JP5030139B2 - Method for promoting low temperature oxidation using noble metal nanoparticles supported metal oxide catalyst - Google Patents

Method for promoting low temperature oxidation using noble metal nanoparticles supported metal oxide catalyst Download PDF

Info

Publication number
JP5030139B2
JP5030139B2 JP2006229080A JP2006229080A JP5030139B2 JP 5030139 B2 JP5030139 B2 JP 5030139B2 JP 2006229080 A JP2006229080 A JP 2006229080A JP 2006229080 A JP2006229080 A JP 2006229080A JP 5030139 B2 JP5030139 B2 JP 5030139B2
Authority
JP
Japan
Prior art keywords
oxidation reaction
low
temperature
noble metal
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006229080A
Other languages
Japanese (ja)
Other versions
JP2008049280A (en
Inventor
敦 尾形
賢夏 金
正和 伊達
年 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006229080A priority Critical patent/JP5030139B2/en
Publication of JP2008049280A publication Critical patent/JP2008049280A/en
Application granted granted Critical
Publication of JP5030139B2 publication Critical patent/JP5030139B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Description

本発明は、貴金属ナノ粒子担持金属酸化物触媒(以下、単に貴金属担持触媒ともいう)を用いた低温酸化反応を促進する方法およびこの方法を実施するための装置に関する。   The present invention relates to a method for promoting a low-temperature oxidation reaction using a noble metal nanoparticle-supported metal oxide catalyst (hereinafter also simply referred to as a noble metal-supported catalyst) and an apparatus for carrying out this method.

貴金属担持触媒は、様々な酸化反応において触媒として高活性を示すことが知られている。より高活性な貴金属ナノ粒子担持金属酸化物触媒を得るために、これまでは、担体と担持貴金属の組合せの変更、触媒の調製方法の変更などの手段が採られているが、これらの方法では、満足できる結果が得られてない。   It is known that a noble metal-supported catalyst exhibits high activity as a catalyst in various oxidation reactions. In order to obtain a metal oxide catalyst supported on a noble metal nanoparticle with higher activity, measures such as changing the combination of the support and the supported noble metal and changing the method for preparing the catalyst have been adopted. Satisfactory results have not been obtained.

このような問題点を解決するため、本発明者等は、先に、貴金属担持触媒に紫外光を照射することにより酸化反応を促進する方法を提案した(特許文献1)。
この方法は、常温においても、光照射という簡単な手法で反応を促進できるといった利点を有するものである。
しかしながら、その後の本発明者等の検討によれば、促進部分が光照射面に限られ、これを有効に利用するためには反応器内の触媒の形状や配置等を光照射に適したものに工夫する必要があり、その設計自由度が制約されるといった問題があることが判明した。
In order to solve such problems, the present inventors have previously proposed a method of promoting an oxidation reaction by irradiating a noble metal-supported catalyst with ultraviolet light (Patent Document 1).
This method has an advantage that the reaction can be promoted by a simple method of light irradiation even at room temperature.
However, according to the subsequent studies by the present inventors, the promoting portion is limited to the light irradiation surface, and in order to use this effectively, the shape and arrangement of the catalyst in the reactor are suitable for light irradiation. It has been found that there is a problem that the degree of freedom in design is restricted.

特開2001−334153号公報JP 2001-334153 A

本発明は、触媒の形状、配置等に制限されることなく、貴金属担持触媒を用いる低温酸化反応が著しく促進され、工業的に有利に低温酸化反応を効率的に行える方法を提供することを目的とする。   An object of the present invention is to provide a method in which a low-temperature oxidation reaction using a noble metal-supported catalyst is remarkably promoted and the low-temperature oxidation reaction can be efficiently carried out industrially advantageously without being limited by the shape and arrangement of the catalyst. And

本発明者は、鋭意研究を重ねた結果、反応系に低温プラズマを印加することにより、貴金属ナノ粒子担持金属酸化物触媒を用いる低温酸化反応が著しく促進することを見出し、本発明を完成するに至った。   As a result of extensive research, the present inventors have found that a low-temperature oxidation reaction using a noble metal nanoparticle-supported metal oxide catalyst is remarkably accelerated by applying a low-temperature plasma to the reaction system, and the present invention is completed. It came.

即ち、この出願は、以下の発明を提供するものである。
〈1〉貴金属ナノ粒子担持金属酸化物触媒を用いる低温酸化反応を促進する方法であって、該酸化反応を低温プラズマ雰囲気下で行うことを特徴とする低温酸化反応の促進方法。
〈2〉低温プラズマとして、無声放電、沿面放電、パルス放電、強誘電体ペレット充填型放電、あるいはこれらを複合させた放電方式から発生させる放電プラズマを用いることを特徴とする〈1〉に記載の低温酸化反応の促進方法。
〈3〉貴金属ナノ粒子担持金属酸化物触媒に対して低温プラズマを印加する〈1〉又は〈2〉に記載の低温酸化反応の促進方法。
〈4〉低温酸化反応が一酸化炭素含有ガスの二酸化炭素への酸化反応又は有機化合物の二酸化炭素への酸化反応である〈1〉〜〈3〉の何れかに記載の低温酸化反応の促進方法。
〈5〉貴金属が、金、白金、銀、パラジウム、ロジウム、ルテニウム、オスミウムおよびイリジウムからなる群から選択される少なくとも一種である〈1〉〜〈4〉の何れかに低温酸化反応の促進方法。
〈6〉担体である金属酸化物が、チタン、アルミニウム、珪素、マグネシウム、バナジウム、クロム、マンガン、鉄、コバルト、銅、亜鉛、ガリウム、ゲルマニウム、ストロンチウム、イットリウム、ジルコニウム、カドミウム、インジウム、錫、アンチモン、バリウム、ランタン、ハフニウム、タリウム、タングステン、レニウム、リンおよびセリウムからなる群から選択される少なくとも一種を含む酸化物である〈1〉〜〈5〉の何れかに記載の低温酸化反応の促進方法。
〈7〉貴金属ナノ粒子担持金属酸化物触媒が、金-チタニア、金-アルミナ、金-シリカ、白金-チタニア、白金-シリカ、白金-アルミナ、銀-チタニア、銀-アルミナおよび銀-シリカからなる群から選択される少なくとも一種である〈1〉〜〈6〉の何れかに記載の低温酸化反応の促進方法。
〈8〉貴金属ナノ粒子担持金属酸化物触媒を収納する反応器に、低温酸化反応用の原料ガスと酸化用ガスを供給する手段と、低温プラズマを印加する手段とを付設した低温酸化反応装置。
That is, this application provides the following inventions.
<1> A method for promoting a low-temperature oxidation reaction using a noble metal nanoparticle-supported metal oxide catalyst, wherein the oxidation reaction is performed in a low-temperature plasma atmosphere.
<2> Silent discharge, creeping discharge, pulse discharge, ferroelectric pellet filling type discharge, or discharge plasma generated from a combination of these is used as the low temperature plasma. Method for promoting low temperature oxidation reaction.
<3> The method for promoting a low-temperature oxidation reaction according to <1> or <2>, wherein low-temperature plasma is applied to the noble metal nanoparticle-supported metal oxide catalyst.
<4> The method for promoting a low-temperature oxidation reaction according to any one of <1> to <3>, wherein the low-temperature oxidation reaction is an oxidation reaction of carbon monoxide-containing gas to carbon dioxide or an organic compound to carbon dioxide. .
<5> The method for promoting a low temperature oxidation reaction according to any one of <1> to <4>, wherein the noble metal is at least one selected from the group consisting of gold, platinum, silver, palladium, rhodium, ruthenium, osmium and iridium.
<6> The metal oxide as the carrier is titanium, aluminum, silicon, magnesium, vanadium, chromium, manganese, iron, cobalt, copper, zinc, gallium, germanium, strontium, yttrium, zirconium, cadmium, indium, tin, antimony The method for promoting a low-temperature oxidation reaction according to any one of <1> to <5>, which is an oxide containing at least one selected from the group consisting of barium, lanthanum, hafnium, thallium, tungsten, rhenium, phosphorus and cerium .
<7> The metal oxide catalyst supporting noble metal nanoparticles is composed of gold-titania, gold-alumina, gold-silica, platinum-titania, platinum-silica, platinum-alumina, silver-titania, silver-alumina, and silver-silica. The method for promoting a low-temperature oxidation reaction according to any one of <1> to <6>, which is at least one selected from the group.
<8> A low-temperature oxidation reaction apparatus in which a reactor containing a noble metal nanoparticle-supported metal oxide catalyst is provided with means for supplying a raw gas for low-temperature oxidation reaction and oxidation gas and means for applying low-temperature plasma.

