JP2008114958A - Elevator device - Google Patents

Elevator device Download PDF

Info

Publication number
JP2008114958A
JP2008114958A JP2006298372A JP2006298372A JP2008114958A JP 2008114958 A JP2008114958 A JP 2008114958A JP 2006298372 A JP2006298372 A JP 2006298372A JP 2006298372 A JP2006298372 A JP 2006298372A JP 2008114958 A JP2008114958 A JP 2008114958A
Authority
JP
Japan
Prior art keywords
earthquake
threshold value
threshold
exceeds
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006298372A
Other languages
Japanese (ja)
Inventor
Tetsuya Nakayama
徹也 中山
Masayuki Shigeta
政之 重田
Hiroichi Miyata
弘市 宮田
Hidehiro Nakamura
秀広 中村
Haruo Watanabe
春夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Mito Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Mito Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Mito Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2006298372A priority Critical patent/JP2008114958A/en
Publication of JP2008114958A publication Critical patent/JP2008114958A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an elevator device capable of reducing any unnecessary operation for emergency caused by the noise vibration other than an earthquake, and performing the rapid operation for emergency to the earthquake such as an epicentral earthquake. <P>SOLUTION: A vibration meter 24 is installed in a hoistway or a building. When the signal by the vibration meter 24 exceeds the threshold α N times, and when the signal exceeds the threshold β (>α) M (<N) times, the operation for emergency is performed. Preferably, when the synthesized value of the acceleration signals in the vertical direction and the horizontal direction detected by the vibration meter 24 exceeds the threshold α N times during the predetermined time after exceeding the threshold α, and when the synthesized value exceeds the threshold β, the operation for emergency is immediately started. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、地震によって建物が揺れた場合に管制運転を行うエレベーター装置に関するものである。   The present invention relates to an elevator apparatus that performs control operation when a building is shaken by an earthquake.

地震時には震源から伝播速度の早いP波(縦波)と伝播速度が遅いが地震の主要動を呈するS波(横波)が建物に到達する。下記の非特許文献1によれば建物揺れ検知手段で観測したS波の水平方向の加速度レベルを、特低レベル,低レベル,高レベルの閾値レベルで分類し、エレベーターの地震時管制運転が行われている。S波の主要動による建物の揺れが大きくなるまでに、水平方向の加速度の特低レベルまたは、S波よりも数秒でも早く地震到来が感知できるP波初期微動感知を昇降路底部又は建物の基礎に近い階に設置して、P波の縦波伝播特性を生かして、上下方向の地震動を感知して、エレベーターを一時停止させる管制運転が行われている。   During an earthquake, a P wave (longitudinal wave) with a fast propagation speed and an S wave (transverse wave) with a slow propagation speed but exhibiting the main motion of the earthquake reach the building. According to the following Non-Patent Document 1, the horizontal acceleration level of the S wave observed by the building shake detection means is classified into a special low level, a low level, and a high level threshold level, and the elevator is controlled during earthquakes. It has been broken. The base of the hoistway or the foundation of the P wave early tremor detection that can detect the extraordinary low level of horizontal acceleration or the arrival of an earthquake several seconds earlier than the S wave before the building shakes due to the main movement of the S wave It is installed on the floor close to, and the control operation is performed to stop the elevator temporarily by detecting the vertical ground motion using the longitudinal wave propagation characteristics of P wave.

例えば、下記非特許文献1には、昇降路1階付近に設置されたセンサで地震のP波を検出するとし、Z(上下)方向の加速度が予め定めておく閾値以上になるとエレベーターを停止させるとしている。また、地震動の初期微動は微小振動であり、特に震源地から離れた場所では、P波が到来した際の加速度が小さいため、P波の主成分であるZ方向の加速度だけを閾値と比較しても地震到来が検知できない可能性もある。そこで、P波による地震時初期揺れ判定の加速度閾値を小さくして感知感度を上げる方法が考えられる。   For example, in Non-Patent Document 1 below, when a P wave of an earthquake is detected by a sensor installed near the first floor of a hoistway, the elevator is stopped when the acceleration in the Z (vertical) direction exceeds a predetermined threshold. It is said. In addition, the initial tremor of seismic motion is micro-vibration, and especially in places away from the epicenter, the acceleration when the P wave arrives is small, so only the acceleration in the Z direction, which is the main component of the P wave, is compared with the threshold value. However, there is a possibility that the arrival of an earthquake cannot be detected. Therefore, a method of increasing the sensitivity of detection by reducing the acceleration threshold value for the initial shake determination at the time of earthquake due to the P wave is conceivable.

2002年版 国土交通省住宅局建築指導課、財団法人日本建築設備・昇降機センター、社団法人日本エレベーター協会 編集の「昇降機技術基準の解説」の第2部の94〜100ページ94th to 100th pages of the 2nd part of "Explanation of Elevator Technical Standards" edited by the 2002 edition Ministry of Land, Infrastructure, Transport and Tourism Housing Bureau Building Guidance Division, Japan Building Equipment and Elevator Center, Japan Elevator Association

しかしながら、上述のように加速度閾値を小さくして感知感度を上げると、地震以外の振動、例えば建物の周りの交通機器などのノイズ振動、に対しても感知器が反応し、不必要な管制運転が増加してしまう可能性がある。一方、不必要な管制運転を減らすために地震時初期揺れ判定に時間をかけると、初期揺れから主要動までの時間が極めて短い直下型地震のような地震に対しては管制運転の開始が遅れてしまう可能性がある。   However, if the acceleration threshold is decreased and the detection sensitivity is increased as described above, the sensor reacts to vibrations other than earthquakes, such as noise vibrations of traffic equipment around the building, and unnecessary control operation. May increase. On the other hand, if it takes time to determine the initial shake during an earthquake in order to reduce unnecessary control operations, the start of control operation is delayed for earthquakes such as direct earthquakes where the time from the initial shake to the main motion is extremely short. There is a possibility that.

本発明の目的は、地震以外のノイズ振動による不必要な管制運転を低減すると共に、直下型地震などの地震に対して迅速な管制運転を行うことができるエレベーター装置を提供することである。   An object of the present invention is to provide an elevator apparatus that can reduce unnecessary control operation due to noise vibrations other than earthquakes and can perform quick control operation against earthquakes such as direct earthquakes.

上記目的を達成するために、本発明では、昇降路内又は建物内に振動計を設置し、該振動計による信号が閾値αをN回超えた場合、及び、前記検出信号が閾値β(>α)をM
(<N)回超えた場合に、管制運転させるようにした。
In order to achieve the above object, in the present invention, a vibration meter is installed in a hoistway or a building, and when the signal from the vibration meter exceeds a threshold value N times, and the detection signal is a threshold value β (> α) for M
Control operation was performed when (<N) times were exceeded.

本発明によれば、地震以外のノイズ振動による不必要な管制運転を低減すると共に、直下型地震などの地震に対して迅速な管制運転を行うエレベーター装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, while reducing unnecessary control operation by noise vibrations other than an earthquake, the elevator apparatus which performs quick control operation with respect to earthquakes, such as a direct type earthquake, can be provided.

図1は、本発明の実施例におけるエレベーター装置を示す構成図である。本実施例のエレベーター装置は、乗りかご1や釣合いおもり2がガイドレール(図示なし)に沿って昇降するように構成されている。また、乗りかご1と釣合いおもり2は、昇降路20上部の機械室21の巻上機4を介して主ロープ7でつるべ式に懸垂され、駆動される。また、機械室21内には、制御盤3,調速機6が配置されており、調速機6には調速機ロープ8が巻き掛けられている。更に、巻上機4側から見て、乗りかご1側と釣合いおもり2側の主ロープ7の重量差を補償するコンペンロープ9が設置されている。また、乗りかご1への給電を行うためにテールコード10も敷設されている。そして、昇降路20内には、ガイドレールやエレベーターの昇降路内機器などを支持するブラケット22が設置されている。更に、昇降路20底部又は建物の基礎に近い階、例えばピット23に、地震感知器として振動計24が設置されている。尚、機械室21のあるエレベーターの場合は、振動計5を機械室21に設置しても良い。   FIG. 1 is a configuration diagram illustrating an elevator apparatus according to an embodiment of the present invention. The elevator apparatus of the present embodiment is configured such that the car 1 and the counterweight 2 are raised and lowered along a guide rail (not shown). The car 1 and the counterweight 2 are suspended and driven by the main rope 7 via the hoisting machine 4 in the machine room 21 above the hoistway 20. A control panel 3 and a speed governor 6 are arranged in the machine room 21, and a speed governor rope 8 is wound around the speed governor 6. Further, as seen from the hoisting machine 4 side, a compen- sion rope 9 is installed to compensate for the weight difference between the main rope 7 on the car 1 side and the counterweight 2 side. A tail cord 10 is also laid to supply power to the car 1. And in the hoistway 20, the bracket 22 which supports a guide rail, the equipment in the hoistway of an elevator, etc. is installed. Further, a vibration meter 24 is installed as an earthquake detector on the floor of the hoistway 20 or on a floor near the foundation of the building, for example, the pit 23. In the case of an elevator having the machine room 21, the vibrometer 5 may be installed in the machine room 21.

次に、上記地震感知器と、これを利用した地震時管制運転について説明する。まず、本実施例における地震感知器は、X,Y,Zの3方向の加速度を検出する加速度センサを用いるが、Z方向の加速度のみを検出する加速度センサであっても構わない。また、検出した3方向の加速度X,Y,Zの各成分の時間領域データが同じ感知器内にある演算部に送られ、逐次時間領域で、合成演算が行われる。   Next, the earthquake detector and the earthquake control operation using the earthquake detector will be described. First, the earthquake sensor in the present embodiment uses an acceleration sensor that detects acceleration in three directions of X, Y, and Z, but may be an acceleration sensor that detects only acceleration in the Z direction. In addition, the time domain data of each component of the detected accelerations X, Y, and Z in the three directions is sent to a calculation unit in the same sensor, and a composite calculation is sequentially performed in the time domain.

ここで、図2を用いて、地震感知器における演算部の構成について説明する。図2に示すように、X,Y,Z方向の加速度検出信号から水平度取り付け誤差による重力加速度成分や加速度センサ本体がもつ直流ドリフト成分を除去するハイパスフィルタ(x方向:
31X,y方向:31Y,z方向:31Z)とノイズ振動成分を除去するローパスのフィルタ32(x方向:32X,y方向:32Y,z方向:32Z)が設けられている。尚、地震が発生していない間の加速度信号を平均化し、加速度出力値との差を取ることで直流ドリフトを除去することができるので、ハイパスフィルタを除くことも可能である。そして、このフィルタの出力信号を用いて合成部33で各成分の平方値を足し合わせた上でその平方根をとる演算が行われる。尚、加速度センサがZ軸の1方向のみである場合は、加速度の合成演算する合成部33は必要ない。更に、この合成部33の出力信号と閾値αと閾値βを比較することにより制御盤に初期揺れ管制信号を発報する。また、演算部を地震感知器ではなく、制御盤3に設けても良い。
Here, the structure of the calculating part in an earthquake detector is demonstrated using FIG. As shown in FIG. 2, a high-pass filter (x direction: x direction: removes a gravitational acceleration component due to a horizontality attachment error and a DC drift component of the acceleration sensor main body from an acceleration detection signal in the X, Y, and Z directions.
31X, y direction: 31Y, z direction: 31Z) and a low-pass filter 32 (x direction: 32X, y direction: 32Y, z direction: 32Z) for removing noise vibration components. In addition, since the DC drift can be removed by averaging the acceleration signals while the earthquake is not occurring and taking the difference from the acceleration output value, it is possible to remove the high-pass filter. Then, the output of the filter is used to add the square values of the components in the synthesizer 33 and then calculate the square root. When the acceleration sensor is only in one direction of the Z axis, the combining unit 33 that performs acceleration combining calculation is not necessary. Further, by comparing the output signal of the combining unit 33 with the threshold value α and the threshold value β, an initial vibration control signal is issued to the control panel. Moreover, you may provide a calculating part in the control panel 3 instead of an earthquake detector.

更に、地震の振動か地震以外の振動(例えば建物の周りの交通機器などのノイズ振動)かの判定は、加速度信号が、予め定めておいた第1の閾値αを超えてから微少時間の間に所定回数超えたか否かを確認することで行い、確認がされ次第エレベーターの管制運転を開始する。また、第1の閾値αをN回超えていない時点であっても、加速度信号が、第2の閾値β(>α)をM(<N)回超えたことが確認され次第エレベーターの管制運転を開始するようにする。特に、本実施例では、振動計24で検出された鉛直方向及び水平方向の加速度信号を合成した値が、閾値αを超えてから所定時間の間に閾値αをN回超えた場合、及び、前記合成値が、閾値βを超えた場合に、即座に管制運転を開始するようにした。   Furthermore, whether the vibration is an earthquake vibration or a vibration other than an earthquake (for example, noise vibration of a traffic device around a building) is determined for a minute time after the acceleration signal exceeds a predetermined first threshold value α. The control operation of the elevator is started as soon as the confirmation is made. Further, even when the first threshold value α is not exceeded N times, the elevator control operation is performed as soon as it is confirmed that the acceleration signal exceeds the second threshold value β (> α) M (<N) times. To start. In particular, in this embodiment, when the value obtained by combining the vertical and horizontal acceleration signals detected by the vibrometer 24 exceeds the threshold α N times within a predetermined time after the threshold α is exceeded, and When the composite value exceeds the threshold value β, the control operation is started immediately.

次に、図3〜図5を用いて具体的に説明する。図3は加速度センサを建物の基礎部に取り付け、加速度センサ付近で建築機器が作業をしていた際のZ方向加速度信号を示したものである。図4はエレベーターが設置されている建物位置が震源地から遠い場合を想定したときの加速度観測波形例《K−NET観測網での2005年7月23日の千葉県北西部地震での観測点TKY007(新宿)での観測波》のZ方向加速度信号であり、図5はその部分拡大図である。図6はエレベーターが設置されている建物位置が震源値である場合を想定した時の加速度観測波形例《K−NET観測網での2004年10月23日の新潟県中越地震での観測網NIG019(小千谷)での観測波》Z方向加速度信号をそれぞれ示したものであり、図7はその部分拡大図である。   Next, it demonstrates concretely using FIGS. 3-5. FIG. 3 shows the Z direction acceleration signal when the acceleration sensor is attached to the foundation of the building and the building equipment is working near the acceleration sensor. Fig. 4 shows an example of an acceleration observation waveform assuming that the location of the building where the elevator is installed is far from the epicenter. Observation point for the 23rd July 2005 Northwestern Chiba earthquake on the K-NET observation network FIG. 5 is a partially enlarged view of a Z direction acceleration signal of an observation wave at TKY007 (Shinjuku). FIG. 6 shows an example of an acceleration observation waveform assuming that the position of the building where the elevator is installed is a hypocenter value << observation network NIG019 in the Niigata Chuetsu earthquake on October 23, 2004 in the K-NET observation network Observation Wave at (Ojiya) >> The Z direction acceleration signal is shown respectively, and FIG. 7 is a partially enlarged view thereof.

また、本実施例では、一例として、閾値αを5gal、閾値βを30galと設定した。また、ノイズ振動と判定するため、閾値αを超えてから0.5 秒間の間に3回閾値αを超えなければ地震判定と行わないこととした。   In this embodiment, as an example, the threshold value α is set to 5 gal and the threshold value β is set to 30 gal. Also, in order to determine noise vibration, the earthquake determination is not performed unless the threshold value α is exceeded three times within 0.5 seconds after the threshold value α is exceeded.

図3によると、測定開始から約14秒で付近の建築機器が作動し、建物基礎部にノイズ振動が入力されたことがわかる。このノイズ振動により地震判定を行う閾値αを超え、地震判定を行う。ここで地震判定は閾値αを超えてから0.5 秒間継続されるが、この波形より更に閾値αを超える加速度が入力されていないことから地震感知器はこの入力信号をノイズ振動と判定し、正常作動に戻る。   According to FIG. 3, it can be seen that the building equipment in the vicinity operates in about 14 seconds from the start of measurement, and noise vibration is input to the building foundation. This noise vibration exceeds the threshold α for making an earthquake determination, and makes an earthquake determination. Here, the earthquake judgment is continued for 0.5 seconds after exceeding the threshold value α, but since the acceleration exceeding the threshold value α is not input further than this waveform, the earthquake detector determines the input signal as noise vibration, Return to normal operation.

図4は測定開始から50秒間の地震波形、図5は測定開始から5秒間の拡大図である。図5によると、測定開始後約1秒で閾値αを超え、その後0.5 秒間経過する前に閾値βを超えない範囲で閾値αを3回以上超えたことから、地震感知器はこの波形を地震と判断し、エレベーターに発報を行い初期揺れ管制運転を行う。但し、地震判定の0.5 秒間の間に閾値βを超える加速度が入力された時点で初期揺れ管制運転を行うことができる。   FIG. 4 is an earthquake waveform for 50 seconds from the start of measurement, and FIG. 5 is an enlarged view for 5 seconds from the start of measurement. According to FIG. 5, since the threshold value α was exceeded about 1 second after the start of measurement, and the threshold value α was exceeded three times or more before the 0.5 second period, the seismic detector detected this waveform. Is detected as an earthquake, the elevator is notified and the initial shake control operation is performed. However, the initial shake control operation can be performed when the acceleration exceeding the threshold value β is input during the earthquake determination of 0.5 seconds.

図6は測定開始から100秒間の波形、図7は測定開始後14秒から16秒の間の拡大図である。図7によると、測定開始後約14.8秒で閾値α,約14.9秒で閾値βをそれぞれ超え、地震感知器はこの波形を直下型地震と判断し、エレベーターに発報を行い初期揺れ管制運転を行う。   6 is a waveform for 100 seconds from the start of measurement, and FIG. 7 is an enlarged view of 14 to 16 seconds after the start of measurement. According to Fig. 7, the threshold value α is exceeded at about 14.8 seconds after the start of measurement, and the threshold value β is exceeded at about 14.9 seconds. The seismic detector determines this waveform as a direct earthquake and issues an alarm to the elevator. Perform shake control operation.

このように本実施例によれば、閾値α,βを設けることにより、地震以外のノイズ振動に対して、不必要な初期揺れ管制運転を低減できるだけでなく、初期微動から主要動までの時間が極めて短い直下型地震のような地震に対して迅速に管制運転を開始することができる。   As described above, according to the present embodiment, by setting the threshold values α and β, not only the initial vibration control operation unnecessary for the noise vibration other than the earthquake can be reduced, but also the time from the initial fine movement to the main movement can be reduced. Control operations can be started quickly for earthquakes such as extremely short earthquakes.

本発明の実施例におけるエレベーターの概略を示す構成図である。It is a block diagram which shows the outline of the elevator in the Example of this invention. 本実施例での地震感知器における演算部の構成を示す図である。It is a figure which shows the structure of the calculating part in the earthquake detector in a present Example. 加速度センサ付近で建築機器が作業をしていた際の加速度センサで出力されたZ方向の加速度信号を示す図である。It is a figure which shows the acceleration signal of the Z direction output with the acceleration sensor at the time of the construction equipment working near the acceleration sensor. 震源地から距離の遠い場所における地震感知器で検出されたZ方向加速度信号の全体図である。It is a whole figure of the Z direction acceleration signal detected with the earthquake detector in the place far from the epicenter. 震源地から距離の遠い場所における地震感知器で検出されたZ方向加速度信号の部分拡大図である。It is the elements on larger scale of the Z direction acceleration signal detected with the earthquake sensor in the place far from the epicenter. 震源付近における地震感知器で検出されたZ方向加速度信号の全体図である。It is a general view of the Z direction acceleration signal detected by the earthquake detector in the vicinity of the epicenter. 震源付近における地震感知器で検出されたZ方向加速度信号を部分拡大図である。It is the elements on larger scale of the Z direction acceleration signal detected with the earthquake detector near the hypocenter.

符号の説明Explanation of symbols

1 乗りかご
2 釣合いおもり
3 制御盤
4 巻上機
5 振動計
6 調速機
7 主ロープ
8 調速機ロープ
9 コンペンロープ
10 テールコード
20 昇降路
21 機械室
22 ブラケット
23 ピット
24 振動計
31 ハイパスフィルタ
32 ローパスフィルタ
33 合成部
DESCRIPTION OF SYMBOLS 1 Riding car 2 Counterweight 3 Control panel 4 Hoisting machine 5 Vibrometer 6 Speed governor 7 Main rope 8 Speed governor rope 9 Compen rope 10 Tail cord 20 Hoistway 21 Machine room 22 Bracket 23 Pit 24 Vibrometer 31 High pass filter 32 Low-pass filter 33 Synthesis unit

Claims (3)

昇降路内又は建物内に振動計が設置され、該振動計による信号が閾値αをN回超えた場合、及び、前記信号が閾値β(>α)をM(<N)回超えた場合に、管制運転することを特徴とするエレベーター装置。   When a vibrometer is installed in a hoistway or in a building and the signal from the vibrometer exceeds a threshold value α N times, and when the signal exceeds a threshold value β (> α) M (<N) times An elevator apparatus that is controlled and operated. 昇降路内又は建物内に少なくとも鉛直方向の加速度を検出する手段が設置され、その検出信号が第1の閾値を超えてから所定時間の間に前記第1の閾値を所定回数超えた場合、及び、前記検出信号が前記第1の閾値よりも大きい第2の閾値を超えた場合に、管制運転することを特徴とするエレベーター装置。   Means for detecting at least vertical acceleration in the hoistway or in the building, and when the detection signal exceeds the first threshold for a predetermined time after the first threshold is exceeded, and An elevator apparatus that performs a control operation when the detection signal exceeds a second threshold value that is greater than the first threshold value. 昇降路内又は建物内に鉛直方向及び水平方向の加速度を検出する手段が設置され、その鉛直方向及び水平方向の検出信号が合成され、その合成値が第1の閾値を超えてから所定時間の間に前記第1の閾値を所定回数超えた場合、及び、前記合成値が前記第1の閾値よりも大きい第2の閾値を超えた場合に、管制運転することを特徴とするエレベーター装置。   Means for detecting vertical and horizontal acceleration are installed in the hoistway or in the building, the detection signals in the vertical and horizontal directions are combined, and the combined value exceeds a first threshold value for a predetermined time. An elevator apparatus characterized in that a control operation is performed when the first threshold value is exceeded a predetermined number of times in the meantime, and when the composite value exceeds a second threshold value that is greater than the first threshold value.
JP2006298372A 2006-11-02 2006-11-02 Elevator device Pending JP2008114958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006298372A JP2008114958A (en) 2006-11-02 2006-11-02 Elevator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006298372A JP2008114958A (en) 2006-11-02 2006-11-02 Elevator device

Publications (1)

Publication Number Publication Date
JP2008114958A true JP2008114958A (en) 2008-05-22

Family

ID=39501227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006298372A Pending JP2008114958A (en) 2006-11-02 2006-11-02 Elevator device

Country Status (1)

Country Link
JP (1) JP2008114958A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151628A (en) * 2008-12-25 2010-07-08 Central Japan Railway Co Seismometer, method for redetermining earthquake noise, and program
JP2010151627A (en) * 2008-12-25 2010-07-08 Central Japan Railway Co Seismometer, method for determining earthquake noise, and program
JP2013018636A (en) * 2011-07-13 2013-01-31 Sumitomo Fudosan Kk Base isolation elevator
KR20180103344A (en) * 2017-03-09 2018-09-19 주식회사 에너지파트너즈 Automatic rescue apparatus for elevator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288982U (en) * 1988-12-28 1990-07-13
JPH11132823A (en) * 1997-10-27 1999-05-21 Yazaki Corp Gas meter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288982U (en) * 1988-12-28 1990-07-13
JPH11132823A (en) * 1997-10-27 1999-05-21 Yazaki Corp Gas meter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151628A (en) * 2008-12-25 2010-07-08 Central Japan Railway Co Seismometer, method for redetermining earthquake noise, and program
JP2010151627A (en) * 2008-12-25 2010-07-08 Central Japan Railway Co Seismometer, method for determining earthquake noise, and program
JP2013018636A (en) * 2011-07-13 2013-01-31 Sumitomo Fudosan Kk Base isolation elevator
KR20180103344A (en) * 2017-03-09 2018-09-19 주식회사 에너지파트너즈 Automatic rescue apparatus for elevator
KR101924942B1 (en) * 2017-03-09 2019-02-27 주식회사 에너지파트너즈 Automatic rescue apparatus for elevator

Similar Documents

Publication Publication Date Title
JP4399438B2 (en) Elevator equipment
JP4597174B2 (en) Elevator equipment
JP5183185B2 (en) Elevator device and control operation method of elevator
JP2008114959A (en) Elevator device
CN101269768A (en) Elevator
JP4597211B2 (en) Elevator earthquake disaster prevention system
CN101172551B (en) Elevator equipment
JP5009076B2 (en) Earthquake early warning system
JP5033355B2 (en) Elevator equipment
JP5082942B2 (en) Elevator rope roll detection device
JP2008114958A (en) Elevator device
JP2007217082A (en) Long-period earthquake motion sensing system for large-sized building
CN101428721B (en) Management operation device for elevator
JP5046613B2 (en) Elevator equipment
JP5018045B2 (en) Elevator rope roll detection device
JP2010215410A (en) Rope swing detecting device for elevator, and method of automatically controlling restoration operation after earthquake using the same
JP2008044701A (en) Earthquake emergency operation device for elevator
JP2011051739A (en) Control device of elevator
JP2008081290A (en) Rope rolling detector for elevator
JP2008081290A5 (en)
JP5372879B2 (en) Earthquake disaster prevention system
JP5562196B2 (en) Elevator control command device, elevator device, and elevator system
JP5271071B2 (en) Earthquake response control device and program
JP2009078900A (en) Elevator seismic sensor
JPS6320752B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20081225

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20111017

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20111025

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306