JP5037760B2 - Epoxy resin varnish for resin substrates - Google Patents

Epoxy resin varnish for resin substrates Download PDF

Info

Publication number
JP5037760B2
JP5037760B2 JP2001201750A JP2001201750A JP5037760B2 JP 5037760 B2 JP5037760 B2 JP 5037760B2 JP 2001201750 A JP2001201750 A JP 2001201750A JP 2001201750 A JP2001201750 A JP 2001201750A JP 5037760 B2 JP5037760 B2 JP 5037760B2
Authority
JP
Japan
Prior art keywords
epoxy resin
silica
varnish
powder
ultrafine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001201750A
Other languages
Japanese (ja)
Other versions
JP2003013002A (en
Inventor
雅矢 吉田
祥二郎 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001201750A priority Critical patent/JP5037760B2/en
Publication of JP2003013002A publication Critical patent/JP2003013002A/en
Application granted granted Critical
Publication of JP5037760B2 publication Critical patent/JP5037760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂基板用エポキシ樹脂ワニス、詳しくはプリント配線板等樹脂基板の製造に好適なエポキシ樹脂ワニスに関し、熱的特性の改良されたものである。
【0002】
【従来の技術】
近年、プリント配線板の高密度実装化の進展にともない、樹脂基板の低熱膨張化や高ガラス転移温度化等の諸特性の改良が求めれ、その対応の一例として、熱膨張係数が樹脂に比べて小さいシリカの配合されたエポキシ樹脂ワニスをガラス不織布に含浸する方法がある。しかしながら、低熱膨張化と高ガラス転移温度化を同時に発現させるためにシリカ充填量を多くすると、樹脂組成物の粘度が上昇して流動性が低下しガラス不織布への含浸作業が困難となるばかりでなく、シリカ粒子が二次凝集して樹脂基板内にボイドなどの欠陥が生じる。この問題を解決するため、例えば平均粒子径D50が5〜10μmで100%相当径D100が40μm以下のベースシリカと、平均粒子径1μm以下の微粉シリカの少量とを併用することが提案(特開平9−291160号公報)されている。
【0003】
しかしながら、平均粒子径が5〜10μmのシリカは、エポキシ樹脂ワニスの貯蔵中に沈降してシリカ濃度差が発生しやすくなり、再撹拌によってもそれを回復させ難く、ガラス不織布表面のシリカ付着量にばらつきが生じ表面平滑性が損われる。一方、平均粒子が1μm以下の微粉シリカは、その形態やシラノール基の極性あるいは水素結合などによって凝集しやすいので、エポキシ樹脂ワニス中で分散不良を起こし、思ったほどにはボイド発生抑止効果を発現せず、むしろ不織布表面での分布が不均一となる。
【0004】
シリカ表面をカップリング剤で処理してシリカの分散性を高め、熱的特性(熱膨張率やガラス転移温度)を改善する方法が知られているが、更なる向上のためにはシリカ粒子とエポキシ樹脂の複合化が不可欠である。エポキシ樹脂と微紛シリカを複合化する場合、エポキシ樹脂層を拘束する粒子表面構造の形成が必要であるため、微紛シリカを充填したエポキシ樹脂ワニス中にカップリング剤を後添加するインテグラルブレンド法が知られているが、微紛シリカは粒子同士が結合・凝集しているため、後添加したカップリング剤が粒子個々の表面を均一に被覆することは困難である。カップリング剤によって不均一な被覆が起きると、ワニスの粘度が上昇して流動性が低下しガラス不織布への含浸作業が困難となるだけでなく、熱特性向上の効果が低下する。
【0005】
【発明が解決しようとする課題】
本発明は、上記に鑑みてなされたものであり、その目的はシリカの配合されたエポキシ樹脂ワニスの流動性を高め、ワニス中のシリカ粒子同士の結合・凝集を著しく少なくし、プリント配線板等樹脂基板の低熱膨張化や高ガラス転移温度化等の熱的特性の向上を図ることである。
【0006】
【課題を解決するための手段】
すなわち、本発明は、平均粒子径D50が2.0μm以下、100%相当径D100が5.0μm以下で、実質的にストラクチャー構造を形成していないシリカ超微粉をエポキシ樹脂中に分散させてなることを特徴とする樹脂基板用エポキシ樹脂ワニスである。本発明においては、シリカ超微紛がシランカップリング剤で表面処理されていることが好ましく、更にはシリカ超微紛が50〜350MPaの加圧下でエポキシ樹脂中に分散させることが好ましい。
【0007】
【発明の実施の形態】
以下、本発明を更に詳しく説明する。
【0008】
本発明で用いられるシリカ超微粉は、平均粒子径D50が2.0μm以下で、100%相当径D100が5.0μm以下で、実質的にストラクチャー構造を形成していないことが必要である。平均粒子径D50が1.0μm超又は100%相当径D100が3.0μm超であると、シリカ超微粉表面とエポキシ樹脂の相互作用が低下し、熱的特性の改善効果が不十分となるばかりでなく、エポキシ樹脂ワニスの貯蔵中に沈降してシリカ濃度差が発生しやすくなり、再撹拌によってもそれを回復させ難く、ガラス不織布表面のシリカ付着量にばらつきが生じ表面平滑性が損われる。
【0009】
本発明において、「実質的にストラクチャー構造を形成していない」とは、以下に従いTEM観察された粒子の球形度が0.9未満であると定義される。具体的には任意に選ばれた20個以上の粒子について画像解析装置によって取り込み、表示された値が0.9以上であることが好ましい。画像解析装置としては、例えば日本アビオニクス社製「SPICCA−II」が用いられる。
【0010】
TEM(透過型電子顕微鏡)観察は、超微粉シリカを分散させ、所定の倍率(粒子の大きさに応じて10万倍〜100万倍)で写真撮影を行い、ストラクチャーの形成観察と画像解析によって行われる。超微粉シリカの分散方法としては、例えばアセトン溶媒に極微量の試料を超音波分散させ、その希薄な溶液をメンブランフィルターで吸引濾過して粉末を分散状態にして乾燥する。その後フィルターに付着したままの粉末をTEM観察する。
【0011】
粒子径はレーザー散乱光法によって測定される。その機器の一例は、コールター社製粒度測定器(モデルLS−230型)である。平均粒子径D50や100%相当径D100を測定する場合、分散媒体には純水やエタノールが用いられ、超音波を付与して試料を分散させる。
【0012】
シリカ超微粉は、シリコン粒子を化学炎や電気炉等で形成された高温場に投じて酸化反応させながら球状化する方法(例えば特許第1568168号明細書)、シリコン粒子スラリーを火炎中に噴霧して酸化反応させながら球状化する方法などによって製造することができる。四塩化珪素の気相高温加熱分解法は、製造されたシリカ超微粉がストラクチャー構造を有するため、本発明には適さない。
【0013】
本発明で用いられるシランカップリング剤としては、特別なものである必要がなく一般品で十分である。それを例示すると、γ−グリシドキシプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等である。またこれらの化合物はそのまま、または加水分解して部分縮合物にして用いてもよく、また、2種以上を同時に用いてもよい。シランカップリング剤の使用量は、シリカ超微粉の表面を被覆するのに必要な量あればよよく、具体的にはシリカ超微粉100質量部に対して、0.05〜10質量部である。
【0014】
シランカップリング剤による処理法としては、慣用手段を採用することができる。たとえば、直接シランカップリング剤を噴霧するスプレー方法、シランカップリング剤を水又は有機溶媒に溶解しておきそれをシリカ超微粉を含浸させる溶液法などである。好ましくは前者であり、特にシリカ超微粉を製造してから捕集するまでの温度50〜350℃の段階で、シランカップリング剤を気流中に噴霧する方法であり、これによって二次凝集の発生を著しく抑止することができる。
【0015】
本発明で用いられるエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、クレゾールノボクラック型エポキシ樹脂、脂環式エポキシ樹脂等の1種又は2種以上である。エポキシ樹脂のエポキシ当量は、100〜5000、特に150〜600が好適である。
【0016】
エポキシ樹脂ワニスは、通常、エポキシ樹脂、又はエポキシ樹脂とその硬化剤を必須成分として含有する。必要に応じ、溶剤、エポキシ樹脂と硬化剤との反応等を促進させるための硬化促進剤等を含有してもよい。
【0017】
硬化剤としては、ジシアンジアミド、ジアミノジフェニルメタン、フェノールノボラックやクレゾールノボラック等の多官能性フェノール等が使用される。また、溶剤としては、メタノール、エタノール等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤などが用いられる。硬化剤又は溶剤は、2種類以上を併用することもできる。
【0018】
本発明のエポキシ樹脂ワニスの配合組成の一例を示すと、エポキシ樹脂100質量部あたり、シリカ超微粉5〜60質量部である。
【0019】
シリカ超微紛をエポキシ樹脂中に分散させるには、高圧ホモジナイザーと呼ばれている装置を使用することが好ましい。高圧ホモジナイザーの基本的な構成は、エポキシ樹脂ワニスを加圧する高圧発生部と絞り機構よりなる。高圧発生部としては、一般にプランジャーポンプと呼ばれている高圧ポンプが好適に採用される。高圧ポンプには、一連式、二連式、三連式などの形式があり、また動力としては、空圧、電動、油圧などの形式があるが、エポキシ樹脂ワニスを50〜350MPaに加圧できるものが好ましい。このような高圧ホモジナイザーを使用すると、従来のメディア媒体型分散機をはじめとする分散装置を使用して分散した場合に比べて、分散の効率が著しく高められ、短時間処理で極めて安定なエポキシ樹脂ワニスを得ることができる。
【0020】
高圧ホモジナイザーの商品名を例示すると、スギノマシン社製「アルティマイザー」、ナノマイザー社製「ナノマイザー」、マイクロフルイディクス社製「マイクロフルイダイザー」、ミラクル社製「ナノメーカー」などである。
【0021】
本発明のエポキシ樹脂ワニスを用いて樹脂基板を製造するには、例えばガラス布基材にエポキシ樹脂ワニスを含浸し、その繊維基材を積層成形して樹脂基板を製造する方法が一般的に用いられる。
【0022】
【実施例】
以下、本発明の実施例、比較例をあげて更に説明する。
【0023】
シリカ超微粉の製造炉は、内炎と外炎が形成できるように、二重管構造のLPG−酸素混合型バーナーが炉頂に設けられており、そのバーナーの中心部には更にスラリー噴射用の二流体ノズルが取り付けられている。そして、二流体ノズルの中心からスラリーが、またその周囲から酸素がそれぞれ火炎に噴射される。火炎の形成は、二重管構造バーナーのそれぞれの噴射口の細孔から、外炎形成用と内炎形成用のLPG−酸素の混合ガスが噴射されることによって行われ、LPGと酸素ガス量の制御によって火炎状態が調整される。火炎を通過した熱処理物は、ブロワーで捕集系に送られる。
【0024】
金属シリコン粉末(平均粒径10.5μm)30部(質量部、以下同じ)と水70部とを混合し水系スラリーを調合(固形分濃度20%)し、二流体ノズルの中心部から火炎中(温度約1900℃)に12.0kg/時間の速度で噴射し、生成したシリカ超微粉をバグフィルターで捕集した。
【0025】
実施例1
液状エポキシ樹脂(YD−128)85部、溶剤(メチルエチルケトン)30部とシリカ超微粉15部をかき混ぜ予備混合を行った。これを簡易型混練機(シンキー社製商品名「あわとり練太郎AR−360M」)を用い、自転回転数600rpm、公転回転数2000rpmで10分間混練し、粘度(1rpm時)を測定した。また、沈降安定性は1ヶ月間静置後に生じた沈降成分を計量し、初期のシリカ分に対する質量%で示した。混練して得られたエポキシ樹脂ワニスを真空乾燥機で溶媒を除去し、これの20gに硬化剤4,4’−ジアミノジフェニルメタン(DDM)を4.88g(和光純薬特級試薬)を加え、5分間減圧脱法を行い、四フッ化エチレン樹脂製型(5mm×5mm×20mm)に注入した。その後、150℃で1時間、引き続き200℃で2時間の硬化を行い、硬化物の室温から250℃までの熱膨張率を測定した。
【0026】
実施例2
予備混合物を簡易型混練機で混練する代わりに、高圧ホモジナイザー(スギノマシン社製商品名「アルティマイザー」)を用い、圧力150MPaにて5回分散処理(混練)したこと以外は、実施例1と同様にして硬化物を製造し、その熱膨張率を測定した。
【0027】
実施例3
生成したシリカ超微粉をブロワーで捕集系(バグフィルター)に空気輸送する間の温度約270℃の配管部において、シランカップリング剤(信越化学工業社製γ−グリシドキシプロピルトリメトキシシラン「KBM−403」)を噴霧して、シランカップリング剤で処理されたシリカ超微粉を実施例1に準じて製造し、これを用いたこと以外は、実施例1と同様にして硬化物を製造し、その熱膨張率を測定した。なお、シランカップリング剤は、水100部に2.5部を混合したものを、シリカ超微粉100部あたりシランカップリング剤として0.5部の割合となるように噴霧した。
【0028】
実施例4
実施例3で製造された、シランカップリング剤で処理されたシリカ超微粉を用いたこと以外は、実施例2と同様にして硬化物を製造し、その熱膨張率を測定した。
【0029】
実施例5
金属シリコン粉末の水系スラリーの固形分濃度が65%であるものを用いたこと以外は、実施例2と同様にしてシリカ超微粉を製造した。このシリカ超微粉を用いたこと以外は、実施例2と同様にして硬化物を製造し、その熱膨張率を測定した。
【0030】
実施例6
金属シリコン粉末の水系スラリーの固形分濃度が65%であるものを用いたこと以外は、実施例4と同様にしてシランカップリング剤で処理されたシリカ超微粉を製造した。このシランカップリング剤で処理されたシリカ超微粉を用いたこと以外は、実施例4と同様にして硬化物を製造し、その熱膨張率を測定した。
【0031】
比較例1
市販のシリカ超微粉(日本アエロジル社製商品名「アエロジル130」)を用いたことは以外は、実施例1と同様にして硬化物を製造し、その熱膨張率を測定した。
【0032】
比較例2
「アエロジル130」を用いたことは以外は、実施例2と同様にして硬化物を製造し、その熱膨張率を測定した。
【0033】
比較例3
「アエロジル130」をミキサーに入れ、2000rpmで攪拌し、流動状態に保持し、これにシランカップリング剤(信越化学工業社製γ−グリシドキシプロピルトリメトキシシラン「KBM−403」)を噴霧、次いで150℃で1時間熱処理し、シランカップリング処理されたシリカ超微粉を得た。このシリカ超微紛を用いたことは以外は、実施例1と同様にして硬化物を製造し、その熱膨張率を測定した。
【0034】
比較例4
比較例3で製造された、シランカップリング処理された「アエロジル130」を用いたことは以外は、実施例2と同様にして硬化物を製造し、その熱膨張率を測定した。
【0035】
以上の結果を表2に、シリカ超微粉の特性を表1に示す。
【0036】
【表1】

Figure 0005037760
【0037】
【表2】
Figure 0005037760
【0038】
実施例1〜6と比較例1〜4との対比から明らかなように、本発明の樹脂基板用エポキシ樹脂ワニスは、シリカ粒子が高度に分散しており、シリカ粒子同士の結合・凝集が極めて起こり難くいため沈降安定性に優れる。その結果、これを用いて製造されたプリント配線板等の樹脂基板は従来品よりも低熱膨張率化等の諸特性の改善が著しく図られている。
【0039】
【発明の効果】
本発明によれば、エポキシ樹脂ワニス中のシリカ粒子同士の結合・凝集が著しく少なく、これを用いて製造された樹脂基板は、低熱膨張率かつ高ガラス転移温度を有し、熱的特性が極めて向上したものとなる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an epoxy resin varnish for a resin substrate, and more particularly to an epoxy resin varnish suitable for producing a resin substrate such as a printed wiring board, and has improved thermal characteristics.
[0002]
[Prior art]
In recent years, with the progress of high-density mounting of printed wiring boards, improvement of various characteristics such as low thermal expansion and high glass transition temperature of resin substrates is required. As an example of the countermeasure, the thermal expansion coefficient is higher than that of resin. There is a method of impregnating a glass nonwoven fabric with an epoxy resin varnish containing small silica. However, if the silica loading is increased in order to develop low thermal expansion and high glass transition temperature at the same time, the viscosity of the resin composition increases and fluidity decreases, making it difficult to impregnate the glass nonwoven fabric. However, the silica particles are secondarily aggregated to cause defects such as voids in the resin substrate. In order to solve this problem, for example, it is proposed to use in combination a base silica having an average particle diameter D50 of 5 to 10 μm and a 100% equivalent diameter D100 of 40 μm or less and a small amount of finely divided silica having an average particle diameter of 1 μm or less (Japanese Patent Laid-Open 9-291160).
[0003]
However, silica having an average particle size of 5 to 10 μm is likely to settle during storage of the epoxy resin varnish, resulting in a difference in silica concentration, which is difficult to recover even by re-stirring. Variation occurs and surface smoothness is impaired. On the other hand, finely divided silica with an average particle size of 1 μm or less is prone to agglomerate due to its form, silanol group polarity or hydrogen bonds, which causes poor dispersion in the epoxy resin varnish and exhibits a void generation suppression effect as expected. Rather, the distribution on the nonwoven fabric surface is non-uniform.
[0004]
A method for improving the thermal properties (thermal expansion coefficient and glass transition temperature) by treating the silica surface with a coupling agent to improve the dispersibility of silica is known. Composite of epoxy resin is indispensable. When blending epoxy resin and fine powder silica, it is necessary to form a particle surface structure that constrains the epoxy resin layer, so an integral blend in which a coupling agent is added to an epoxy resin varnish filled with fine powder silica. Although the method is known, since fine particles of silica are bonded and agglomerated, it is difficult for the coupling agent added later to uniformly coat the surface of each particle. When non-uniform coating occurs due to the coupling agent, not only does the viscosity of the varnish increase and the fluidity decreases, and the impregnation operation into the glass nonwoven fabric becomes difficult, but the effect of improving the thermal properties decreases.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above, and its purpose is to increase the fluidity of an epoxy resin varnish containing silica, to significantly reduce the bonding / aggregation of silica particles in the varnish, and to a printed wiring board, etc. The purpose is to improve the thermal characteristics of the resin substrate such as low thermal expansion and high glass transition temperature.
[0006]
[Means for Solving the Problems]
That is, in the present invention, an ultrafine silica powder having an average particle diameter D50 of 2.0 μm or less, a 100% equivalent diameter D100 of 5.0 μm or less, and substantially not forming a structure structure is dispersed in an epoxy resin. This is an epoxy resin varnish for a resin substrate. In the present invention, the silica ultrafine powder is preferably surface-treated with a silane coupling agent, and the silica ultrafine powder is preferably dispersed in the epoxy resin under a pressure of 50 to 350 MPa.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0008]
The ultrafine silica powder used in the present invention is required to have an average particle diameter D50 of 2.0 μm or less and a 100% equivalent diameter D100 of 5.0 μm or less and substantially not form a structure structure. When the average particle diameter D50 is more than 1.0 μm or the 100% equivalent diameter D100 is more than 3.0 μm, the interaction between the silica ultrafine powder surface and the epoxy resin is lowered, and the effect of improving the thermal characteristics becomes insufficient. In addition, the silica resin settles during storage of the epoxy resin varnish, and a difference in silica concentration is likely to occur. It is difficult to recover even by re-stirring, and the amount of silica adhered to the surface of the glass nonwoven fabric varies and the surface smoothness is impaired.
[0009]
In the present invention, “substantially no structure is formed” is defined as the sphericity of particles observed by TEM being less than 0.9 according to the following. Specifically, it is preferable that 20 or more particles arbitrarily selected are captured by an image analyzer and displayed values are 0.9 or more. As the image analysis apparatus, for example, “SPICCA-II” manufactured by Nippon Avionics Co., Ltd. is used.
[0010]
In TEM (transmission electron microscope) observation, ultrafine silica is dispersed and photographed at a predetermined magnification (100,000 to 1,000,000 times depending on the size of the particles), through structure formation observation and image analysis. Done. As a method for dispersing the ultrafine silica, for example, a very small amount of sample is ultrasonically dispersed in an acetone solvent, and the diluted solution is suction filtered through a membrane filter to dry the powder in a dispersed state. Thereafter, the powder remaining on the filter is observed with a TEM.
[0011]
The particle diameter is measured by a laser scattered light method. An example of the apparatus is a particle size measuring instrument (model LS-230 type) manufactured by Coulter. When measuring the average particle diameter D50 or 100% equivalent diameter D100, pure water or ethanol is used as the dispersion medium, and ultrasonic waves are applied to disperse the sample.
[0012]
Silica ultrafine powder is a method of spheroidizing silicon particles by throwing them into a high temperature field formed by a chemical flame or an electric furnace (for example, Japanese Patent No. 1568168), and spraying silicon particle slurry into the flame. It can be manufactured by a method of spheroidizing while oxidizing. The vapor phase high temperature thermal decomposition method of silicon tetrachloride is not suitable for the present invention because the produced silica ultrafine powder has a structure structure.
[0013]
The silane coupling agent used in the present invention does not need to be a special one, and a general product is sufficient. Examples thereof include γ-glycidoxypropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, and the like. These compounds may be used as they are or after hydrolysis to form partial condensates, or two or more of them may be used simultaneously. The amount of the silane coupling agent used may be an amount necessary for coating the surface of the silica ultrafine powder, specifically 0.05 to 10 parts by mass with respect to 100 parts by mass of the silica ultrafine powder. .
[0014]
Conventional methods can be employed as a treatment method using a silane coupling agent. For example, there are a spray method in which a silane coupling agent is directly sprayed, and a solution method in which a silane coupling agent is dissolved in water or an organic solvent and impregnated with silica ultrafine powder. Preferably, the former is a method in which a silane coupling agent is sprayed into an air stream at a stage of a temperature of 50 to 350 ° C. from the production of the silica ultrafine powder to the collection, thereby generating secondary aggregation. Can be significantly suppressed.
[0015]
As an epoxy resin used by this invention, it is 1 type, or 2 or more types, such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a cresol novolak type epoxy resin, and an alicyclic epoxy resin. The epoxy equivalent of the epoxy resin is preferably 100 to 5000, particularly 150 to 600.
[0016]
The epoxy resin varnish usually contains an epoxy resin or an epoxy resin and a curing agent thereof as essential components. You may contain the hardening accelerator for accelerating | stimulating reaction etc. of a solvent and an epoxy resin, and a hardening | curing agent as needed.
[0017]
As the curing agent, polyfunctional phenols such as dicyandiamide, diaminodiphenylmethane, phenol novolac and cresol novolac are used. Examples of the solvent include alcohol solvents such as methanol and ethanol, and ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone. Two or more curing agents or solvents can be used in combination.
[0018]
An example of the composition of the epoxy resin varnish of the present invention is 5 to 60 parts by mass of silica ultrafine powder per 100 parts by mass of the epoxy resin.
[0019]
In order to disperse the silica ultrafine powder in the epoxy resin, it is preferable to use an apparatus called a high-pressure homogenizer. The basic configuration of the high-pressure homogenizer includes a high-pressure generating unit that pressurizes the epoxy resin varnish and a throttle mechanism. As the high-pressure generating unit, a high-pressure pump generally called a plunger pump is preferably employed. High-pressure pumps are available in a series, double, triple, etc., and powers include pneumatic, electric, hydraulic, etc., but the epoxy resin varnish can be pressurized to 50-350 MPa. Those are preferred. When such a high-pressure homogenizer is used, the dispersion efficiency is remarkably improved compared to the case where dispersion is performed using a dispersion apparatus such as a conventional media medium type dispersion machine, and the epoxy resin is extremely stable in a short time treatment. A varnish can be obtained.
[0020]
Examples of the high-pressure homogenizer include “Ultimizer” manufactured by Sugino Machine, “Nanomizer” manufactured by Nanomizer, “MicroFluidizer” manufactured by Microfluidics, “Nanomaker” manufactured by Miracle, and the like.
[0021]
In order to manufacture a resin substrate using the epoxy resin varnish of the present invention, for example, a method of manufacturing a resin substrate by impregnating an epoxy resin varnish into a glass cloth substrate and laminating the fiber substrate is generally used. It is done.
[0022]
【Example】
Hereinafter, the present invention will be further described with reference to examples and comparative examples.
[0023]
The silica ultrafine powder production furnace is equipped with a double-pipe LPG-oxygen mixed burner at the top of the furnace so that an internal flame and an external flame can be formed. A two-fluid nozzle is attached. Then, slurry is injected into the flame from the center of the two-fluid nozzle and oxygen is injected from the periphery thereof. The formation of the flame is performed by injecting a mixed gas of LPG-oxygen for forming the outer flame and the inner flame from the pores of the respective injection ports of the double tube structure burner, and the amount of LPG and oxygen gas The flame condition is adjusted by controlling the above. The heat-treated product that has passed through the flame is sent to a collection system by a blower.
[0024]
Mixing 30 parts of metal silicon powder (average particle size 10.5 μm) (mass part, the same shall apply hereinafter) and 70 parts of water to prepare an aqueous slurry (solid content 20%), and in the flame from the center of the two-fluid nozzle (The temperature was about 1900 ° C.) at a speed of 12.0 kg / hour, and the produced silica ultrafine powder was collected by a bag filter.
[0025]
Example 1
85 parts of a liquid epoxy resin (YD-128), 30 parts of a solvent (methyl ethyl ketone) and 15 parts of silica ultrafine powder were mixed and premixed. This was kneaded for 10 minutes at a rotation speed of 600 rpm and a revolution speed of 2000 rpm using a simple kneader (trade name “Awatori Nertaro AR-360M” manufactured by Shinky Corporation), and the viscosity (at 1 rpm) was measured. In addition, the sedimentation stability was measured by measuring the sediment components generated after standing for 1 month and expressed as mass% with respect to the initial silica content. The solvent was removed from the epoxy resin varnish obtained by kneading with a vacuum dryer, and 4.88 g of a curing agent 4,4′-diaminodiphenylmethane (DDM) (Wako Pure Chemicals special grade reagent) was added to 20 g of this. The depressurization method was performed for a minute, and the mixture was poured into a tetrafluoroethylene resin mold (5 mm × 5 mm × 20 mm). Thereafter, curing was performed at 150 ° C. for 1 hour and subsequently at 200 ° C. for 2 hours, and the thermal expansion coefficient of the cured product from room temperature to 250 ° C. was measured.
[0026]
Example 2
Example 1 except that instead of kneading the preliminary mixture with a simple kneader, a high-pressure homogenizer (trade name “Ultimizer” manufactured by Sugino Machine Co., Ltd.) was used and the dispersion treatment (kneading) was performed 5 times at a pressure of 150 MPa. Similarly, a cured product was produced, and the coefficient of thermal expansion was measured.
[0027]
Example 3
A silane coupling agent (γ-glycidoxypropyltrimethoxysilane “manufactured by Shin-Etsu Chemical Co., Ltd.” is used in a piping section at a temperature of about 270 ° C. while the produced silica ultrafine powder is pneumatically transported to a collection system (bag filter) by a blower. KBM-403 ") is sprayed to produce a silica ultrafine powder treated with a silane coupling agent according to Example 1, and a cured product is produced in the same manner as in Example 1 except that this is used. The coefficient of thermal expansion was measured. In addition, the silane coupling agent sprayed what mixed 2.5 parts with 100 parts of water so that it might become a ratio of 0.5 part as a silane coupling agent per 100 parts of silica ultrafine powder.
[0028]
Example 4
A cured product was produced in the same manner as in Example 2 except that the ultrafine silica powder treated with the silane coupling agent produced in Example 3 was used, and the coefficient of thermal expansion was measured.
[0029]
Example 5
A silica ultrafine powder was produced in the same manner as in Example 2 except that the solid content concentration of the aqueous slurry of metal silicon powder was 65%. A cured product was produced in the same manner as in Example 2 except that this silica ultrafine powder was used, and the coefficient of thermal expansion was measured.
[0030]
Example 6
A silica ultrafine powder treated with a silane coupling agent was produced in the same manner as in Example 4 except that the solid content concentration of the aqueous slurry of metal silicon powder was 65%. A cured product was produced in the same manner as in Example 4 except that the ultrafine silica powder treated with this silane coupling agent was used, and the coefficient of thermal expansion was measured.
[0031]
Comparative Example 1
A cured product was produced in the same manner as in Example 1 except that a commercially available silica ultrafine powder (trade name “Aerosil 130” manufactured by Nippon Aerosil Co., Ltd.) was used, and the coefficient of thermal expansion was measured.
[0032]
Comparative Example 2
A cured product was produced in the same manner as in Example 2 except that “Aerosil 130” was used, and the coefficient of thermal expansion was measured.
[0033]
Comparative Example 3
“Aerosil 130” is put into a mixer, stirred at 2000 rpm, and kept in a fluid state, and sprayed with a silane coupling agent (γ-glycidoxypropyltrimethoxysilane “KBM-403” manufactured by Shin-Etsu Chemical Co., Ltd.) Subsequently, it heat-processed at 150 degreeC for 1 hour, and obtained the silica ultrafine powder by which the silane coupling process was carried out. A cured product was produced in the same manner as in Example 1 except that this silica ultrafine powder was used, and the coefficient of thermal expansion was measured.
[0034]
Comparative Example 4
A cured product was produced in the same manner as in Example 2 except that “Aerosil 130” subjected to silane coupling treatment produced in Comparative Example 3 was used, and the coefficient of thermal expansion was measured.
[0035]
The above results are shown in Table 2, and the characteristics of the silica ultrafine powder are shown in Table 1.
[0036]
[Table 1]
Figure 0005037760
[0037]
[Table 2]
Figure 0005037760
[0038]
As is clear from the comparison between Examples 1 to 6 and Comparative Examples 1 to 4, the epoxy resin varnish for a resin substrate of the present invention has highly dispersed silica particles, and the silica particles are extremely bonded and aggregated. It is difficult to occur and has excellent sedimentation stability. As a result, a resin substrate such as a printed wiring board manufactured using the same is remarkably improved in various characteristics such as a lower coefficient of thermal expansion than a conventional product.
[0039]
【Effect of the invention】
According to the present invention, the silica particles in the epoxy resin varnish have extremely few bonds / aggregation, and the resin substrate manufactured using the silica particles has a low coefficient of thermal expansion and a high glass transition temperature, and has extremely high thermal characteristics. It will be improved.

Claims (3)

平均粒子径D50が0.143〜0.525μm、100%相当径D100が0.280〜0.869μmで、球形度が0.9以上であるシリカ超微粉をエポキシ樹脂中に分散させてなることを特徴とする樹脂基板製造用エポキシ樹脂ワニス。Silica ultrafine powder having an average particle diameter D50 of 0.143 to 0.525 μm , a 100% equivalent diameter D100 of 0.280 to 0.869 μm, and a sphericity of 0.9 or more is dispersed in an epoxy resin. An epoxy resin varnish for producing a resin substrate. シリカ超微紛がシランカップリング剤で表面処理されてなることを特徴とする請求項1記載の樹脂基板製造用エポキシ樹脂ワニス。2. The epoxy resin varnish for producing a resin substrate according to claim 1, wherein the ultrafine silica powder is surface-treated with a silane coupling agent. シリカ超微紛が50〜350MPaの加圧下でエポキシ樹脂中に分散させてなることを特徴とする請求項1又は2記載の樹脂基板製造用エポキシ樹脂ワニス。3. The epoxy resin varnish for producing a resin substrate according to claim 1, wherein the silica ultrafine powder is dispersed in the epoxy resin under a pressure of 50 to 350 MPa.
JP2001201750A 2001-07-03 2001-07-03 Epoxy resin varnish for resin substrates Expired - Fee Related JP5037760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001201750A JP5037760B2 (en) 2001-07-03 2001-07-03 Epoxy resin varnish for resin substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001201750A JP5037760B2 (en) 2001-07-03 2001-07-03 Epoxy resin varnish for resin substrates

Publications (2)

Publication Number Publication Date
JP2003013002A JP2003013002A (en) 2003-01-15
JP5037760B2 true JP5037760B2 (en) 2012-10-03

Family

ID=19038658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001201750A Expired - Fee Related JP5037760B2 (en) 2001-07-03 2001-07-03 Epoxy resin varnish for resin substrates

Country Status (1)

Country Link
JP (1) JP5037760B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4010420B2 (en) * 2004-08-16 2007-11-21 電気化学工業株式会社 Epoxy resin filler and method for producing the same
JP4776398B2 (en) * 2006-03-03 2011-09-21 古河マグネットワイヤ株式会社 Heat-resistant self-bonding wire and heat-resistant voice coil for speakers
CN101784614A (en) * 2008-01-31 2010-07-21 积水化学工业株式会社 Resin composition and multilayer resin film employing the same
JP5476715B2 (en) * 2008-12-25 2014-04-23 味の素株式会社 Method for producing resin composition varnish
CN101704991B (en) * 2009-11-23 2011-08-17 南亚塑胶工业股份有限公司 Thermosetting epoxy resin composition
JP2013010899A (en) * 2011-06-30 2013-01-17 Sekisui Chem Co Ltd Resin varnish, filtration treatment resin varnish, method of producing the filtration treatment resin varnish, laminated film, and multilayer board
JP6546386B2 (en) * 2014-10-15 2019-07-17 株式会社アドマテックス Inorganic filler, method for producing the same, resin composition, and molded article
JP6632286B2 (en) * 2015-09-18 2020-01-22 アシザワ・ファインテック株式会社 Method for lowering thermal expansion coefficient of resin molding
JP7063710B2 (en) * 2018-04-27 2022-05-09 株式会社日本触媒 Method for producing surface-treated silica particles and surface-treated silica particles

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230185A (en) * 1991-10-29 1993-09-07 Kobe Steel Ltd Electrically insulating composite sheet material having excellent flexibility
JPH08146641A (en) * 1994-11-24 1996-06-07 Canon Inc Electrophotographic photoreceptor and electrophotographic device
JPH1112267A (en) * 1997-06-18 1999-01-19 Sumitomo Chem Co Ltd Production of polyhydric phenol compound, epoxy resin composition and product using the same
JPH1160912A (en) * 1997-08-27 1999-03-05 Toshiba Corp Resin composition for casting, and insulation spacer comprising the resin composition
JP2000239536A (en) * 1998-12-24 2000-09-05 Tokuyama Corp Cationic resin-modified silica dispersion and its production
JP2000191489A (en) * 1998-12-28 2000-07-11 Hakusui Tech Co Ltd Ultrafine, particulate zinc oxide silicone dispersion, its production and ultraviolet screening cosmetic
JP3960700B2 (en) * 1999-02-23 2007-08-15 電気化学工業株式会社 Method for producing ultrafine silica
JP4112125B2 (en) * 1999-08-13 2008-07-02 電気化学工業株式会社 Method for producing fine spherical silica powder
JP4306951B2 (en) * 2000-11-07 2009-08-05 電気化学工業株式会社 Surface-treated fine spherical silica powder and resin composition
JP2002275356A (en) * 2001-03-22 2002-09-25 Denki Kagaku Kogyo Kk Filler for epoxy resin, and epoxy resin composition
JP3886363B2 (en) * 2001-11-14 2007-02-28 電気化学工業株式会社 Method for producing hydrophobic silica fine powder

Also Published As

Publication number Publication date
JP2003013002A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
JP5079450B2 (en) Dispersible silica nano hollow particles and method for producing dispersion of silica nano hollow particles
JP5037760B2 (en) Epoxy resin varnish for resin substrates
JP2020097515A (en) Method for surface modification of submicron silicon fine powder
CN110078521B (en) Submicron silicon nitride hollow microsphere and preparation method thereof
CN106458612B (en) There is the silicon dioxide gel composition and preparation method thereof of superior dispersibility to cyanate ester resin
JP5253125B2 (en) Porous silica particles, method for producing the same, and composite material comprising the porous silica particles
JP2002275356A (en) Filler for epoxy resin, and epoxy resin composition
CN101087901B (en) Aqueous/organic metal oxide dispersion and coated substrates and mouldings produced therewith
JP6599051B2 (en) Composite particle material and method for producing the same, composite particle material slurry, resin composition
JP2009093876A (en) Hollow silica particle
JP2017518245A (en) Silica sol composition excellent in dispersibility for cyanate resin and method for producing the same
JP5480497B2 (en) Method for producing surface-encapsulated silica-based particles, surface-encapsulated silica-based particles, and a resin composition for semiconductor encapsulation obtained by mixing the particles
Matsubayashi et al. A facile method of synthesizing size-controlled hollow cyanoacrylate nanoparticles for transparent superhydrophobic/oleophobic surfaces
CN108299579A (en) A kind of graphene/nanometer silica/Polystyrene Hybrid Material and its preparation method and application
JP2005298740A (en) Surface-treated particle of metal oxide, and resin composition
JP4459845B2 (en) Silica slurry, production method and use thereof
US20140356624A1 (en) Silica composite particles and method of producing the same
JP6347644B2 (en) Surface-modified silica powder and slurry composition
CN112156730B (en) Preparation method of high-purity monodisperse porous silicon oxide spheres
CN114350260A (en) Fluorine release coating with wear resistance and high stability and preparation method thereof
CN110755692A (en) Preparation method of polyvinyl alcohol composite bone scaffold
KR102293074B1 (en) High shielding composition for applying wearable device and manufacturing method thereof
JP7219842B1 (en) Composite copper nanoparticles and method for producing composite copper nanoparticles
JP7407278B2 (en) Modified metal oxide particle material and manufacturing method thereof
JP2003054935A (en) High concentration silica slurry and method for producing silica slurry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5037760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees