JP2008114944A - Elevator device - Google Patents

Elevator device Download PDF

Info

Publication number
JP2008114944A
JP2008114944A JP2006297257A JP2006297257A JP2008114944A JP 2008114944 A JP2008114944 A JP 2008114944A JP 2006297257 A JP2006297257 A JP 2006297257A JP 2006297257 A JP2006297257 A JP 2006297257A JP 2008114944 A JP2008114944 A JP 2008114944A
Authority
JP
Japan
Prior art keywords
building
long object
natural period
shake
elevator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006297257A
Other languages
Japanese (ja)
Inventor
Yuji Sekiya
裕二 関谷
Hiroichi Miyata
弘市 宮田
Hidehiro Nakamura
秀広 中村
Tetsuya Nakayama
徹也 中山
Masayuki Shigeta
政之 重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Mito Engineering Co Ltd
Original Assignee
Hitachi Ltd
Hitachi Mito Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Mito Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2006297257A priority Critical patent/JP2008114944A/en
Priority to CN2007101399644A priority patent/CN101172551B/en
Publication of JP2008114944A publication Critical patent/JP2008114944A/en
Priority to HK08109012.7A priority patent/HK1114598A1/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an elevator device capable of performing the operation for emergency by sensing the oscillation of a long article such as a main rope during an earthquake with excellent accuracy. <P>SOLUTION: In the elevator device for controlling an elevator during an earthquake or a strong wind based on the building oscillation signal detected by a vibration meter 5 installed in a building or in a hoistway, at least one natural period of a long article such as a main rope 7 installed in the hoistway is set, the oscillation response of the long article at the natural period is computed based on the oscillation signal, and a command for emergency is transmitted according to the result of the computation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、地震によって建屋が揺れた場合に管制運転を行うエレベーター装置に関するものである。   The present invention relates to an elevator apparatus that performs control operation when a building is shaken by an earthquake.

地震時には震源から伝播速度の早いP波(縦波)と伝播速度が遅いが地震の主要動を呈するS波(横波)が建物に到達する。下記の非特許文献1によれば建物揺れ検知手段で観測したS波の水平方向の加速度レベルを、特低レベル,低レベル,高レベルの閾値レベルで分類し、エレベーターの地震時管制運転が行われている。S波の主要動による建物の揺れが大きくなるまでに、水平方向の加速度の特低レベルか、S波よりも数秒でも早く地震到来が感知できる建物の下部でのP波初期微動感知でエレベーターを一時停止させる管制運転が行われている。   During an earthquake, a P wave (longitudinal wave) with a fast propagation speed and an S wave (transverse wave) with a slow propagation speed but exhibiting the main motion of the earthquake reach the building. According to the following Non-Patent Document 1, the horizontal acceleration level of the S wave observed by the building shake detection means is classified into a special low level, a low level, and a high level threshold level, and the elevator is controlled during earthquakes. It has been broken. Before the building shakes due to the main S-wave movement, the elevator can be detected by detecting the very low level of acceleration in the horizontal direction, or by detecting the P-wave initial fine movement at the bottom of the building that can detect the arrival of an earthquake several seconds earlier than the S-wave. Control operation is temporarily suspended.

また、震源の遠い地震が堆積層をもつ平野で発生しがちな長周期地震動時は建物の揺れ加速度が小さいにもかかわらず、建物上部が揺れるモードのため、エレベーターの主ロープ,調速機ロープ,乗りかごへの電力や信号通信用のケーブルなど(以降、これらを総称し「長尺物」と記す)が振れやすく、昇降路内で振れ回り、引っかかる被害が発生する。以降、この種の建物の揺れを単に「建物揺れ」と記述し、建物揺れで長尺物が振れ回る振動を「長尺物振れ」と記述し、また、これらの振れの大きさを指す場合には、「建物揺れ量」,「長尺物振れ量」と記述する。   In addition, during long-period ground motions, where earthquakes far from the epicenter tend to occur in plains with sedimentary layers, the upper part of the building swings in spite of the small shaking acceleration of the building, so the main rope and governor rope of the elevator , Electric power to the car, cables for signal communication, etc. (hereinafter collectively referred to as “long objects”) are easy to swing, causing swinging in the hoistway and catching damage. In the following, when this type of building shake is simply referred to as “building shake”, and the vibration of a long object that swings around the building is described as “long object shake”, and also refers to the magnitude of these shakes. Is described as “building shake amount” and “long object shake amount”.

長周期地震時の建物揺れの加速度レベルは低いため、建物揺れの加速度感知感度を上げると、長尺物振れの直接の要因でないノイズ振動で誤って管制運転に移行する場合がある。そこで、この誤作動を少なくするための従来技術として、少しでも長尺物振れ状態量に近い建物揺れの速度,変位、又は速度と変位の相乗積などの状態量感知での管制運転方式が、下記の特許文献1や特許文献2に示されている。   Since the acceleration level of building shaking during a long-period earthquake is low, when the acceleration sensing sensitivity of building shaking is increased, there may be a case of erroneously shifting to control operation due to noise vibration that is not a direct factor of long object shaking. Therefore, as a conventional technique for reducing this malfunction, there is a control operation method for sensing a state quantity such as a building shake speed, displacement, or a synergistic product of speed and displacement, which is almost as long as a long-body swing state quantity. It is shown in the following Patent Document 1 and Patent Document 2.

特開昭60−15382号公報(請求項1,2,第2図)JP-A-60-15382 (Claims 1, 2 and 2) 特開昭60−197576号公報(請求項1,第8図)JP-A-60-197576 (Claim 1, FIG. 8) 2002年版 国土交通省住宅局建築指導課、財団法人日本建築設備・昇降機センター、社団法人日本エレベーター協会 編集の「昇降機技術基準の解説」の第2部の94〜100ページ94th to 100th pages of the 2nd part of "Explanation of Elevator Technical Standards" edited by the 2002 edition Ministry of Land, Infrastructure, Transport and Tourism Housing Bureau Building Guidance Division, Japan Building Equipment and Elevator Center, Japan Elevator Association

上述のように、地震時に建屋の加速度,速度,変位又は速度と変位の相乗積の状態量検知で管制運転を行うことは従来から行われているが、長尺物振れの直接の状態量に基づく管制運転は行われていない。   As described above, control operation by detecting the state quantity of building acceleration, speed, displacement, or the product of speed and displacement at the time of an earthquake has been performed in the past. There is no control operation based on this.

また、高層建物が揺れやすい長周期地震は、遠隔地に震源をもつ地震が関東平野のような堆積層からなる平野部に伝播する過程で発生する地震で、震源が一般に150〜200kmと遠いために、P波は非常に微弱である。   In addition, long-period earthquakes where high-rise buildings tend to shake are earthquakes that occur in the process of propagation of earthquakes with epicenters in remote areas to plains composed of sedimentary layers such as the Kanto Plain, because the epicenter is generally 150 to 200 km away. In addition, the P wave is very weak.

この結果、P波初期微動管制が機能せず、長尺物が昇降路内の機器に引っかかりエレベーター走行で二次被害が発生する課題、これを避けるためにP波感知感度を上げると、近距離の小規模地震や地震に関係のないノイズ振動で不必要にエレベーターが停止するという課題、また、建物揺れの速度,変位、又は速度と変位の相乗積などの状態量からの間接的な長尺物揺れの判定では、長尺物揺れに関わる成長度合いや減衰度合いなどの逐一の状態変化が判らないため、1)定格速度を下げての減速運転が許されるのか、2)エレベーターの運転を一時休止させるのか、3)長尺物振れが大きく成長しない位置すなわち建物揺れに長尺物が共振しない位置へのエレベーターの避難運転ができるのか、あるいは、
4)長尺物振れの減衰度合いなどからのエレベーターの管制運転解除タイミングなどの適正な判定ができないという課題をかかえている。
As a result, P-wave initial fine control will not function, and long objects will be caught by equipment in the hoistway and secondary damage will occur during elevator travel. The problem of elevators stopping unnecessarily due to small-scale earthquakes and noise vibrations unrelated to earthquakes, and indirect lengths from state quantities such as building shaking speed, displacement, or the product of speed and displacement In the judgment of swinging, it is not possible to know every single state change such as the growth degree or damping degree related to long-swinging. 1) Is deceleration operation allowed by reducing the rated speed? 2) Temporarily operating the elevator. 3) Is it possible to evacuate the elevator to a position where the swing of the long object does not grow greatly, that is, the position where the long object does not resonate with the shaking of the building, or
4) There is a problem that it is not possible to properly determine the timing for canceling the control operation of the elevator from the degree of attenuation of the long-body vibration.

例えば、長周期地震動での建物揺れによる長尺物振れの成長度合いや減衰の度合いなどは、建物の揺れ方や揺れの持続の程度によって大きく左右されるため、単に建物の揺れの速度,変位から、又は速度と変位の積などの状態量からでは長尺物振れの成長度合いや減衰の度合いが判らないために、長尺物振れと判定した場合には長尺物振れがおさまるであろう3〜5分間の間はエレベーターを停止させる管制運転が採られている。   For example, the degree of growth and attenuation of long-body vibration due to building shaking due to long-period ground motions depends greatly on how the building shakes and how long it lasts. In addition, since the degree of growth or attenuation of the long object shake cannot be determined from the state quantity such as the product of the speed and the displacement, the long object shake will be suppressed when it is determined as the long object shake 3 Control operation that stops the elevator for ~ 5 minutes.

本発明の目的は、これらの課題を解消する精度の高い管制運転を行うことのできるエレベーター装置を提供することにある。   The objective of this invention is providing the elevator apparatus which can perform the control operation with high precision which eliminates these subjects.

上記目的を達成するために、本発明は、建物又は昇降路に設置した振動計で検出した建物揺れ信号に基づいて、地震時又は強風時のエレベーターを制御するエレベーター装置において、前記昇降路内に設置された長尺物の固有周期を少なくとも1つ設定し、該固有周期における前記長尺物の振れ応答を前記揺れ信号に基づいて演算するようにした。   To achieve the above object, the present invention provides an elevator apparatus for controlling an elevator during an earthquake or strong wind based on a building shaking signal detected by a vibration meter installed in a building or hoistway. At least one natural period of the installed long object is set, and the vibration response of the long object in the natural period is calculated based on the vibration signal.

本発明によれば、地震時又は強風時の長尺物の振れを精度よく感知して管制運転させることのできるエレベーター装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the elevator apparatus which can detect the shake of a long thing at the time of an earthquake or a strong wind with a sufficient precision, and can carry out control operation can be provided.

以下、本発明の実施例について、図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施例に基づくエレベーター装置を示す構成例図である。本実施例のエレベーター装置は、乗りかご1や釣合いおもり2がガイドレール(図示なし)に沿って昇降するように構成されている。また、乗りかご1と釣合いおもり2は、昇降路20上部の機械室21の巻上機4を介して主ロープ7でつるべ式に懸垂され、駆動される。また、機械室21内には、制御盤3,調速機6及び振動計5が配置されており、調速機6には調速機ロープ8が巻き掛けられている。更に、巻上機側から見て、乗りかご1側と釣合いおもり2側の主ロープ7の重量差を補償するコンペンロープ9が設置されている。また、乗りかご1への給電を行うためにテールコード10も敷設されている。このように、昇降路20内には、主ロープ7,調速機ロープ8,コンペンロープ9及びテールコード10などの長尺物が設けられている。そして、昇降路20内には、ガイドレールやエレベーターの昇降路内機器などを支持するブラケット22が設置されている。   FIG. 1 is a configuration diagram illustrating an elevator apparatus according to an embodiment of the present invention. The elevator apparatus of the present embodiment is configured such that the car 1 and the counterweight 2 are raised and lowered along a guide rail (not shown). The car 1 and the counterweight 2 are suspended and driven by the main rope 7 via the hoisting machine 4 in the machine room 21 above the hoistway 20. A control panel 3, a speed governor 6, and a vibration meter 5 are disposed in the machine room 21, and a speed governor rope 8 is wound around the speed governor 6. Further, as seen from the hoisting machine side, a compen- sion rope 9 is installed to compensate for the weight difference between the main rope 7 on the car 1 side and the counterweight 2 side. A tail cord 10 is also laid to supply power to the car 1. As described above, in the hoistway 20, long objects such as the main rope 7, the governor rope 8, the compensation rope 9, and the tail cord 10 are provided. And in the hoistway 20, the bracket 22 which supports a guide rail, the equipment in the hoistway of an elevator, etc. is installed.

建物の揺れ検出する振動計5には、互いに直交する水平方向(x,y方向)の加速度検出機能があり、振動計5の格納ケースには演算部30がある。また、前記演算部30は、振動計5が検出したx,y方向の加速度信号をもとに、長尺物振れを演算し、長尺物振れ量と予め定める閾値との比較のもとに、制御盤3でエレベーターを制御し管制運転するための管制運転判定機能を持っている。ここで、演算部30は状況に応じ、制御盤3に格納してもよい。   The vibration meter 5 that detects the shaking of the building has a function of detecting acceleration in the horizontal direction (x, y direction) orthogonal to each other, and the storage case of the vibration meter 5 has a calculation unit 30. The calculation unit 30 calculates a long object shake based on the acceleration signals in the x and y directions detected by the vibrometer 5, and compares the long object shake amount with a predetermined threshold value. The control panel 3 has a control operation determination function for controlling the elevator and performing control operation. Here, the calculation unit 30 may be stored in the control panel 3 according to the situation.

前記演算部30での演算処理は、処理の安定性や予め設定するパラメータの変更の容易性からデジタル処理としているが、アナログ処理でも可能である。   The arithmetic processing in the arithmetic unit 30 is digital processing because of the stability of processing and the ease of changing preset parameters, but analog processing is also possible.

図2で、演算部30の構成を説明する。振動計5のx,y方向の検出信号から、振動計5の水平度据付誤差による重力加速度成分や加速度センサ本体が持つ直流ドリフト成分を除去するハイパスのフィルタ31(x方向:31X,y方向:31Y)とノイズ振動成分を除去するローパスのフィルタ32(x方向:32X,y方向:32Y)を設けている。   The configuration of the calculation unit 30 will be described with reference to FIG. A high-pass filter 31 (x direction: 31X, y direction: removes the gravitational acceleration component due to the horizontality installation error of the vibrometer 5 and the DC drift component of the acceleration sensor body from the detection signal of the vibrometer 5 in the x, y direction. 31Y) and a low-pass filter 32 (x direction: 32X, y direction: 32Y) for removing noise vibration components.

フィルタ32Xの出力信号33X,フィルタ32Yの出力信号33Yを用いて、予め定める複数の固有周期Ta ,Tb ,Tc ・・・・からなる複数の長尺物振れ振動モデル毎に長尺物振れを経時ごとに計算するx方向振れ応答演算部34X,35X,36Xとy方向振れ応答演算部34Y,35Y,36Yを構成し、これら長尺物振れ固有周期ごとのx,y方向の振れ応答演算結果を合成する振れ合成演算部37,38,39を備え、これらの合成演算の振れに基づいて長尺物の振れ管制運転を判定する振れ判定部40を備え、振れ判定部40の信号を信号線41で制御盤3に送っている。 Using the output signal 33X of the filter 32X and the output signal 33Y of the filter 32Y, a long object for each of a plurality of long object vibration models having a plurality of predetermined natural periods T a , T b , T c . The x-direction shake response calculation units 34X, 35X, and 36X that calculate the shake over time and the y-direction shake response calculation units 34Y, 35Y, and 36Y are configured, and the shake responses in the x and y directions for each long natural vibration period. It includes shake synthesis calculation units 37, 38, and 39 that synthesize the calculation results, and includes a shake determination unit 40 that determines the shake control operation of a long object based on the shake of the combination calculation. The signal line 41 is sent to the control panel 3.

振れ判定部40では、閾値を複数段階に設け、そのレベルに応じて、運転速度の制限,運転の一時停止,保守員の安全点検後の復帰判定、あるいは、長尺物振れの減衰レベル判定から、長尺物振れによるエレベーター管制運転の解除が可能となる。   In the shake determination unit 40, threshold values are set in a plurality of stages, and depending on the level, the operation speed is limited, the operation is temporarily stopped, the return determination after the safety check of the maintenance staff, or the attenuation level determination of the long-body shake is determined. It is possible to cancel the elevator control operation due to long-swinging.

図2に示す建物揺れ判定部43の信号による建物揺れ加速度による管制は、非特許文献1に示されている従来方式と基本的に変わるものではないが、非特許文献1では長尺物振れ量に基づく直接の管制ができないため、建物揺れ判定部43の加速度閾値をエレベーターの構造強度上から許容される加速度レベルよりも建物の高さが高くなるに従い小さく設定し被害の軽減を図っている。一方、本実施例では振れ判定部40による長尺物振れ管制が行えるため、建物揺れ判定部43の加速度閾値がエレベーターの構造や機構の許容レベルに準じた閾値(100〜150Gal程度)まで大きくすることができ、長周期成分の少ない近距離で規模の小さい地震での不必要な加速度による管制が避けられる。   The control by the building shake acceleration by the signal of the building shake determination unit 43 shown in FIG. 2 is not basically different from the conventional method shown in Non-Patent Document 1, but in Non-Patent Document 1, the amount of long-body shake is Therefore, the acceleration threshold of the building shake determination unit 43 is set smaller as the height of the building becomes higher than the acceleration level allowed from the structural strength of the elevator to reduce damage. On the other hand, in this embodiment, since the long object shake control by the shake determination unit 40 can be performed, the acceleration threshold value of the building shake determination unit 43 is increased to a threshold value (about 100 to 150 Gal) according to the allowable level of the structure and mechanism of the elevator. Therefore, it is possible to avoid the control due to unnecessary acceleration in a small-scale earthquake at a short distance with few long-period components.

図3では、演算部30内のフィルタ32の出力信号33X,33Yからの長尺物振れ演算の処理の流れを説明する。   In FIG. 3, the flow of processing of the long object shake calculation from the output signals 33X and 33Y of the filter 32 in the calculation unit 30 will be described.

フィルタ32の出力信号33X,33Yを用いて、固有周期Ta でのx方向応答計算部が34X、y方向応答計算部が34Y、固有周期Tb でのx方向応答計算部が35X、y方向応答計算部が35Y、固有周期Tc でのx方向応答計算部が36X,y方向応答計算部が36Yである。これら固有周期ごとのx,y方向の振れを合成する振れ合成演算部が37,38,39で、演算信号波形例をそれぞれの部位に示している。 Using the output signals 33X and 33Y of the filter 32, the x-direction response calculation unit in the natural period T a is 34X, the y-direction response calculation unit is 34Y, the x-direction response calculation unit in the natural period T b is 35X, and the y direction The response calculation unit is 35Y, the x-direction response calculation unit in the natural period Tc is 36X, and the y-direction response calculation unit is 36Y. 37, 38, and 39 are shake synthesis calculation units for synthesizing shakes in the x and y directions for each natural period, and examples of calculation signal waveforms are shown in respective portions.

図4で、演算部30が併せ持つ演算機能と管制運転判定機能を、主ロープ7を例にとり長尺物振れ回りの三次元模式図で説明する。   In FIG. 4, the calculation function and the control operation determination function that the calculation unit 30 has together will be described with reference to the main rope 7 as an example with a three-dimensional schematic diagram of the swing of the long object.

3次元的に振れ回る主ロープ7の振幅の大きい中ほどの位置での水平平面50内の2次元面上の振れ軌跡51を呈し、固有周期Ta ,Tb ,Tc ごとの振れ軌跡51のX軸への投影成分が長尺物のx方向振れ応答演算部34X,35X,36X、であり、Y軸への投影成分が長尺物のy方向振れ応答演算部34Y,35Y,36Yである。これらより水平平面50内のx,y方向成分の合成演算が、周期毎の長尺物振れの振れ合成演算部37,38,39で行われる。 A swing trajectory 51 on the two-dimensional surface in the horizontal plane 50 at a middle position where the amplitude of the main rope 7 swinging three-dimensionally is large, and a swing trajectory 51 for each natural period T a , T b , T c is exhibited. The projection component on the X-axis is the x-direction shake response calculation unit 34X, 35X, 36X of the long object, and the projection component on the Y-axis is the y-direction shake response calculation unit 34Y, 35Y, 36Y of the long object. is there. From these, the composition calculation of the x and y direction components in the horizontal plane 50 is performed by the shake composition computation units 37, 38, and 39 of the long object shake for each period.

次に、本実施例の長尺物振れ演算に基づく振れ管制の一例について説明する。図4で示す長尺物振れ量と主ロープ7のブラケット22などに引っかかる振れ限界寸法Lに対する割合α%,β%,γ%,δ%(α<β<γ<δ)を振れ判定部40の閾値とし、長尺物振れ量による振れ管制の実施例について説明する。   Next, an example of shake control based on the long-body shake calculation of the present embodiment will be described. The shake determination unit 40 calculates the amount α%, β%, γ%, and δ% (α <β <γ <δ) of the long object shake amount shown in FIG. 4 and the shake limit dimension L caught on the bracket 22 of the main rope 7 or the like. A description will be given of an example of shake control using a long object shake amount.

長尺物振れ管制運転は長尺物振れ率がβ%超えて減速運転や最上階手前強制呼び管制運転(主ロープが振れている状態で、乗りかごが最上階に直行走行すると、乗りかごに異常振動が発生する場合があるため、最上階手前の階に運転ソフトで仮想呼びを発生させて一旦停止させる運転)などの運行走行管制運転,γ%超えで運転一時休止,β%以下への減衰で運行走行管制運転再開,α%以下への減衰で管制運転解除,δ%超えで昇降路内点検後の運転再開などの管制運転パターンを取り込む管制運転判定機能を振れ判定部40に持たせる。このように、本実施例では、複数のレベルの閾値を設定し、それぞれのレベルに応じて異なる内容の管制運転を行っているので、地震発生時などにおいてもエレベーターを的確に運行させることが可能である。   Long-body run-off control operation has a long-body run-out rate exceeding β%, decelerating operation, forced top-floor forced call control operation (when the main rope is swinging and the car goes straight to the top floor, Because abnormal vibration may occur, operation control operation such as operation that generates a virtual call with the operation software on the floor before the top floor and temporarily stops it, temporarily stops operation when γ% is exceeded, decreases to less than β% The run determination unit 40 has a control operation determination function that captures a control operation pattern such as restart of operation control operation by damping, cancellation of control operation by attenuation to α% or less, and restart of operation after inspection in the hoistway when exceeding δ%. . In this way, in this embodiment, since thresholds of a plurality of levels are set and control operations with different contents are performed according to each level, it is possible to operate the elevator accurately even when an earthquake occurs. It is.

以上の説明では、振れ判定部40の閾値の設定は、単にスカラー量としているが、図4に示す判定エリア52を設けて、x,y方向の応答座標値がそのエリアを越えるか否かで判定してもよい。   In the above description, the setting of the threshold value of the shake determination unit 40 is simply a scalar amount, but the determination area 52 shown in FIG. 4 is provided, and whether or not the response coordinate values in the x and y directions exceed that area. You may judge.

次に、長尺物振れ応答演算について説明する。振動モデルを用いて長尺物振れ応答を演算するには、まず、長尺物の固有周期が必要となる。しかしながら、この長尺物の固有周期は、長尺物の長さや張力、すなわち、乗りかごや釣合いおもりの位置や質量等によって異なるため、時間経過ごとに長尺物の固有周期を設定するには、上記乗りかごの位置などの情報を受信して計算する処理を随時行わなければならない。そこで、演算部30における処理の迅速化及び装置の複雑化回避のため、上記乗りかごの位置などの情報を用いずに、長尺物が振れやすい固有周期を設定し、長尺物の振れ応答を演算する方法について、以下説明する。   Next, a long object shake response calculation will be described. In order to calculate a long object shake response using the vibration model, first, the natural period of the long object is required. However, since the natural period of this long object varies depending on the length and tension of the long object, that is, the position and mass of the car and the counterweight, in order to set the natural period of the long object over time, A process for receiving and calculating information such as the position of the car must be performed at any time. Therefore, in order to speed up the processing in the arithmetic unit 30 and avoid complication of the apparatus, a natural period in which the long object is likely to swing is set without using the information such as the position of the car, and the shake response of the long object is set. A method for computing the will be described below.

そもそも長尺物の振れは、長周期地震時や強風時等の建物揺れに伴って発生するものであり、この建物揺れに含まれる主な周期成分は、建物上部が最も揺れる周期すなわち建物の1次固有周期T0 (秒)である。したがって、長尺物は、その振れの固有周期が建物の1次固有周期に接近した場合に、建物揺れと共振し、その振れが最も大きくなると考えられる。例えば、乗りかご側の主ロープ7の固有周期が建物の1次固有周期に接近しやすいのは、乗りかごが建物の下層階付近に位置する場合であり、張力が主ロープ7より小さい調速機ロープ8やコンペンロープ9の固有周期が建物の1次固有周期に接近しやすいのは、乗りかごが建物の中間階付近に位置する場合である。そこで、建物の1次固有周期或いはそれに近い値を長尺物の固有周期とした振動モデルを想定し、振動計5で検出された建物揺れ信号に基づいて長尺物の振れ量を算出すれば、発生し得る最大の振れ量を考慮した安全性の高いエレベーター管制運転が可能となる。 In the first place, long-body vibrations occur with building shaking during long-period earthquakes and strong winds, and the main periodic component included in this building shaking is the period in which the upper part of the building is most shaken, that is, 1 of the building. The next natural period T 0 (seconds). Therefore, it is considered that the long object resonates with the building shake when the natural period of the shake approaches the primary natural period of the building, and the shake becomes the largest. For example, the natural period of the main rope 7 on the car side is likely to approach the primary natural period of the building when the car is located near the lower floor of the building and the tension is lower than that of the main rope 7. The natural period of the machine rope 8 and the compen- sive rope 9 is likely to approach the primary natural period of the building when the car is located near the middle floor of the building. Therefore, assuming a vibration model in which the primary natural period of the building or a value close to it is the natural period of the long object, the amount of vibration of the long object is calculated based on the building vibration signal detected by the vibration meter 5. Therefore, it is possible to perform elevator control operation with high safety in consideration of the maximum amount of vibration that can occur.

尚、建物の1次固有周期は一般に建物の揺れの大きさに依存し、揺れが増すとその周期が長くなる特性を持っている。長周期地震時の建物揺れ加速度30Gal程度のときの建物の1次固有周期は、揺れ加速度200Gal以上の揺れを想定している建物耐震設計時の固有周期よりは短めの値となり、建物の固有周期の設計値は必ずしも実際の固有周期の値を与えるものでない。また、建物の短辺方向と長辺方向の揺れ方向ごとに建物の固有周期は異なる。   Note that the primary natural period of a building generally depends on the magnitude of the shaking of the building, and has a characteristic that the period becomes longer as the shaking increases. The primary natural period of the building when the building shake acceleration is about 30 Gal at the time of a long-period earthquake is shorter than the natural period at the time of building seismic design assuming that the shaking acceleration is 200 Gal or more. The design value does not necessarily give the value of the actual natural period. In addition, the natural period of the building is different for each of the short side direction and the long side direction of the building.

つまり、建物揺れの方向や大きさによって建物の固有周期の値が変わってくるので、その変動に起因する長尺物振れの予測不良を避けるため、様々な精度増しを行うのが望ましい。例えば、建物の固有周期の設計値とその前後の複数の値を長尺物の固有周期とし、複数の振動モデルにより長尺物の振れ応答を演算し、そのうち振れ応答が最大のものと所定の閾値とを比較して管制運転の要否を判定すれば、安全性が向上する。また、過去の地震又は強風の際に観測した建物の応答データを用いて建物の固有周期を演算する学習機能を持たせることにより、長尺物振れの予測精度を高めることもできる。   In other words, since the value of the natural period of the building changes depending on the direction and magnitude of the building shaking, it is desirable to increase the accuracy in order to avoid poor prediction of long-term object shake due to the fluctuation. For example, the design value of the natural period of a building and a plurality of values before and after it are used as the natural period of a long object, and the vibration response of a long object is calculated using a plurality of vibration models. If the necessity of control operation is determined by comparing with the threshold value, safety is improved. In addition, by providing a learning function for calculating the natural period of the building using the response data of the building observed during past earthquakes or strong winds, it is possible to improve the prediction accuracy of long-body vibration.

更に、建物揺れに含まれる周期成分としては、発生した長周期地震動や風の息に起因する周期帯域も存在するので、長尺物の振れの固有周期がこれらの周期帯域と一致して共振する場合も考慮するものが良い。特に、高層建物の場合は、長周期地震動の周期帯域に建物の固有周期が含まれる可能性もある。そこで、長周期地震動の周期帯域(例えば、2秒〜20秒程度)において所定の間隔で設定された固有周期Ta ,Tb ,Tc ・・・からなる複数の長尺物振れ振動モデルのもとに振れ予測の精度増しを図り、これらモデル毎の振れ応答から長尺物振れ量を予測して管制運転を行うこともできる。 In addition, as periodic components included in building shake, there are periodic bands due to long-period ground motion and wind breaths that have occurred, so the natural period of long-body vibrations resonates with these periodic bands. It is good to consider the case. In particular, in the case of a high-rise building, there is a possibility that the natural period of the building is included in the periodic band of long-period ground motion. Therefore, a plurality of long-body vibration vibration models having natural periods T a , T b , T c ... Set at predetermined intervals in a periodic band of long-period ground motion (for example, about 2 to 20 seconds). It is also possible to increase the accuracy of the shake prediction based on the above, and to perform the control operation by predicting the amount of shake of the long object from the shake response of each model.

また、長周期地震動だけでなくP波やS波をも含む地震動全体の周期帯域(例えば0.2秒〜20秒程度) 内から、複数の値を長尺物の固有周期として設定し、それぞれの固有周期における長尺物の振れ応答を演算する方法も考えられる。更に、乗りかご等の昇降により変化し得る長尺物長さ(ストローク)に対応する固有周期の範囲内において、複数の値を長尺物の固有周期として設定し、長尺物振れ量を予測しても良い。   In addition, set multiple values as the natural period of a long object from the entire periodic band (for example, about 0.2 to 20 seconds) including not only long-period ground motion but also P-wave and S-wave. A method of calculating the shake response of a long object in the natural period of the image is also conceivable. In addition, within the range of the natural period corresponding to the length (stroke) of a long object that can be changed by raising or lowering the car, etc., multiple values are set as the natural period of the long object, and the amount of long object deflection is predicted. You may do it.

尚、長尺物振れ振動系の減衰性能は、長尺物の構成要素毎に多少は異なるが、長尺物振れ量が安定して計算できる共通の値とし、振れ量算出の実時間処理性能を確保している。   The long-body shake vibration system's damping performance is slightly different for each component of the long object, but it is a common value that allows the long-body shake amount to be calculated stably, and the real-time processing performance of the shake amount calculation Is secured.

演算部30のデジタル演算処理の速さは、加速度アナログ信号のデジタル変換のサンプリング周期(秒)内に、全ての振動応答計算が終了する速さとし、求まった応答値を次の計算ステップでの初期値として逐次応答計算を進める実時間処理速度としている。なお、サンプリング周期(秒)は、例えば予め定め複数組の固有周期の内の最も短い固有周期
(秒)にも依存するが、概ね0.01〜0.03秒程度であれば、応答計算の精度は維持できる。
The speed of the digital calculation processing of the calculation unit 30 is the speed at which all vibration response calculations are completed within the sampling period (seconds) of the digital conversion of the acceleration analog signal, and the obtained response value is the initial value in the next calculation step. The value is the real-time processing speed that advances the response calculation sequentially. Note that the sampling period (seconds) depends on, for example, the shortest natural period (seconds) of a plurality of predetermined natural periods. However, if the sampling period (seconds) is approximately 0.01 to 0.03 seconds, the response calculation is performed. The accuracy can be maintained.

以上の構成により、建物揺れによる長尺物振れの状態が時間経過のたびに判断できるため、震源が遠い地震が堆積層を持つ平野部に伝播してきたときに発生しやすい長周期地震動での建物の揺れ方や揺れの持続の程度によって長尺物揺れの成長度合いや減衰度合いが逐次演算でき、地震時や強風時の長尺物振れの特徴を考慮した高度なエレベーター管制運転を行うこともできる。   With the above configuration, it is possible to determine the state of long-body vibration due to building shaking over time, so buildings with long-period ground motion that are likely to occur when earthquakes with distant epicenters propagate to plains with sedimentary layers are likely to occur. The degree of growth and attenuation of long objects can be calculated sequentially according to the degree of shaking and the duration of shaking, and advanced elevator control operation can be performed considering the characteristics of long objects during earthquakes and strong winds. .

上述の実施例では、振動計5を機械室に設置したが、地震による振れが観測できる位置ならば、建物や昇降路のどの位置に設置しても構わない。昇降路下部等に設置した場合で直接長尺物上端の振れを検出できない場合でも、その位置での振れを検出し、その振れから長尺物上端の振れを予測することで、長尺物の振れを予測することができる。さらに、長尺物振れ演算に加速度センサ信号で説明したが、速度センサ信号であっても、演算部の算法を変えるだけで、長尺物振れの演算はできる。   In the above-described embodiment, the vibrometer 5 is installed in the machine room, but it may be installed at any position on the building or hoistway as long as the vibration due to the earthquake can be observed. Even if it is installed at the lower part of the hoistway, etc., even if the upper end of the long object cannot be detected directly, the vibration at that position is detected and the upper end of the long object is predicted based on the vibration. The shake can be predicted. Further, although the acceleration sensor signal has been described for the long object shake calculation, even if the speed sensor signal is used, the long object shake can be calculated only by changing the calculation method of the calculation unit.

本発明の実施例におけるエレベーターの概略を示す構成図である。It is a block diagram which shows the outline of the elevator in the Example of this invention. 本発明の実施例における長尺物振れの演算部の構成を示す図である。It is a figure which shows the structure of the calculating part of the long thing shake in the Example of this invention. 本発明の実施例における演算部内の信号処理の流れを示す図である。It is a figure which shows the flow of the signal processing in the calculating part in the Example of this invention. 長尺物の振れ説明図のもとに、本発明の実施例における閾値と設定方法を示す図である。It is a figure which shows the threshold value and setting method in the Example of this invention based on the shake explanatory drawing of a long thing.

符号の説明Explanation of symbols

1 乗りかご
2 釣合いおもり
3 制御盤
4 巻上機
5 振動計
6 調速機
7 主ロープ
8 調速機ロープ
9 コンペンロープ
10 テールコード
20 昇降路
21 機械室
22 ブラケット
23 ピット
30…演算部
31,32 フィルタ
33X,33Y フィルタの出力信号
34X,34Y,35X,35Y,36X,36Y 振れ応答演算部
37,38,39 振れ合成演算部
40 振れ判定部
41,44 信号線
42 水平方向加速度合成演算部
43 建物揺れ判定部
46 3軸加速度合成演算部
50 水平平面
51 振れ軌跡
52 判定エリア
DESCRIPTION OF SYMBOLS 1 Riding car 2 Counterweight 3 Control panel 4 Hoisting machine 5 Vibrometer 6 Speed governor 7 Main rope 8 Speed governor rope 9 Compen rope 10 Tail cord 20 Hoistway 21 Machine room 22 Bracket 23 Pit 30. 32 Filter 33X, 33Y Filter output signal 34X, 34Y, 35X, 35Y, 36X, 36Y Shake response computing units 37, 38, 39 Shake synthesis computing unit 40 Shake judgment units 41, 44 Signal line 42 Horizontal direction acceleration synthesis computing unit 43 Building shake determination unit 46 Three-axis acceleration composition calculation unit 50 Horizontal plane 51 Swing locus 52 Determination area

Claims (10)

建物又は昇降路に設置された振動計で検出された建物揺れ信号に基づいて、地震時又は強風時のエレベーターを制御するエレベーター装置において、前記昇降路内に設置された長尺物の固有周期を少なくとも1つ設定し該固有周期における前記長尺物の振れ応答を前記揺れ信号に基づいて演算する手段を有することを特徴とするエレベーター装置。   In an elevator apparatus that controls an elevator during an earthquake or strong wind based on a building shake signal detected by a vibration meter installed in a building or hoistway, the natural period of a long object installed in the hoistway is determined. An elevator apparatus comprising means for calculating at least one shake response of the long object in the natural period based on the shake signal. 建物又は昇降路に設置された振動計で検出された建物揺れ信号に基づいて、地震時又は強風時のエレベーターを制御するエレベーター装置において、前記昇降路内に設置された長尺物の固有周期を複数設定しそれぞれの固有周期における前記長尺物の振れ応答を前記揺れ信号に基づいて演算する手段と、該手段で演算した前記長尺物の振れ応答のうち最大のものと所定の閾値とを比較して管制運転の要否を判定する手段を有することを特徴とするエレベーター装置。   In an elevator apparatus that controls an elevator during an earthquake or strong wind based on a building shake signal detected by a vibration meter installed in a building or hoistway, the natural period of a long object installed in the hoistway is determined. A plurality of means for calculating a vibration response of the long object in each natural period based on the vibration signal, a maximum one of the vibration responses of the long object calculated by the means, and a predetermined threshold value. An elevator apparatus comprising means for comparing the necessity of control operation with comparison. 請求項1又は2において、前記長尺物の固有周期として、地震動全体の周期帯域内から複数の値を設定し、それぞれの固有周期における前記長尺物の振れ応答を演算することを特徴とするエレベーター装置。   In Claim 1 or 2, a plurality of values are set as a natural period of the long object from within a periodic band of the whole earthquake motion, and a shake response of the long object in each natural period is calculated. Elevator device. 請求項1又は2において、前記長尺物の固有周期として、長周期地震動の周期帯域内から所定間隔で複数の値を設定し、それぞれの固有周期における前記長尺物の振れ応答を演算することを特徴とするエレベーター装置。   In Claim 1 or 2, as a natural period of the long object, a plurality of values are set at predetermined intervals from within a periodic band of long-period ground motion, and a shake response of the long object in each natural period is calculated. Elevator device characterized by. 請求項1又は2において、前記長尺物の固有周期として、前記建物の固有周期の設計値及びその前後の複数の値を設定し、それぞれの固有周期における前記長尺物の振れ応答を演算することを特徴とするエレベーター装置。   In Claim 1 or 2, the design value of the natural period of the building and a plurality of values before and after it are set as the natural period of the long object, and the deflection response of the long object in each natural period is calculated. An elevator apparatus characterized by that. 請求項1又は2において、過去の地震又は強風の際に観測した前記建物の応答データを用いて前記建物の固有周期を演算し、この建物の固有周期を前記長尺物の固有周期として前記長尺物の振れ応答を演算することを特徴とするエレベーター装置。   In Claim 1 or 2, the natural period of the building is calculated using response data of the building observed during past earthquakes or strong winds, and the natural period of the building is used as the natural period of the long object. An elevator apparatus that calculates a swing response of a scale. 請求項1において、時間経過ごとにエレベーターの乗りかご又は釣合いおもりの位置又は質量を含む情報に基づいて前記長尺物の固有周期を設定することを特徴とするエレベーター装置。   2. The elevator apparatus according to claim 1, wherein a natural period of the long object is set based on information including a position or a mass of an elevator car or a counterweight as time elapses. 請求項2において、前記閾値は複数のレベルが設定されており、それぞれのレベルに応じて管制運転の内容が異なることを特徴とするエレベーター装置。   3. The elevator apparatus according to claim 2, wherein a plurality of levels are set as the threshold value, and contents of the control operation differ according to each level. 昇降路内に設置された長尺物の固有周期を少なくとも1つ設定し、建物又は昇降路に設置された振動計で検出した建物揺れ信号に基づいて、前記固有周期における前記長尺物の振れ応答を演算することを特徴とするエレベーターの長尺物の振れ演算方法。   At least one natural period of a long object installed in the hoistway is set, and based on a building shake signal detected by a vibration meter installed in the building or hoistway, the long object shakes in the natural period A method of calculating a run-out of a long object of an elevator characterized by calculating a response. 昇降路内に設置された長尺物の固有周期を複数設定し、建物又は昇降路に設置された振動計で検出した建物揺れ信号に基づいて、それぞれの固有周期における前記長尺物の振れ応答を演算し、この演算結果と所定の閾値とを比較して管制運転の要否を判定することを特徴とするエレベーターの管制運転方法。   Set multiple natural periods of a long object installed in a hoistway, and based on the building shaking signal detected by a vibration meter installed in the building or hoistway, the vibration response of the long object in each natural period A control operation method for an elevator, wherein the calculation result is compared with a predetermined threshold value to determine whether control operation is necessary.
JP2006297257A 2006-11-01 2006-11-01 Elevator device Pending JP2008114944A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006297257A JP2008114944A (en) 2006-11-01 2006-11-01 Elevator device
CN2007101399644A CN101172551B (en) 2006-11-01 2007-08-07 Elevator equipment
HK08109012.7A HK1114598A1 (en) 2006-11-01 2008-08-14 Elevator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006297257A JP2008114944A (en) 2006-11-01 2006-11-01 Elevator device

Publications (1)

Publication Number Publication Date
JP2008114944A true JP2008114944A (en) 2008-05-22

Family

ID=39421341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006297257A Pending JP2008114944A (en) 2006-11-01 2006-11-01 Elevator device

Country Status (3)

Country Link
JP (1) JP2008114944A (en)
CN (1) CN101172551B (en)
HK (1) HK1114598A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184747A (en) * 2009-02-10 2010-08-26 Fujitec Co Ltd Elevator device
US7784590B2 (en) * 2006-03-01 2010-08-31 Mitsubishi Denki Kabushiki Kaisha Elevator operation control device
JP2012101899A (en) * 2010-11-10 2012-05-31 Hitachi Ltd Elevator system
WO2012117479A1 (en) * 2011-02-28 2012-09-07 三菱電機株式会社 Device for detecting sway of elevator rope
JP6339256B1 (en) * 2017-02-28 2018-06-06 東芝エレベータ株式会社 Elevator rope run-out detection system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5399879B2 (en) * 2009-12-11 2014-01-29 株式会社日立製作所 Elevator control device
JP5973929B2 (en) * 2013-02-07 2016-08-23 株式会社日立製作所 Elevator control operation apparatus and method
CN104444710A (en) * 2014-09-28 2015-03-25 苏州福沃斯电梯有限公司 Elevator
US20220348436A1 (en) * 2019-09-30 2022-11-03 Mitsubishi Electric Corporation Building facility vibration measurement device and management system
JP7107469B2 (en) * 2020-07-13 2022-07-27 三菱電機ビルソリューションズ株式会社 Elevator stop prediction system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114982A (en) * 1984-11-09 1986-06-02 株式会社日立製作所 Control operating device for elevator
JPS62196287A (en) * 1986-02-21 1987-08-29 日立エレベ−タサ−ビス株式会社 Deflection detector for tail code of elevator
JPH1059644A (en) * 1996-08-19 1998-03-03 Hitachi Building Syst Co Ltd Elevator abnormality detecting device
JP2001130848A (en) * 1999-11-05 2001-05-15 Hitachi Ltd Earthquake damage predictive system for elevator
JP2004250217A (en) * 2003-02-21 2004-09-09 Toshiba Elevator Co Ltd Damping device for elevator rope

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4115015B2 (en) * 1998-09-08 2008-07-09 東芝エレベータ株式会社 Elevator control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114982A (en) * 1984-11-09 1986-06-02 株式会社日立製作所 Control operating device for elevator
JPS62196287A (en) * 1986-02-21 1987-08-29 日立エレベ−タサ−ビス株式会社 Deflection detector for tail code of elevator
JPH1059644A (en) * 1996-08-19 1998-03-03 Hitachi Building Syst Co Ltd Elevator abnormality detecting device
JP2001130848A (en) * 1999-11-05 2001-05-15 Hitachi Ltd Earthquake damage predictive system for elevator
JP2004250217A (en) * 2003-02-21 2004-09-09 Toshiba Elevator Co Ltd Damping device for elevator rope

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7784590B2 (en) * 2006-03-01 2010-08-31 Mitsubishi Denki Kabushiki Kaisha Elevator operation control device
JP2010184747A (en) * 2009-02-10 2010-08-26 Fujitec Co Ltd Elevator device
JP2012101899A (en) * 2010-11-10 2012-05-31 Hitachi Ltd Elevator system
WO2012117479A1 (en) * 2011-02-28 2012-09-07 三菱電機株式会社 Device for detecting sway of elevator rope
JP5595582B2 (en) * 2011-02-28 2014-09-24 三菱電機株式会社 Elevator rope swing detection device
US9327942B2 (en) 2011-02-28 2016-05-03 Mitsubishi Electric Corporation Elevator rope sway detection device
JP6339256B1 (en) * 2017-02-28 2018-06-06 東芝エレベータ株式会社 Elevator rope run-out detection system
JP2018140868A (en) * 2017-02-28 2018-09-13 東芝エレベータ株式会社 Elevator rope swing detection system

Also Published As

Publication number Publication date
CN101172551B (en) 2011-03-30
HK1114598A1 (en) 2008-11-07
CN101172551A (en) 2008-05-07

Similar Documents

Publication Publication Date Title
JP5183185B2 (en) Elevator device and control operation method of elevator
JP4399438B2 (en) Elevator equipment
JP2008114944A (en) Elevator device
JP2008230771A (en) Elevator device
JP5595582B2 (en) Elevator rope swing detection device
JP2008114959A (en) Elevator device
JP4597174B2 (en) Elevator equipment
JP4618101B2 (en) Elevator control operation device
JP6521887B2 (en) Elevator system, method for controlling operation of elevator system and non-transitory computer readable medium
JP5046613B2 (en) Elevator equipment
JP2017160050A (en) Method for controlling shaking of elevator cable connected to elevator car and elevator system
JP2014097871A (en) Operation control method for elevator and operation control device therefor
JP5033355B2 (en) Elevator equipment
JP2010052924A (en) Control device of elevator
JP2008133105A (en) Device for detecting rope-sway of elevator
JP5973929B2 (en) Elevator control operation apparatus and method
JP2010184747A (en) Elevator device
JP2008044701A (en) Earthquake emergency operation device for elevator
JP2011051739A (en) Control device of elevator
JP2010070298A (en) Emergency operation device for elevator
JP2008114958A (en) Elevator device
JP2008081290A (en) Rope rolling detector for elevator
JP5562196B2 (en) Elevator control command device, elevator device, and elevator system
JP2010083629A (en) Control device and program for coping with earthquake
JP5271071B2 (en) Earthquake response control device and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106