JP5033355B2 - Elevator equipment - Google Patents

Elevator equipment Download PDF

Info

Publication number
JP5033355B2
JP5033355B2 JP2006150884A JP2006150884A JP5033355B2 JP 5033355 B2 JP5033355 B2 JP 5033355B2 JP 2006150884 A JP2006150884 A JP 2006150884A JP 2006150884 A JP2006150884 A JP 2006150884A JP 5033355 B2 JP5033355 B2 JP 5033355B2
Authority
JP
Japan
Prior art keywords
building
value
acceleration
elevator
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006150884A
Other languages
Japanese (ja)
Other versions
JP2007320685A (en
Inventor
徹也 中山
政之 重田
弘市 宮田
春夫 渡辺
直昭 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Mito Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Mito Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Mito Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2006150884A priority Critical patent/JP5033355B2/en
Priority to CN2007101064354A priority patent/CN101081672B/en
Publication of JP2007320685A publication Critical patent/JP2007320685A/en
Priority to HK08105642.3A priority patent/HK1111394A1/en
Application granted granted Critical
Publication of JP5033355B2 publication Critical patent/JP5033355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

本発明は、地震や強風によって建屋が揺れた場合に管制運転を行うエレベーター装置に関するものである。   The present invention relates to an elevator apparatus that performs control operation when a building is shaken by an earthquake or a strong wind.

地震時には震源から伝播速度の早い縦波(P波)と伝播速度が遅いが地震の主要動を呈する横波(S波)が建物に到達する。従来から、S波到達前にP波による建屋の初期揺れを感知してエレベーターを停止させる管制運転が行われている。その詳細は、例えば下記の非特許文献1に示されている。   During an earthquake, a longitudinal wave (P wave) with a fast propagation speed and a transverse wave (S wave) with a slow propagation speed but exhibiting the main motion of the earthquake reach the building. Conventionally, a control operation for detecting an initial shaking of a building due to a P wave before the arrival of the S wave and stopping the elevator has been performed. The details are shown, for example, in Non-Patent Document 1 below.

この非特許文献1によれば、建物上部に設置する水平全方向加速度感知器であらかじめ定めた加速度(特低レベル)を感知するか、昇降路低部又は建物の基礎に近い階にP波感知器を設置して、P波の縦波伝播特性を活かして、上下方向の地震動で感知して、エレベーターの管制運転が行われている。   According to this Non-Patent Document 1, a horizontal acceleration sensor installed at the top of a building senses a predetermined acceleration (extra low level), or detects a P wave at the lower part of a hoistway or a floor near the foundation of the building. An elevator is installed, and the elevator's control operation is performed by detecting the vertical ground motion using the longitudinal propagation characteristics of the P wave.

また、下記特許文献1には、昇降路1階付近に設置されたセンサで地震のP波を検出するとし、z(上下)方向の加速度が所定値以上になるとエレベーターを停止させることしている。   Further, in Patent Document 1 below, if an earthquake P wave is detected by a sensor installed near the first floor of the hoistway, the elevator is stopped when the acceleration in the z (vertical) direction exceeds a predetermined value.

特開平10−67475号公報(図6,段落番号0009等)JP-A-10-67475 (FIG. 6, paragraph number 0009, etc.) 2002年版 国土交通省住宅局建築指導課、財団法人日本建築設備・昇降機センター、社団法人日本エレベーター協会 編集の「昇降機技術基準の解説」の第2部の94〜100ページ94th to 100th pages of the 2nd part of "Explanation of Elevator Technical Standards" edited by the 2002 edition Ministry of Land, Infrastructure, Transport and Tourism Housing Bureau Building Guidance Division, Japan Building Equipment and Elevator Center, Japan Elevator Association

地震動のP波感知は、P波が地震動伝播の縦波に起因し、地表ではz(上下)方向が主成分であるため、z方向のセンサを用いて管制運転が行われている。   In the P-wave detection of seismic motion, the P-wave is caused by the longitudinal wave of the propagation of seismic motion, and the z (up and down) direction is the main component on the ground surface, so the control operation is performed using the z-direction sensor.

例えば、上記特許文献1には、3軸方向の加速度を検出することが記載されているものの、z方向を区分けし、x,y方向の合成加速度を求めて、過去のデータと比較して機器の被害判定に利用しているが、地震による建物の初期揺れを感知し、エレベーターを停止させるか否かの判定には、z方向の加速度で判定するとしている。   For example, although the above-mentioned Patent Document 1 describes detecting acceleration in the three-axis direction, the z-direction is divided, the combined acceleration in the x and y directions is obtained, and the device is compared with past data. However, it is assumed that the initial shake of the building due to the earthquake is detected and whether or not the elevator is stopped is determined by acceleration in the z direction.

地震動のP波は縦波伝播でz方向が主成分であるが、震源地から離れた場所では、P波が到達した際の加速度が小さいため、z方向の加速度だけを所定値と比較しても地震到来が検知できない可能性がある。P波による地震時初期揺れ判定の加速度閾値を小さくして検知感度を上げる方法もあるが、その場合、地震のマグニチュードが小さい近距離震源のP波や建物周りの交通機器などのノイズに反応し、不必要にエレベーターの管制運転が頻発するという問題が生じる。   The P wave of seismic motion is a longitudinal wave propagation and the z direction is the main component. However, since the acceleration when the P wave arrives is small at a place away from the epicenter, only the acceleration in the z direction is compared with a predetermined value. May not be able to detect the arrival of an earthquake. There is also a method to increase the detection sensitivity by reducing the acceleration threshold of the initial shaking judgment by P wave, but in that case, it reacts to the noise of the P wave of the near field epicenter and the traffic equipment around the building where the magnitude of the earthquake is small. There arises a problem that the elevator control operation frequently occurs unnecessarily.

本発明の目的は、震源地の遠近に関わらず、エレベーターの被害発生に関わる建物の揺れが発生する前に、建物の地震時初期の揺れを的確に感知して管制運転させることのできるエレベーター装置を提供することである。   An object of the present invention is to provide an elevator apparatus capable of accurately sensing the initial shake of a building during an earthquake and controlling it before the shake of the building related to the occurrence of damage to the elevator occurs regardless of the location of the epicenter. Is to provide.

上記目的を達成するために、本発明は、昇降路内又は該昇降路が形成される建屋内に加速度を検出するセンサを設置し、このセンサの検出結果を用いて地震時や強風時に管制運転を行うようにしたエレベーター装置において、前記センサにより互いに直交する3軸のx,y,z方向の加速度を検出し、それぞれの検出信号から直流成分を取り除くハイパスフィルターを通した後の加速度信号に対して、x,y,z方向で区分けすることなく、前記各成分の絶対値にそれぞれ建屋の水平断面の形状に応じて異なる所定の係数をかけて足し合せた合成信号値、前記各成分の平方値にそれぞれ建屋の水平断面の形状に応じて異なる所定の係数をかけて足し合せた合成信号値若しくはこの信号値の平方根の合成信号値、又は前記各成分の絶対値のべき乗値にそれぞれ建屋の水平断面の形状に応じて異なる所定の係数をかけて足し合せた合成信号値若しくはこの信号値のべき乗根の合成信号値、の少なくとも一つの合成信号値を逐次計算し、この計算値が予め定めておいた閾値より大きい場合に、初期揺れ管制運転を行うようにした。
また、本発明は、昇降路内又は該昇降路が形成される建屋内に速度を検出するセンサを設置し、このセンサの検出結果を用いて地震時や強風時に管制運転を行うようにしたエレベーター装置において、前記センサにより互いに直交する3軸のx,y,z方向の速度を検出し、それぞれの検出信号から直流成分を取り除くハイパスフィルターを通した後の速度信号に対して、x,y,z方向で区分けすることなく、前記各成分の絶対値にそれぞれ建屋の水平断面の形状に応じて異なる所定の係数をかけて足し合せた合成信号値、前記各成分の平方値にそれぞれ建屋の水平断面の形状に応じて異なる所定の係数をかけて足し合せた合成信号値若しくはこの信号値の平方根の合成信号値、又は前記各成分の絶対値のべき乗値にそれぞれ建屋の水平断面の形状に応じて異なる所定の係数をかけて足し合せた合成信号値若しくはこの信号値のべき乗根の合成信号値、の少なくとも一つの合成信号値を逐次計算し、この計算値が予め定めておいた閾値より大きい場合に、初期揺れ管制運転を行うようにした。
In order to achieve the above object, the present invention provides a sensor for detecting acceleration in a hoistway or a building in which the hoistway is formed, and uses the detection result of this sensor to control operation during an earthquake or strong wind. In the elevator apparatus configured to perform the above, the acceleration in the x, y, and z directions of the three axes orthogonal to each other is detected by the sensor, and the acceleration signal after passing through the high-pass filter that removes the DC component from each detection signal is detected. Thus, without dividing in the x, y, and z directions, a combined signal value obtained by adding the predetermined values that differ depending on the shape of the horizontal section of the building to the absolute value of each component, and the square of each component synthesized signal values summed over different predetermined coefficients respectively corresponding to the shape of the horizontal section of the building to the value or synthetic signal value of the square root of the signal value, or the powers of the absolute values of the components Each successively calculating the different synthetic signal by summing over a predetermined coefficient value or synthetic signal value of power root of the signal value, at least one composite signal values according to the shape of the horizontal section of the building to the value, the When the calculated value is larger than a predetermined threshold, the initial shake control operation is performed.
Further, the present invention provides an elevator in which a sensor for detecting speed is installed in a hoistway or in a building in which the hoistway is formed, and a control operation is performed during an earthquake or a strong wind by using a detection result of the sensor. In the apparatus, the velocity in the x, y, and z directions of the three axes orthogonal to each other is detected by the sensor, and the velocity signals after passing through a high-pass filter that removes the DC component from each detection signal are x, y, without partitioning in the z direction, the synthesized signal values summed over different predetermined coefficient depending on the shape of the horizontal section of the building, respectively the absolute value of each component, the horizontal building each square values of the components synthesized signal values summed over different predetermined coefficient depending on the shape of the cross section or synthetic signal value of the square root of the signal value, or the horizontal cross-sectional of the building respectively a power value of the absolute values of the components Successively calculating a different predetermined composite signal by summing over the coefficient values or synthetic signal value of power root of the signal value, at least one combined signal values in response to the shape, contact the calculated value is determined in advance The initial swing control operation was performed when the threshold was exceeded.

ここで、管制運転とは、地震や風が発生した際に、エレベーターに被害を及ぼす可能性がある建物の揺れに達する前に、建物の初期揺れを感知し、エレベーターを最寄り階に停止して乗客を避難させ、その後もエレベーターを休止する運転モードを指す。休止運転中の運転再開の判定は地震や風による建物の揺れ加速度又は速度の大きさにより判定している。 Here, control operation means that in the event of an earthquake or wind, before reaching the building shake that could cause damage to the elevator, it detects the initial shake of the building and stops the elevator on the nearest floor. It refers to an operation mode in which passengers are evacuated and the elevator is stopped after that. The resumption of operation during the rest operation is determined by the magnitude of the acceleration or speed of shaking of the building due to the earthquake or wind.

なお、建物の揺れには、強い地震動による揺れ以外に、地震とは人が感じにくい小さい加速度の長周期地震動で昇降路内のロープやケーブル類の長尺物が振れる長周期揺れ、あるいは、台風などの強風で建物が揺れる風揺れがあり、これらの揺れでエレベーターの被害が発生する場合がある。これら建物の初期揺れを感知し、この感知レベルが予め定めている閾値を超えたときに管制運転でエレベーターを休止させる。ここでは、これらの管制運転を地震による揺れ方や風の揺れを区別せず「初期揺れ管制運転、又は単に、初期揺れ管制」と呼ぶこととする。   In addition to shaking due to strong earthquake motion, the building can be shaken by long-period shaking in which long objects such as ropes and cables in the hoistway are shaken by long-period ground motion with small acceleration that is difficult for humans to sense earthquakes, There are cases where the building shakes due to strong winds, etc., and these shakes may cause elevator damage. The initial shaking of these buildings is detected, and when the detected level exceeds a predetermined threshold, the elevator is stopped by the control operation. Here, these control operations will be referred to as “initial swing control operation or simply initial swing control” without distinguishing the way of shaking caused by an earthquake or wind.

また、初期揺れ管制後の休止中の運転再開判定は、初期揺れ感知後の建物の揺れの大きさで判定し、この判定による管制を、以降、地震や風による揺れを区別せず、「揺れ管制運転、又は単に、揺れ管制」と呼ぶこととする。   In addition, the resumption of operation during suspension after the initial shake control is determined based on the magnitude of the building shake after the initial shake detection. It will be called “control operation, or simply swing control”.

本発明によれば、地震等による建物の揺れをより感度よく初期の揺れ段階で感知して管制運転させることのできるエレベーター装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the elevator apparatus which can detect the shake of the building by an earthquake etc. in the initial shake stage more sensitively, and can perform control operation can be provided.

以下、本発明の実施例について、図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施例におけるエレベーターの概略を示す構成図である。本実施例のエレベーター装置では、乗りかご1が図示しないガイドレールに沿って昇降する一方、釣合いおもり2が図示しないガイドレールに沿って昇降するように構成されている。また、乗りかご1と釣合いおもり2は、主ロープ6により懸垂され、巻上機4により駆動される。ここで、高層ビルに設置されるエレベーターは、一般に巻上機4が大型になるため、昇降路11の上に機械室10が設けられ、この内部に巻上機4が設置される。尚、機械室
10内には、制御盤3,ガバナ5及び地震感知器9が配置されており、ガバナ5にはガバナロープ7が巻き掛けられている。更に、乗りかご1及び釣合いおもり2の位置の変化によって生じる、乗りかご1側の主ロープ6と釣合いおもり2側の主ロープ6との重量差を縮小するため、コンペンロープ8が設置されている。
FIG. 1 is a configuration diagram showing an outline of an elevator according to an embodiment of the present invention. In the elevator apparatus of the present embodiment, the car 1 is moved up and down along a guide rail (not shown), while the counterweight 2 is moved up and down along a guide rail (not shown). The car 1 and the counterweight 2 are suspended by the main rope 6 and driven by the hoisting machine 4. Here, since the hoisting machine 4 is generally large in an elevator installed in a high-rise building, the machine room 10 is provided on the hoistway 11, and the hoisting machine 4 is installed therein. In the machine room 10, a control panel 3, a governor 5 and an earthquake detector 9 are arranged, and a governor rope 7 is wound around the governor 5. Furthermore, in order to reduce the weight difference between the main rope 6 on the side of the car 1 and the main rope 6 on the side of the counterweight 2 that is caused by the change in the position of the car 1 and the counterweight 2, a compen- sion rope 8 is installed. .

次に、上記地震感知器9と、これを利用した地震時の管制運転について説明する。まず、本実施例における地震感知器9は、互いに直交するx,y,zの3方向の加速度を検出する加速度センサ(検出部)を有しているが、一個の3軸センサであっても、一個の1軸センサを3つ組合せたものであっても良い。   Next, the earthquake detector 9 and the control operation at the time of an earthquake using the earthquake detector 9 will be described. First, the earthquake detector 9 in this embodiment has an acceleration sensor (detection unit) that detects acceleration in three directions of x, y, and z orthogonal to each other. A combination of three single-axis sensors may be used.

そして、この検出部で検出した加速度のx,y,zの各成分の時間領域のデータが、同じ地震感知器9内にある演算部へ送られる。この演算部では逐次時間領域で、各成分の平方値を足し合せた上でその平方根をとり、この合成値(合成加速度値)信号を初期揺れ判定信号として、初期揺れ管制運転が行われる。   The time domain data of the x, y, and z components of the acceleration detected by the detection unit is sent to the calculation unit in the same seismic detector 9. In this calculation unit, in the sequential time domain, the square value of each component is added and the square root is obtained, and the initial shake control operation is performed using this composite value (synthetic acceleration value) signal as the initial shake determination signal.

また、地震感知器9としては、合成信号算出処理の演算部を備えていないものであっても良く、その場合は制御盤3で演算を行うことになる。ここで、加速度センサを速度センサに変えても、地震動の建物への初期揺れ到来を判定する手段は提供できる。   Further, the seismic detector 9 may not be provided with a calculation unit for the composite signal calculation process. In this case, the control panel 3 performs the calculation. Here, even if the acceleration sensor is changed to a speed sensor, a means for determining the arrival of the initial shaking of the ground motion in the building can be provided.

尚、加速度センサを用いる場合には、その上下方向の加速度検出信号に、地震動の初期揺れの大きさ(数Galから数10Gal)と比較して大きい980Galの重力加速度成分が含まれる。このため、x,y,zの合成演算を行うときには、前記閾値判定精度を確保する上で、この重力加速度成分や加速度センサ本体の直流ドリフト成分が前記合成計算値に入り込まないように、少なくとも上下方向の加速度検出信号にはハイパスフィルターをかけ、直流成分を排除した後に上記演算部へ送り込む。   When an acceleration sensor is used, the acceleration detection signal in the vertical direction includes a gravitational acceleration component of 980 Gal that is larger than the magnitude of the initial shaking of the ground motion (several Gal to several 10 Gal). For this reason, when performing the composite calculation of x, y, z, in order to ensure the threshold determination accuracy, at least up and down so that the gravitational acceleration component and the DC drift component of the acceleration sensor main body do not enter the composite calculation value. A high-pass filter is applied to the acceleration detection signal in the direction to remove the direct current component, and the signal is sent to the arithmetic unit.

水平方向の加速度検出信号にも、加速度センサの水平据付誤差による前記重力加速度の成分や加速度センサ本体の直流ドリフト成分を排除するために、上下方向と同様にハイパスフィルターをかけるとよい。尚、このハイパスフィルターの通過周波数Fh(Hz) は、エレベーターが設置される建物の固有振動数よりも低く設定し、建物の揺れの検出に影響しない特性とする。 In order to eliminate the gravitational acceleration component caused by the horizontal installation error of the acceleration sensor and the DC drift component of the acceleration sensor main body, a high-pass filter may be applied to the acceleration detection signal in the horizontal direction as in the vertical direction. The pass frequency F h (Hz) of the high-pass filter is set lower than the natural frequency of the building where the elevator is installed, and has a characteristic that does not affect the detection of the shaking of the building.

次に、本実施例による効果について、図2〜図13を用いて説明する。図2〜図7は、エレベーターが設置される建物位置が震源地から近い場合を想定したときの加速度観測波形例《K−NET観測網での2005年7月23日の千葉県北西部地震での観測点CHB009(千葉市)での観測波形》に関して、図8〜図13は、建物位置が震源地から遠い場合を想定したときの加速度観測波形例《K−NET観測網での2004年10月23日の新潟県中越地震での観測点TKY007(新宿)での観測波形》に関して、それぞれ示したものである。尚、図2〜図13は地上での観測値であって、機械室10で測定した場合の加速度の大きさは建屋13で水平,上下振動とも増幅されて大きくなるが、機械室
10で測定した観測波と見立てても本発明の効果は実質的に同じである。そこで、本実施例では、図2〜図13を機械室10内の地震感知器9で測定した加速度とみなして説明する。
Next, the effects of this embodiment will be described with reference to FIGS. Figures 2 to 7 show examples of acceleration observation waveforms assuming that the location of the building where the elevator is installed is close to the epicenter. << North-western Chiba earthquake on July 23, 2005 on the K-NET observation network. Fig. 8 to Fig. 13 are examples of acceleration observation waveforms assuming that the building position is far from the epicenter of the observation point CHB009 (Chiba City) in the year 2004 on the K-NET observation network. The observation waveforms at the observation point TKY007 (Shinjuku) in the Niigata Chuetsu earthquake on March 23 are shown respectively. 2 to 13 are observation values on the ground, and the magnitude of acceleration when measured in the machine room 10 is amplified in the building 13 by increasing both horizontal and vertical vibrations. The effect of the present invention is substantially the same even when viewed as an observed wave. Therefore, in the present embodiment, FIGS. 2 to 13 are described as accelerations measured by the earthquake detector 9 in the machine room 10.

震源地が近い場合を図2〜図7で説明する。図2,図3はそれぞれ水平方向のx,y方向、図4はz(上下)方向の加速度観測波形で、P波は0(s)〜9(s)付近における加速度で、z方向の成分が、他のx,y方向の成分よりも大きな値となっていることが分かる。つまり、震源地に近い場所では、P波に起因する初期揺れは、主として上下方向の揺れであることが分かる。従って、近くで発生した地震による初期揺れに関していえば、加速度のz方向だけの絶対値(図5)、加速度のx,y,z方向の各成分の平方値を足し合せた上でその平方根をとった合成値(図6)、加速度のx,y,z方向の各成分の絶対値を足し合せた合成値(図7)も、図5のz方向だけの加速度の絶対値と大きな違いがない。このため、z方向の加速度のみを閾値と比較しても、近くで発生する地震であれば、初期揺れは感知できる。   The case where the epicenter is near will be described with reference to FIGS. 2 and 3 are the x and y directions in the horizontal direction, and FIG. 4 is the acceleration observation waveform in the z (vertical) direction. The P wave is the acceleration in the vicinity of 0 (s) to 9 (s), and the component in the z direction. However, it is understood that the value is larger than the other components in the x and y directions. That is, it can be seen that in the place near the epicenter, the initial shaking caused by the P wave is mainly a vertical shaking. Therefore, regarding the initial shake due to the earthquake that occurred nearby, the absolute value of only the acceleration in the z direction (Fig. 5) and the square value of each component in the x, y, and z directions of the acceleration were added together to find the square root. The combined value (FIG. 6) obtained by adding the absolute values of the respective components in the x, y, and z directions of acceleration (FIG. 6) is also greatly different from the absolute value of the acceleration only in the z direction of FIG. Absent. For this reason, even if only the acceleration in the z direction is compared with the threshold value, if the earthquake occurs in the vicinity, the initial shaking can be detected.

次に、震源地が遠い場合(約200km)を図8〜図13で説明する。図8,図9はそれぞれ水平方向のx,y方向、図10はz(上下)方向の加速度観測波形で、堆積層からなる関東平野で観測される遠距離震源の地震動の特性について説明し、かかる遠距離地震動での本発明実施時の効果について説明する。   Next, the case where the epicenter is far (about 200 km) will be described with reference to FIGS. 8 and 9 are horizontal x and y directions, respectively, and Fig. 10 is the z (vertical) direction acceleration observation waveform, explaining the characteristics of the long-distance seismic ground motion observed in the Kanto plain consisting of sedimentary layers. The effect of implementing the present invention in such a long-distance seismic motion will be described.

図8,図9,図10の観測波から、P波は23(s)程度持続し、その後にS波が到達している。S波到達時点の加速度は、x,y方向で約10Gal、z方向で3〜4Gal程度で、震源地が遠いとP波が減衰するため、z方向の加速度による建物の地震時初期の揺れ判定は、閾値を下げない限り困難であり、閾値を下げると地震以外のノイズで地震時管制制御が誤作動するトラブルをかかえることになる。   From the observed waves in FIGS. 8, 9, and 10, the P wave lasts about 23 (s), and then the S wave arrives. The acceleration at the time of S wave arrival is about 10 Gal in the x and y directions and about 3 to 4 Gal in the z direction. If the epicenter is far away, the P wave will be attenuated. Is difficult unless the threshold value is lowered. If the threshold value is lowered, troubles may occur in which the control control during earthquakes malfunctions due to noise other than earthquakes.

しかし、遠い震源地からのP波の縦波伝播で地表の表層分部の横方向(水平方向)の震動も発生するため、図8のx方向、図9のy方向の加速度には、図10のz方向の成分とほぼ同じレベルのP波に起因する初期揺れ成分が含まれている。また、図9のy方向の
85〜100(s)付近に見られるように、関東平野のような堆積層からなる平野部では周期の長い(図9では周期約5〜6秒)長周期地震動が成長しやすく、高層建物が共振しやすい地震動を呈している。そのため、S波の加速度レベルは小さくても、長周期地震動での建物の揺れで主ロープなどの長尺物が振れるという被害が発生しやすい。
However, because the vertical wave propagation of the P wave from the far epicenter also causes horizontal (horizontal) vibrations on the surface layer, the acceleration in the x direction in FIG. 8 and the acceleration in the y direction in FIG. The initial fluctuation component caused by the P wave of the same level as the 10 z-direction components is included. In addition, as seen in the vicinity of 85 to 100 (s) in the y direction in FIG. 9, long-period ground motions have a long period in a plain portion composed of a sedimentary layer such as the Kanto Plain (period in FIG. 9 is about 5 to 6 seconds). It is easy to grow, and high-rise buildings exhibit seismic motion that tends to resonate. For this reason, even if the acceleration level of the S wave is small, it is easy to cause damage such as the main rope or the like swinging due to the shaking of the building due to long-period ground motion.

そこで、本発明では、加速度のx,y成分も初期揺れの判定に利用し、この実施例での初期揺れ判定について説明する。   Therefore, in the present invention, the x and y components of the acceleration are also used for the determination of the initial shake, and the initial shake determination in this embodiment will be described.

建物の地震時初期の揺れ到達判定信号として、z方向だけの加速度の絶対値特性(図
11)に対して、加速度のx,y,z方向を区分けすることなく各方向の成分の平方値を足し合せた信号の平方根を逐次時間領域で計算した合成値(図12)、あるいは、加速度のx,y,z方向の各成分の絶対値を逐次時間領域で足し合せた合成値(図13)を、P波の時間帯0(s)〜23(s)で比較すると、z方向だけの図11では約2Gal程度であるが、x,y,z方向の合成信号で判定する図12では3Gal程度、図13では5〜6Gal程度となり初期揺れの感知感度が向上する。ここで、初期の揺れ感知の感度が向上するとはいえ、図13のようにx,y,z方向の絶対和の合成でも5〜6Gal程度ではS波到達前の合成信号ではエレベーターを確実に停止させるとは云い難いが、しかし、震源地が遠いために、S波が到達してもエレベーターには被害は発生するほどの加速度には至らないし、長周期地震動もまだ成長していない。そこで、S波到達時点の本実施例のx,y,z方向成分の合成信号に注目すると、S波到達時点で6〜10Galに達し、この時点で閾値を越えて地震管制に入れば、長周期地震動で建物が揺れる前にエレベーターを停止させることができ、地震時管制の機能が発揮できることになる。
As a building arrival determination signal at the initial stage of an earthquake of a building, the square value of the component in each direction can be obtained without dividing the x, y, and z directions of acceleration with respect to the absolute value characteristic of acceleration in only the z direction (Fig. 11). A composite value obtained by sequentially calculating the square root of the added signal in the time domain (FIG. 12), or a composite value obtained by adding the absolute values of the respective components in the x, y, and z directions of the acceleration sequentially in the time domain (FIG. 13). In the time zone 0 (s) to 23 (s) of the P wave, it is about 2 Gal in FIG. 11 only in the z direction, but 3 Gal in FIG. 12 where it is determined by the combined signal in the x, y, z directions. In FIG. 13, it becomes about 5 to 6 Gal, and the sensitivity of detecting the initial shaking is improved. Here, although the sensitivity of the initial vibration detection is improved, even if the absolute sum in the x, y and z directions is combined as shown in FIG. However, because the epicenter is far away, even if the S wave arrives, the elevator will not reach an acceleration that will cause damage, and long-period ground motion has not yet grown. Therefore, when attention is paid to the composite signal of the x, y, and z direction components of the present embodiment at the time of arrival of the S wave, it reaches 6 to 10 Gal at the time of arrival of the S wave. The elevator can be stopped before the building is shaken by periodic earthquake motion, and the function of seismic control can be demonstrated.

このように、本実施例では、遠距離に震源を持つ地震動でも長周期地震動が成長する前に的確にエレベーターを停止させることができる。   As described above, in this embodiment, the elevator can be accurately stopped before the long-period ground motion grows even if the ground motion has an epicenter at a long distance.

本実施例に示すx,y,z方向成分の合成信号についてであるが、下記式で表されるように、各成分の絶対値にそれぞれ所定の係数をかけて足し合せた合成値(式1)、各成分の平方値にそれぞれ所定の係数をかけて足し合せた合成値(式2)、その平方根をとった合成値(式3)、あるいは各成分の絶対値のp乗にそれぞれ所定の係数をかけて足し合せた和やその和のp乗根の計算での合成値(式4)を計算して、閾値と比較しても良い。   As for the combined signal of the x, y, and z direction components shown in this embodiment, as shown by the following equation, a combined value obtained by adding a predetermined coefficient to the absolute value of each component (Equation 1 ), A combined value obtained by multiplying the square value of each component by a predetermined coefficient (Equation 2), a combined value obtained by taking the square root (Equation 3), or the absolute value of each component to the p-th power A sum obtained by adding the coefficients and a composite value (Equation 4) in calculating the p-th root of the sum may be calculated and compared with a threshold value.

Figure 0005033355
Figure 0005033355

ここで、建物の設置環境や建物内の設備による加速度ノイズの特性から観測値に重み係数α,β,γを導入することによって、ノイズの影響を抑制することもできる。更に、建屋13の水平断面の形状によって、係数αと係数βを異なる値に重み付けしても良い。例えば、y方向に比べてx方向の方が十分に長い水平断面を有する建屋13の場合には、x方向には揺れにくいため、重みを付加して合成するとよい。   Here, the influence of noise can also be suppressed by introducing weighting coefficients α, β, and γ into the observed values from the characteristics of the acceleration noise due to the installation environment of the building and the equipment in the building. Furthermore, the coefficient α and the coefficient β may be weighted to different values depending on the shape of the horizontal section of the building 13. For example, in the case of the building 13 having a horizontal section that is sufficiently longer in the x direction than in the y direction, the building 13 is less likely to sway in the x direction, and therefore, it is preferable to add a weight.

本実施例では、x,y,zの各成分の加速度を合成することによって、初期揺れの感知感度を更に高めることができ、遠くで発生した地震であっても、管制運転が作動しなかったり作動が遅れたりするのが防止でき、結果的に、主ロープ6が振れ回って、昇降路11内の機器と接触しながらエレベーターが走行するなどの被害が抑制できる。   In this embodiment, by combining the acceleration of each component of x, y, and z, the sensitivity of detecting the initial shake can be further increased, and even if the earthquake occurs in the distance, the control operation does not operate. It is possible to prevent the operation from being delayed, and as a result, it is possible to suppress damage such as the main rope 6 swinging and the elevator traveling while contacting the equipment in the hoistway 11.

このように、本実施例によれば、上下方向(z方向)成分の加速度に限らず、水平方向(x,y方向)成分の加速度も初期揺れの判定に利用することで、震源地の遠い場合の平野部での長周期地震動(図9の85〜100(s)付近参照)が成長する前に、初期の揺れ段階で感知でき、地震発生から早い段階で管制運転を開始することができる。すなわち、本実施例によれば、S波による主要動が到達する前や長周期地震動が成長する前の地震動の初期の揺れ段階で感知して、エレベーターを停止させる管制運転が可能となる。   As described above, according to this embodiment, not only the acceleration in the vertical direction (z direction) component but also the acceleration in the horizontal direction (x, y direction) component is used for the determination of the initial shake, so that the epicenter is far away. Before long-period ground motion in the plain (see around 85 to 100 (s) in Fig. 9) grows, it can be detected at the initial shaking stage, and control operation can be started at an early stage from the occurrence of the earthquake. . That is, according to the present embodiment, it is possible to perform a control operation in which the elevator is stopped by sensing at the initial shaking stage of the ground motion before the main motion due to the S wave arrives or before the long-period ground motion grows.

尚、本実施例では、地震感知器9を図1の機械室10内に設けたが、機械室10内に限らず、機械室10のないエレベーターの場合には、図14のように、建屋上部である昇降路11の上部に設置しても良い。いずれにしても、地震による揺れが増幅される建屋13の上方に地震感知器9が設置されているので、従来の建屋13の基礎部や昇降路11のピット12に設置した場合と比べて的確な管制運転が可能となる。   In the present embodiment, the earthquake detector 9 is provided in the machine room 10 of FIG. 1, but not only in the machine room 10, but in the case of an elevator without the machine room 10, as shown in FIG. You may install in the upper part of the hoistway 11 which is upper part. In any case, since the seismic detector 9 is installed above the building 13 where the vibration caused by the earthquake is amplified, it is more accurate than the case where the seismic detector 9 is installed in the base of the conventional building 13 or the pit 12 of the hoistway 11. Control operation becomes possible.

また、本実施例では、機械室10内の地震感知器9で地震動による初期揺れが判定できるため、非特許文献1や特許文献1に示されている昇降路11の下部又は建屋13下部などに地震感知器を設置する場合と比べて、保守性が向上する。   Further, in this embodiment, since the initial shake due to the earthquake motion can be determined by the earthquake detector 9 in the machine room 10, the lower part of the hoistway 11 or the lower part of the building 13 shown in Non-Patent Document 1 or Patent Document 1 is used. Maintainability is improved compared to the case of installing an earthquake detector.

さらに、昇降路11の下部又は建屋13下部などにP波センサを設置する従来方式では、交通機器などの加速度震動で、不用意にエレベーターが停止するという誤作動が避けられないが、本実施例は、建物上部の地震感知器9を設けるだけで発明の効果が発揮できるために、地震時管制運転システムが交通機器のノイズ(これらのノイズは地動の表面波が主体で、上下地震動のように建物全域には伝播しない)から開放されるという特徴をもっている。   Furthermore, in the conventional method in which a P-wave sensor is installed in the lower part of the hoistway 11 or the lower part of the building 13, a malfunction that the elevator stops carelessly due to acceleration vibration of a traffic device or the like cannot be avoided. Because the effect of the invention can be exerted simply by installing the earthquake detector 9 at the top of the building, the control system during earthquakes is a noise of traffic equipment (these noises are mainly surface waves of ground motion, It does not propagate throughout the building.

なお、ここで建物上部での人の動きやエレベーター設備を含めたビル設備の地震動以外のノイズが避けられない場合には、昇降路11の上部又は建屋13の上部に設置する第1の地震感知器と、昇降路11や建屋13の他の部位に第2の地震感知器を設け、これら第1の建物部位と第2の建物部位での建物の振動ノイズが同時に発生することは非常に少ないという特性を活かして、地震時に第1と第2の両感知器が予め定められた所定の時間内に共に建物の初期の揺れを検出した場合に限って、管制運転を行うようにしても良い。例えば、第1の地震感知器で初期揺れを検出してから0.1 秒以内に第2の地震感知器でも初期揺れを検出した場合に、管制運転を行うようにし、0.1 秒を超える時間差がある場合は地震ではないとみなすことができる。このように、両感知器の感知論理和で、地震時の建物の初期揺れをとらえると、ノイズの影響を受けることなく揺れ感知の閾値を下げることができ、初期の揺れを逸することがなくなる。ここで、第1と2の地震感知器は地震感知器9と同様にx,y,z方向の3軸で構成してもよいし、建物で上下方向の地震時の揺れが増幅するという建物の震動性状を活かして、第1,第2の地震感知器は少なくともz方向の加速度で検知できる。   If noise other than the movement of people in the upper part of the building and the earthquake motion of the building equipment including the elevator equipment is unavoidable, the first seismic detection installed on the upper part of the hoistway 11 or the upper part of the building 13. A second seismic detector is provided at the other part of the hoistway 11 and the building 13 and the vibration noise of the building at the first building part and the second building part is hardly generated at the same time. Taking advantage of this characteristic, control operation may be performed only when both the first and second detectors detect the initial shaking of the building within a predetermined time during an earthquake. . For example, if an initial shake is detected in the second seismic detector within 0.1 seconds after the first seismic detector detects the initial shake, the control operation is performed and the time exceeds 0.1 second. If there is a time difference, it can be regarded as not an earthquake. In this way, if the initial shake of the building at the time of an earthquake is captured by the detection logical sum of both sensors, the threshold of shake detection can be lowered without being affected by noise, and the initial shake will not be lost. . Here, the first and second seismic detectors may be configured with three axes in the x, y, and z directions, similar to the seismic sensor 9, or a building that amplifies the shaking at the time of the vertical earthquake in the building. The first and second seismic detectors can detect at least the acceleration in the z direction.

次に、主要動のS波による建物の揺れ管制に本発明の実施例の適用について説明する。従来から、x,y成分の合成信号で、振れ管制運転が行われているが、判定用の合成信号にz成分が含まれていないため、初期揺れ管制の判定には使えない。これに対して、本実施例での地震感知器9の演算部からの合成信号には、x,y,z方向の地震動成分が含まれているため、初期揺れ感知後の地震感知器9の演算部からの合成信号は、S波による揺れ管制の判定信号として活用できる。このため、非特許文献1に示される別途の揺れ管制(S波管制)用の水平全方向の加速度センサを設ける必要はない。すなわち、初期揺れ管制後の地震感知器9の演算部からの合成信号は非特許文献1に示されるS波管制の判定用の信号として活用できる。   Next, the application of the embodiment of the present invention to the vibration control of a building by the S wave of the main motion will be described. Conventionally, shake control operation is performed with a composite signal of x and y components, but since the z component is not included in the composite signal for determination, it cannot be used for determination of initial shake control. On the other hand, since the composite signal from the calculation unit of the seismic detector 9 in this embodiment includes seismic motion components in the x, y, and z directions, the seismic detector 9 after the initial shaking is sensed. The composite signal from the calculation unit can be used as a determination signal for vibration control by S waves. For this reason, it is not necessary to provide a separate horizontal omnidirectional acceleration sensor for swing control (S wave control) shown in Non-Patent Document 1. That is, the combined signal from the calculation unit of the earthquake detector 9 after the initial shake control can be used as a signal for determination of S wave control shown in Non-Patent Document 1.

本実施例により、地震時の初期の揺れ感知感度が向上するため、エレベーターに地震被害をもたらさない地震動も感知しかねない。そこで、初期揺れ管制後の、あらかじめ定める一定時間後でも、まだ揺れ管制に至っていない場合には、初期揺れ管制終了信号を制御盤3に与え、エレベーターをすみやかに通常運転に復旧させる管制運転を取り込むとよい。   According to the present embodiment, the initial shake detection sensitivity at the time of an earthquake is improved, so that the earthquake motion that does not cause earthquake damage to the elevator may be detected. Therefore, even after a predetermined time after the initial swing control, if the swing control has not yet been reached, an initial swing control end signal is given to the control panel 3, and the control operation for quickly restoring the elevator to the normal operation is taken in. Good.

あるいは、初期揺れ管制後に、あらかじめ定める一定時間後で、地震感知器の初期揺れ判定信号レベルが、あらかじめ定める地震終了判定閾値以下になった時点で、まだエレベーターが揺れ管制運転に至っていない場合に限り、初期揺れ管制終了信号を発生し、地震時管制から復旧させるとよい。   Or after the initial shake control, only when the initial shake determination signal level of the seismic detector is equal to or lower than the predetermined earthquake end determination threshold after a predetermined time, and the elevator has not yet reached the swing control operation. It is advisable to generate an initial shake control end signal and restore from the earthquake control.

ただし、エレベーターが別途の主ロープなどの長尺物振れや台風など強風での振れ管制中、あるいは、建物立地地区の地震防災管制中は復旧できない。   However, it cannot be restored while the elevator is under vibration control due to long mains such as a separate main rope or strong wind such as a typhoon, or during earthquake disaster control in the building location.

尚、上述の実施例では、地震時の建物の揺れについて説明したが、地震以外の台風などの強風で建屋13が揺れる。そこで、本実施例での地震時の初期揺れ感知システムの一例(図15)のもとに、エレベーターが初期揺れ管制運転に入ったとき建物の揺れの原因が、地震か強風かを判定する実施例を図15で説明する。   In addition, although the above-mentioned Example demonstrated the shaking of the building at the time of an earthquake, the building 13 shakes with strong winds, such as a typhoon other than an earthquake. Therefore, based on the example of the initial shake detection system at the time of the earthquake in this embodiment (Fig. 15), it is determined whether the cause of the building shake is earthquake or strong wind when the elevator enters the initial shake control operation. An example will be described with reference to FIG.

図15で、昇降路11上部に設置される地震感知器14のx,y,z方向のそれぞれの加速度の検出信号,重力の加速度成分や加速度センサの直流ドリフト成分除去用の例えば0.1Hz の通過周波数Fhのハイパスフィルター15,16,17を通した信号18,19,20を合成する演算部21、前記演算部21の出力信号が建物の揺れ閾値判定部
22で閾値を超えたとき制御盤3に管制信号を送りエレベーターは初期揺れ管制運転に入る。地震時のかかる建物の初期の揺れ感知システムで、z方向の信号20は、建物の揺れが地震のときは数Gal以上の加速度が観測されるが、建物の揺れが風による場合には、建物の揺れに関わる上下方向の振動はほとんど観測されない。そこで、エレベーターが建物の揺れで管制運転に入った段階で、地震・風判定部23で信号20に一定の閾値以上の信号が含まれる場合には、建物の揺れ要因は「地震」、信号が含まれない場合には「風」と判定でき、その情報を乗客に伝えることができる。
In FIG. 15, the detection signal of each acceleration in the x, y, and z directions of the seismic sensor 14 installed on the upper part of the hoistway 11, the acceleration component of gravity and the DC drift component of the acceleration sensor, for example, 0.1 Hz are removed. Control unit 21 that synthesizes signals 18, 19, and 20 that have passed through high-pass filters 15, 16, and 17 with a pass frequency F h , and control when the output signal of the calculation unit 21 exceeds a threshold value in a building shake threshold value determination unit 22 The control signal is sent to the panel 3 and the elevator starts the initial swing control operation. In an early shake detection system for such a building during an earthquake, the z-direction signal 20 shows an acceleration of several Gal or more when the building shake is an earthquake, but if the building shake is caused by wind, Fluctuation in the up and down direction related to the shaking is hardly observed. Thus, when the elevator enters the control operation due to the shaking of the building, when the signal 20 includes a signal exceeding a certain threshold value in the earthquake / wind judgment unit 23, the building shaking factor is “earthquake”, and the signal is If it is not included, it can be determined as “wind” and the information can be conveyed to the passengers.

本発明の実施例におけるエレベーターの概略を示す構成図である。It is a block diagram which shows the outline of the elevator in the Example of this invention. 震源地からの距離が近い場所における地震感知器で検出された加速度のx方向成分を示す図である。It is a figure which shows the x direction component of the acceleration detected with the earthquake detector in the place where the distance from an epicenter is near. 震源地からの距離が近い場所における地震感知器で検出された加速度のy方向成分を示す図である。It is a figure which shows the y direction component of the acceleration detected with the earthquake detector in the place where the distance from an epicenter is near. 震源地からの距離が近い場所における地震感知器で検出された加速度のz方向成分を示す図である。It is a figure which shows the z direction component of the acceleration detected with the earthquake detector in the place where the distance from an epicenter is near. 震源地からの距離が近い場所における地震感知器で検出された加速度のz方向成分の絶対値を示す図である。It is a figure which shows the absolute value of the z direction component of the acceleration detected with the earthquake detector in the place where the distance from an epicenter is near. 震源地からの距離が近い場所における地震感知器で検出された加速度のx,y,z方向の各成分の平方値を足し合せた上でその平方根をとった合成値を示す図である。It is a figure which shows the composite value which took the square root, after adding the square value of each component of the x, y, z direction of the acceleration detected with the earthquake detector in the place where the distance from an epicenter is near. 震源地からの水平距離が近い場所における地震感知器で検出された加速度のx,y,z方向の各成分の絶対値を足し合せた合成値を示す図である。It is a figure which shows the synthesized value which added together the absolute value of each component of the x, y, z direction of the acceleration detected with the earthquake detector in the place where the horizontal distance from a hypocenter is near. 震源地からの距離が遠い場所における地震感知器で検出された加速度のx方向成分を示す図である。It is a figure which shows the x direction component of the acceleration detected with the earthquake detector in the place where the distance from an epicenter is far. 震源地からの水平距離が遠い場所における地震感知器で検出された加速度のy方向成分を示す図である。It is a figure which shows the y direction component of the acceleration detected with the earthquake detector in the place where the horizontal distance from an epicenter is long. 震源地からの距離が遠い場所における地震感知器で検出された加速度のz方向成分を示す図である。It is a figure which shows the z direction component of the acceleration detected with the earthquake detector in the place where the distance from an epicenter is far. 震源地からの距離が遠い場所における地震感知器で検出された加速度のz方向成分の絶対値を示す図である。It is a figure which shows the absolute value of the z direction component of the acceleration detected with the earthquake detector in the place where the distance from an epicenter is far. 震源地からの距離が遠い場所における地震感知器で検出された加速度のx,y,z方向の各成分の平方値を足し合せた上でその平方根をとった合成値を示す図である。It is a figure which shows the synthetic | combination value which took the square root, after adding the square value of each component of the x, y, z direction of the acceleration detected with the earthquake detector in the place where the distance from a hypocenter is far. 震源地からの距離が遠い場所における地震感知器で検出された加速度のx,y,z方向の各成分の絶対値を足し合せた合成値を示す図である。It is a figure which shows the synthetic | combination value which added together the absolute value of each component of the x, y, z direction of the acceleration detected with the earthquake detector in the place where the distance from an epicenter is far. 本発明の別の実施例におけるエレベーターの概略を示す構成図である。It is a block diagram which shows the outline of the elevator in another Example of this invention. 本実施例での地震時の初期揺れ感知システムと地震・風判定の説明図である。It is explanatory drawing of the initial shake detection system at the time of an earthquake in this Example, and an earthquake and a wind determination.

符号の説明Explanation of symbols

1…乗りかご、2…釣合いおもり、3…制御盤、4…巻上機、5…ガバナ、6…主ロープ、7…ガバナロープ、8…コンペンロープ、9,14…地震感知器、10…機械室、
11…昇降路、12…ピット、13…建屋、15,16,17…ハイパスフィルター、
18,19,20…信号、21…演算部、22…閾値判定部、23…地震・風判定部。


DESCRIPTION OF SYMBOLS 1 ... Riding car, 2 ... Counterweight, 3 ... Control board, 4 ... Hoisting machine, 5 ... Governor, 6 ... Main rope, 7 ... Governor rope, 8 ... Compen rope, 9, 14 ... Earthquake detector, 10 ... Machine Room,
11 ... hoistway, 12 ... pit, 13 ... building, 15, 16, 17 ... high-pass filter,
18, 19, 20... Signal, 21... Arithmetic unit, 22... Threshold determination unit, 23.


Claims (6)

昇降路内又は該昇降路が形成される建屋内に加速度を検出するセンサを設置し、このセンサの検出結果を用いて地震時や強風時に管制運転を行うようにしたエレベーター装置において、前記センサにより互いに直交する3軸のx,y,z方向の加速度を検出し、それぞれの検出信号から直流成分を取り除くハイパスフィルターを通した後の加速度信号に対して、x,y,z方向で区分けすることなく、前記各成分の絶対値にそれぞれ建屋の水平断面の形状によって異なる所定の係数をかけて足し合せた合成信号値、前記各成分の平方値にそれぞれ建屋の水平断面の形状によって異なる所定の係数をかけて足し合せた合成信号値若しくはこの信号値の平方根の合成信号値、又は前記各成分の絶対値のべき乗値にそれぞれ建屋の水平断面の形状によって異なる所定の係数をかけて足し合せた合成信号値若しくはこの信号値のべき乗根の合成信号値、の少なくとも一つの合成信号値を逐次計算し、この計算値が予め定めておいた閾値より大きい場合に、初期揺れ管制運転を行うようにしたことを特徴とするエレベーター装置。 In an elevator apparatus in which a sensor for detecting acceleration is installed in a hoistway or in a building in which the hoistway is formed, and the control operation is performed during an earthquake or strong wind using the detection result of the sensor, Detect acceleration in the x, y, and z directions of three axes orthogonal to each other, and classify the acceleration signal after passing through a high-pass filter that removes the DC component from each detection signal in the x, y, and z directions. Rather, a composite signal value obtained by adding a predetermined coefficient that differs depending on the shape of the horizontal section of the building to the absolute value of each component, and a predetermined coefficient that differs depending on the shape of the horizontal section of the building , respectively, to the square value of each component added over a combined composite signal value or synthetic signal value of the square root of the signal value, or said the shape of each horizontal section of the building to the exponential value of the absolute values of the components Different predetermined composite signal by summing over the coefficient values or synthetic signal value of power root of the signal value, sequentially calculating at least one composite signal values, than a threshold the calculation value previously determined I An elevator apparatus characterized in that initial swing control operation is performed when it is large. 昇降路内又は該昇降路が形成される建屋内に速度を検出するセンサを設置し、このセンサの検出結果を用いて地震時や強風時に管制運転を行うようにしたエレベーター装置において、前記センサにより互いに直交する3軸のx,y,z方向の速度を検出し、それぞれの検出信号から直流成分を取り除くハイパスフィルターを通した後の速度信号に対して、x,y,z方向で区分けすることなく、前記各成分の絶対値にそれぞれ建屋の水平断面の形状によって異なる所定の係数をかけて足し合せた合成信号値、前記各成分の平方値にそれぞれ建屋の水平断面の形状によって異なる所定の係数をかけて足し合せた合成信号値若しくはこの信号値の平方根の合成信号値、又は前記各成分の絶対値のべき乗値にそれぞれ建屋の水平断面の形状によって異なる所定の係数をかけて足し合せた合成信号値若しくはこの信号値のべき乗根の合成信号値、の少なくとも一つの合成信号値を逐次計算し、この計算値が予め定めておいた閾値より大きい場合に、初期揺れ管制運転を行うようにしたことを特徴とするエレベーター装置。 In an elevator apparatus in which a sensor for detecting speed is installed in the hoistway or in the building where the hoistway is formed, and the control operation is performed during an earthquake or strong wind using the detection result of the sensor, Detect the velocity in the x, y, and z directions of three axes orthogonal to each other, and classify the velocity signal after passing through a high-pass filter that removes the DC component from each detection signal in the x, y, and z directions. Rather, a composite signal value obtained by adding a predetermined coefficient that differs depending on the shape of the horizontal section of the building to the absolute value of each component, and a predetermined coefficient that differs depending on the shape of the horizontal section of the building , respectively, to the square value of each component added over a combined composite signal value or synthetic signal value of the square root of the signal value, or the by the shape of each horizontal section of the building to the exponential value of the absolute values of the components Composed synthesized signal values summed over a predetermined coefficient or synthetic signal value of power root of the signal value, sequentially calculating at least one composite signal value, larger than the threshold of this calculated value previously determined And an initial swing control operation. 請求項1又は2のいずれかにおいて、昇降路の上部又は建屋の上部に設置される加速度又は速度センサを第1の地震感知器とし、昇降路や建屋の他の部位に設置される加速度又は速度センサを第2の地震感知器とし、第1の地震感知器による合成信号値と第2の地震感知器による合成信号値が所定の時間内に共に閾値を超えた場合に、初期揺れ管制運転を行うようにしたことを特徴とするエレベーター装置。 In any one of claims 1 or 2, the acceleration or velocity sensors are installed on the top or upper portion of the building hoistway as the first seismic sensor, acceleration or velocity are installed in other parts of the elevator shaft or building When the sensor is the second seismic detector, and the combined signal value by the first seismic detector and the combined signal value by the second seismic detector both exceed the threshold within a predetermined time, the initial shake control operation is performed. An elevator device characterized in that it is performed. 請求項3において、前記第1の地震感知器及び第2の地震感知器は、少なくともz方向の加速度又は速度を検出するセンサであることを特徴とするエレベーター装置。   4. The elevator apparatus according to claim 3, wherein the first seismic sensor and the second seismic sensor are sensors that detect at least acceleration or speed in the z direction. 請求項1乃至4のいずれかにおいて、エレベーターの初期揺れ管制運転開始から所定時間経過しても未だエレベーターが揺れ管制運転に至っていない場合には、初期振れ管制終了信号を発生させることを特徴とするエレベーター装置。   The initial shake control end signal is generated in any one of claims 1 to 4 when the elevator has not yet reached the swing control operation even after a predetermined time has elapsed since the start of the initial swing control operation of the elevator. Elevator device. 請求項1乃至5のいずれかにおいて、エレベーターの初期揺れ管制運転後に、前記合成信号値が予め定められた閾値以下になった時点で、エレベーターが揺れ管制運転に至っていない場合に、初期振れ管制終了信号を発生させることを特徴とするエレベーター装置。   6. The initial swing control end according to any one of claims 1 to 5, wherein, after the initial swing control operation of the elevator, when the combined signal value is equal to or lower than a predetermined threshold value, the elevator has not reached the swing control operation. An elevator apparatus that generates a signal.
JP2006150884A 2006-05-31 2006-05-31 Elevator equipment Active JP5033355B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006150884A JP5033355B2 (en) 2006-05-31 2006-05-31 Elevator equipment
CN2007101064354A CN101081672B (en) 2006-05-31 2007-05-29 Elevator equipment
HK08105642.3A HK1111394A1 (en) 2006-05-31 2008-05-21 Elevator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006150884A JP5033355B2 (en) 2006-05-31 2006-05-31 Elevator equipment

Publications (2)

Publication Number Publication Date
JP2007320685A JP2007320685A (en) 2007-12-13
JP5033355B2 true JP5033355B2 (en) 2012-09-26

Family

ID=38853826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006150884A Active JP5033355B2 (en) 2006-05-31 2006-05-31 Elevator equipment

Country Status (3)

Country Link
JP (1) JP5033355B2 (en)
CN (1) CN101081672B (en)
HK (1) HK1111394A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100369A (en) * 2008-10-22 2010-05-06 Hitachi Ltd Emergency operation control device of elevator
JP5606096B2 (en) * 2010-02-25 2014-10-15 パナソニック株式会社 Fence vibration detection device and threshold adjustment method
JP5840244B2 (en) * 2014-03-07 2016-01-06 東芝エレベータ株式会社 Elevator control operation system
US10239730B2 (en) 2014-07-31 2019-03-26 Otis Elevator Company Building sway operation system
IT201800003252A1 (en) * 2018-03-02 2019-09-02 Safecertifiedstructure Tecnologia S R L Lift system, guides for said lift, monitoring kit for said installation and methods of monitoring and use thereof
CN112693985B (en) * 2020-12-10 2022-06-21 太原理工大学 Non-invasive elevator state monitoring method fusing sensor data
CN112850405B (en) * 2020-12-31 2022-10-25 重庆能源职业学院 Elevator car vibration management system based on MEMS system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106980A (en) * 1979-02-08 1980-08-16 Mitsubishi Electric Corp Device for running elevator at earthquake
JPS56127570A (en) * 1980-03-07 1981-10-06 Hitachi Ltd Controlling operating system of elevator in case of earthquake
JPH0682067B2 (en) * 1986-11-12 1994-10-19 株式会社日立製作所 Earthquake detector
JPH06288120A (en) * 1993-04-02 1994-10-11 Takenaka Komuten Co Ltd Wind load reducing device for high-rise building
JPH10279215A (en) * 1997-04-03 1998-10-20 Hitachi Building Syst Co Ltd Earthquake abnormality detector for elevator
JP2001174321A (en) * 1999-12-15 2001-06-29 Matsushita Electric Ind Co Ltd Vibration information acquiring device and earthquake sensing device
JP2003321171A (en) * 2002-05-07 2003-11-11 Kajima Corp Earthquake control and operation recovery system of elevator
JP2004027679A (en) * 2002-06-26 2004-01-29 Sekisui House Ltd Natural frequency prediction method for building, natural frequency prediction program for building, and natural frequency prediction device for building

Also Published As

Publication number Publication date
JP2007320685A (en) 2007-12-13
HK1111394A1 (en) 2008-08-08
CN101081672B (en) 2010-07-21
CN101081672A (en) 2007-12-05

Similar Documents

Publication Publication Date Title
JP4399438B2 (en) Elevator equipment
JP5033355B2 (en) Elevator equipment
JP4597174B2 (en) Elevator equipment
JP5183185B2 (en) Elevator device and control operation method of elevator
JP5255180B2 (en) Elevator earthquake control operation system and elevator earthquake control operation method
JP2008114959A (en) Elevator device
JP2008114944A (en) Elevator device
JP2008230771A (en) Elevator device
JP5082942B2 (en) Elevator rope roll detection device
JP5009076B2 (en) Earthquake early warning system
JP6755026B2 (en) Seismic observation / output system
JP2007217082A (en) Long-period earthquake motion sensing system for large-sized building
JP2009103672A (en) Analysis method for discriminating between earthquake and vibration caused by noise
JP5046613B2 (en) Elevator equipment
JP2008114958A (en) Elevator device
JP2010070298A (en) Emergency operation device for elevator
JP2011051739A (en) Control device of elevator
JP5615672B2 (en) Elevator earthquake outage prediction system
JP2010083629A (en) Control device and program for coping with earthquake
JP2008081290A5 (en)
JP4992509B2 (en) Elevator rope roll detection device and elevator control operation device
JP5562196B2 (en) Elevator control command device, elevator device, and elevator system
JP2008037566A (en) Control operation system of elevator in earthquake
JP2013200284A (en) Earthquake detection device
JP5271071B2 (en) Earthquake response control device and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

R150 Certificate of patent or registration of utility model

Ref document number: 5033355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3