JP2007002432A - Method of reinforcing cement-based structure, and cement-based structure reinforced by the method - Google Patents

Method of reinforcing cement-based structure, and cement-based structure reinforced by the method Download PDF

Info

Publication number
JP2007002432A
JP2007002432A JP2005180761A JP2005180761A JP2007002432A JP 2007002432 A JP2007002432 A JP 2007002432A JP 2005180761 A JP2005180761 A JP 2005180761A JP 2005180761 A JP2005180761 A JP 2005180761A JP 2007002432 A JP2007002432 A JP 2007002432A
Authority
JP
Japan
Prior art keywords
sheet
cement
reinforcing
based structure
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005180761A
Other languages
Japanese (ja)
Inventor
Reki Horimoto
歴 堀本
Akira Kasuya
明 粕谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Original Assignee
Kurabo Industries Ltd
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabo Industries Ltd, Kurashiki Spinning Co Ltd filed Critical Kurabo Industries Ltd
Priority to JP2005180761A priority Critical patent/JP2007002432A/en
Publication of JP2007002432A publication Critical patent/JP2007002432A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of reinforcing a cement-based structure, and the cement-based structure reinforced by the method which prevents fragment from scattering of the cement-based structure due to excessive compressive load. <P>SOLUTION: The method of reinforcing the cement-based structure is characterized in that the cement-based structure is covered with an inorganic reinforcing sheet or an organic reinforcing sheet and further covered with an organic woven fabric sheet thereon. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はセメント系構造物の補強方法および該方法によって補強されたセメント系構造物に関する。   The present invention relates to a method for reinforcing a cement-based structure and a cement-based structure reinforced by the method.

従来より、セメント系構造物の強度物性を単に向上させるためのセメント系構造物の補強方法に関する提案は数多くなされている。しかしながら、地震等によりセメント系構造物に想定値以上の圧縮荷重がかかり、破壊が起きた場合に、セメント破片が飛び散って周辺の住民や建築物に被害を及ぼす破片飛散現象(二次災害)を防止する観点からの提案はほとんどなされていないのが現状である。   Conventionally, many proposals have been made regarding a method for reinforcing a cement-based structure for simply improving the strength properties of the cement-based structure. However, when a compressive load exceeding the expected value is applied to a cement-based structure due to an earthquake, etc., and the debris breaks down, the debris scattering phenomenon (secondary disaster) that causes the cement debris to scatter and damage surrounding residents and buildings. At present, there are few proposals from the viewpoint of prevention.

例えば、セメント系構造物の補修補強に使用される補強用強化繊維シート基材として、強化繊維を一方向に引き揃えた強化繊維束が低融点ポリマーからなる不織布またはメッシュ状体によって集束、固定されて一方向配列強化繊維シートとされるとともに、この一方向配列強化繊維シートがシート状支持体に接着されてなる補強用強化繊維シート基材が提案されている(特許文献1)。しかしながら、上記シート基材を用いた場合、セメント系構造物に過度の圧縮荷重がかかって破壊が一旦、起きると、セメント破片が飛び散る破片飛散現象が生じた。また、耐荷性能に急激な低下も見られた。   For example, as a reinforcing reinforcing fiber sheet base material used for repair and reinforcement of cement-based structures, a reinforcing fiber bundle in which reinforcing fibers are aligned in one direction is focused and fixed by a nonwoven fabric or a mesh-like body made of a low melting point polymer. In addition, a reinforcing reinforcing fiber sheet base material has been proposed in which a unidirectionally arranged reinforcing fiber sheet is bonded to a sheet-like support (Patent Document 1). However, when the above-mentioned sheet base material is used, once the destruction is caused by applying an excessive compressive load to the cement-based structure, a fragment scattering phenomenon in which the cement fragments are scattered occurs. In addition, there was a sharp drop in load bearing performance.

さらに例えば、連続した樹脂透過性支持体シートと、実質的に一定長さの長繊維とされる強化繊維が前記樹脂透過性支持体シートの長手方向に対して所定の角度をもって且つ前記樹脂透過性支持体シートの長手方向に沿って配列され、前記樹脂透過性支持体シートに保持された強化繊維層とを有することを特徴とする連続したシート形状を成す樹脂未含浸の連続強化繊維シートが提案されている(特許文献2)。しかしながら、そのようなシートを用いても、過度の圧縮荷重によるセメント系構造物の破壊時において、破片飛散現象がやはり起こった。
特開平11−959号公報 特開2002−53683号公報
Further, for example, a continuous resin-permeable support sheet and a reinforcing fiber that is a substantially constant length of long fiber have a predetermined angle with respect to the longitudinal direction of the resin-permeable support sheet, and the resin permeability. Proposed non-resin-impregnated continuous reinforcing fiber sheet having a continuous sheet shape, characterized by having a reinforcing fiber layer arranged along the longitudinal direction of the support sheet and held by the resin-permeable support sheet (Patent Document 2). However, even when such a sheet is used, a fragment scattering phenomenon still occurs when the cementitious structure is broken by an excessive compressive load.
Japanese Patent Laid-Open No. 11-959 JP 2002-53683 A

本発明は、過度の圧縮荷重によるセメント系構造物の破片飛散を防止するセメント系構造物の補強方法、および当該方法によって補強されたセメント系構造物を提供することを目的とする。   An object of this invention is to provide the reinforcement method of the cementitious structure which prevents the fragmentation of the cementitious structure by an excessive compressive load, and the cementitious structure reinforced by the said method.

