JP5031193B2 - Metal porous negative electrode and lithium secondary battery using the same - Google Patents

Metal porous negative electrode and lithium secondary battery using the same Download PDF

Info

Publication number
JP5031193B2
JP5031193B2 JP2005074936A JP2005074936A JP5031193B2 JP 5031193 B2 JP5031193 B2 JP 5031193B2 JP 2005074936 A JP2005074936 A JP 2005074936A JP 2005074936 A JP2005074936 A JP 2005074936A JP 5031193 B2 JP5031193 B2 JP 5031193B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
metal
secondary battery
alloyed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005074936A
Other languages
Japanese (ja)
Other versions
JP2006260886A (en
Inventor
聖志 金村
薫 獨古
明彦 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2005074936A priority Critical patent/JP5031193B2/en
Publication of JP2006260886A publication Critical patent/JP2006260886A/en
Application granted granted Critical
Publication of JP5031193B2 publication Critical patent/JP5031193B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム二次電池に関し、特にリチウム二次電池の負極として金属製の多孔質体のものを使用した長寿命、高出力のリチウム二次電池に関する。   The present invention relates to a lithium secondary battery, and more particularly to a long-life, high-power lithium secondary battery using a metal porous body as a negative electrode of a lithium secondary battery.

近年、携帯電話やラップトップコンピュータ、あるいはカメラ一体型VTRなどの携帯機器が大きな市場を形成している。
これら携帯機器に用いる電源として、軽量、小型、高エネルギー密度を有する二次電池の要望が強い。特に、リチウムイオン二次電池は、前記した要求特性の点で他の二次電池に比較して優位性があり、活発な研究開発が行われている。
In recent years, portable devices such as mobile phones, laptop computers, and camera-integrated VTRs have formed a large market.
There is a strong demand for a secondary battery having a light weight, a small size, and a high energy density as a power source used in these portable devices. In particular, lithium ion secondary batteries are superior to other secondary batteries in terms of the required characteristics described above, and active research and development are being performed.

従来、金属リチウムを負極に使用した二次電池は、民生用として、一時期、通信機器用に開発されたことがある。しかしながら、前記金属リチウム製の負極は、充電時、負極表面に析出するデンドライト(樹脂状結晶)、あるいは活性な粒状のリチウムの生成などにより、電池の安全性と電池性能が損なわれるという重大な問題があった。   Conventionally, a secondary battery using metallic lithium as a negative electrode has been developed for communication equipment for a period of time for consumer use. However, the negative electrode made of metallic lithium has a serious problem that the safety and battery performance of the battery are impaired due to the formation of dendrites (resin-like crystals) deposited on the negative electrode surface or active granular lithium during charging. was there.

このため、負極として黒船、コークス、石炭及び石油ピッチ焼成物等の炭素材料を使うなどの方策が取られてきた。   For this reason, measures such as using black materials such as black ship, coke, coal, and petroleum pitch fired products as the negative electrode have been taken.

前記した負極材料において、例えば黒鉛を負極に用いる場合、リチウムは黒鉛層間に吸蔵されることにより充放電がなされる。この場合、負極表面でのリチウム金属の析出が起きないため、内部短絡が電池の充電中におきることがなく、充電と放電を繰り返すことができる長寿命の電池を構成することが可能である。
しかしながら、黒鉛はリチウムイオンの黒鉛結晶中へのインターカレーションを充放電の原理としているため、最大リチウム導入化合物であるLiCから計算して、372mAh/g以上の充放電容量が得られないという欠点がある。
In the negative electrode material described above, for example, when graphite is used for the negative electrode, lithium is charged and discharged by occlusion between the graphite layers. In this case, since deposition of lithium metal on the negative electrode surface does not occur, an internal short circuit does not occur during the charging of the battery, and a long-life battery that can be repeatedly charged and discharged can be configured.
However, since graphite uses the intercalation of lithium ions into the graphite crystal as the principle of charge / discharge, it cannot be obtained a charge / discharge capacity of 372 mAh / g or more calculated from LiC 6 which is the maximum lithium introduction compound. There are drawbacks.

一方、負極にリチウムと合金化する金属材料を使う研究も鋭意行われている。
このリチウムと合金を形成する金属材料を負極材料とするものにおいては、黒鉛の充放電容量372mAh/gよりも大きな容量が得られることが報告されている。これまで、スズ、シリコン、及びこれらを含む材料がリチウムと合金を形成し、372mAh/gよりも大きな容量が得られたことが報告され、大容量負極材料として注目を集めている。
しかしながら、これらの負極はリチウムと合金を形成する際に、大きな体積膨張を起こすため、充電と放電を繰り返すことにより合金が微粉化し、これにより集電が損なわれるため容量が減少してしまうという欠点がある。さらに、充電にともなう負極の体積膨張は電池の内圧を増加させるため、電池が破裂する危険性などがある。
On the other hand, research into using a metal material alloyed with lithium for the negative electrode has also been conducted.
It has been reported that when a metal material that forms an alloy with lithium is used as a negative electrode material, a capacity larger than the charge / discharge capacity of 372 mAh / g of graphite can be obtained. So far, it has been reported that tin, silicon, and materials containing them form an alloy with lithium and a capacity higher than 372 mAh / g has been obtained, and is attracting attention as a large capacity negative electrode material.
However, these negative electrodes cause a large volume expansion when forming an alloy with lithium, so that the alloy is pulverized by repeating charging and discharging, and the current collection is impaired thereby reducing the capacity. There is. Furthermore, since the volume expansion of the negative electrode accompanying charging increases the internal pressure of the battery, there is a risk that the battery will burst.

