JP5034037B2 - Negative electrode material for lithium secondary battery and method for producing the same - Google Patents

Negative electrode material for lithium secondary battery and method for producing the same Download PDF

Info

Publication number
JP5034037B2
JP5034037B2 JP2006144815A JP2006144815A JP5034037B2 JP 5034037 B2 JP5034037 B2 JP 5034037B2 JP 2006144815 A JP2006144815 A JP 2006144815A JP 2006144815 A JP2006144815 A JP 2006144815A JP 5034037 B2 JP5034037 B2 JP 5034037B2
Authority
JP
Japan
Prior art keywords
magnesium
particles
graphite
negative electrode
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006144815A
Other languages
Japanese (ja)
Other versions
JP2007317460A (en
Inventor
昌行 森田
港 江頭
信子 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority to JP2006144815A priority Critical patent/JP5034037B2/en
Publication of JP2007317460A publication Critical patent/JP2007317460A/en
Application granted granted Critical
Publication of JP5034037B2 publication Critical patent/JP5034037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明はリチウム二次電池の負極材料に使用する黒鉛−マグネシウムの複合体からなる高容量のリチウム二次電池用負極材料及びその製造方法に関する。   The present invention relates to a high-capacity negative electrode material for a lithium secondary battery comprising a graphite-magnesium composite used as a negative electrode material for a lithium secondary battery, and a method for producing the same.

携帯電話、パソコン、デジタルカメラなどの携帯電子機器の普及に伴い、電源としてリチウム二次電池が利用されている。リチウムイオン二次電池用負極材料としては、黒鉛系材料(理論容量:372mAh/g)が広く用いられている。炭素系負極材料は黒鉛だけでなく、例えば、球形化した天然黒鉛を炭素で被覆した球形天然黒鉛(特許文献1)、珪素粒子表面に化学蒸着法により炭素層を被覆した電極(特許文献2)、10〜60重量%の錫、アルミニウム、亜鉛及び珪素の一種以上の金属元素を含有する炭素材料(特許文献3)、あるいはSn、Si、Ge、Pb、Mg等のLi吸蔵粒子と、面間隔、面積比が特定された黒鉛粒子とを混合した負極材料(特許文献4)など各種の電極が提案されている。
特開2002−367611号公報 特開2000−215887号公報 特開平11−73945号公報 特開2004−362789号公報
With the widespread use of portable electronic devices such as mobile phones, personal computers, and digital cameras, lithium secondary batteries are used as a power source. As a negative electrode material for a lithium ion secondary battery, a graphite-based material (theoretical capacity: 372 mAh / g) is widely used. The carbon-based negative electrode material is not limited to graphite, but, for example, spherical natural graphite obtained by coating spheroidized natural graphite with carbon (Patent Document 1), and electrode having a carbon layer coated on the surface of silicon particles by chemical vapor deposition (Patent Document 2) , Carbon material containing at least one metal element of tin, aluminum, zinc and silicon (Patent Document 3), or Li occlusion particles such as Sn, Si, Ge, Pb, Mg, etc. Various electrodes such as a negative electrode material (Patent Document 4) mixed with graphite particles having a specified area ratio have been proposed.
JP 2002-367611 A JP 2000-215887 A Japanese Patent Laid-Open No. 11-73945 JP 2004-362789 A

現在、携帯電子機器が大量に生産され且つ高性能化に伴う消費電力の増加により簡便に製造できる高容量の負極材料が望まれている。   At present, there is a demand for a high-capacity negative electrode material that can be easily manufactured due to an increase in power consumption associated with high performance as portable electronic devices are produced in large quantities.

そこで、本発明は、リチウムイオン二次電池用負極材料として高容量のリチウム二次電池用負極材料及びこれを簡単な工程で製造できる二次電池用負極材料製造方法を提供するものである。   Therefore, the present invention provides a high capacity negative electrode material for a lithium secondary battery as a negative electrode material for a lithium ion secondary battery and a method for producing a negative electrode material for a secondary battery, which can be produced by a simple process.

本発明は、黒鉛粒子とマグネシウム粒子を衝撃により粉砕混合した黒鉛−マグネシウムからなるリチウム二次電池用負極材料において、粒径10〜500μmのマグネシウム粒子表面に粒径10〜1000nmの黒鉛粒子が付着していることを特徴とする。 The present invention relates to a negative electrode material for a lithium secondary battery composed of graphite-magnesium obtained by pulverizing and mixing graphite particles and magnesium particles by impact. Graphite particles having a particle size of 10 to 1000 nm adhere to the surface of magnesium particles having a particle size of 10 to 500 μm. It is characterized by.

マグネシウムは大きな理論容量(理論容量:3070mAh/g)を示すが、表面に酸化膜が形成されており、導電性が低く、活物質として有効に機能しないが、本発明では、マグネシウム粒子表面に微細化した黒鉛粒子が付着することにより、マグネシウム表面の導電性が向上し、リチウムとマグネシウムの充放電反応がスムーズに進行して容量が上昇する。黒鉛とマグネシウムの混合割合は、質量比で1:1以上、好ましくはほぼ2:1で高容量の電極が得られる。   Magnesium has a large theoretical capacity (theoretical capacity: 3070 mAh / g). However, an oxide film is formed on the surface, the conductivity is low, and it does not function effectively as an active material. By adhering the graphitized graphite particles, the conductivity of the magnesium surface is improved, and the charge / discharge reaction of lithium and magnesium proceeds smoothly to increase the capacity. A mixing ratio of graphite and magnesium is 1: 1 or more by mass ratio, preferably about 2: 1, and a high capacity electrode can be obtained.

本発明の特徴の一つは、マグネシウム粒子の表面に小さい黒鉛粒子が強固に付着し、マグネシウム粒子の一部もしくは全体を被覆した状態で存在する点にある。すなわち、黒鉛粒子は、その一部がマグネシウム粒子表面の酸化膜に押し込まれアンカーされた状態を形成している。かかるマグネシウムと黒鉛との粒子径の関係は、黒鉛はマグネシウムの粒径の1/10〜1/1000程度の粒子、すなわちマグネシウム平均粒子径が10〜500μmの場合には、黒鉛の平均粒子径は10〜1000nmの範囲、一般に数十〜数百nm、好ましくは、50〜500nm程度である。   One of the features of the present invention is that small graphite particles firmly adhere to the surface of the magnesium particles and exist in a state of covering a part or the whole of the magnesium particles. That is, the graphite particles are partially anchored by being pushed into the oxide film on the surface of the magnesium particles. The particle size relationship between magnesium and graphite is as follows. Graphite is about 1/10 to 1/1000 of the particle size of magnesium, that is, when the average particle size of magnesium is 10 to 500 μm, the average particle size of graphite is It is in the range of 10 to 1000 nm, generally several tens to several hundreds of nm, and preferably about 50 to 500 nm.

かかる構造のマグネシウム−黒鉛複合体を構成する手段は特に限定されないが、好適な製造方法の一つは粒径数十〜数百μmのマグネシウム粒子と同程度の黒鉛粒子とを不活性雰囲気中で混合し、衝撃を加えて粉砕と同時に混合することにより得ることができる。かかる粉砕混合手段としては、所謂メカニカルミリングが用いられる。粉砕混合に用いられる装置としては、ジェットミル、ジェットマイザー、ボールミル、振動ミル、遊星ミルなどが好適である。   The means for constructing the magnesium-graphite composite having such a structure is not particularly limited, but one suitable production method is that magnesium particles having a particle size of several tens to several hundreds of μm and graphite particles having the same degree are in an inert atmosphere. It can be obtained by mixing, applying impact and mixing simultaneously with grinding. As such pulverization and mixing means, so-called mechanical milling is used. As a device used for pulverization and mixing, a jet mill, a jet mizer, a ball mill, a vibration mill, a planetary mill, and the like are suitable.

メカニカルミリングの一例を示すと、セラミック製容器内にセラミック製ボールを収納した回転ボールミルにより所定割合の黒鉛粉とマグネシウム粉を不活性ガス(アルゴンガス)雰囲気下で混合粉砕して複合材料を作製する。メカニカルミリングによりマグネシウム粒は柔らかいためにあまり粉砕されず、黒鉛粒子が微細に粉砕されてマグネシウム粒子表面の酸化膜に押し込まれ強固に付着し、10〜500μmのマグネシウム粒子の表面に1000nm以下の黒鉛粒子が付着した複合材料が得られる。   An example of mechanical milling is to produce a composite material by mixing and grinding a predetermined proportion of graphite powder and magnesium powder in an inert gas (argon gas) atmosphere by a rotating ball mill containing ceramic balls in a ceramic container. . Magnesium grains are softly pulverized by mechanical milling, and the graphite particles are finely pulverized and pressed firmly into the oxide film on the surface of the magnesium particles. A composite material to which is attached is obtained.

得られた複合材料から電極を成形する方法は、従来の方法を使用する。例えば、得られた複合材料とポリフッ化ビニリデン(PVdF)からなるバインダーとをN−メチルピロリドン(NMP)の溶媒と混合し、銅板上に塗布し、乾燥させて電極を作製する。   A conventional method is used as a method of forming an electrode from the obtained composite material. For example, the obtained composite material and a binder made of polyvinylidene fluoride (PVdF) are mixed with a solvent of N-methylpyrrolidone (NMP), applied onto a copper plate, and dried to produce an electrode.

本発明のリチウム二次電池用負極材料は、粒径10〜500μmのマグネシウム粒子表面に粒径10〜1000nmの黒鉛粒子が強固に付着することにより、高容量の負極材料が可能となる。   The negative electrode material for a lithium secondary battery of the present invention enables a high-capacity negative electrode material by firmly attaching graphite particles having a particle size of 10 to 1000 nm to the surface of magnesium particles having a particle size of 10 to 500 μm.

また、本発明のリチウム二次電池用負極材料の製造は、簡便なメカニカルミリングにより細かい粒子サイズが得られるとともに、均一に混合することができるとともに、マグネシウム粒子の表面に黒鉛粒子を強固に付着させることが可能となる。   In addition, the production of the negative electrode material for a lithium secondary battery according to the present invention enables fine particle size to be obtained by simple mechanical milling, can be uniformly mixed, and allows the graphite particles to adhere firmly to the surface of the magnesium particles. It becomes possible.

本発明のリチウム二次電池用負極材料及びその製造方法を説明する。   The negative electrode material for a lithium secondary battery of the present invention and the production method thereof will be described.

セラミック製容器内にセラミック製ボールが収納された回転ボールミルに黒鉛粉とマグネシウム粉を質量比2:1にして装入した後、回転速度400rpmで10時間回転させてメカニカルミリングにより混合粉砕して複合材料を作製した。なお、操作はアルゴンガス雰囲気のグローブボックス内で行った。   After charging graphite powder and magnesium powder at a mass ratio of 2: 1 into a rotating ball mill containing ceramic balls in a ceramic container, the mixture is rotated and mixed at a rotational speed of 400 rpm for 10 hours and mixed and pulverized by mechanical milling. The material was made. In addition, operation was performed in the glove box of argon gas atmosphere.

図1は黒鉛粒子とマグネシウム粒子の走査型電子顕微鏡写真で、(a)はメカニカルミリングしていない試料、(b)はメカニカルミリングした試料である。図1(a)に示すメカニカルミリングしていない試料では黒鉛粉とマグネシウム粉が分散した状態にあるのに対して、図1(b)に示すメカニカルミリングした試料はマグネシウム粒子表面にマグネシウム粒子より小さく粉砕された黒鉛粒子が付着していることが分かる。測定の結果、粒径10〜500μm程度のマグネシウム粒子の表面に粒径500nm程度以下の黒鉛粒子が付着していた。   FIG. 1 is a scanning electron micrograph of graphite particles and magnesium particles, where (a) is a sample not mechanically milled and (b) is a sample mechanically milled. In the sample that is not mechanically milled as shown in FIG. 1A, graphite powder and magnesium powder are in a dispersed state, whereas the sample that is mechanically milled as shown in FIG. It turns out that the pulverized graphite particle has adhered. As a result of the measurement, graphite particles having a particle size of about 500 nm or less adhered to the surface of magnesium particles having a particle size of about 10 to 500 μm.