本発明によれば、以下の1〜4の発明が提供される。
1.セメント系構造物に対して無機系補強用シートまたは有機系補強用シートを被覆した後、その上に有機系織物シートをさらに被覆することを特徴とするセメント系構造物の補強方法。
2.無機系補強用シートまたは有機系補強用シートが既に被覆されたセメント系構造物に対して、有機系織物シートを被覆して補修することを特徴とするセメント系構造物の補強方法。
3.セメント系構造物が柱状構造物であることを特徴とする上記1〜2のいずれかに記載のセメント系構造物の補強方法。
4.上記1〜3のいずれかに記載のセメント系構造物の補強方法によって補強されたことを特徴とするセメント系構造物。
According to the present invention, the following inventions 1 to 4 are provided.
1. A method for reinforcing a cement-based structure, comprising: coating a cement-based structure with an inorganic-based reinforcing sheet or an organic-based reinforcing sheet, and further coating an organic-based fabric sheet thereon.
2. A method for reinforcing a cement-based structure, comprising repairing a cement-based structure already covered with an inorganic-based reinforcing sheet or an organic-based reinforcing sheet by covering the organic-based fabric sheet.
3. 3. The method for reinforcing a cement-based structure according to any one of the above items 1 and 2, wherein the cement-based structure is a columnar structure.
4). A cement-based structure reinforced by the method for reinforcing a cement-based structure according to any one of 1 to 3 above.

本明細書中、セメント系構造物とは、比較的粒度の大きな砂利とセメントを主成分とした、いわゆるコンクリートからなる構造物、および比較的粒度の小さな砂利とセメントを主成分とした、いわゆるモルタルからなる構造物を包含して意味するものとする。   In this specification, the cement-based structure is a so-called concrete structure mainly composed of gravel and cement having a relatively large particle size, and a so-called mortar composed mainly of gravel and cement having a relatively small particle size. It is meant to include a structure consisting of

本発明によれば、セメント系構造物に過度の圧縮荷重が付与されてもセメント系構造物の破片飛散を有効に防止できる。よって、セメント系構造物周辺の住民や建築物に対する二次災害を防ぐことができる。しかも、補強用シート構成を選択することにより、セメント系構造物の強度物性を向上させ得る。   ADVANTAGE OF THE INVENTION According to this invention, even if an excessive compressive load is provided to a cementitious structure, fragment debris scattering of a cementitious structure can be prevented effectively. Therefore, it is possible to prevent secondary disasters for residents and buildings around cement-based structures. Moreover, the strength properties of the cement-based structure can be improved by selecting the reinforcing sheet configuration.

本発明に係るセメント系構造物の補強方法において使用される有機系織物シートは、有機系繊維として、例えば、高強度ポリエチレン繊維、アラミド繊維、ビニロン繊維、ナイロン繊維、ポリエステル繊維、ポリアリレート繊維、PBO(ポリフェニレンベンゾビスオキサゾール)繊維、またはそれらの混合繊維等を、経糸および緯糸として用いた織物をいう。有機系繊維糸における、破断伸度は破片飛散防止の観点から、2%以上が好ましく、より好ましくは3〜10%である。材質的に好ましくは高強度ポリエチレン繊維、アラミド繊維、ビニロン繊維であり、特に、強度および破片飛散防止効果両方に優れる観点から好ましくは高強度ポリエチレン繊維である。有機系繊維の太さは本発明の目的が達成される限り特に制限されず、例えば高強度ポリエチレン繊維の場合、通常は55dtex〜5280dtex、好ましくは440dtex〜2640dtexである。アラミド繊維の場合、通常は28dtex〜8330dtex、好ましくは440dtex〜3340detexである。ビニロン繊維の場合、好ましくは1100dtex〜1980dtexである。なお、本明細書中、破断伸度はJIS L 1013:1999の8.5.1に記載される標準時試験における破断時の伸び率を用いる。   The organic fabric sheet used in the method for reinforcing a cement-based structure according to the present invention includes, as organic fibers, for example, high-strength polyethylene fibers, aramid fibers, vinylon fibers, nylon fibers, polyester fibers, polyarylate fibers, PBO. A woven fabric using (polyphenylene benzobisoxazole) fibers or mixed fibers thereof as warps and wefts. The elongation at break in the organic fiber yarn is preferably 2% or more, more preferably 3 to 10% from the viewpoint of preventing fragment scattering. In terms of material, high-strength polyethylene fiber, aramid fiber, and vinylon fiber are preferable, and high-strength polyethylene fiber is particularly preferable from the viewpoint of excellent both strength and fragment scattering prevention effect. The thickness of the organic fiber is not particularly limited as long as the object of the present invention is achieved. For example, in the case of a high-strength polyethylene fiber, the thickness is usually 55 dtex to 5280 dtex, preferably 440 dtex to 2640 dtex. In the case of an aramid fiber, it is usually 28 dtex to 8330 dtex, preferably 440 dtex to 3340 detex. In the case of vinylon fiber, it is preferably 1100 dtex to 1980 dtex. In the present specification, the elongation at break is the elongation at break in the standard time test described in JIS L 1013: 1999, 8.5.1.

有機系織物シートは有機系繊維糸を織り込んだ織物シート層からなり、一重織り組織構造を有していても良いし、または織物組織が二重以上に重なるように織った重ね織り組織構造を有していても良い。なお、有機系織物シートを構成する織物組織は、特に限定されるものではないが、通常は平織りが用いられ、公知の織機によって製造可能である。   The organic fabric sheet is composed of a fabric sheet layer in which organic fiber yarns are woven, and may have a single weave texture structure, or it may have a double weave texture structure in which the fabric texture is overlapped twice or more. You may do it. In addition, although the textile structure which comprises an organic type textile sheet is not specifically limited, Usually, a plain weave is used and it can manufacture with a well-known loom.

有機系織物シートの内側に被覆される無機系補強用シートとしては、無機系繊維糸を一方向に引き揃えた無機系単層型補強用シート、前記単層シートを2層以上積層した無機系多層型補強シートまたは無機系織物型補強シートがある。多層シートの場合は、糸シート層の糸引き揃え方向が同一であってもよいが、糸の引き揃え方向が異なる少なくとも2層の糸シート層が積層されてなる方が好ましい。   As the inorganic reinforcing sheet coated on the inside of the organic fabric sheet, an inorganic single layer reinforcing sheet in which inorganic fiber yarns are aligned in one direction, and an inorganic type in which two or more layers of the single layer sheet are laminated. There are multi-layer type reinforcing sheets or inorganic woven type reinforcing sheets. In the case of a multilayer sheet, the yarn alignment directions of the yarn sheet layers may be the same, but it is preferable that at least two yarn sheet layers having different yarn alignment directions are laminated.

シート層を構成し得る無機系繊維糸は無機系繊維のマルチフィラメントである。無機系繊維としては、例えば、炭素繊維、ガラス繊維、ボロン繊維、鋼繊維またはそれらの混合繊維等が使用可能である。使用する無機繊維糸の引張強度は、セメント系構造体の強度物性の観点から1.5GPa以上が好ましい。より好ましくは、引張強度が1.8GPa以上の無機系強化繊維糸である。また、破断伸度は0.1〜5%程度が好ましく、より好ましくは0.3〜2.5%である。材質的に好ましくは炭素繊維、ガラス繊維であり、強度面から特に好ましくは3.0GPa以上の引張強度を有する炭素繊維である。無機系繊維の太さは本発明の目的が達成される限り特に制限されず、炭素繊維の場合、1K〜24Kであり、ガラス繊維の場合、通常は33tex〜4400tex、好ましくは575tex〜2200texである。
本明細書中、炭素繊維の引張強度は、JIS R 7601:1986に記載される試験に準じて測定された値を用いている。破断伸度は、JIS K 7073に記載される引張試験法に基づき、引張り最大ひずみの測定方法に準じて測定された値を用いている。
またガラス繊維の引張強度及び破断伸度はJIS R 3420:1999に記載されるガラスロービングに関する試験に準じて測定された値を用いている。
The inorganic fiber yarn that can constitute the sheet layer is a multifilament of inorganic fibers. As the inorganic fiber, for example, carbon fiber, glass fiber, boron fiber, steel fiber, or a mixed fiber thereof can be used. The tensile strength of the inorganic fiber yarn to be used is preferably 1.5 GPa or more from the viewpoint of the strength properties of the cementitious structure. More preferably, the inorganic reinforcing fiber yarn has a tensile strength of 1.8 GPa or more. Further, the breaking elongation is preferably about 0.1 to 5%, more preferably 0.3 to 2.5%. The material is preferably carbon fiber or glass fiber, and particularly preferably carbon fiber having a tensile strength of 3.0 GPa or more from the viewpoint of strength. The thickness of the inorganic fiber is not particularly limited as long as the object of the present invention is achieved. In the case of carbon fiber, it is 1K to 24K, and in the case of glass fiber, it is usually 33 tex to 4400 tex, preferably 575 tex to 2200 tex. .
In this specification, the value measured according to the test described in JISR7601: 1986 is used for the tensile strength of carbon fiber. The breaking elongation is based on the tensile test method described in JIS K7073 and uses a value measured according to the measurement method of the maximum tensile strain.
Moreover, the value measured according to the test regarding the glass roving described in JISR3420: 1999 is used for the tensile strength and breaking elongation of glass fiber.