前記リチウムと合金化する金属材料をリチウムイオン二次電池用負極としたものにおいて、実使用に耐える電極およびその作製方法は難しく、未だに完成の域に到達していないのが現状である。
即ち、実用化を阻む最大の問題は、負極材料がリチウムと合金を形成する際の体積変化に起因するということができる。従って、前記問題点を解決したリチウムと合金化する金属材料を用いた負極の完成が熱望されている。
In the case where the metal material alloyed with lithium is used as a negative electrode for a lithium ion secondary battery, an electrode that can withstand actual use and a method for manufacturing the electrode are difficult, and the state of completion has not yet been reached.
That is, it can be said that the biggest problem that impedes commercialization is due to volume change when the negative electrode material forms an alloy with lithium. Therefore, the completion of a negative electrode using a metal material that can be alloyed with lithium, which has solved the above problems, is eagerly desired.

本発明の第一の目的は、リチウム二次電池用の長寿命、高出力のリチウムと合金化する金属製の多孔質負極を提供することにある。
また、本発明の第二の目的は、かかる金属製の多孔質負極を用いて、充放電サイクルの安定性と高出力性に優れたリチウム二次電池を提供することにある。
A first object of the present invention is to provide a metal porous negative electrode that is alloyed with lithium having a long life and high output for a lithium secondary battery.
In addition, a second object of the present invention is to provide a lithium secondary battery having excellent charge / discharge cycle stability and high output performance using such a metal porous negative electrode.

本発明を概説すれば、本発明の第1の発明は、リチウム二次電池用のリチウムと合金化する金属製の多孔質負極であって、電気泳動により又は高分子粒子の懸濁液を導電性基板上で乾燥させることにより高分子粒子を導電性基板上に規則配列構造となるように堆積した後、80〜120℃で熱処理を行い、その後にリチウムと合金化する金属を被覆し、被覆後に前記高分子粒子を溶解、除去して形成した孔が規則配列構造で備えられていることを特徴とし、気孔率が10〜98%、孔径が0.05〜100μmであることを特徴とするリチウム二次電池用のリチウムと合金化する金属製の多孔質負極に関する。
また、本発明の第2の発明は、前記リチウムと合金化する金属製の多孔質負極を用いたリチウム二次電池に関する。
Briefly describing the present invention, the first invention of the present invention is a metal porous negative electrode that is alloyed with lithium for a lithium secondary battery, wherein the suspension of polymer particles is electrically conductive by electrophoresis. After the polymer particles are deposited on the conductive substrate so as to have a regular array structure by drying on the conductive substrate, heat treatment is performed at 80 to 120 ° C., and then the metal alloying with lithium is coated. It is characterized in that pores formed by dissolving and removing the polymer particles later are provided in a regular arrangement structure, characterized in that the porosity is 10 to 98% and the pore diameter is 0.05 to 100 μm. The present invention relates to a metal porous negative electrode that is alloyed with lithium for a lithium secondary battery.
In addition, a second invention of the present invention relates to a lithium secondary battery using a metal porous negative electrode alloyed with lithium.

本発明のリチウムと合金化する金属製の多孔質負極は、リチウム二次電池に使用した場合、従来の黒鉛負極の理論充放電容量372mAh/g以上の充放電容量を有し、電子デバイスに搭載できる小型軽量化が可能な高出力リチウム二次電池を提供することができる。また、本発明のリチウムと合金化する金属製の多孔質負極は、繰り返し充放電を行っても安定に動作するため、それを使用したリチウム二次電池は、長寿命で高出力が実現できるという優れた効果を有している。   The metal porous negative electrode alloyed with lithium of the present invention has a charge / discharge capacity of 372 mAh / g or more of a conventional graphite negative electrode when used in a lithium secondary battery, and is mounted on an electronic device. A high-power lithium secondary battery that can be reduced in size and weight can be provided. In addition, the metal porous negative electrode that is alloyed with lithium according to the present invention operates stably even after repeated charging and discharging, so that a lithium secondary battery using the same can achieve a long life and high output. Has an excellent effect.

以下、本発明の技術的構成及び実施態様について詳しく説明する。
なお、以下、本発明の技術的構成及び実施態様を参照図面及び実施例により説明するが、本発明はこれらのものに限定されるものではない。
The technical configuration and embodiments of the present invention will be described in detail below.
The technical configuration and embodiments of the present invention will be described below with reference to the drawings and examples, but the present invention is not limited to these.

前記したように、リチウム二次電池の負極は、充放電サイクルにおいて負極を構成する材料とリチウムが合金を形成する際、大きな体積変化を起こし、これが高性能のリチウム二次電池の実現、実用化を阻んでいる。
本発明者らは、リチウム二次電極の負極側に生起する大きな体積変化(体積膨張)は、図1に示す多孔質構造体により図2に示されるように効果的に吸収・緩和されることを初めて見い出した。これが本発明のベースになっている。
As described above, the negative electrode of the lithium secondary battery undergoes a large volume change when the lithium and the material constituting the negative electrode form an alloy in the charge / discharge cycle, which realizes and commercializes a high-performance lithium secondary battery. Is blocking.
The present inventors show that the large volume change (volume expansion) occurring on the negative electrode side of the lithium secondary electrode is effectively absorbed and relaxed by the porous structure shown in FIG. 1 as shown in FIG. For the first time. This is the basis of the present invention.

本発明は、前記知見をベースにしてリチウム二次電池用の負極を構成したものであり、本発明のリチウムと合金化する金属製多孔質負極はリチウム二次電池の負極として新規なものである。
今日、多孔質の負極材料としては、炭素材料系のものが知られているが、これと比較して本発明のものは大きな充放電容量を示すとともに、充放電サイクルの安定性においても、高い性能を示している。
The present invention comprises a negative electrode for a lithium secondary battery based on the above knowledge, and the metal porous negative electrode alloyed with lithium according to the present invention is a novel negative electrode for a lithium secondary battery. .
Today, as a porous negative electrode material, a carbon material-based material is known. Compared with this, the material of the present invention exhibits a large charge / discharge capacity, and also has a high charge / discharge cycle stability. Shows performance.

本発明の理解に資するため、まず、リチウムと合金化する金属製の多孔質負極の作製方法から説明する。   In order to contribute to an understanding of the present invention, first, a method for producing a metal porous negative electrode alloyed with lithium will be described.

本発明のリチウムと合金化する金属製の多孔質負極(以下、単に金属製の多孔質負極ということがある。)は、鍍金(メッキ)技術などにより作製すればよい。
導電性基板上にポリスチレンやPMMAなどの高分子の粒子を堆積し、これにリチウムと合金化する金属を鍍金により施した後、高分子の粒子を取り除くことにより金属の多孔体(多孔質体)を作製することができる。
前記導電性基板としては、電子導電性を有する材料であれば公知のものをすべて使用することができるが、特にリチウムと合金を形成しない材料が好ましい。このような材料としては銅、ニッケル、ステンレスなどが挙げられるが、銅が好適に使用される。導電性基板の形状は、板状あるいは箔状のものが実用的である。
The metallic porous negative electrode (hereinafter sometimes simply referred to as a metallic porous negative electrode) that is alloyed with lithium according to the present invention may be produced by a plating technique or the like.
Polymer particles such as polystyrene and PMMA are deposited on a conductive substrate, a metal alloying with lithium is plated on it, and then the polymer particles are removed to remove the polymer particles. Can be produced.
Any known material can be used as the conductive substrate as long as it is a material having electronic conductivity, but a material that does not form an alloy with lithium is particularly preferable. Examples of such a material include copper, nickel, and stainless steel, and copper is preferably used. As the shape of the conductive substrate, a plate shape or a foil shape is practical.

前記高分子の粒子としては、例えば0.05〜100μmのものを用いればよい。使用する高分子粒子の粒径によって、得られる多孔体(多孔質体)の孔径を制御することが可能である。   The polymer particles may be 0.05 to 100 μm, for example. The pore diameter of the resulting porous body (porous body) can be controlled by the particle diameter of the polymer particles used.

前記高分子の粒子を導電性基板上に堆積する方法としては、電気泳動を用いることができる。また、粒子の懸濁液を導電性基板上で乾燥させることによっても堆積することができる。粒子を堆積する厚みは、例えば300ミクロン以下であり、好ましくは50〜100ミクロン程度に調節すればよい。また、粒子が導電性基板上で最密充填構造をとるようにすることが好ましい。   Electrophoresis can be used as a method for depositing the polymer particles on the conductive substrate. It can also be deposited by drying a suspension of particles on a conductive substrate. The thickness for depositing the particles is, for example, 300 microns or less, and preferably adjusted to about 50 to 100 microns. Further, it is preferable that the particles have a close-packed structure on the conductive substrate.

前記のようにして高分子粒子を導電性基板上に堆積した後、80〜120℃程度で熱処理を行うことにより、高分子粒子の粒子間を融着してもよい。この熱処理を行うことにより、鍍金浴に基板を浸漬する際、および鍍金中も粒子が固定された状態になる。粒子が導電性基板上で規則配列構造をしている場合、最終的に得られる多孔構造も規則配列構造を持つことになる。   After the polymer particles are deposited on the conductive substrate as described above, the particles of the polymer particles may be fused by performing a heat treatment at about 80 to 120 ° C. By performing this heat treatment, the particles are fixed when the substrate is immersed in the plating bath and in the plating. When the particles have a regular array structure on the conductive substrate, the finally obtained porous structure also has a regular array structure.

前記のようにして導電性基板上に高分子粒子を堆積した後、リチウムと合金化する金属を鍍金などにより施す。鍍金による場合、鍍金浴には公知の鍍金浴を用いることができる。鍍金する金属としては、リチウムイオンを含む電解液中でリチウムと合金化することができる金属及びその合金が好適に用いられる。本発明において、リチウムと合金化する金属は、前記したように合金も含まれることに留意すべきである。
この種のリチウムと合金化する金属又は合金としては、所望のものを使用すればよく、例えば鍍金による場合、スズまたはスズを含む合金、鉛、銀などがあるが、材料コストを考えるとスズまたはSn−Niなどのスズ合金が実用的である。スズ合金の場合、スズの含有量は例えば5wt%〜99.995wt%の範囲内のものを使用すればよい。
After the polymer particles are deposited on the conductive substrate as described above, a metal alloying with lithium is applied by plating or the like. In the case of plating, a known plating bath can be used for the plating bath. As the metal to be plated, a metal that can be alloyed with lithium in an electrolyte containing lithium ions and an alloy thereof are preferably used. In the present invention, it should be noted that the metal alloying with lithium includes an alloy as described above.
As a metal or alloy to be alloyed with this kind of lithium, a desired metal may be used. For example, in the case of plating, tin or an alloy containing tin, lead, silver, etc. Tin alloys such as Sn-Ni are practical. In the case of a tin alloy, the tin content may be within a range of 5 wt% to 99.995 wt%, for example.

前記のようにしてリチウムを合金化する金属を例えば鍍金により施した後、試料片をトルエン、アセトン、テトラヒドロフランなどの有機溶媒中に浸漬することにより、高分子粒子を溶解させて除去する。このようにして、多孔構造を有するSnまたはSn合金などの多孔質金属層を導電性基板上に作製することができる。
本発明において、リチウムと合金化する金属製の多孔質負極として、前記作製方法により、気孔率が10〜98%、孔径が0.05〜100μmのものを作製すればよい。なお、前記気孔率は、金属製多孔質電極の機械的強度などを考慮して所望に設定すればよく、例えば50〜80%に設定すればよい。また、前記孔径はリチウムとの合金化による体積変化の吸収、緩和能を考慮して所望に設定すればよく、例えば0.05〜5μmに設定すればよい。
前記金属製の多孔質負極の多孔構造は、図1に示すような構造のものである。
After applying the metal for alloying lithium as described above by, for example, plating, the polymer particles are dissolved and removed by immersing the sample piece in an organic solvent such as toluene, acetone, or tetrahydrofuran. In this way, a porous metal layer such as Sn or Sn alloy having a porous structure can be formed on the conductive substrate.
In the present invention, as a metal porous negative electrode alloyed with lithium, a porous negative electrode having a porosity of 10 to 98% and a pore diameter of 0.05 to 100 μm may be produced by the production method. The porosity may be set as desired in consideration of the mechanical strength of the metal porous electrode, and may be set, for example, at 50 to 80%. Further, the pore diameter may be set as desired in consideration of absorption and relaxation ability of volume change due to alloying with lithium, for example, 0.05 to 5 μm.
The porous structure of the metal porous negative electrode has a structure as shown in FIG.

次に、本発明の前記金属製の多孔質負極を用いたリチウム二次電池の作製方法について説明する。
本発明において、前記金属製の多孔質負極、例えばSn合金製の多孔質負極をそのまま利用してリチウム二次電池を構成すればよい。また、負極を電池の大きさに合わせて所望の大きさに切断して利用してもよい。
Next, a method for producing a lithium secondary battery using the metal porous negative electrode of the present invention will be described.
In the present invention, a lithium secondary battery may be configured by directly using the metal porous negative electrode, for example, a Sn negative electrode made of an Sn alloy. Moreover, you may cut | disconnect and use a negative electrode to a desired magnitude | size according to the magnitude | size of a battery.

前記したSn合金製多孔質負極板、及び以下に説明する電解液、正極板、その他の電池構成要素であるセパレータ、ガスケット、集電体、封口板、セルケース等を組合わせてリチウム二次電池を構成する。
作製可能な電池の形状は、筒型、角型、コイン型など特に限定されるものではないが、基本的にはセル床板上に負極板を乗せ、その上に電解液とセパレータを、さらに負極と対向するように正極を乗せ、ガスケット、封口板と共にかしめて二次電池とすればよい。
A lithium secondary battery comprising a combination of the above-described Sn alloy porous negative electrode plate and an electrolyte solution, positive electrode plate, and other battery constituent elements such as a separator, gasket, current collector, sealing plate, cell case, etc. Configure.
The shape of the battery that can be produced is not particularly limited, such as a cylindrical shape, a square shape, or a coin shape. Basically, a negative electrode plate is placed on the cell floor plate, and an electrolyte and a separator are further formed thereon. The positive electrode is placed so as to face the electrode, and it is caulked together with the gasket and the sealing plate to form a secondary battery.

電解液に使用できる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、1,2−ジメトキシエタン、γ−プチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、スルホラン、1,3−ジオキソラン等の有機溶媒の単独または二種類以上を混合したものを用いることができる。   Non-aqueous solvents that can be used for the electrolyte include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, 1,2-dimethoxyethane, γ-ptyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, sulfolane, 1,3 A single organic solvent such as dioxolane or a mixture of two or more organic solvents can be used.

これらの溶媒に0.5〜2.0 M程度のLiClO,LiPF,LiBF,LiCFSO,LiA等の電解質を溶解して電解液とすればよい。 An electrolyte such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiA 3 F 3 or the like of about 0.5 to 2.0 M may be dissolved in these solvents.

本発明において、電解質としてリチウムイオンなどのアルカリ金属カチオンの導電体である高分子固体電解質を用いることもできる。   In the present invention, a polymer solid electrolyte that is a conductor of an alkali metal cation such as lithium ion can also be used as the electrolyte.

正極体の材料としては、特に限定されないが、リチウムイオンなどのアルカリ金属カチオンを充放電時に吸蔵、放出できる金属カルコゲン化合物などが好ましい。
前記した金属カルコゲン化合物としては、バナジウムの酸化物、バナジウムの硫化物、モリブデンの酸化物、モリブデンの硫化物、マンガンの酸化物、クロムの酸化物、チタンの酸化物、チタンの硫化物及びこれらの複合酸化物、複合硫化物が挙げられる。好ましくは、Cr,V,V18,VO,Cr,MnO,TiO,MoV,TiSMoS,MoSVS,Cr0.250.75,Cr0.50.5等である。
また、LiMY(Mは、Co,Ni等の遷移金属、YはO,S等のカルコゲン化合物),LiM(MはMn、YはO),WO等の酸化物、CuS,Fe0.250.75,Na0.1CrS等の硫化物、NiPS,FePS等のリン、硫黄化合物、VSe, NbSe等のセレン化合物等を用いることもできる。
前記した正極材料を結着剤と混合して集電体の上に塗布し、正極板とすればよい。
The material of the positive electrode body is not particularly limited, but a metal chalcogen compound that can occlude and release alkali metal cations such as lithium ions during charge and discharge is preferable.
Examples of the metal chalcogen compound include vanadium oxide, vanadium sulfide, molybdenum oxide, molybdenum sulfide, manganese oxide, chromium oxide, titanium oxide, titanium sulfide, and the like. Examples include composite oxides and composite sulfides. Preferably, Cr 3 O 8 , V 2 O 5 , V 5 O 18 , VO 2 , Cr 2 O 5 , MnO 2 , TiO 2 , MoV 2 O 8 , TiS 2 V 2 S 5 MoS 2 , MoS 3 VS 2 Cr 0.25 V 0.75 S 2 , Cr 0.5 V 0.5 S 2, etc.
In addition, LiMY 2 (M is a transition metal such as Co and Ni, Y is a chalcogen compound such as O and S), LiM 2 Y 4 (M is Mn and Y is O), an oxide such as WO 3 , CuS, Sulfides such as Fe 0.25 V 0.75 S 2 and Na 0.1 CrS 2 , phosphorus such as NiPS 8 and FePS 8 , sulfur compounds, selenium compounds such as VSe 2 and NbSe 3, and the like can also be used.
The positive electrode material described above may be mixed with a binder and applied onto a current collector to form a positive electrode plate.

電解液を保持するセパレータは、一般的に保液性に優れた材料を使用すればよい。例えば、ポリオレフィン系樹脂の不織布や多孔性フィルムなどを使用すればよい。これらは前記電解液を含浸させることで機能を発現させることができる。   The separator that holds the electrolytic solution may be made of a material that is generally excellent in liquid retention. For example, a polyolefin resin nonwoven fabric or a porous film may be used. These functions can be expressed by impregnating the electrolytic solution.

次に、実施例により本発明を更に詳しく説明するが、実施例は本発明を詳しく説明するためのものであり、本発明がこれらの実施例によってなんらの制約も受けないことは断るまでもない。なお、以下にいう「部」は全て重量部である。   EXAMPLES Next, the present invention will be described in more detail with reference to examples. However, the examples are for explaining the present invention in detail, and it is needless to say that the present invention is not restricted by these examples. . The “parts” described below are all parts by weight.

(1).スズ−ニッケル合金系多孔質負極の調製
ポリスチレンの単分散球状粒子(直径1μm)をエタノールに分散させた懸濁液を調製した。これを用いてCu基板上に電気泳動法によってポリスチレン粒子を堆積させた。
電気泳動の条件として、対向電極にNi板を用い、電極間距離を1cm、印加電圧を5V、泳動時間を10分とした。
電気泳動後に、Cu基板上のポリスチレンを乾燥させ、ポリスチレン粒子を堆積させた試料にスズ−ニッケル合金鍍金浴を用いて鍍金した。
鍍金浴の組成はSn2+イオンを含むものを用いた。即ち、塩化ニッケル、塩化スズ、グリシン、ピロリン酸カリウム、アンモニア水溶液それぞれ0.075molL−1、0.175molL−1、0.125molL−1、0.5molL−1,5mlL−1の濃度になるように蒸留水に溶解させたものを用いた。鍍金条件として、陰極電流密度を360μA/cm、鍍金浴の浴温度を50℃に設定した。鍍金を行った後、ポリスチレン粒子をトルエンで溶出した。
(1). Preparation of Tin-Nickel Alloy Porous Negative Electrode A suspension of polystyrene monodispersed spherical particles (diameter 1 μm) dispersed in ethanol was prepared. Using this, polystyrene particles were deposited on a Cu substrate by electrophoresis.
As electrophoresis conditions, a Ni plate was used as the counter electrode, the distance between the electrodes was 1 cm, the applied voltage was 5 V, and the migration time was 10 minutes.
After electrophoresis, the polystyrene on the Cu substrate was dried, and the sample on which the polystyrene particles were deposited was plated using a tin-nickel alloy plating bath.
As the composition of the plating bath, one containing Sn 2+ ions was used. That is, nickel chloride, tin chloride, glycine, potassium pyrophosphate, aqueous ammonia respectively 0.075molL -1, 0.175molL -1, 0.125molL -1 , 0.5molL -1, to a concentration of 5MlL -1 What was dissolved in distilled water was used. As the plating conditions, the cathode current density was set to 360 μA / cm 2 and the bath temperature of the plating bath was set to 50 ° C. After plating, the polystyrene particles were eluted with toluene.

前記のようにして得られたスズ−ニッケル合金多孔体の組成はNi73Sn27であり、面積1cm、厚さは3μm、重量は650μgであった。
また、前記のようにして得られた多孔体の電子顕微鏡写真を図3に示す。図3に示されるように、1μmの均一な孔が多数形成されており、かつ連通孔が形成されていることも分る。
The composition of the tin-nickel alloy porous body obtained as described above was Ni 73 Sn 27 , the area was 1 cm 2 , the thickness was 3 μm, and the weight was 650 μg.
Moreover, the electron micrograph of the porous body obtained as mentioned above is shown in FIG. As shown in FIG. 3, it can be seen that a large number of uniform holes of 1 μm are formed and communication holes are formed.

(2).スズ−ニッケル合金系多孔質負極の性能評価
前記のように得られた電極(負極)を2電極式電気化学測定に基づき、リチウムイオンの充放電性能を評価した。
なお、リチウムイオンを含む電解質として、エチレンカーボネートとジメチルカーボネートを体積比1:1の比率で混合した溶媒に、LiCiOを1mol/Lの割合で溶解させたものを使用した。
測定は、ガラスセルを用いて、アルゴン雰囲気下のグローブボックス内で、1気圧下で行った。
(2). Performance Evaluation of Tin-Nickel Alloy Porous Negative Electrode The lithium ion charge / discharge performance of the electrode (negative electrode) obtained as described above was evaluated based on the two-electrode electrochemical measurement.
As the electrolyte containing lithium ions, a solution in which LiCiO 4 was dissolved at a rate of 1 mol / L in a solvent in which ethylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1 was used.
The measurement was performed at 1 atm in a glove box under an argon atmosphere using a glass cell.

電流密度を0.05mA/cmとして充放電試験を行った結果を、図4に示す。1V以下の電圧で電圧平坦部が観察される。図4の充放電曲線から450mAh/g程度の充放電容量を示すことがわかる。この充放電容量は、黒鉛の理論充放電容量372mAh/gよりも大きく本発明の負極が優れていることを示している。また、本発明の負極は、充電と放電を繰り返しても容量の顕著な減少は観察されず、かつ安定性と耐久性に優れている。 The results of a charge / discharge test with a current density of 0.05 mA / cm 2 are shown in FIG. A voltage flat portion is observed at a voltage of 1 V or less. It can be seen from the charge / discharge curve of FIG. 4 that the charge / discharge capacity is about 450 mAh / g. This charge / discharge capacity is larger than the theoretical charge / discharge capacity of 372 mAh / g of graphite, indicating that the negative electrode of the present invention is superior. In addition, the negative electrode of the present invention does not show a significant decrease in capacity even after repeated charging and discharging, and is excellent in stability and durability.

充放電後の負極の電子顕微鏡写真を図5に示す。充放電後においても多孔構造が観察された。このことは、充放電にともなう負極の体積の膨張を多孔構造が効果的に吸収、緩和していることを意味するものである。   The electron micrograph of the negative electrode after charging / discharging is shown in FIG. A porous structure was observed even after charge and discharge. This means that the porous structure effectively absorbs and relaxes the expansion of the volume of the negative electrode accompanying charge / discharge.

金属製の多孔質負極の多孔構造を説明する図である。It is a figure explaining the porous structure of a metal porous negative electrode. 金属製の多孔質負極がリチウムと合金化するときの体積膨張を多孔構造が吸収緩和できることを説明する図である。It is a figure explaining that a porous structure can absorb and relieve the volume expansion when a metallic porous negative electrode is alloyed with lithium. 本発明のスズ−ニッケル合金系多孔質負極の電子顕微鏡写真である。It is an electron micrograph of the tin-nickel alloy type porous negative electrode of the present invention. 本発明のスズ−ニッケル合金系多孔質負極の充放電測定結果を示す図である。It is a figure which shows the charging / discharging measurement result of the tin-nickel alloy type porous negative electrode of this invention. 本発明のスズ−ニッケル合金系多孔質負極の充放電測定後の電子顕微鏡写真である。It is an electron micrograph after the charge-discharge measurement of the tin-nickel alloy type porous negative electrode of the present invention.

Claims (4)

リチウム二次電池用のリチウムと合金化する金属製の多孔質負極であって、
電気泳動により又は高分子粒子の懸濁液を導電性基板上で乾燥させることにより高分子粒子を導電性基板上に規則配列構造となるように堆積した後、80〜120℃で熱処理を行い、の後にリチウムと合金化する金属を被覆し、被覆後に前記高分子粒子を溶解、除去して形成した孔が規則配列構造で備えられ、その気孔率が10〜98%、孔径が0.05〜100μmであることを特徴とするリチウム二次電池用のリチウムと合金化する金属製の多孔質負極。
A metal porous negative electrode alloyed with lithium for a lithium secondary battery,
After polymer particles are deposited on the conductive substrate so as to have a regular array structure by electrophoresis or by drying a suspension of polymer particles on the conductive substrate , heat treatment is performed at 80 to 120 ° C., coating the metal alloyed with lithium on later, dissolving the polymer particles after coating, holes formed by removing is provided in a regular array structure, the porosity of 10 to 98 percent, pore sizes 0. A metal porous negative electrode which is alloyed with lithium for a lithium secondary battery, characterized by having a thickness of 05 to 100 μm.
前記リチウムと合金化する金属が、スズまたはスズ合金である請求項1に記載のリチウムと合金化する金属製の多孔質負極。   The metal-made porous negative electrode to be alloyed with lithium according to claim 1, wherein the metal to be alloyed with lithium is tin or a tin alloy. 前記リチウムと合金化する金属製の多孔質負極が、導電性基板上に鍍金により作製されたものである請求項1又は2に記載のリチウムと合金化する金属製の多孔質負極。 The metal porous negative electrode which is alloyed with lithium according to claim 1 or 2, wherein the metal porous negative electrode which is alloyed with lithium is produced by plating on a conductive substrate. 請求項1〜3のいずれか1項に記載のリチウムと合金化する金属製の多孔質負極を用いて成るリチウム二次電池。   The lithium secondary battery which uses the metal porous negative electrode which alloys with lithium of any one of Claims 1-3.
JP2005074936A 2005-03-16 2005-03-16 Metal porous negative electrode and lithium secondary battery using the same Expired - Fee Related JP5031193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005074936A JP5031193B2 (en) 2005-03-16 2005-03-16 Metal porous negative electrode and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005074936A JP5031193B2 (en) 2005-03-16 2005-03-16 Metal porous negative electrode and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2006260886A JP2006260886A (en) 2006-09-28
JP5031193B2 true JP5031193B2 (en) 2012-09-19

Family

ID=37099891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005074936A Expired - Fee Related JP5031193B2 (en) 2005-03-16 2005-03-16 Metal porous negative electrode and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5031193B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100949332B1 (en) * 2007-08-24 2010-03-26 삼성에스디아이 주식회사 Electrode for rechargeable lithium battery and rechargeable lithium battery including same
JP5495887B2 (en) 2009-04-28 2014-05-21 株式会社デンソー Negative electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
KR101097244B1 (en) 2009-09-02 2011-12-21 삼성에스디아이 주식회사 Negative electrode for lithium battery and lithium battery comprising the same
KR101351896B1 (en) * 2010-06-28 2014-01-22 주식회사 엘지화학 Anode For Cable Type Secondary Battery And Cable Type Secondary Battery Having The Same
JP5787307B2 (en) * 2010-07-23 2015-09-30 東京応化工業株式会社 Porous electrode for secondary battery
GB201014706D0 (en) * 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
JP5598861B2 (en) * 2010-09-17 2014-10-01 古河電気工業株式会社 Porous silicon particles and method for producing the same
CN103118976B (en) 2010-09-17 2016-07-06 古河电气工业株式会社 Porous silicon particle and Porous silicon complex particles and their manufacture method
KR101351901B1 (en) * 2010-10-19 2014-01-17 주식회사 엘지화학 Anode For Cable Type Secondary Battery And Preparation Method thereof
JP5759169B2 (en) * 2010-12-24 2015-08-05 住友電気工業株式会社 Metal porous body having high corrosion resistance and method for producing the same
KR101818085B1 (en) 2010-12-08 2018-01-12 스미토모덴키고교가부시키가이샤 Highly corrosion-resistant porous metal body and method for producing the same
JP2012164632A (en) * 2011-01-20 2012-08-30 Mitsubishi Materials Corp Composite for negative electrode of lithium ion secondary battery, and negative electrode of lithium ion secondary battery comprising the same
JP5652366B2 (en) * 2011-01-20 2015-01-14 三菱マテリアル株式会社 Composition for negative electrode of lithium ion secondary battery and negative electrode of lithium ion secondary battery using the same
KR101506451B1 (en) 2012-04-16 2015-03-30 주식회사 엘지화학 Anode for Secondary Battery
JP2013229111A (en) * 2012-04-24 2013-11-07 Showa Denko Kk Negative electrode active material for lithium secondary battery and manufacturing method therefor
JP2014017259A (en) * 2013-09-24 2014-01-30 Tokyo Metropolitan Univ Method of manufacturing negative electrode for nonaqueous electrolyte secondary battery
CN107615427A (en) * 2015-04-09 2018-01-19 林科闯 Electrode material and energy storage devices
JP7115874B2 (en) * 2018-03-07 2022-08-09 トヨタ自動車株式会社 Battery manufacturing method
KR20220115754A (en) * 2021-02-10 2022-08-18 삼성에스디아이 주식회사 Negative electrode layer for all solid secondary battery, all solid secondary battery including the same, and preparing method of the all solid secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463268A (en) * 1987-09-02 1989-03-09 Kanebo Ltd Organic electrolytic battery using aluminum-lithium alloyed porous body for negative electrode
JPH11233116A (en) * 1998-02-16 1999-08-27 Canon Inc Electrode structural body for lithium secondary battery, its manufacture and lithium secondary battery
JP2002367602A (en) * 2001-06-06 2002-12-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell
JP2003157833A (en) * 2001-11-19 2003-05-30 Daiwa Kasei Kenkyusho:Kk Negative electrode for lithium secondary battery and its manufacturing method
JP3992529B2 (en) * 2002-04-12 2007-10-17 日立マクセル株式会社 Nonaqueous electrolyte secondary battery
JP2004022512A (en) * 2002-06-20 2004-01-22 Sony Corp Negative electrode material and battery using the same
JP2004039491A (en) * 2002-07-04 2004-02-05 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005294013A (en) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd Precursor battery and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2006260886A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP5031193B2 (en) Metal porous negative electrode and lithium secondary battery using the same
JP4777593B2 (en) Method for producing lithium ion secondary battery
US7468224B2 (en) Battery having improved positive electrode and method of manufacturing the same
KR101505106B1 (en) Anode active material for lithium secondary battery and preparation method of thereof
RU2631239C2 (en) Method of producing a layer of active material of positive electrode for lithium-ion battery and layer of active material of positive electrode for lithium-ion accumulator
KR100842930B1 (en) Negative electrode for using lithium secondary battery, and lithium secondary battery comprising the same
WO2013094100A1 (en) Positive electrode for secondary batteries, and secondary battery using same
JP2009099495A (en) Lithium secondary battery
JP5782616B2 (en) Lithium secondary battery
KR20190083304A (en) A method of pre-lithiating anode and Anode manufactured therefrom
JP3157079B2 (en) Manufacturing method of lithium secondary battery
JP2004039491A (en) Nonaqueous electrolyte secondary battery
JP7215526B2 (en) metal negative electrode secondary battery
JP6567289B2 (en) Lithium ion secondary battery
JP3140880B2 (en) Lithium secondary battery
JP2023513815A (en) Anode piece, battery and electronic device employing said electrode piece
WO2014188474A1 (en) Negative electrode active material for lithium ion secondary batteries, lithium ion secondary battery, and method for manufacturing lithium ion secondary battery
JP4316461B2 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
US20240136499A1 (en) Anodeless all-solid-state battery including composite structure layer and manufacturing method thereof
JP6832474B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery
KR101505218B1 (en) Lithium secondary battery comprising a fast-charging anode without life cycle shortening
JP2011171177A (en) Lithium ion secondary battery
JP2836379B2 (en) Non-aqueous electrolyte secondary battery
JP2001185095A (en) Secondary battery
JP2705434B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070814

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees