240083A (en) * 2005-03-03 2006-09-14 Kurabo Ind Ltd Multilayer sheet for reinforcing cement structure and method for reinforcing cement structure using the sheet
JP2006341651A (en) * 2005-06-07 2006-12-21 Kawasaki Heavy Ind Ltd Shock-resistant structure of aircraft
JP4520367B2 (en) * 2005-06-07 2010-08-04 川崎重工業株式会社 Impact structure of aircraft
JP2007112432A (en) * 2005-10-21 2007-05-10 Agusta Spa Helicopter collapsible deck
JP2007168122A (en) * 2005-12-19 2007-07-05 Toyota Motor Corp Fiber reinforced plastic structure
JP2007276676A (en) * 2006-04-10 2007-10-25 Liberty Trading:Kk Harness for windsurfing
US8500225B2 (en) 2007-03-26 2013-08-06 Lg Electronics Inc. Reinforcing component for refrigerator
WO2008117911A1 (en) * 2007-03-26 2008-10-02 Lg Electronics Inc. Reinforcing component for refrigerator
JP2011079358A (en) * 2009-10-02 2011-04-21 Washi Kosan Co Ltd Wheel made of light alloy with reinforced portion on inner rim surface
JP2011130759A (en) * 2009-11-26 2011-07-07 Globeride Inc Fishing line guide
WO2011132292A1 (en) * 2010-04-22 2011-10-27 トヨタ自動車株式会社 Energy absorption structure
JPWO2011132292A1 (en) * 2010-04-22 2013-07-18 トヨタ自動車株式会社 Energy absorbing structure
JP2012240401A (en) * 2011-05-24 2012-12-10 Teijin Ltd Sandwich material
JP2014054764A (en) * 2012-09-12 2014-03-27 Teijin Ltd Base material for fiber-reinforced plastic molding and impact resistance fiber-reinforced plastic
JP2015199315A (en) * 2014-04-10 2015-11-12 日産自動車株式会社 fiber-reinforced composite material

Similar Documents

Publication Publication Date Title
EP0719635B1 (en) Laminated structure of fiber reinforced plastics and shock-absorbing structure
US8376275B2 (en) Energy absorbing structure for aircraft
EP1968850B2 (en) Single piece fuselage barrel
US5935680A (en) Interlaced Z-pin sandwich structure
JPH08197668A (en) Lamination structure of fiber reinforced resin
EP1979157B1 (en) Composite aircraft floor system
US8047465B2 (en) Composite anti-crash structure with lateral retention, for an aircraft
US20080138584A1 (en) Reinforced Rampdown For Composite Structural Member And Method For Same
US20080078494A1 (en) Window skin panel and method of making same
EP1149687A2 (en) Method for producing body structure of fiber-reinforced composite, and body structure produced thereby
US20030192642A1 (en) Method for producing honeycomb sandwich panel
US7780116B2 (en) Composite anti-crash structure with controlled buckling for an aircraft
JP4918567B2 (en) Shock absorbing structure and manufacturing method thereof
EP0624459A2 (en) Near-surface enhancement of honeycomb sandwich structures to improve durability using a hybrid core
US20100282904A1 (en) Aircraft having a forward-facing section that deflects elastically under impact loads
JP2944967B2 (en) High-speed vehicle outer wall structure and high-speed vehicle outer wall manufacturing method
US10611328B2 (en) Composite material structural member and method of manufacturing the composite material structural member
JP2006200702A (en) Shock absorbing member
JP2010138953A (en) Energy absorbing member and manufacturing method therefor
JP2013107480A (en) Strength evaluating method of taper part connecting structure of composite material structure, taper part connecting structure of composite material structure, composite material structure, and aircraft fuselage
EP3170740A1 (en) Corner tension fitting
JP2920370B2 (en) Bird-resistant structure at the head of high-speed vehicles
JPH07180281A (en) Honeycomb sandwich panel and manufacture thereof
JPH0768679A (en) Impact-resistant laminated structure
JP2705319B2 (en) Method for producing carbon fiber reinforced composite material

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530