有機系織物シートの内側に被覆される有機系補強用シートとしては、有機系繊維糸を一方向に引き揃えた有機系単層型補強用シート、前記単層シートを2層以上積層した有機系多層型補強シートまたは有機系織物型補強シートがある。多層シートの場合は、糸シート層の糸引き揃え方向が同一であってもよいが、糸の引き揃え方向が異なる少なくとも2層の糸シート層が積層されてなる方が好ましい。なお、有機系繊維の種類、物性等は有機系織物シートで用いるものと同様のものが使用される。     The organic reinforcing sheet to be coated on the inside of the organic fabric sheet includes an organic single layer reinforcing sheet in which organic fiber yarns are aligned in one direction, and an organic type in which two or more layers of the single layer sheet are laminated. There is a multilayer type reinforcing sheet or an organic fabric type reinforcing sheet. In the case of a multilayer sheet, the yarn alignment directions of the yarn sheet layers may be the same, but it is preferable that at least two yarn sheet layers having different yarn alignment directions are laminated. In addition, the kind, physical property, etc. of organic fiber are the same as those used for the organic fabric sheet.

本発明に係るセメント系構造物の補強方法は、有機系織物シートを、無機系補強用シートまたは有機系補強用シートを用いた補強後における最外の層となるように、セメント系構造物に被覆することを特徴とする。すなわち、図1に示すとおり、無機系または有機系補強用シート2を用いた補強作業終了時においてセメント系構造物3に被覆された最外のシート層が有機系織物シート1からなるように、セメント系構造物3に被覆する。これによって、過度の圧縮荷重によるセメント系構造物3の破壊時において、セメント系構造物破片が飛び散る破片飛散を有効に防止できる。破片飛散を防止するメカニズムの詳細は明らかではないが、以下のメカニズムに基づくものと考えられる。すなわち、有機系織物シート層1が最外側に位置するように、シートを被覆すると、当該最外の有機系織物からなるシート層1のさらに外側に層は存在しない。そのような状態において当該最外のシート層における有機系織物がセメント系構造物破片の飛散エネルギーを最も有効に吸収できるため、破片飛散を防止できるものと考えられる。最外のシート層が有機系織物から構成されず、例えば、無機系繊維糸から構成されると、たとえ、他の層が有機系繊維糸からなっていても、セメント系構造物破片の飛散エネルギーは有効に吸収されず、破片飛散を防止できない。   The method for reinforcing a cement-based structure according to the present invention is applied to a cement-based structure so that an organic fabric sheet becomes an outermost layer after reinforcement using an inorganic reinforcing sheet or an organic reinforcing sheet. It is characterized by covering. That is, as shown in FIG. 1, the outermost sheet layer covered with the cementitious structure 3 at the end of the reinforcement work using the inorganic or organic reinforcing sheet 2 is composed of the organic fabric sheet 1. The cement-based structure 3 is covered. Thereby, at the time of destruction of the cementitious structure 3 by an excessive compressive load, it is possible to effectively prevent the fragmentation of the cementitious structure fragments. Although the details of the mechanism to prevent fragment scattering are not clear, it is thought to be based on the following mechanism. That is, when the sheet is coated so that the organic fabric sheet layer 1 is located on the outermost side, there is no layer further outside the sheet layer 1 made of the outermost organic fabric. In such a state, the organic fabric in the outermost sheet layer can absorb the scattering energy of the cement-based structure fragments most effectively, so that it is considered that the fragment scattering can be prevented. If the outermost sheet layer is not composed of organic fabric, for example, it is composed of inorganic fiber yarn, even if the other layer is composed of organic fiber yarn, the scattering energy of cement-based structural fragments Is not effectively absorbed and cannot prevent debris scattering.

補強用シートまたは織物シートを被覆するに際しては、通常、シートをセメント系構造物に固定できる手段を用いる。そのような固定手段としては特に制限されるものではないが、シートをセメント系構造物との接触面全面において固定可能な手段、例えば、接着剤を用いる等すればよい。   When coating a reinforcing sheet or a woven sheet, a means capable of fixing the sheet to a cementitious structure is usually used. Such a fixing means is not particularly limited, but means capable of fixing the sheet over the entire contact surface with the cementitious structure, for example, an adhesive may be used.

接着剤としては、例えば、エポキシ系樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、アクリル樹脂、ウレタン樹脂等が使用可能である。エポキシ系樹脂等の接着剤を用いる場合は、セメント系構造物表面へのエポキシ樹脂等の上塗りに先立ってプライマーを下塗りしておくことが、セメント系構造物との接着性向上の観点から好ましい。   Examples of the adhesive that can be used include epoxy resins, unsaturated polyester resins, vinyl ester resins, acrylic resins, and urethane resins. In the case of using an adhesive such as an epoxy resin, it is preferable from the viewpoint of improving adhesion to the cement structure that the primer is primed prior to the overcoating of the epoxy resin or the like on the surface of the cement structure.

セメント系構造物に対するシートの2周目以降の被覆は、1周目のシートの被覆に使用した接着剤が硬化していても、または硬化していなくても、行ってよい。特に、先のシート被覆に使用したエポキシ系接着剤が硬化している場合、次のシート被覆は先のシート被覆と同様にエポキシ系接着剤を下塗りした後で、シートを被覆し、エポキシ系接着剤を上塗りすることが好ましい。一方、先のシート被覆に使用したエポキシ系接着剤が硬化していない場合、当該エポキシ系接着剤が下塗りとして作用するため、次のシート被覆は下塗りを要さず、直接、シートを被覆し、エポキシ系接着剤を上塗りすることが好ましい。   Covering the cement-based structure after the second round of the sheet may be performed even if the adhesive used for coating the first round sheet is cured or not cured. In particular, when the epoxy adhesive used for the previous sheet coating is cured, the next sheet coating is the same as the previous sheet coating, after the epoxy adhesive is primed, the sheet is then coated, and the epoxy adhesive It is preferable to overcoat the agent. On the other hand, if the epoxy adhesive used for the previous sheet coating is not cured, the epoxy adhesive acts as a primer, so the next sheet coating does not require a primer, directly covering the sheet, It is preferable to overcoat with an epoxy adhesive.

本発明のセメント系構造物の補強方法は既に補強処理されたセメント系構造物に対する補修方法としても有用である。すなわち、本発明のセメント系構造物の補強方法が適用されるセメント系構造物は無機系または有機系の補強用シートの被覆による補強処理が一切なされていないものであってもよいし、または無機系補強用シートまたは有機系補強用シートが被覆されて補強処理が既になされたものであってもよい。特に無機系補強用シートが被覆されて既に補強処理されたセメント系構造物に対しては、当該無機系補強用シートを、本発明において最初に被覆される無機系補強用シートとみなして、その上に有機系織物シートを被覆することができる。本発明において、無機系補強用シートが被覆されたセメント系構造物に対しては、少なくとも1種類の無機系補強用シートをさらに被覆し、その上に有機系織物シートを被覆してもよい。有機系補強用シートが被覆されて既に補強処理されたセメント系構造物に対しても同様である。   The method for reinforcing a cement-based structure of the present invention is also useful as a repair method for a cement-based structure that has already been reinforced. That is, the cementitious structure to which the method for reinforcing a cementitious structure of the present invention is applied may not be subjected to any reinforcement treatment by covering with an inorganic or organic reinforcing sheet, or inorganic. The reinforcing sheet may be already coated with a reinforcing sheet or an organic reinforcing sheet. In particular, for a cement-based structure that has been coated with an inorganic reinforcing sheet and has already been reinforced, the inorganic reinforcing sheet is regarded as the first inorganic reinforcing sheet to be coated in the present invention, and An organic fabric sheet can be coated thereon. In the present invention, the cementitious structure coated with the inorganic reinforcing sheet may be further coated with at least one inorganic reinforcing sheet and further coated with an organic fabric sheet. The same applies to a cement-based structure that has already been reinforced by coating with an organic reinforcing sheet.

本発明のセメント系構造物の補強方法において、シートは通常、持ち運び容易性と作業容易性の観点からロール形態で使用されるが、所定の寸法に分割された形態で使用されてもよい。   In the method for reinforcing a cement-based structure of the present invention, the sheet is usually used in the form of a roll from the viewpoint of easy carrying and workability, but may be used in a form divided into predetermined dimensions.

実施例1および2に用いる有機系織物シートは、高強度ポリエチレン繊維糸(2640dtex、破断伸度:4.0%)のマルチフィラメントを使用し、通常の織機により織られた平織り状の織物シートである。また、実施例1および比較例1に用いる炭素繊維補強用単層シートは、一方向に引き揃えた糸シート層からなり、目付220.5g/mである。炭素繊維としては、12Kのマルチフィラメントを使用し、引張強度は4.1GPa、破断伸度は1.7%である。実施例2で用いる炭素繊維補強用多層シートは、一方向に引き揃えた糸シート層を、糸方向を90°変化させた状態で2層積層したものを用いる(総目付441g/m)。なお、炭素繊維糸は単層シートと同じものを用いる。実施例3で用いるアラミド繊維補強用シートは、一方向に引き揃えた糸シート層からなり、目付415g/m2である。アラミド繊維としては、3300dtex、引張強度3.4GPa、破断伸度3.3%である。 The organic fabric sheet used in Examples 1 and 2 is a plain weave fabric sheet woven by a normal loom using multifilaments of high-strength polyethylene fiber yarn (2640 dtex, breaking elongation: 4.0%). is there. Moreover, the single layer sheet for carbon fiber reinforcement used in Example 1 and Comparative Example 1 is composed of a thread sheet layer aligned in one direction and has a basis weight of 220.5 g / m 2 . As the carbon fiber, a 12K multifilament is used, the tensile strength is 4.1 GPa, and the elongation at break is 1.7%. The multilayer sheet for reinforcing carbon fibers used in Example 2 is obtained by laminating two layers of yarn sheet layers aligned in one direction in a state where the yarn direction is changed by 90 ° (total basis weight 441 g / m 2 ). The carbon fiber yarn is the same as the single layer sheet. The aramid fiber reinforcing sheet used in Example 3 is composed of a thread sheet layer aligned in one direction and has a basis weight of 415 g / m2. The aramid fiber has 3300 dtex, a tensile strength of 3.4 GPa, and a breaking elongation of 3.3%.

<実施例1>
(評価サンプルの作製)
・コンクリート供試体の作製
まず、コンクリート供試体を作製した。詳しくは、普通ポルトランドセメント360重量部に、細骨材782重量部、最大寸法20mmの粗骨材970重量部を加えて粉体混合した。粉体混合を続けながら水/セメント比50%となるように水を加え混合し、型枠に打設した。24時間養生後、脱型し、28日間の水中養生により、直径100mm×高さ200mmの円柱状コンクリート供試体を得た。なお、コンクリート供試体の表面をグラインダーにて表面処理した。
<Example 1>
(Preparation of evaluation sample)
-Preparation of concrete specimen First, a concrete specimen was prepared. Specifically, 782 parts by weight of fine aggregate and 970 parts by weight of coarse aggregate having a maximum size of 20 mm were added to 360 parts by weight of ordinary Portland cement and mixed with powder. While continuing the powder mixing, water was added and mixed so that the water / cement ratio was 50%, and the mixture was placed in a mold. After curing for 24 hours, the mold was removed, and a columnar concrete specimen having a diameter of 100 mm and a height of 200 mm was obtained by water curing for 28 days. The surface of the concrete specimen was surface treated with a grinder.

・シートの1回目巻き付け
表面処理したコンクリート供試体の側面にエポキシ樹脂系プライマー(品名:ボンドE810L、コニシ(株))を塗布し、24時間静置養生した。その後、コンクリート供試体の側面に、炭素繊維補強用単層シートを、エポキシ樹脂(品名:ボンドE2500、コニシ(株))を用いて被覆した。詳しくは、コンクリート供試体の側面にエポキシ樹脂を下塗りした後、シートを一重で巻き付け、その上にさらにエポキシ樹脂を上塗りした。上塗りは、シートにエポキシ樹脂が十分に含浸するようにローラーにより行った。型シートの巻き付けは、糸方向がコンクリート供試体の円周方向に向くように行った。
-First winding of sheet An epoxy resin-based primer (product name: Bond E810L, Konishi Co., Ltd.) was applied to the side surface of the surface-treated concrete specimen, followed by standing curing for 24 hours. Then, the single-layer sheet for carbon fiber reinforcement was coat | covered on the side surface of the concrete test body using the epoxy resin (Product name: Bond E2500, Konishi Co., Ltd.). Specifically, after the epoxy resin was primed on the side surface of the concrete specimen, the sheet was wound in a single layer, and the epoxy resin was further overcoated thereon. The top coating was performed with a roller so that the sheet was sufficiently impregnated with the epoxy resin. The mold sheet was wound so that the yarn direction was in the circumferential direction of the concrete specimen.

・シートの2回目の巻き付け
有機系織物シートを用いたこと、および前回で上塗りしたエポキシ樹脂が未硬化なため下塗りを行わなかったこと以外、1回目のシート巻き付け方法と同様の方法で、引き続き、2回目以降のシート巻き付けを行った。
シートをコンクリート供試体に巻き付けた後は、7日間静置養生し、評価した。
-Second winding of the sheet In the same manner as the first winding of the sheet, except that the organic fabric sheet was used and the previous overcoating epoxy resin was uncured so that the undercoating was not performed. The second and subsequent sheets were wound.
After the sheet was wound around the concrete specimen, it was allowed to stand for 7 days and evaluated.

(評価方法)
JIS A 1108:1999「コンクリートの圧縮強度試験方法」に準じて載荷試験を行った。
試験手順は以下のとおりである。
1)供試体の上下面及び上下の加圧板の圧縮面を清掃する。
2)供試体を、その中心軸が加圧板の中心と一致するように置く
3)試験機の加圧板と供試体の端面とは、直接密着させる。
4)供試体に衝撃を与えないように一様な速度で荷重を加える(圧縮応力度の増加が毎秒0.6±0.4N/mmになるようにする)。
5)供試体が破壊するまで荷重を加え続ける。
(Evaluation methods)
A loading test was conducted in accordance with JIS A 1108: 1999 “Method for testing compressive strength of concrete”.
The test procedure is as follows.
1) Clean the upper and lower surfaces of the specimen and the compression surfaces of the upper and lower pressure plates.
2) Place the specimen so that the central axis thereof coincides with the center of the pressure plate. 3) The pressure plate of the test machine and the end face of the specimen are brought into direct contact with each other.
4) A load is applied at a uniform speed so as not to give an impact to the specimen (the increase in compressive stress level is 0.6 ± 0.4 N / mm 2 per second).
5) Continue applying the load until the specimen breaks.