本発明によれば、低温プラズマを印加することにより、触媒の形状、配置等に制限されることなく、貴金属担持触媒を用いる低温酸化反応を著しく促進し、工業的に有利に該酸化反応を効率的に行うことができる。また、従来に比べ穏和な温度・圧力条件下でも、該酸化反応を促進することができる。   According to the present invention, by applying low-temperature plasma, the low-temperature oxidation reaction using the noble metal-supported catalyst is significantly accelerated without being limited by the shape and arrangement of the catalyst, and the oxidation reaction is industrially advantageous and efficient. Can be done automatically. In addition, the oxidation reaction can be promoted even under milder temperature and pressure conditions than in the past.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

本発明に係る貴金属担持触媒を用いる低温酸化反応の促進方法は、該酸化反応を低温プラズマ雰囲気下で行うことを特徴としている。
本発明でいう、「低温プラズマ」とは、常温、3気圧以下で発生させることができる放電プラズマであって、この放電現象で生じ高速電子、荷電粒子、及びこれらの衝突から生じた励起化学種を含む雰囲気を意味する。
The method for promoting a low temperature oxidation reaction using the noble metal-supported catalyst according to the present invention is characterized in that the oxidation reaction is performed in a low temperature plasma atmosphere.
In the present invention, “low temperature plasma” is a discharge plasma that can be generated at room temperature and 3 atm or less, and is caused by this discharge phenomenon, high-speed electrons, charged particles, and excited chemical species generated from these collisions. Means atmosphere.

このような低温プラズマとしては、通常比投入エネルギー50〜500J/L程度、より好ましくは100〜200J/L程度のエネルギーで運転される無声放電、沿面放電、パルス放電、強誘電体ペレット充填型放電、あるいはこれらを複合させた放電方式から発生させる放電プラズマなどが例示される。同条件を超える範囲、すなわちエネルギーが小さすぎる場合では安定したプラズマが得られず、また大きすぎる場合はアーク放電等の熱プラズマを併発することによる反応器内の温度上昇により、貴金属微粒子の凝集を生じさせるため、好ましくない。   As such a low temperature plasma, a silent discharge, a creeping discharge, a pulse discharge, a ferroelectric pellet filling type discharge, which is usually operated with an energy of a specific input energy of about 50 to 500 J / L, more preferably about 100 to 200 J / L. Or the discharge plasma etc. which generate | occur | produce from the discharge system which combined these are illustrated. If the range exceeds the same condition, that is, if the energy is too small, stable plasma cannot be obtained, and if it is too large, aggregation of noble metal fine particles is caused by the temperature rise in the reactor due to simultaneous generation of thermal plasma such as arc discharge. This is not preferable because it is generated.

本発明でいう貴金属ナノ粒子担持金属酸化物触媒を用いる低温酸化反応とは、通常工業的に用いられている酸化触媒が機能しないか、機能しても極めて反応速度の遅い温度領域において起こる含炭素化合物の二酸化炭素への完全酸化反応を意味する。このような完全酸化させる反応であれば、特に制限されない。具体的には、一酸化炭素などの可燃ガスの二酸化炭素への酸化反応(転換反応)、有機化合物の二酸化炭素への酸化反応、例えば、ギ酸の二酸化炭素への酸化反応、ホルムアルデヒドの二酸化炭素への酸化反応、アルカン、アルケンおよびアルキンの酸化反応などの可燃物の二酸化炭素への酸化反応などを例示することができる。本発明で好ましい低温酸化反応は、一酸化炭素を含むガスの二酸化炭素への転換反応である。   The low temperature oxidation reaction using the noble metal nanoparticle-supported metal oxide catalyst referred to in the present invention is a carbon-containing reaction that occurs in a temperature range in which the oxidation catalyst that is usually used industrially does not function or functions even if the reaction rate is extremely slow. It means a complete oxidation reaction of a compound to carbon dioxide. There is no particular limitation as long as it is such a complete oxidation reaction. Specifically, oxidation reaction (conversion reaction) of combustible gas such as carbon monoxide to carbon dioxide, oxidation reaction of organic compound to carbon dioxide, for example, oxidation reaction of formic acid to carbon dioxide, formaldehyde to carbon dioxide The oxidation reaction of combustibles to carbon dioxide such as the oxidation reaction of alkanes, alkenes and alkynes can be exemplified. A preferred low-temperature oxidation reaction in the present invention is a conversion reaction of a gas containing carbon monoxide to carbon dioxide.

本発明方法に適用できる貴金属ナノ粒子担持金属酸化物触媒は、特に制限されず、公知の貴金属ナノ粒子担持金属酸化物を適用できる。活性金属である貴金属は、特に制限されないが、例えば、金、白金、銀、パラジウム、ロジウム、ルテニウム、オスミウム、イリジウムなどを例示することができる。これらのなかでは、金が好ましい。活性金属である貴金属は、1種を単独で用いても良いが、2種以上を併用してもよい。   The noble metal nanoparticle carrying | support metal oxide catalyst applicable to this invention method is not restrict | limited in particular, A well-known noble metal nanoparticle carrying | support metal oxide can be applied. The noble metal that is an active metal is not particularly limited, and examples thereof include gold, platinum, silver, palladium, rhodium, ruthenium, osmium, and iridium. Of these, gold is preferred. The noble metal which is an active metal may be used alone or in combination of two or more.

貴金属ナノ粒子担持金属酸化物触媒に担持されている貴金属粒子の大きさは、特に制限されないが、超微粒子であることが好ましい。貴金属粒子の平均粒子径は、通常約250nm以下、好ましくは1〜10nm程度である。なお、金属微粒子の平均粒子径は、透過電子顕微鏡法による測定値とする。   The size of the noble metal particles supported on the noble metal nanoparticle-supported metal oxide catalyst is not particularly limited, but is preferably ultrafine particles. The average particle diameter of the noble metal particles is usually about 250 nm or less, preferably about 1 to 10 nm. The average particle diameter of the metal fine particles is a value measured by transmission electron microscopy.

貴金属ナノ粒子担持金属酸化物触媒における貴金属の担持量は、特に制限されず、貴金属の種類などに応じて適宜設定することができるが、金属酸化物に対して、貴金属単体換算で通常10-3〜50重量%程度、好ましくは0.1〜10重量%程度である。 Amount of the noble metal in the noble metal nanoparticles supported metal oxide catalyst is not particularly limited and may be appropriately set depending on the type of precious metals, the metal oxide, usually 10 -3 noble alone terms About 50% by weight, preferably about 0.1-10% by weight.

担体である金属酸化物は、特に制限されず、例えば、チタン、アルミニウム、珪素、マグネシウム、バナジウム、クロム、マンガン、鉄、コバルト、銅、亜鉛、ガリウム、ゲルマニウム、ストロンチウム、イットリウム、ジルコニウム、カドミウム、インジウム、錫、アンチモン、バリウム、ランタン、ハフニウム、タリウム、タングステン、レニウム、リン、セリウムなどの少なくとも一種を含む酸化物を例示することができる。担体である金属酸化物は、一種のみを用いてもよく、或いは上記の元素を含む酸化物の混合物であってもよく、或いは複合酸化物であってもよい。複合酸化物としては、例えば、チタニア-シリカ、シリカ-アルミナ、チタニア-アルミナ、シリカ-ジルコニア、シリカ-バナジアなどを例示することができる。   The metal oxide as the support is not particularly limited, and for example, titanium, aluminum, silicon, magnesium, vanadium, chromium, manganese, iron, cobalt, copper, zinc, gallium, germanium, strontium, yttrium, zirconium, cadmium, indium Examples thereof include oxides containing at least one of tin, antimony, barium, lanthanum, hafnium, thallium, tungsten, rhenium, phosphorus, cerium, and the like. As the metal oxide as the support, only one kind may be used, or a mixture of oxides containing the above elements may be used, or a complex oxide may be used. Examples of the composite oxide include titania-silica, silica-alumina, titania-alumina, silica-zirconia, and silica-vanadia.

これらの中では、チタニア、アルミナ、シリカ、ジルコニア、酸化亜鉛、セリア、酸化マンガン、マグネシアなどが好ましく、チタニア、アルミナ、シリカなどが特に好ましい。   Among these, titania, alumina, silica, zirconia, zinc oxide, ceria, manganese oxide, magnesia, and the like are preferable, and titania, alumina, silica, and the like are particularly preferable.

本発明で好ましく使用される貴金属ナノ粒子担持金属酸化物触媒は、金-チタニア、金-アルミナ、金-シリカ、白金-チタニア、白金-シリカ、白金-アルミナ、銀-チタニア、銀-アルミナ、銀-シリカである。   Noble metal nanoparticle-supported metal oxide catalysts preferably used in the present invention are gold-titania, gold-alumina, gold-silica, platinum-titania, platinum-silica, platinum-alumina, silver-titania, silver-alumina, silver -Silica.

貴金属ナノ粒子担持金属酸化物触媒の比表面積は、特に制限されず、触媒の種類などに応じて適宜設定することができるが、BET法による測定値として、通常5〜1000m2/g程度、好ましくは10〜500m2/g程度である。 The specific surface area of the noble metal nanoparticle-supported metal oxide catalyst is not particularly limited and can be appropriately set according to the type of the catalyst, etc., but as a measured value by the BET method, usually about 5 to 1000 m 2 / g, preferably Is about 10 to 500 m 2 / g.

貴金属ナノ粒子担持金属酸化物触媒は、公知の方法によって調製したものを用いてもよく、市販品を用いても良い。貴金属ナノ粒子担持金属酸化物触媒の調製法としては、例えば、共沈法(特開昭60-238148号公報など参照)、均一析出沈殿法(特開昭62-155937号公報など参照)、滴下中和沈殿法(特開昭63-252908号公報など参照)、還元剤添加法(特開昭63-252908号公報など参照)、pH制御中和沈殿法(特開昭63-252908号公報など参照)などを例示することができる。上記以外にも、特開平2-252610号公報、特開平3-97623号公報、特開平6-16422号公報、特開平9-122478号公報などに記載されている調製法を例示できる。 As the noble metal nanoparticle-supported metal oxide catalyst, one prepared by a known method may be used, or a commercially available product may be used. The preparation of the noble metal nanoparticles supported metal oxide catalysts, for example, (see, JP 60-238148 JP) coprecipitation, homogeneous deposition precipitation method (see, JP 62-155937 JP), dropwise neutralization precipitation method (see, JP 63-252908 JP), the reducing agent addition method (see, JP-A-63-252908), pH control neutralization precipitation method (JP 63-252908 Laid etc. For example). In addition to the above, JP-A 2-252610, JP-A No. 3-97623, JP-A No. 6-16422 discloses a method of preparation are described, for example, in JP-A-9-122478 discloses exemplified.

本発明方法を適用する場合の反応条件(例えば、反応圧力、反応温度、反応時間、触媒量)などは、特に制限されず、用いる触媒、反応系などに応じて適宜設定することができる。反応条件は、低温プラズマ照射を行わない場合と同様に設定してもよいが、これよりもより緩和な温度条件や圧力条件に設定することが可能である。   Reaction conditions (for example, reaction pressure, reaction temperature, reaction time, amount of catalyst) and the like when applying the method of the present invention are not particularly limited, and can be appropriately set according to the catalyst used, the reaction system, and the like. The reaction conditions may be set in the same manner as in the case where the low temperature plasma irradiation is not performed, but can be set at a milder temperature condition or pressure condition than this.

本発明方法を適用する場合において、用いる触媒量は、触媒の種類、反応の種類などに応じて適宜設定することができる。例えば、COなどの可燃ガスの酸化反応などの酸化反応においては、触媒中の貴金属の担持量に対して、通常約1000倍mol以下、好ましくは約100倍mol以下の反応原料を酸化することが可能である。   In the case of applying the method of the present invention, the amount of catalyst used can be appropriately set according to the type of catalyst, the type of reaction, and the like. For example, in an oxidation reaction such as an oxidation reaction of a combustible gas such as CO, the reaction raw material is usually oxidized about 1000 times mol or less, preferably about 100 times mol or less with respect to the amount of noble metal supported in the catalyst. Is possible.

また、流通式反応装置などを用いる場合には、触媒1gあたり、通常5000〜100000ml・h-1程度のガス(このうち反応原料となるガスの割合は数ppmv〜10 %程度)を流通させることが可能である。流通させるガスに含まれる反応原料以外のガスとしては、Arなどの希ガス、N2などの不活性ガスを例示することができる。 In addition, when using a flow reactor, etc., a gas of about 5,000 to 100,000 ml · h −1 is normally circulated per gram of catalyst (of which the ratio of the gas used as a reaction raw material is about several ppmv to 10%). Is possible. Examples of the gas other than the reaction raw material contained in the gas to be circulated include a rare gas such as Ar and an inert gas such as N 2 .