得られた複合材料をPVdFからなるバインダーとをNMPの溶媒と混合し、銅板上に塗布し、80℃で15時間乾燥させて電極を作製した。なお、比較のために、メカニカルミリングする前の混合物についても同様にして電極を作製した。   The obtained composite material and a binder made of PVdF were mixed with an NMP solvent, applied onto a copper plate, and dried at 80 ° C. for 15 hours to produce an electrode. For comparison, an electrode was prepared in the same manner for the mixture before mechanical milling.

作製された電極について、電解液として1MのLiPFを溶解させたエチレンカーボネイト(EC)とジエチルカーボネイト(DEC)(混合容積比1:1)を使用して定電流充放電試験を行った。 The produced electrodes were subjected to a constant current charge / discharge test using ethylene carbonate (EC) and diethyl carbonate (DEC) (mixing volume ratio 1: 1) in which 1M LiPF 6 was dissolved as an electrolytic solution.

図2は電極の充放電曲線を示し、(a)はメカニカルミリングしていない試料の充放電曲線、(b)はメカニカルミリングした試料の充放電曲線である。   FIG. 2 shows a charge / discharge curve of an electrode, (a) is a charge / discharge curve of a sample that is not mechanically milled, and (b) is a charge / discharge curve of a sample that is mechanically milled.

図2(a)からメカニカルミリングしていない試料は容量が低く、図2(b)からメカニカルミリングした試料は容量が大幅に向上しており、初回放電容量は約611mAh/g、2サイクル目の放電容量は約920mAh/gであった。   The sample not mechanically milled from FIG. 2 (a) has a low capacity, the sample mechanically milled from FIG. 2 (b) has a significantly improved capacity, and the initial discharge capacity is about 611 mAh / g in the second cycle. The discharge capacity was about 920 mAh / g.

メカニカルミリングにより、マグネシウム粉表面に微細化した黒鉛粉が付着することにより、マグネシウム粉表面の導電性が向上して充放電反応がスムーズに進行したものと考えられる。   It is considered that the finely divided graphite powder adheres to the surface of the magnesium powder by mechanical milling, whereby the conductivity of the surface of the magnesium powder is improved and the charge / discharge reaction proceeds smoothly.

図3は電極を放電電流密度0.1あるいは0.5mA/cm2で9サイクル充放電させたときの放電容量の変化を示すグラフである。電極は、電流密度によらず800mAh/g以上の容量を安定して示すことが確認された。 FIG. 3 is a graph showing changes in discharge capacity when the electrode is charged and discharged for 9 cycles at a discharge current density of 0.1 or 0.5 mA / cm 2 . It was confirmed that the electrode stably showed a capacity of 800 mAh / g or more regardless of the current density.

実施例1と同様にして、質量比1:1の黒鉛−マグネシウムをメカニカルミリングして得られた複合材料を作製した。   In the same manner as in Example 1, a composite material obtained by mechanical milling of graphite-magnesium having a mass ratio of 1: 1 was produced.

図4は黒鉛粒子とマグネシウム粒子の走査型電子顕微鏡写真で、(a)はメカニカルミリングしていない試料、(b)はメカニカルミリングした試料である。   FIG. 4 is a scanning electron micrograph of graphite particles and magnesium particles. (A) is a sample not mechanically milled, and (b) is a sample mechanically milled.

図4(a)に示すメカニカルミリングしていない試料は黒鉛粉とマグネシウム粉が分散した状態にあるのに対して、図4(b)に示すメカニカルミリングした試料はマグネシウム粒子表面にマグネシウム粒子より小さく粉砕された黒鉛粒子が付着していることことが分かる。測定の結果、10〜500μm程度のマグネシウム粒子の表面に50〜500nm程度の黒鉛粒子が付着していた。   The sample that is not mechanically milled as shown in FIG. 4A is in a state where graphite powder and magnesium powder are dispersed, whereas the sample that is mechanically milled as shown in FIG. 4B is smaller than the magnesium particles on the surface of the magnesium particles. It can be seen that the pulverized graphite particles are attached. As a result of the measurement, graphite particles of about 50 to 500 nm adhered to the surface of magnesium particles of about 10 to 500 μm.

得られた複合材料を実施例1と同様に処理して電極を作製した。なお、比較のために、メカニカルミリングしていない試料についても同様にして電極を作製した。   The obtained composite material was processed in the same manner as in Example 1 to produce an electrode. For comparison, an electrode was prepared in the same manner for a sample that was not mechanically milled.

図5は電極の充放電曲線を示し、(a)はメカニカルミリングしていない試料の充放電曲線、(b)はメカニカルミリングした試料の充放電曲線である。   FIG. 5 shows a charge / discharge curve of an electrode, (a) is a charge / discharge curve of a sample that is not mechanically milled, and (b) is a charge / discharge curve of a sample that is mechanically milled.

図5(a)からメカニカルミリングした試料は容量が低く、図5(b)からメカニカルミリングによりマグネシュウム粒子の表面に黒鉛粒子が付着して容量が向上しており、初回充電容量は約510mAh/gであり、初回放電容量は約195mAh/gであった。   The sample mechanically milled from FIG. 5 (a) has a low capacity. From FIG. 5 (b), the mechanical milling improves the capacity by adhering graphite particles to the surface of the magnesium particles, and the initial charge capacity is about 510 mAh / g. The initial discharge capacity was about 195 mAh / g.

黒鉛粒子とマグネシウム粒子の走査型電子顕微鏡写真で、(a)はメカニカルミリングしていない試料、(b)はメカニカルミリングした試料である。In the scanning electron micrographs of graphite particles and magnesium particles, (a) is a sample not mechanically milled, and (b) is a sample mechanically milled. 電極の充放電曲線を示し、(a)はメカニカルミリングしていない試料の充放電曲線、(b)はメカニカルミリングした試料の充放電曲線である。The charging / discharging curve of an electrode is shown, (a) is the charging / discharging curve of the sample which is not mechanically milled, (b) is the charging / discharging curve of the sample which carried out the mechanical milling. 実施例1の電極を9サイクル充放電させたときの放電容量の変化を示すグラフである。It is a graph which shows the change of the discharge capacity when the electrode of Example 1 is charged / discharged 9 cycles. 黒鉛粒子とマグネシウム粒子の走査型電子顕微鏡写真で、(a)はメカニカルミリングしていない試料、(b)はメカニカルミリングした試料である。In the scanning electron micrographs of graphite particles and magnesium particles, (a) is a sample not mechanically milled, and (b) is a sample mechanically milled. 電極の充放電曲線を示し、(a)はメカニカルミリングしていない試料の充放電曲線、(b)はメカニカルミリングした試料の充放電曲線である。The charging / discharging curve of an electrode is shown, (a) is the charging / discharging curve of the sample which is not mechanically milled, (b) is the charging / discharging curve of the sample which carried out the mechanical milling.

Claims (2)

黒鉛粒子とマグネシウム粒子を衝撃により粉砕混合した黒鉛−マグネシウムからなるリチウム二次電池用負極材料において、粒径10〜500μmのマグネシウム粒子表面に粒径10〜1000nmの黒鉛粒子が付着していることを特徴とするリチウム二次電池用負極材料。 In a negative electrode material for a lithium secondary battery composed of graphite-magnesium obtained by pulverizing and mixing graphite particles and magnesium particles by impact , graphite particles having a particle size of 10 to 1000 nm are adhered to the surfaces of magnesium particles having a particle size of 10 to 500 μm. A negative electrode material for a lithium secondary battery. 黒鉛粉とマグネシウム粉を衝撃により粉砕混合して粒径10〜500μmのマグネシウム粒子表面に粒径10〜1000nmの黒鉛粒子を付着させることを特徴とするリチウム二次電池用負極材料の製造方法。   A method for producing a negative electrode material for a lithium secondary battery, characterized in that graphite powder and magnesium powder are pulverized and mixed by impact to adhere graphite particles having a particle size of 10 to 1000 nm to the surface of magnesium particles having a particle size of 10 to 500 μm.
JP2006144815A 2006-05-25 2006-05-25 Negative electrode material for lithium secondary battery and method for producing the same Active JP5034037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006144815A JP5034037B2 (en) 2006-05-25 2006-05-25 Negative electrode material for lithium secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006144815A JP5034037B2 (en) 2006-05-25 2006-05-25 Negative electrode material for lithium secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007317460A JP2007317460A (en) 2007-12-06
JP5034037B2 true JP5034037B2 (en) 2012-09-26

Family

ID=38851147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006144815A Active JP5034037B2 (en) 2006-05-25 2006-05-25 Negative electrode material for lithium secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP5034037B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029401A1 (en) * 2010-09-03 2012-03-08 三洋電機株式会社 Non-aqueous electrolyte rechargeable battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055505A (en) * 2002-07-18 2004-02-19 Masayuki Yoshio Lithium secondary battery and negative electrode material therefor
JP4623940B2 (en) * 2003-06-02 2011-02-02 日本電気株式会社 Negative electrode material and secondary battery using the same

Also Published As

Publication number Publication date
JP2007317460A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
CN107431192B (en) Silicon-based negative electrode active material and method for producing same
JP6509124B2 (en) Surface-modified silicon nanoparticles for negative electrode active material and method for producing the same
JP5227483B1 (en) Composite active material for lithium secondary battery and method for producing the same
EP2208247B1 (en) Core-shell type anode active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same
US10283762B2 (en) Anode active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same
JP6334195B2 (en) Composite active material for lithium secondary battery and method for producing the same
JP3897709B2 (en) Electrode material, method for producing the same, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP3987853B2 (en) Electrode material and method for producing the same, non-aqueous secondary battery and method for producing the same
JP4974597B2 (en) Negative electrode and negative electrode active material for lithium ion secondary battery
JP6508870B2 (en) Composite active material for lithium secondary battery and method of manufacturing the same
JP5104025B2 (en) Non-aqueous electrolyte battery
JP2008526664A (en) Spherical carbonaceous powder with non-carbon material inserted therein, method for producing the same, and lithium secondary battery
JP2007173134A (en) Material for electrode of lithium ion battery, slurry for forming electrode of lithium ion battery, and lithium ion battery
JP2008305665A (en) Anode material for nonaqueous secondary battery material and nonaqueous secondary battery
JP2010003679A (en) Anode mixture, anode mixture mixed liquid, anode, lithium battery and device
JPH11265716A (en) Negative electrode active material for lithium secondary battery and its manufacture
JP2004055505A (en) Lithium secondary battery and negative electrode material therefor
JP6759583B2 (en) Composite active material for lithium secondary battery and its manufacturing method, lithium secondary battery
KR102176590B1 (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
JP2009149462A (en) Composite material and production method thereof, electrode structure and power storage device
JP5034037B2 (en) Negative electrode material for lithium secondary battery and method for producing the same
JP2013219018A (en) Composite active material for lithium secondary battery and production method therefor
KR101942654B1 (en) Metal/carbon crystal particle composite, method for producing the same, and energy storage device having the same
JP5318921B2 (en) Graphite particles for lithium ion secondary batteries
JP2016173938A (en) Nonaqueous electrolyte power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150