<実施例2>
1回目の巻き付けシートとして、炭素繊維補強用多層シートを用いた以外は、実施例1と同様の方法にてサンプルを作成した。
<実施例3>
1回目の巻き付けシートとして、アラミド繊維補強用シートを用いた以外は、実施例1と同様の方法にてサンプルを作成した。
<比較例>
1回目および2回目の巻き付けシートとして、炭素繊維補強用単層シートを用いる。なお、2回目の巻き付けは、糸方向がコンクリート供試体の軸方向に向くように行う。それ以外については、実施例1と同様の方法にてサンプルを作成した。
<Example 2>
A sample was prepared in the same manner as in Example 1 except that a carbon fiber-reinforced multilayer sheet was used as the first winding sheet.
<Example 3>
A sample was prepared in the same manner as in Example 1 except that an aramid fiber reinforcing sheet was used as the first winding sheet.
<Comparative example>
A carbon fiber reinforcing single layer sheet is used as the first and second winding sheets. The second winding is performed so that the yarn direction is in the axial direction of the concrete specimen. About the other than that, the sample was created by the method similar to Example 1. FIG.

以上の試験において破壊したときの荷重(最大荷重)を測定し、その結果を破壊状態とともに表1に示した。 The load (maximum load) when broken in the above test was measured, and the results are shown in Table 1 together with the broken state.

Figure 2007002432
Figure 2007002432

本発明のセメント系構造物の補強方法は、破片飛散の防止を目的として、例えば高架橋の橋脚のようなセメント系構造物、特に柱状の構造物に対して適用されてもよいし、または破片飛散の防止だけでなく、構造物の強度物性の向上も目的として、上記構造物に対して適用されてもよい。また本発明の補強方法は、セメント系構造物に対する初めての処置(一次補強)として実施されてもよいし、または既に一次補強がなされたセメント系構造物に対する補修(二次補強)として実施されてもよい。これによって、破片飛散が防止されて二次災害が防止され、しかも所望により構造物の強度物性が向上する。   The method for reinforcing a cement-based structure of the present invention may be applied to a cement-based structure such as a viaduct of a viaduct, particularly a columnar structure, for the purpose of preventing fragment scattering, or fragment scattering. It may be applied to the structure for the purpose of improving the strength properties of the structure as well as preventing the above. The reinforcing method of the present invention may be implemented as the first treatment (primary reinforcement) for a cement-based structure, or as a repair (secondary reinforcement) for a cement-based structure that has already undergone primary reinforcement. Also good. As a result, scattering of fragments is prevented, secondary disasters are prevented, and strength properties of the structure are improved as desired.

本発明の補強方法での補強状態を示す模式的斜視図である。It is a typical perspective view which shows the reinforcement state in the reinforcement method of this invention.

符号の説明Explanation of symbols

1:有機系織物シート、2:補強用シート、3:セメント系構造物。

1: Organic fabric sheet, 2: Reinforcing sheet, 3: Cement-based structure.

Claims (4)

セメント系構造物に対して無機系補強用シートまたは有機系補強用シートを被覆した後、その上に有機系織物シートをさらに被覆することを特徴とするセメント系構造物の補強方法。   A method for reinforcing a cement-based structure, comprising: coating a cement-based structure with an inorganic-based reinforcing sheet or an organic-based reinforcing sheet, and further coating an organic-based fabric sheet thereon. 無機系補強用シートまたは有機系補強用シートが既に被覆されたセメント系構造物に対して、有機系織物シートを被覆して補修することを特徴とするセメント系構造物の補強方法。   A method for reinforcing a cement-based structure, comprising repairing a cement-based structure already covered with an inorganic-based reinforcing sheet or an organic-based reinforcing sheet by covering the organic-based fabric sheet. セメント系構造物が柱状構造物であることを特徴とする請求項1〜2のいずれかに記載のセメント系構造物の補強方法。   3. The method for reinforcing a cement-based structure according to claim 1, wherein the cement-based structure is a columnar structure. 請求項1〜3のいずれかに記載のセメント系構造物の補強方法によって補強されたことを特徴とするセメント系構造物。

A cement-based structure reinforced by the method for reinforcing a cement-based structure according to any one of claims 1 to 3.

JP2005180761A 2005-06-21 2005-06-21 Method of reinforcing cement-based structure, and cement-based structure reinforced by the method Pending JP2007002432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005180761A JP2007002432A (en) 2005-06-21 2005-06-21 Method of reinforcing cement-based structure, and cement-based structure reinforced by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005180761A JP2007002432A (en) 2005-06-21 2005-06-21 Method of reinforcing cement-based structure, and cement-based structure reinforced by the method

Publications (1)

Publication Number Publication Date
JP2007002432A true JP2007002432A (en) 2007-01-11

Family

ID=37688294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180761A Pending JP2007002432A (en) 2005-06-21 2005-06-21 Method of reinforcing cement-based structure, and cement-based structure reinforced by the method

Country Status (1)

Country Link
JP (1) JP2007002432A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014234603A (en) * 2013-05-31 2014-12-15 和彦 内田 Earthquake-resistant reinforcement structure of reinforced concrete column and formation method thereof
CN104389437A (en) * 2014-11-17 2015-03-04 杭州江润科技有限公司 Construction method for connecting steel pipe concrete column connection structure to reinforced concrete column
WO2020066363A1 (en) * 2018-09-27 2020-04-02 昭和電工株式会社 Structure repairing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322999A (en) * 1993-05-14 1994-11-22 Tonen Corp Concrete column
JPH0967946A (en) * 1995-08-31 1997-03-11 Toho Rayon Co Ltd Uni-directional reinforcing fiber material, method and structure for repair/reinforcement of concrete structure
JPH1058571A (en) * 1996-05-16 1998-03-03 Toray Ind Inc Fiber-reinforced plastic reinforcing structure and repairing and reinforcing method for structure
JP2000192671A (en) * 1998-12-24 2000-07-11 Taisei Corp Rc member reinforcing method by composite reinforced fibers
JP2006240083A (en) * 2005-03-03 2006-09-14 Kurabo Ind Ltd Multilayer sheet for reinforcing cement structure and method for reinforcing cement structure using the sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322999A (en) * 1993-05-14 1994-11-22 Tonen Corp Concrete column
JPH0967946A (en) * 1995-08-31 1997-03-11 Toho Rayon Co Ltd Uni-directional reinforcing fiber material, method and structure for repair/reinforcement of concrete structure
JPH1058571A (en) * 1996-05-16 1998-03-03 Toray Ind Inc Fiber-reinforced plastic reinforcing structure and repairing and reinforcing method for structure
JP2000192671A (en) * 1998-12-24 2000-07-11 Taisei Corp Rc member reinforcing method by composite reinforced fibers
JP2006240083A (en) * 2005-03-03 2006-09-14 Kurabo Ind Ltd Multilayer sheet for reinforcing cement structure and method for reinforcing cement structure using the sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014234603A (en) * 2013-05-31 2014-12-15 和彦 内田 Earthquake-resistant reinforcement structure of reinforced concrete column and formation method thereof
CN104389437A (en) * 2014-11-17 2015-03-04 杭州江润科技有限公司 Construction method for connecting steel pipe concrete column connection structure to reinforced concrete column
CN104389437B (en) * 2014-11-17 2016-06-08 杭州江润科技有限公司 A kind of reinforced column connects the constructional method that steel column connects structure
WO2020066363A1 (en) * 2018-09-27 2020-04-02 昭和電工株式会社 Structure repairing method
CN112789259A (en) * 2018-09-27 2021-05-11 昭和电工株式会社 Method for repairing structure
EP3858805A4 (en) * 2018-09-27 2022-06-29 Showa Denko K.K. Structure repairing method

Similar Documents

Publication Publication Date Title
Jiang et al. Bond behavior of basalt textile meshes in ultra-high ductility cementitious composites
Kolsch Carbon fiber cement matrix (CFCM) overlay system for masonry strengthening
Wobbe et al. Flexural capacity of RC beams externally bonded with SRP and SRG
Wakjira et al. FRCM/internal transverse shear reinforcement interaction in shear strengthened RC beams
Trochoutsou et al. Mechanical characterisation of flax and jute textile-reinforced mortars
US20110262732A1 (en) Reinforcement Fibers and Methods of Making and Using Same
Kumar et al. Strengthening of axially loaded circular concrete columns using stainless steel wire mesh (SSWM)–Experimental investigations
Tsesarsky et al. Textile reinforced concrete (TRC) shells for strengthening and retrofitting of concrete elements: influence of admixtures
JP5042457B2 (en) Cement-based structure reinforcing multilayer sheet and method for reinforcing cement-based structure using the sheet
JP2007002432A (en) Method of reinforcing cement-based structure, and cement-based structure reinforced by the method
JP4749053B2 (en) Method for reinforcing cement-based structure and cement-based structure reinforced by the method
Al-Salloum et al. Load capacity of concrete masonry block walls strengthened with epoxy-bonded GFRP sheets
Sawant et al. Strengthening of RCC beam-using different glass fiber
JP2003253761A (en) Fiber-reinforced plastics concrete composite structural member
Jabbar et al. Enhanced interlaminar shear and impact performance of woven carbon/epoxy composites interleaved with needle punched high performance polyethylene fiber nonwoven
KR102319976B1 (en) Lightweight seismic concrete panel with grid-type fiber reinforcement &amp; Method for seismic performance of concrete panels
Shi Static and fatigue behaviour of prestressed concrete beams strengthened with prestressed CFRP sheets
Ghernouti et al. Effectiveness of hybrid and partially confined concrete subjected to axial compressive loading using CFRP and GFRP composite materials
Weiland et al. Strengthening of RC structures with textile reinforced concrete (TRC)
Siva Chidambaram et al. Performance evaluation of metallic and synthetic fiber hybridization on the cyclic behavior of exterior beam-column joint
Orosz et al. From Material Level to Structural Use of Mineral‐Based Composites—An Overview
JP2006097273A (en) Structure repairing and reinforcing sheet, and structure repaired and reinforced by sheet
Das et al. Investigation of the compressive strength of CFRP wrapped nylon fiber reinforced concrete cylinders
Farooq Development of FRP based composite fibre for fibre reinforced cementitious composites
Barman et al. Textile structures in concrete reinforcement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110