つぎに、本発明に係る低温酸化反応装置を図1、2により説明する。
図1に示されるように、本発明の低温酸化反応装置は、貴金属担持触媒を収納する反応器(1)と放電電極(2)の間に設置された該貴金属担持触媒(3)に対して低温酸化反応用原料ガス(5)と空気や酸素に代表される酸化用ガス(6)を供給する手段と低温プラズマを印加する手段(4)とを備えることを特徴としている。また、ロータリーポンプ(10)、原料ガス流量調整バルブ(7)、酸化用ガス流量調整バルブ(8)、排気流量調整バルブ(9)を利用することにより、原料ガスの圧力を任意に調整し、適切な低温酸化反応雰囲気を作り出すことができる。
Next, a low temperature oxidation reaction apparatus according to the present invention will be described with reference to FIGS.
As shown in FIG. 1, the low-temperature oxidation reaction apparatus of the present invention is based on the noble metal-supported catalyst (3) installed between the reactor (1) containing the noble metal-supported catalyst and the discharge electrode (2). It is characterized by comprising a raw material gas for low temperature oxidation reaction (5), means for supplying an oxidizing gas (6) typified by air or oxygen, and means (4) for applying low temperature plasma. Also, by using the rotary pump (10), source gas flow rate adjustment valve (7), oxidizing gas flow rate adjustment valve (8), exhaust flow rate adjustment valve (9), the pressure of the source gas is arbitrarily adjusted, An appropriate low-temperature oxidation reaction atmosphere can be created.

貴金属担持触媒を収納する反応器としては、触媒を保持収納できるものであれば、特に制限はない。この場合、触媒を反応器内に収納する形態は任意であり、粉末、ウール、ビーズ、ペレット、ハニカムで充填される他、反応器に直接塗布あるいは放電極に直接塗布する形態が採られる。   The reactor for storing the noble metal-supported catalyst is not particularly limited as long as it can hold and store the catalyst. In this case, the form in which the catalyst is accommodated in the reactor is arbitrary, and in addition to being filled with powder, wool, beads, pellets, and honeycomb, a form in which the catalyst is directly applied to the reactor or directly to the discharge electrode is adopted.

低温プラズマ印加手段は、収納容器の空間全体に拡がり、触媒の表面にムラ無くプラズマが到達するものであれば、制限はなく、酸化用ガスの反応性を制御するため、用途によっては触媒を放電電極間に均等に設置するのではなく、不均一に設置する構造や原料ガスの導入位置を放電電極の任意の位置にする構造のものが例示される。
この中でも、触媒をガスの流れ方向に対して放電電極の後方部に配置する構造を有するものが好ましい。このような好ましい低温酸化反応装置としては例えば図2〜3に示されるものが例示される。
The low-temperature plasma application means is not limited as long as the plasma spreads over the entire space of the storage container and the plasma reaches the surface of the catalyst without any unevenness, and the catalyst is discharged depending on the application in order to control the reactivity of the oxidizing gas. Examples of the structure in which the electrodes are not uniformly disposed between the electrodes but are unevenly disposed and the introduction position of the raw material gas is set to an arbitrary position of the discharge electrode are exemplified.
Among these, what has a structure which arrange | positions a catalyst in the back part of a discharge electrode with respect to the flow direction of gas is preferable. Examples of such a preferable low-temperature oxidation reaction apparatus include those shown in FIGS.

図2に示される本発明の低温酸化反応装置は、貴金属担持触媒を収納する反応器(1)と放電電極(2)の間でガスの流れ方向に対して放電電極の後方部に配置設置された該貴金属担持触媒(3)に対して、低温酸化反応用原料ガス(5)と空気や酸素に代表される酸化用ガス(6)を供給する手段と低温プラズマを印加する手段(4)とを備えることを特徴としている。また、ロータリーポンプ(10)、原料ガス流路変更及び流量調整バルブ(7)、酸化用ガス流量調整バルブ(8)、排気流量調整バルブ(9)を利用することにより、原料ガスの圧力を任意に調整し、適切な低温酸化反応雰囲気を作り出すことができる。なお、原料ガスの供給形態としては、前述の例では酸化用ガス導入と同じ位置(a)にしているが、図2の破線で示すような、反応器の任意の位置(b)から導入するものであっても構わない。   The low-temperature oxidation reaction apparatus of the present invention shown in FIG. 2 is disposed and installed behind the discharge electrode with respect to the gas flow direction between the reactor (1) containing the noble metal-supported catalyst and the discharge electrode (2). The noble metal-supported catalyst (3), a low temperature oxidation reaction source gas (5), a means for supplying an oxidation gas (6) typified by air or oxygen, and a means for applying a low temperature plasma (4); It is characterized by having. In addition, the pressure of the source gas can be adjusted arbitrarily by using the rotary pump (10), source gas flow path change and flow rate adjustment valve (7), oxidation gas flow rate adjustment valve (8), and exhaust flow rate adjustment valve (9). And an appropriate low-temperature oxidation reaction atmosphere can be created. The source gas is supplied at the same position (a) as that for introducing the oxidizing gas in the above example, but it is introduced from an arbitrary position (b) of the reactor as shown by a broken line in FIG. It doesn't matter.

図3に示される本発明の低温酸化反応装置は、貴金属担持触媒を収納する反応器(1)内の放電電極(2)の間のどちらかの電極に偏らせて配置設置された該貴金属担持触媒(3)に対して、低温酸化反応用原料ガス(5)と空気や酸素に代表される酸化用ガス(6)を供給する手段と低温プラズマを印加する手段(4)とを備えることを特徴としている。また、ロータリーポンプ(10)、原料ガス流路変更及び流量調整バルブ(7)、酸化用ガス流量調整バルブ(8)、排気流量調整バルブ(9)を利用することにより、原料ガスの圧力を任意に調整し、適切な低温酸化反応雰囲気を作り出すことができる。なお、原料ガスの供給形態としては、前述の例では酸化用ガス導入と同じ位置(a)にしているが、図3の破線で示すような、触媒を配置させている側(b)から反応ガスの流れに導入するものであっても構わない。   The low-temperature oxidation reaction apparatus of the present invention shown in FIG. 3 supports the noble metal supported by being arranged so as to be biased to one of the electrodes between the discharge electrodes (2) in the reactor (1) containing the noble metal supported catalyst. The catalyst (3) comprises a low-temperature oxidation reaction source gas (5), a means for supplying an oxidation gas (6) typified by air or oxygen, and a means (4) for applying a low-temperature plasma. It is a feature. In addition, the pressure of the source gas can be adjusted arbitrarily by using the rotary pump (10), source gas flow path change and flow rate adjustment valve (7), oxidation gas flow rate adjustment valve (8), and exhaust flow rate adjustment valve (9). And an appropriate low-temperature oxidation reaction atmosphere can be created. The source gas is supplied in the same position (a) as that for introducing the oxidizing gas in the above example, but the reaction is started from the side (b) where the catalyst is arranged as shown by the broken line in FIG. It may be introduced into the gas flow.

以下、実施例および比較例を示し、本発明の特徴とするところをより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Examples and comparative examples will be described below to describe the features of the present invention in more detail. However, the present invention is not limited to these examples.

[反応態様]
金担持酸化チタン触媒(Au/TiO2)を用いたCOのCO2への酸化反応におけるプラズマ印加の有無、エネルギーの強さの違いによる触媒活性の変化を調べた。ただし、未使用のAu/TiO2は、参考例1に示すようにプラズマ印加の如何にかかわらずCOの酸化活性が極めて高いため、参考例2に示すように予めベンゼンの分解反応を長時間行い、CO酸化に対する酸化活性が失われるまで劣化させた後、104J/Lのエネルギーのプラズマの印加を行った場合を実施例1とし、189J/Lのエネルギーのプラズマの印加を行った場合を実施例2とし、さらに再度プラズマの印加を行わなかった場合を比較例1とする。
[Reaction mode]
In the oxidation reaction of CO to CO 2 using a gold-supported titanium oxide catalyst (Au / TiO 2 ), the presence or absence of plasma application and the change in catalytic activity depending on the energy intensity were investigated. However, as shown in Reference Example 1, unused Au / TiO 2 has an extremely high CO oxidation activity regardless of plasma application. After deteriorating until the oxidation activity for CO oxidation is lost, the case of applying plasma with an energy of 104 J / L is taken as Example 1, and the case of applying plasma with an energy of 189 J / L is taken as an example 2 and the case where no plasma was applied again is referred to as Comparative Example 1.

[反応条件]
CO量:1000ppm、O2量:20%、触媒量:24g、反応圧力:1hPa、反応温度:20℃、プラズマ反応器:沿面放電型(エネルギー:0、104、189J/L)、未使用の触媒は、S. Tsubota,D.A.H. Cunningham, Y. Bando and M. Haruta,Preparation of Catalysts VI, eds.G. Poncelet et al., 227(Elsevier, Amsterdam, 1995)に記載されている析出沈殿法により調製した。即ち、塩化金酸四水和物(特級、キシダ化学製)0.2gと二酸化チタン(触媒学会参照触媒、JRC-TIO-4、アナターゼ:ルチル=3:1、比表面積約50m2/gを平均粒径2mmのビーズ状に加工)とを用い、析出沈殿法により形成された沈殿物を空気中400℃で4時間焼成した。得られた触媒の金微粒子の平均粒径は、約3nmであり、触媒における金の担持量は、仕込量で3重量%であった。
[Reaction conditions]
CO amount: 1000 ppm, O 2 content: 20%, catalytic amount: 24 g, reaction pressure: 1 hPa, reaction temperature: 20 ° C., a plasma reactor: creeping discharge type (Energy: 0,104,189J / L), the unused The catalyst was prepared by the precipitation method described in S. Tsubota, DAH Cunningham, Y. Bando and M. Haruta, Preparation of Catalysts VI, eds. G. Poncelet et al., 227 (Elsevier, Amsterdam, 1995). did. That is, 0.2 g of chloroauric acid tetrahydrate (special grade, manufactured by Kishida Chemical Co., Ltd.) and titanium dioxide (reference catalyst, JRC-TIO-4, anatase: rutile = 3: 1, specific surface area about 50 m 2 / g on average The precipitate formed by the precipitation method was calcined in air at 400 ° C. for 4 hours. The average particle diameter of the gold fine particles of the obtained catalyst was about 3 nm, and the amount of gold supported on the catalyst was 3% by weight in the charged amount.

[低温酸化反応装置(低温プラズマ反応器)]
本実施例では、図4に示す低温酸化反応器を用いた。この反応器は石英管(内径13mm,、有効長20cm)の内壁面にコイル状の高電圧電極を設けた沿面放電型の構造に、ペレット状のAu/TiO2触媒を充填される。また、石英管の外側には設置電極となる銀ペーストが塗布されている。
図4において、Aに低温プラズマ反応器の外観図を、Bにガス流れ方向に対する反応器の断面図を、Cにガス流れ方向の反応器の断面図を示す。図中、1は誘電体であるガラス管、2はそれに銀ペーストを塗布した外部電極、3はガラス管内壁に密着するようにコイル状の配置した内部電極である。4は触媒再生法に供される貴金属ナノ粒子担持金属酸化物触媒のビーズ状の成型した触媒である。5は交流高電圧電源、6はアースを示す。
この低温酸化反応装置を用いて低温酸化反応を促進するには、5により高電圧を3の内部電極に対し印加することにより、外部電極に覆われた3のガラス管内部に低温プラズマが発生する。プラズマは空間全体に広がるため、貴金属ナノ粒子担持金属酸化物触媒の固体表面全体を活用することにより、低温酸化反応を効率よく促進させる。
プラズマの発生には、ファンションジェネレーターと高電圧アンプで構成されたAC 高電圧電源を用いた。印加電圧と周波数は、それぞれ〜30kVpk-pk、〜600Hzの範囲に設定した。放電電力と比投入エネルギーは、V-Qリサージュ法により求めた。処理ガスの単位流量当り投入したエネルギーとして定義される比投入エネルギーは、式(1)に示すように、放電電力(Pdis;watt)とガス流量(Qf;L/min)から次のように求めた。
SIE(J/L)=Pdis/Qf×60(1)
なお、ガスの分析には、光路長6.4mのガスセルを装備したFTIRを用い、定量分析を行った。
[Low-temperature oxidation reactor (low-temperature plasma reactor)]
In this example, the low temperature oxidation reactor shown in FIG. 4 was used. This reactor is filled with a pellet-like Au / TiO 2 catalyst in a creeping discharge type structure in which a coiled high-voltage electrode is provided on the inner wall surface of a quartz tube (inner diameter 13 mm, effective length 20 cm). Further, a silver paste serving as an installation electrode is applied to the outside of the quartz tube.
In FIG. 4, A is an external view of a low-temperature plasma reactor, B is a cross-sectional view of the reactor with respect to the gas flow direction, and C is a cross-sectional view of the reactor in the gas flow direction. In the figure, 1 is a glass tube as a dielectric, 2 is an external electrode coated with silver paste, and 3 is an internal electrode arranged in a coil shape so as to be in close contact with the inner wall of the glass tube. 4 is a bead-like molded the catalysts of the noble metal nanoparticles supported metal oxide catalyst to be used in the catalyst regeneration process. 5 indicates an AC high-voltage power supply, and 6 indicates ground.
To promote the low-temperature oxidation reaction using this low-temperature oxidation reactor, a high voltage is applied to the internal electrode of 3 by 5 to generate low-temperature plasma inside the 3 glass tube covered with the external electrode. . Since the plasma spreads throughout the space, the low-temperature oxidation reaction is efficiently promoted by utilizing the entire solid surface of the metal oxide catalyst supporting noble metal nanoparticles.
The plasma was generated using an AC high-voltage power source consisting of a function generator and a high-voltage amplifier. The applied voltage and frequency were set in the range of ˜30 kVpk-pk and ˜600 Hz, respectively. Discharge power and specific input energy were obtained by the VQ Lissajous method. The specific input energy, which is defined as the energy input per unit flow rate of the processing gas, is obtained from the discharge power (Pdis; watt) and gas flow rate (Qf; L / min) as shown in Equation (1) as follows: It was.
SIE (J / L) = Pdis / Qf × 60 (1)
For gas analysis, FTIR equipped with a gas cell with an optical path length of 6.4 m was used for quantitative analysis.

比較例1:触媒として未使用の金担持酸化チタン触媒(Au/TiO2)を用い、プラズマを印加せずにCOの酸化反応を行った。CO量、O2量、触媒量、反応圧力、反応温度は上記条件と同じ。その結果を図5に示す Comparative Example 1: An unused gold-supported titanium oxide catalyst (Au / TiO 2 ) was used as a catalyst, and an oxidation reaction of CO was performed without applying plasma. CO amount, O 2 amount, catalyst amount, reaction pressure and reaction temperature are the same as above. The result is shown in FIG .

比較例2:触媒として数時間ベンゼン分解反応を行わせ、CO酸化活性が失われた金担持酸化チタン触媒(Au/TiO2)を用いた以外は、参考例1と同様の条件でCOの酸化反応を行った。その結果を図5に示す。 Comparative Example 2: CO oxidation under the same conditions as in Reference Example 1 except that a benzene decomposition reaction was performed for several hours as a catalyst and a gold-supported titanium oxide catalyst (Au / TiO 2 ) that lost CO oxidation activity was used. Reaction was performed. The result is shown in FIG.

実施例1:触媒として参考例2の金担持酸化チタン触媒(Au/TiO2)を用い、104J/Lのエネルギーのプラズマ印加下でCOの酸化反応を行った。CO量、O2量、触媒量、反応圧力、反応温度は上記条件と同じ。その結果を図5に示す。 Example 1 Using the gold-supported titanium oxide catalyst (Au / TiO 2 ) of Reference Example 2 as a catalyst, CO oxidation reaction was performed under application of plasma with an energy of 104 J / L. CO amount, O 2 amount, catalyst amount, reaction pressure and reaction temperature are the same as above. The result is shown in FIG.

実施例2:プラズマ印加エネルギーを189J/Lとした以外は、実施例1と同様の条件でCOの酸化反応を行った。その結果を図に示す。 Example 2: The oxidation reaction of CO was performed under the same conditions as in Example 1 except that the plasma application energy was 189 J / L. The results are shown in FIG.

比較例1:実施例2で用いた金担持酸化チタン触媒(Au/TiO2)を用い、プラズマを印加せずにCOの酸化反応を行った。CO量、O2量、触媒量、反応圧力、反応温度は上記条件と同じ。その結果を図5に示す。 Comparative Example 1 Using the gold-supported titanium oxide catalyst (Au / TiO 2 ) used in Example 2, an oxidation reaction of CO was performed without applying plasma. CO amount, O 2 amount, catalyst amount, reaction pressure and reaction temperature are the same as above. The result is shown in FIG.

図5から明らかなように、未使用のAu/TiO2は、プラズマが無い状態においてもCOの酸化反応において、高い触媒活性を示すが(比較例1)、この未使用のAu/TiO2をベンゼンの分解反応を長時間行わせることによって得られた触媒は、COの酸化反応活性は完全に失われることがわかる(比較例2)。
しかし、これにプラズマを印加することにより、触媒反応が促進され、失活する前の触媒とほぼ同等の活性が得られた(実施例1、2)。
ただし、一度失活したAu/TiO2は、プラズマの印加を止めると反応促進効果がなく(比較例)、室温におけるプラズマ照射が触媒反応の促進効果を増大させたことは明らかである。
As is apparent from FIG. 5, Au / TiO 2 Unused in the oxidation reaction of CO even in the plasma the absence, exhibit high catalytic activity (Comparative Example 1), the Au / TiO 2 of the unused It can be seen that the catalyst obtained by carrying out the decomposition reaction of benzene for a long time loses the CO oxidation reaction activity completely ( Comparative Example 2 ).
However, by applying plasma to this, the catalytic reaction was promoted, and almost the same activity as that of the catalyst before deactivation was obtained (Examples 1 and 2).
However, once deactivated, Au / TiO 2 has no reaction promoting effect when the application of plasma is stopped (Comparative Example 3 ), and it is clear that plasma irradiation at room temperature increased the catalytic reaction promoting effect.

また、プラズマの印加エネルギーを104J/L(実施例1)から189J/L(実施例2)に増加させることによって、促進効果が増幅されることからも、室温におけるプラズマ印加が触媒反応の促進効果を増大させたことは明らかである。   In addition, increasing the plasma energy from 104 J / L (Example 1) to 189 J / L (Example 2) amplifies the promoting effect, so that the plasma application at room temperature also promotes the catalytic reaction. It is clear that the increase was increased.

実施例3〜4、比較例2
室温でCOの酸化活性をわずかに示すPt/Al2O3触媒(実施例3)とほとんど活性を示さないAg/TiO2触媒(実施例4)、TiO2(比較例2)に対し、照射するプラズマのエネルギーを変化させながらCO酸化反応活性を調べた結果を図6に示す。なお、プラズマ反応器、反応条件は、実施例1のCO量、O2量、触媒量、反応圧力、反応温度と同じ。
Examples 3-4, Comparative Example 2
Irradiation to Pt / Al 2 O 3 catalyst (Example 3) that shows slight CO oxidation activity at room temperature, Ag / TiO 2 catalyst (Example 4), and TiO 2 (Comparative Example 2) that show little activity FIG. 6 shows the result of investigating the CO oxidation reaction activity while changing the energy of the plasma. The plasma reactor and the reaction conditions are the same as those of Example 1 for CO amount, O 2 amount, catalyst amount, reaction pressure, and reaction temperature.

図6から、Pt/Al2O3(実施例3)とAg/TiO2(実施例4)を用いた酸化反応において、低温プラズマを印加するとCO酸化反応が著しく促進することがわかる。一方、TiO2(比較例5)を用いた酸化反応において、低温プラズマを印加してもCO酸化反応は促進されないことから、触媒として微粒子貴金属を担持させた金属酸化物を用いることが必要であることは分かった。 FIG. 6 shows that in the oxidation reaction using Pt / Al 2 O 3 (Example 3) and Ag / TiO 2 (Example 4), the CO oxidation reaction is remarkably accelerated when low temperature plasma is applied. On the other hand, in the oxidation reaction using TiO 2 (Comparative Example 5), the CO oxidation reaction is not promoted even when a low temperature plasma is applied. Therefore, it is necessary to use a metal oxide supporting fine noble metal as a catalyst. I understand.

実施例5
さらに、低温プラズマ印加下、ベンゼンのAg/TiO2触媒を用いた低温酸化反応におけるAg/TiO2の効果、特に生成物に含まれるCO2選択率に対するAg担持量の依存性について検討するため、Ag 担持量を0〜2.0 wt%まで変化させながら、ベンゼンの除去率、生成物の選択性について調べた。その結果を図7に示す。
Example 5
Furthermore, in order to investigate the effect of Ag / TiO 2 in the low temperature oxidation reaction using Ag / TiO 2 catalyst of benzene under low temperature plasma application, especially the dependency of Ag loading on the CO 2 selectivity contained in the product, While changing the Ag loading from 0 to 2.0 wt%, the removal rate of benzene and the selectivity of the product were investigated. The result is shown in FIG.

反応ガスは酸素濃度20%の模擬空気にベンゼン200ppmを添加したもの、ガス総流量は4L/minとした。反応器は内径13mm、有効長20cmの石英管にコイル状の電極を設けたものである。触媒はプラズマ反応器内に直接挿入した。反応温度は100℃である。AC高電圧は、ファンションジェネレーターと高電圧アンプにより発生させた。印加電圧と周波数は、それぞれ〜30kVpk-pk、〜600 Hzの範囲に設定した。 The reaction gas was obtained by adding 200 ppm of benzene to simulated air with an oxygen concentration of 20%, and the total gas flow rate was 4 L / min. The reactor is a quartz tube with an inner diameter of 13 mm and an effective length of 20 cm provided with a coiled electrode. The catalyst was inserted directly into the plasma reactor. The reaction temperature is 100 ° C. AC high voltage was generated by a function generator and a high voltage amplifier. The applied voltage and frequency were set in the range of ˜30 kV pk-pk and ˜600 Hz, respectively.

なお、ここでCO2 選択率は、CO とCO2 の中でCO2 が占める割合を指すものであり、下記数式で示される。
Here, CO 2 selectivity is intended to refer to the ratio of CO 2 occupied in the CO and CO 2, represented by the following equation.

図7から、ベンゼン除去率はプラズマのエネルギーが増大するのにしたがって大きくなり、いずれのAg 担持量でもその効果はほぼ同じであることが分かる。
また、CO2 転化率はAg の担持量、並びに投入エネルギーが増大するにしたがって向上し、より完全酸化が進行する。同時に、反応前後の炭素の物質収支についても、Agを担持していないTiO2 では悪いが、Ag/TiO2ではAg 担持量を大きくすることで改善されており、単にCO の酸化を促進するだけでなく、本発明方法によればベンゼン分解の反応時におけるCO 以外の反応中間体についてもCO2 までより完全酸化を促進できることが分かった。
FIG. 7 shows that the benzene removal rate increases as the plasma energy increases, and the effect is almost the same regardless of the amount of Ag supported.
In addition, the CO 2 conversion rate increases as the amount of Ag loaded and the input energy increase, and complete oxidation proceeds. At the same time, the carbon mass balance before and after the reaction is poor with TiO 2 that does not support Ag, but with Ag / TiO 2 it has been improved by increasing the amount of Ag supported, which simply promotes the oxidation of CO 2. In addition, it has been found that according to the method of the present invention, complete oxidation can be further promoted to CO 2 with respect to reaction intermediates other than CO 2 during the benzene decomposition reaction.

本発明に係る低温酸化反応装置の説明図。Explanatory drawing of the low-temperature oxidation reaction apparatus which concerns on this invention. 本発明に係る低温酸化反応装置の説明図。Explanatory drawing of the low-temperature oxidation reaction apparatus which concerns on this invention. 本発明に係る低温酸化反応装置の説明図。Explanatory drawing of the low-temperature oxidation reaction apparatus which concerns on this invention. 実施例で用いた低温酸化反応装置の説明図Explanatory drawing of the low-temperature oxidation reactor used in the examples 実施例1、2、比較例1および参考例1〜2に記載したCO酸化反応におけるCOからCO2への転化率/%に対するプラズマ照射の有無、エネルギーの強さに対する依存性を示す図面。Examples 1 and 2, Comparative Example 1 and the presence or absence of plasma irradiation for conversion /% from CO in the CO oxidation reaction described in Reference Example 1-2 to CO 2, illustrates the dependence of the intensity of the energy. 実施例3、4および比較例2に記載したCO酸化反応におけるプラズマのエネルギーの強さと担持貴金属の依存性を示す図面。The drawing which shows the strength of the energy of the plasma in the CO oxidation reaction described in Examples 3 and 4 and Comparative Example 2 and the dependence of the supported noble metal. ベンゼンのプラズマ分解反応においてAg/TiO2触媒を用いた場合のCO2選択率へ与えるAg担持量依存性を示す図面。The drawing which shows the dependency of Ag loading on the CO 2 selectivity when Ag / TiO 2 catalyst is used in the plasma decomposition reaction of benzene.

Claims (7)

貴金属ナノ粒子担持金属酸化物触媒を用いて、一酸化炭素含有ガスの二酸化炭素への酸化反応又は有機化合物の二酸化炭素への酸化反応である低温酸化反応を、常温、3気圧以下で発生させる放電プラズマである低温プラズマ雰囲気下で行うことを特徴とする低温酸化反応の促進方法。 Discharge that generates a low-temperature oxidation reaction, which is an oxidation reaction of carbon monoxide-containing gas to carbon dioxide or an organic compound to carbon dioxide, at room temperature and 3 atm or less using a metal oxide catalyst supporting noble metal nanoparticles A method for promoting a low-temperature oxidation reaction, which is performed in a low-temperature plasma atmosphere as plasma. 低温プラズマとして、無声放電、沿面放電、パルス放電、強誘電体ペレット充填型放電、あるいはこれらを複合させた放電方式から発生させる放電プラズマを用いることを特徴とする請求項1に記載の低温酸化反応の促進方法。   The low-temperature oxidation reaction according to claim 1, wherein the low-temperature plasma is a discharge plasma generated from a silent discharge, a creeping discharge, a pulse discharge, a ferroelectric pellet-filled discharge, or a combination of these discharge methods. How to promote. 貴金属ナノ粒子担持金属酸化物触媒に対して低温プラズマを印加する請求項1又は2に記載の低温酸化反応の促進方法。   The method for promoting a low-temperature oxidation reaction according to claim 1 or 2, wherein low-temperature plasma is applied to the noble metal nanoparticle-supported metal oxide catalyst. 貴金属が、金、白金、銀、パラジウム、ロジウム、ルテニウム、オスミウムおよびイリジウムからなる群から選択される少なくとも一種である請求項1〜の何れかに低温酸化反応の促進方法。 The method for promoting a low-temperature oxidation reaction according to any one of claims 1 to 3 , wherein the noble metal is at least one selected from the group consisting of gold, platinum, silver, palladium, rhodium, ruthenium, osmium and iridium. 担体である金属酸化物が、チタン、アルミニウム、珪素、マグネシウム、バナジウム、クロム、マンガン、鉄、コバルト、銅、亜鉛、ガリウム、ゲルマニウム、ストロンチウム、イットリウム、ジルコニウム、カドミウム、インジウム、錫、アンチモン、バリウム、ランタン、ハフニウム、タリウム、タングステン、レニウム、リンおよびセリウムからなる群から選択される少なくとも一種を含む酸化物である請求項1〜の何れかに記載の低温酸化反応の促進方法。 The metal oxide as the carrier is titanium, aluminum, silicon, magnesium, vanadium, chromium, manganese, iron, cobalt, copper, zinc, gallium, germanium, strontium, yttrium, zirconium, cadmium, indium, tin, antimony, barium, The method for promoting a low-temperature oxidation reaction according to any one of claims 1 to 4 , which is an oxide containing at least one selected from the group consisting of lanthanum, hafnium, thallium, tungsten, rhenium, phosphorus and cerium. 貴金属ナノ粒子担持金属酸化物触媒が、金−チタニア、金−アルミナ、金−シリカ、白金−チタニア、白金−シリカ、白金−アルミナ、銀−チタニア、銀−アルミナおよび銀−シリカからなる群から選択される少なくとも一種である請求項1〜の何れかに記載の低温酸化反応の促進方法。 The noble metal nanoparticle-supported metal oxide catalyst is selected from the group consisting of gold-titania, gold-alumina, gold-silica, platinum-titania, platinum-silica, platinum-alumina, silver-titania, silver-alumina and silver-silica. at least one a method of promoting low temperature oxidation reaction according to any one of claims 1 to 5, which is. 貴金属ナノ粒子担持金属酸化物触媒を収納する反応器に、一酸化炭素含有ガスの二酸化炭素への酸化反応又は有機化合物の二酸化炭素への酸化反応である低温酸化反応用の原料ガスと酸化用ガスを供給する手段と、常温、3気圧以下で発生させる放電プラズマである低温プラズマを印加する手段とを付設した低温酸化反応装置。
Source gas and oxidation gas for low temperature oxidation reaction that is oxidation reaction of carbon monoxide containing gas to carbon dioxide or oxidation reaction of organic compound to carbon dioxide in reactor containing noble metal nanoparticle supported metal oxide catalyst And a means for applying a low temperature plasma, which is a discharge plasma generated at room temperature and 3 atmospheres or less, and a low temperature oxidation reaction apparatus.
JP2006229080A 2006-08-25 2006-08-25 Method for promoting low temperature oxidation using noble metal nanoparticles supported metal oxide catalyst Expired - Fee Related JP5030139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006229080A JP5030139B2 (en) 2006-08-25 2006-08-25 Method for promoting low temperature oxidation using noble metal nanoparticles supported metal oxide catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006229080A JP5030139B2 (en) 2006-08-25 2006-08-25 Method for promoting low temperature oxidation using noble metal nanoparticles supported metal oxide catalyst

Publications (2)

Publication Number Publication Date
JP2008049280A JP2008049280A (en) 2008-03-06
JP5030139B2 true JP5030139B2 (en) 2012-09-19

Family

ID=39233812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229080A Expired - Fee Related JP5030139B2 (en) 2006-08-25 2006-08-25 Method for promoting low temperature oxidation using noble metal nanoparticles supported metal oxide catalyst

Country Status (1)

Country Link
JP (1) JP5030139B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8340655B2 (en) 2004-05-20 2012-12-25 Vodafone Group Plc Data transmission

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134832A1 (en) * 2009-05-20 2010-11-25 Крено Инвест Са Method for producing a pelletized, metal-containing supported catalyst
US20110275842A1 (en) * 2010-05-10 2011-11-10 Hoflund Gar B Nanostructured catalyst pellets, catalyst surface treatment and highly selective catalyst for ethylene epoxidation
JP5867670B2 (en) * 2011-03-24 2016-02-24 国立研究開発法人産業技術総合研究所 Method for decomposing and removing volatile organic compounds
FR2975018B1 (en) * 2011-05-10 2016-11-25 Commissariat Energie Atomique DEVICE FOR THE TREATMENT OF GASES BY SURFACE PLASMA
RU2602152C2 (en) * 2011-09-21 2016-11-10 ЭнБиСи МЕШТЕК, ИНК. Device and method for gas treatment using low-temperature plasma and catalyst medium
WO2013108045A2 (en) * 2012-01-20 2013-07-25 University Of Newcastle Upon Tyne Process intensification in the catalytic synthesis of supported catalysts with hierarchic pore structure
JP5943280B2 (en) 2012-06-12 2016-07-05 公立大学法人首都大学東京 Gold cluster catalyst and method for producing the same
US9770700B2 (en) 2013-08-23 2017-09-26 Saudi Basic Industries Corporation Reactor comprising a plasma source and a catalyst comprising a mesoporous support material for the preparation of ethene from methane
CN106179290A (en) * 2016-06-24 2016-12-07 杭州众材科技有限公司 A kind of method preparing load type gold metal nano-particle
JP7063562B2 (en) * 2017-09-11 2022-05-09 株式会社Nbcメッシュテック Porous catalyst membrane and gas treatment equipment using it
GB202000705D0 (en) * 2020-01-17 2020-03-04 Akay Galip Synthesis of plasma generating - chemical looping catalysts for electromagnetic radiation absorption and chemical catalysis in nitrogen fixation.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3771053B2 (en) * 1998-06-30 2006-04-26 独立行政法人科学技術振興機構 Exhaust gas purification catalyst structure
JP2002177373A (en) * 2000-06-15 2002-06-25 Denso Corp Air cleaner
JP2002336645A (en) * 2001-05-21 2002-11-26 Daikin Ind Ltd Plasma catalyst reactor, air cleaner, nitrogen oxide cleaner and waste combustion gas cleaner
CA2575482C (en) * 2004-06-08 2011-01-18 National Institute Of Advanced Industrial Science And Technology Catalyst for carbon monoxide removal and method of removing carbon monoxide with the catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8340655B2 (en) 2004-05-20 2012-12-25 Vodafone Group Plc Data transmission

Also Published As

Publication number Publication date
JP2008049280A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP5030139B2 (en) Method for promoting low temperature oxidation using noble metal nanoparticles supported metal oxide catalyst
Rossignol et al. Selective oxidation of CO over model gold-based catalysts in the presence of H2
Soares et al. Photocatalytic nitrate reduction over Pd–Cu/TiO2
Okumura et al. CO oxidation below room temperature over Ir/TiO2 catalyst prepared by deposition precipitation method
EP3072588B1 (en) Catalyst for purification of exhaust gas, nox storage-reduction catalyst, and method for purifying exhaust gas
Kim et al. Catalyst regeneration and activity enhancement of Au/TiO2 by atmospheric pressure nonthermal plasma
JP4682363B2 (en) Method and apparatus for regenerating noble metal supported catalyst
JP4759739B2 (en) Ethylene decomposition catalyst
Gazsi et al. Photocatalytic decomposition of formic acid and methyl formate on TiO2 doped with N and promoted with Au. Production of H2
Lu et al. Interaction between noble metals (Pt, Pd, Rh, Ir, Ag) and defect-enriched TiO2 and its application in toluene and propene catalytic oxidation
TWI442972B (en) The method of preparation of cerium oxide supported gold-palladium catalysts and its application in destruction of volatile organic compounds
EP3936231A1 (en) Metallic nanoparticle catalysts embedded in porous oxide support, which show high catalytic activity even at low temperatures
KR20090128537A (en) Device and method for regenerating exhaust purification catalyst
Wang et al. Evolution of Pd chemical states and effects of C3H6 and H2O on the CO oxidation over Pd/CeO2 catalyst
CN110893341A (en) Photocatalyst dispersion liquid, photocatalyst composite material and photocatalyst device
JP2006291779A (en) Method and device for exhaust emission control
JP4635693B2 (en) Exhaust gas purification method and exhaust gas purification device
JP4656353B2 (en) Room temperature catalyst
JP4456229B2 (en) Reaction promotion method in noble metal supported metal oxide catalytic reaction by light irradiation
JP2004346772A (en) Device and method for exhaust emission control
JP4656352B2 (en) Room temperature catalyst
Li et al. The exceptional performance of the plasmonic Au-Fe/TiO2 nanocatalysts achieved by O2 plasma activation
JP2005125259A (en) Gas cleaning material and method of producing the same
CN104159665A (en) CATALYST, METHOD FOR PRODUCING CATALYST, AND METHOD FOR PRODUCING HYDROGEN-CONTAINING GAS USING CATALYST, AND HYDROGEN GENERATING DEVICE, FUEL CELL SYSTEM, AND SILICON-SUPPORTED CeZr-BASED OXIDE
JP5533782B2 (en) Exhaust gas purification catalyst and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120621

R150 Certificate of patent or registration of utility model

Ref document number: 5030139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees