JP5017484B2 - Plant corrosion control method and plant - Google Patents

Plant corrosion control method and plant Download PDF

Info

Publication number
JP5017484B2
JP5017484B2 JP2011173868A JP2011173868A JP5017484B2 JP 5017484 B2 JP5017484 B2 JP 5017484B2 JP 2011173868 A JP2011173868 A JP 2011173868A JP 2011173868 A JP2011173868 A JP 2011173868A JP 5017484 B2 JP5017484 B2 JP 5017484B2
Authority
JP
Japan
Prior art keywords
plant
corrosion
structural material
water
protective substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011173868A
Other languages
Japanese (ja)
Other versions
JP2012027030A (en
Inventor
雅人 岡村
理 柴崎
誠二 山本
肇 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011173868A priority Critical patent/JP5017484B2/en
Publication of JP2012027030A publication Critical patent/JP2012027030A/en
Application granted granted Critical
Publication of JP5017484B2 publication Critical patent/JP5017484B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

本発明の実施形態は、プラントを構成する配管及び機器の腐食抑制方法及びプラントに関する。   Embodiments described herein relate generally to a method for inhibiting corrosion of piping and equipment constituting a plant, and the plant.

火力プラント及び原子力プラントは、蒸気発生器で発生した蒸気によりタービンを駆動し、復水を蒸気発生器に戻す系統を有しているが、運転中に配管、機器が腐食により損傷を受ける可能性があるため、腐食を低減する方策が講じられている。   Thermal power plants and nuclear power plants have a system in which the turbine is driven by steam generated by the steam generator and the condensate is returned to the steam generator. However, piping and equipment may be damaged by corrosion during operation. Therefore, measures are taken to reduce corrosion.

例えば、現状の加圧水型原子力プラントの二次系統では、蒸気発生器やタービンの腐食トラブルを防止するために、系統内への不純物持ち込み防止策として、補給水管理、水処理薬品の管理等の対策が講じられている。また、系統を構成する機器や配管の腐食抑制のために、pH調整剤を用いたpHコントロールやヒドラジンを注入し、脱酸素、還元性雰囲気にする対策が講じられている。さらには、持ち込まれた不純物を系統外に除去する脱塩器の設置と適正運転、クリーンアップシステム、蒸気発生器ブローダウン回収システムの設置、そして溶存酸素低減のための脱気器の設置、等、種々の対策が講じられている。   For example, in the secondary system of the current pressurized water nuclear power plant, in order to prevent corrosion troubles of steam generators and turbines, measures such as supply water management and water treatment chemical management are taken as measures to prevent impurities from entering the system. Has been taken. In addition, in order to suppress corrosion of equipment and pipes constituting the system, measures are taken to inject a pH control using a pH adjusting agent or hydrazine to make a deoxygenating and reducing atmosphere. Furthermore, installation and proper operation of a desalinator that removes introduced impurities outside the system, installation of a clean-up system, a steam generator blowdown recovery system, and installation of a deaerator to reduce dissolved oxygen, etc. Various measures have been taken.

脱気器は、系統の循環水を脱気処理することにより、蒸気発生器への酸素移行を低減するために設置されており、酸素寄与による構造材腐食電位の上昇を抑える働きがある。酸素濃度が高くなると、電位上昇による粒界腐食割れや応力腐食割れ等が発生する。   The deaerator is installed in order to reduce oxygen transfer to the steam generator by degassing the circulating water of the system, and has a function of suppressing an increase in the structural material corrosion potential due to oxygen contribution. When the oxygen concentration increases, intergranular corrosion cracking, stress corrosion cracking, and the like due to potential increase occur.

一方、配管等からの金属イオンの溶出は高温水中でおこる代表的な現象であり、構造材をはじめ、配管やその他の部材の腐食による運転上の問題やメンテナンス頻度の増加等、様々な影響を及ぼす。また、溶出した金属イオンは系統内の配管表面や蒸気発生器等の高温部位に酸化物として付着析出し、電位上昇による腐食割れの現象が発生している。また、付着した酸化物による熱伝達低下が起こるため、化学洗浄による定期的な除去が必要となる。   On the other hand, elution of metal ions from pipes is a typical phenomenon that occurs in high-temperature water, and has various effects such as operational problems due to corrosion of structural materials, pipes and other parts, and increased maintenance frequency. Effect. In addition, the eluted metal ions are deposited and deposited as oxides on the surface of the piping in the system and at a high temperature site such as a steam generator, and a phenomenon of corrosion cracking due to an increase in potential occurs. Further, since heat transfer is reduced due to the attached oxide, periodic removal by chemical cleaning is required.

このように、金属の溶出や腐食現象等は長期間のプラント運転で段階的に蓄積されてある時期突然災害に発展する可能性を秘めている。このような現象を回避するために、アンモニアやヒドラジンを注入してpHコントロールを行い、系統内からの鉄溶出を低減し、蒸気発生器への鉄流入を防ぐ対策を講じている。   In this way, metal elution and corrosion phenomena have the potential to suddenly develop into disasters that are accumulated in stages during long-term plant operations. In order to avoid such a phenomenon, pH is controlled by injecting ammonia or hydrazine to reduce iron elution from the system and take measures to prevent iron inflow to the steam generator.

また、クレビス部のアルカリ濃縮を排除するために、塩化物イオン濃度管理、溶存酸素濃度制御など、様々な水質制御が提案されている。   Various water quality controls such as chloride ion concentration management and dissolved oxygen concentration control have been proposed in order to eliminate alkali concentration in the clevis part.

特開2010−96534号公報JP 2010-96534 A 特許第3492144号公報Japanese Patent No. 3492144

上述したように、従来の腐食抑制手段は、腐食抑制のために脱気器、薬剤注入・制御機器、等、様々な機器を必要とするとともに、薬剤濃度制御や厳格な水質管理をおこなう必要があり、設備が大型化し、運転制御も複雑化するため、プラントの設備費及び運転コストが高くなるという課題があった。   As described above, the conventional corrosion control means requires various devices such as a deaerator and a chemical injection / control device in order to suppress corrosion, and it is necessary to perform chemical concentration control and strict water quality management. In addition, since the equipment is enlarged and the operation control is complicated, there is a problem that the equipment cost and the operation cost of the plant become high.

本実施形態は、蒸気発生器及びタービンを有する系統の構造材に保護性物質の被膜を形成することにより、設備費、運転コストを低く抑えることができるプラントの腐食抑制方法及びプラントを提供することを目的とする。   The present embodiment provides a plant corrosion suppression method and a plant that can keep facility costs and operation costs low by forming a protective material coating on a structural material of a system having a steam generator and a turbine. With the goal.

本実施形態は、蒸気発生器、タービン、復水器及び加熱器を有する加圧水型原子力プラントの二次系統を脱気器による脱気処理及び薬剤注入機器による薬剤注入が行われない非脱気処理水が循環するプラントであって、前記非脱気処理水が接する前記系統の構造材にTiO2、Y23又はLa23からなる保護性物質を付着させることを特徴とする。 In this embodiment, the secondary system of a pressurized water nuclear plant having a steam generator, a turbine, a condenser, and a heater is degassed by a deaerator and is not degassed by a drug injector. A plant in which water circulates, wherein a protective substance made of TiO 2 , Y 2 O 3 or La 2 O 3 is attached to the structural material of the system in contact with the non-degassed treated water.

本実施形態に係るプラントの二次系統の模式図。The schematic diagram of the secondary system of the plant which concerns on this embodiment. 本実施形態に係る構造材に形成された被膜の概念図。The conceptual diagram of the film formed in the structural material which concerns on this embodiment. 本実施形態に係る効果確認試験1の対むく材腐食量比を示す図。The figure which shows the amount-of-material corrosion amount ratio with respect to the effect confirmation test 1 which concerns on this embodiment. 本実施形態に係る効果確認試験2の対むく材腐食量比を示す図。The figure which shows the material corrosion amount ratio with respect to the effect confirmation test 2 which concerns on this embodiment. 本実施形態に係る効果確認試験3の対むく材腐食量比を示す図。The figure which shows the amount of material corrosion amount to the effect confirmation test 3 which concerns on this embodiment. 本実施形態に係る効果確認試験4の対むく材付着量比を示す図。The figure which shows the peeling material adhesion ratio with respect to the effect confirmation test 4 which concerns on this embodiment. 本実施形態に係る効果確認試験5の対むく材腐食量比を示す図。The figure which shows the amount of material corrosion amount to the effect confirmation test 5 which concerns on this embodiment.

以下、本発明の実施形態を、図面を参照して説明する。
(構成)
本実施形態の腐食抑制方法を加圧水型原子力プラントの二次系統に適用した例を、図1乃至図7を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.
(Constitution)
An example in which the corrosion inhibiting method of the present embodiment is applied to a secondary system of a pressurized water nuclear plant will be described with reference to FIGS.

二次系統は、図1に示すように、原子炉1、蒸気発生器2、高圧タービン3、湿分分離加熱器4、低圧タービン5、復水器6、低圧加熱器7、高圧加熱器8、高温脱塩器(浄化設備)9、高温フィルター(浄化設備)10から構成される。なお、復水器6はその下流側に低温浄化設備(脱塩器+フィルター)を設けたものも含む。   As shown in FIG. 1, the secondary system includes a nuclear reactor 1, a steam generator 2, a high pressure turbine 3, a moisture separation heater 4, a low pressure turbine 5, a condenser 6, a low pressure heater 7, and a high pressure heater 8. , A high-temperature desalter (purification facility) 9 and a high-temperature filter (purification facility) 10. In addition, the condenser 6 includes those provided with a low-temperature purification facility (demineralizer + filter) on the downstream side thereof.

この二次系統では、従来の加圧水型原子力プラントの二次系統に設けられている脱気器が設置されていないため、非脱気処理水が二次系統内を循環している。   In this secondary system, since the deaerator provided in the secondary system of the conventional pressurized water nuclear plant is not installed, the non-deaerated treated water circulates in the secondary system.

本実施形態において、上記系統を構成する配管及び蒸気発生器2、低圧加熱器7、高圧加熱器8等の機器の表面、すなわち非脱気処理水が接触する構造材の表面に保護性物質の被膜を公知の手段により形成している。構造材の材料としては、機器の種類又は機器内の場所に応じて、鉄鋼、非鉄鋼材、非鉄金属又は溶接金属の一つ又は複数から構成される。   In the present embodiment, the protective substance is applied to the surface of the piping and the steam generator 2, the low pressure heater 7, the high pressure heater 8 and the like constituting the above system, that is, the surface of the structural material that comes into contact with the non-degassed treated water. The film is formed by a known means. The material of the structural material is composed of one or more of steel, non-ferrous steel, non-ferrous metal, or weld metal depending on the type of device or the location in the device.

また、保護性物質として、Ti、Y、La、Zr、Fe、Ni、Pd、U、W、Cr、Zn、Co、Mn、Cu、Ag、Al、Mg、Pbから選択された金属元素の酸化物、水酸化物、炭酸化合物、酢酸化合物、シュウ酸化合物が用いられる。なお、配管及び各種機器に形成される保護性物質は、一種類でもよいが、複数種類組み合わせてもよい。   Further, as protective substances, oxidation of metal elements selected from Ti, Y, La, Zr, Fe, Ni, Pd, U, W, Cr, Zn, Co, Mn, Cu, Ag, Al, Mg, Pb Substances, hydroxides, carbonic acid compounds, acetic acid compounds and oxalic acid compounds are used. In addition, although the protective substance formed in piping and various apparatuses may be one type, you may combine multiple types.

本実施形態では、その例として、図2に示すように蒸気発生器17の表面にはチタン系保護性物質(例えば、酸化チタン(TiO))18、配管13の表面にはイットリウム系保護性物質14(例えば、イットリア(Y))、加熱器15の表面にはランタン系保護性物質16(例えば、ランタナ(La))からなる被膜を形成している。図2は、構造材11に形成された保護性物質からなる被膜12の概念図である。 In the present embodiment, as an example, as shown in FIG. 2, a titanium-based protective substance (for example, titanium oxide (TiO 2 )) 18 is provided on the surface of the steam generator 17, and an yttrium-based protective property is provided on the surface of the pipe 13. On the surface of the substance 14 (for example, yttria (Y 2 O 3 )) and the heater 15, a film made of a lanthanum-based protective substance 16 (for example, lantana (La 2 O 3 )) is formed. FIG. 2 is a conceptual diagram of the film 12 made of a protective substance formed on the structural material 11.

また、被膜の形成手段は公知の手段、例えば、散布、塗布による被膜形成又は保護性物質を含んだ液体を配管、機器に接触させることによる被膜形成、等の種々の公知の手段を用いることができる。
また、被膜の形成はプラント稼働前、又は被膜の劣化度に応じて定期検査時に適宜おこなわれる。
In addition, the film forming means may be a known means, for example, various known means such as spraying, coating film formation by coating, or film formation by bringing a liquid containing a protective substance into contact with piping or equipment. it can.
Moreover, the formation of the film is appropriately performed before the plant operation or at the time of periodic inspection according to the degree of deterioration of the film.

(作用)
上述したように、従来の二次系統に設置された脱気器は、系統の循環水を脱気処理することにより、蒸気発生器への酸素移行を低減するために設置されており、酸素寄与による構造材腐食電位の上昇を抑える機能を果たしている。
(Function)
As described above, the deaerator installed in the conventional secondary system is installed to reduce the oxygen transfer to the steam generator by degassing the circulating water of the system, and contributes to oxygen. It plays the function of suppressing the rise in the corrosion potential of structural materials.

したがって、系統水中の循環水に対し脱気処理をおこなわなくとも、配管と含む蒸気発生器等の機器に腐食による損傷が起こらなければ、脱気器を設置する必要がなくなり、設備のコンパクト化、設備費及び運転コストの低減化を図ることができる。   Therefore, even if the degassing treatment is not performed on the circulating water in the system water, it is not necessary to install a deaerator if there is no damage caused by corrosion to the steam generator and other equipment including the piping. Equipment costs and operating costs can be reduced.

本発明者等はこの点に着目し、上述した構成を採用することにより、従来必要とされた二次系統の脱気器が省略可能であることを新たに知見したものである。   The present inventors pay attention to this point and have newly found out that by adopting the above-described configuration, a secondary system deaerator that has been conventionally required can be omitted.

すなわち、本実施形態では、配管及び二次系統機器に形成された保護性物質が系統水中の酸素拡散の障壁となり、構造材表面への酸素の到達量を減少させることにより、酸素寄与による腐食電位上昇がなくなり、構造材表面を低電位に保持することが可能となるので、系統の循環水として非脱気処理水を用いることが可能となる。   That is, in this embodiment, the protective substance formed in the piping and the secondary system equipment serves as a barrier for oxygen diffusion in the system water, reducing the amount of oxygen reaching the surface of the structural material, thereby reducing the corrosion potential due to oxygen contribution. Since the rise is eliminated and the surface of the structural material can be maintained at a low potential, non-deaerated treated water can be used as the circulating water of the system.

以下、本実施形態の保護性物質に対しておこなった効果確認試験について、図3乃至7を用いて説明する。   Hereinafter, an effect confirmation test performed on the protective substance of the present embodiment will be described with reference to FIGS.

(効果確認試験1)
図3は保護性物質が付着されていない構造材(むく材)に対する本実施形態の保護性物質12で被覆された構造材11の腐食量比を示す図である。
(Effect confirmation test 1)
FIG. 3 is a diagram showing a corrosion amount ratio of the structural material 11 covered with the protective material 12 of the present embodiment with respect to the structural material (peeling material) to which the protective material is not attached.

180℃の中性の非脱気処理水で試験した結果、図5に示すように、いずれの保護性物質(本例ではTiO、Y、La)でも、保護性物質12が被覆された構造材11では腐食量の大幅な減少が確認された。 As a result of testing with neutral non-degassed treated water at 180 ° C., as shown in FIG. 5, any protective substance (in this example, TiO 2 , Y 2 O 3 , La 2 O 3 ) is a protective substance. In the structural material 11 coated with 12, a significant decrease in the amount of corrosion was confirmed.

(効果確認試験2)
図4は、水質の異なる高温水(中性、酸性、アルカリ性)を用いた場合のむく材と本実施形態の保護性物質12を付着した構造材11との腐食量比を示す図である。
(Effect confirmation test 2)
FIG. 4 is a diagram showing a corrosion amount ratio between a peeling material and high-temperature water (neutral, acidic, alkaline) having different water qualities and the structural material 11 to which the protective substance 12 of the present embodiment is attached.

図4に示すように、むく材では酸化による腐食が進むが、本実施形態の保護性物質12で被覆された構造材11ではどのような水質であっても、腐食抑制効果を有することを示している。   As shown in FIG. 4, corrosion due to oxidation proceeds in the stripping material, but the structure material 11 covered with the protective substance 12 of the present embodiment has a corrosion inhibiting effect regardless of the water quality. ing.

(効果確認試験3)
図5は、系統水の温度を変化させた場合のむく材と本実施形態の構造材との腐食量比を示す図である。
(Effect confirmation test 3)
FIG. 5 is a diagram showing a corrosion amount ratio between the stripping material and the structural material of the present embodiment when the temperature of the system water is changed.

図5に示すように、通常のむく材では、酸化による腐食が進むが、本実施形態の保護性物質で被覆された構造材では酸素拡散を抑制することにより、腐食抑制効果を有することがわかる。また、温度が低い領域では腐食が起こらないため、対むく材腐食重量比はほとんど変化しないが、温度が高くなるにつれて酸化反応が進み腐食量は増加するため、保護性物質の拡散障壁作用が大きくなることを示している。   As shown in FIG. 5, the normal stripping material undergoes corrosion due to oxidation, but the structural material coated with the protective substance of the present embodiment has a corrosion inhibiting effect by suppressing oxygen diffusion. . In addition, since corrosion does not occur in the low temperature region, the weight ratio of corrosion to the peeled material hardly changes.However, as the temperature increases, the oxidation reaction proceeds and the amount of corrosion increases. It shows that it becomes.

このように、脱気器を省略した水質条件下でも温度が高くなるほど保護性物質による腐食抑制効果が顕著になり、それぞれの材料でその効果が発現する。したがって、プラントの運転温度において、本実施形態の保護性物質が顕著な腐食抑制効果を奏することがわかる。   Thus, even under water quality conditions in which the deaerator is omitted, the corrosion suppression effect by the protective substance becomes more prominent as the temperature increases, and the effect is manifested in each material. Therefore, it can be seen that the protective substance of the present embodiment has a remarkable corrosion inhibition effect at the plant operating temperature.

(効果確認試験4)
図6は、系統水中に粒子状のクラッド又はイオンが存在する場合のむく材と本実施形態の保護性物質で被覆された構造材との付着量比を示す図である。
(Effect confirmation test 4)
FIG. 6 is a diagram showing the adhesion amount ratio between the stripping material and the structural material coated with the protective substance of the present embodiment when particulate cladding or ions are present in the system water.

一般に、クラッドの付着では、その粒子のゼータ電位が付着に寄与する。通常の金属酸化物は、酸性ではプラスの値となり、中性付近で等電点(0)となり、アルカリ性でマイナスとなる。本確認試験4ではアルカリ水質条件下で試験を実施しており、クラッドもマイナスの電位となる。また、保護性物質もアルカリ領域では、マイナスの電位となり、クラッドとの静電反発が作用する。また、構造材表面の腐食電位は保護性物質の付着により、酸素拡散障壁となっていることから、腐食電位も安定作用が働く。   In general, in the deposition of the cladding, the zeta potential of the particles contributes to the deposition. A normal metal oxide has a positive value when acidic, an isoelectric point (0) near neutrality, and a negative value when alkaline. In this confirmation test 4, the test is carried out under alkaline water condition, and the clad also has a negative potential. Further, the protective substance also has a negative potential in the alkaline region, and electrostatic repulsion with the cladding acts. Further, since the corrosion potential on the surface of the structural material becomes an oxygen diffusion barrier due to the adhesion of a protective substance, the corrosion potential also has a stable action.

図6に示すように、イオンの付着又は析出は、材料表面での酸素濃度の影響が顕著となる。つまり、イオンと酸素の反応による析出、腐食電位の変動の両方に寄与している。このように、構造材表面への酸素移行抑制効果により、イオンの付着又は析出が低減される。   As shown in FIG. 6, the influence of the oxygen concentration on the material surface becomes significant in the adhesion or precipitation of ions. That is, it contributes to both precipitation due to the reaction between ions and oxygen and fluctuation of the corrosion potential. Thus, the adhesion or precipitation of ions is reduced by the effect of suppressing oxygen migration to the surface of the structural material.

また、クラッド付着では、構造材表面の粗さが寄与することも知られており、保護性物質を付着させることで、加工跡を埋めるため、表面が滑らかになり、クラッドの付着を抑制することができる。   In addition, it is also known that the roughness of the surface of the structural material contributes to clad adhesion. By attaching a protective substance, the surface becomes smooth and the adhesion of the clad is suppressed by filling the processing trace. Can do.

(効果確認試験5)
図7は系統水として温度が約185℃の脱気処理水と非脱気処理水を用いた場合のむく材と本実施形態の保護性物質12で被覆された構造材11の腐食量比を示す図である。
(Effect confirmation test 5)
FIG. 7 shows the corrosion amount ratio between the stripping material and the structural material 11 covered with the protective substance 12 of this embodiment when degassed and non-degassed water having a temperature of about 185 ° C. is used as system water. FIG.

図7に示すように、本実施形態の保護性物質12で被覆された構造材11は、溶存酸素濃度の低い脱気処理水では大きな腐食抑制作用が生じないが、溶存酸素濃度が高い非脱気処理水に対しては顕著な腐食抑制効果を有することがわかる。   As shown in FIG. 7, the structural material 11 coated with the protective substance 12 of the present embodiment does not produce a significant corrosion inhibiting action with deaerated treated water having a low dissolved oxygen concentration, but is not dehydrated with a high dissolved oxygen concentration. It turns out that it has a remarkable corrosion inhibitory effect with respect to the air treatment water.

(効果)
上記効果確認試験1乃至5が示すように、非脱気処理水を用いる系統に対し、本実施形態の保護性物質は、プラントの稼働温度において顕著な腐食抑制効果を有し、また、系統水がどのような水質であっても、さらに、系統水中にクラッドやイオンが含まれても、顕著な腐食抑制効果を有することがわかる。
(effect)
As shown in the above effect confirmation tests 1 to 5, the protective substance of the present embodiment has a remarkable corrosion inhibitory effect at the operating temperature of the plant with respect to the system using non-degassed treated water. No matter what the water quality is, even if clad or ions are contained in the system water, it can be seen that it has a remarkable corrosion inhibiting effect.

したがって、本実施形態に係る保護性物質の被膜を配管及び系統機器の構造材表面に形成することにより、非脱気処理水を系統水として利用することができるため、脱気器、薬剤注入機器を省略することが可能となるので、プラントの小型化、設備費の低減化を図ることができるとともに、脱気器の制御や運転中の溶存酸素制御及び種々の薬品濃度制御の必要がなくなり、運転コストも大幅に低減することができる。   Therefore, by forming the coating of the protective substance according to this embodiment on the surface of the structural material of the piping and system equipment, non-deaerated treated water can be used as system water. Therefore, it is possible to reduce the size of the plant and reduce the equipment cost, and it is not necessary to control the deaerator, control dissolved oxygen during operation, and control various chemical concentrations. Operating costs can also be greatly reduced.

なお、本実施形態では、保護性物質としてTiO、Y、Laを用いた例を説明したが、上記に列挙した他の金属元素でも同様な作用効果を奏するとともに、上記金属元素の水酸化物、炭酸化合物、酢酸化合物又はシュウ酸化合物を用いても同様な作用効果を奏する。 In the present embodiment, an example in which TiO 2 , Y 2 O 3 , and La 2 O 3 are used as the protective material has been described. Similar effects can be obtained by using metal element hydroxides, carbonic acid compounds, acetic acid compounds or oxalic acid compounds.

また、本実施形態では加圧水型原子力プラントの二次系統に適用した例を説明したが、これに限定されず、他のプラント、例えば高速炉の二次系統、火力発電プラントの一次系にも適用可能である。   Moreover, although the example applied to the secondary system of the pressurized water nuclear power plant has been described in the present embodiment, the present invention is not limited to this, and is applied to other plants, for example, the secondary system of a fast reactor, the primary system of a thermal power plant. Is possible.

1…原子炉、2…蒸気発生器、3…高圧タービン、4…湿分分離加熱器、5…低圧タービン、6…復水器、7…低圧加熱器、8…高圧加熱器、9…高温脱塩器、10…高温フィルター、11…構造材、12…保護性被膜。   DESCRIPTION OF SYMBOLS 1 ... Reactor, 2 ... Steam generator, 3 ... High pressure turbine, 4 ... Moisture separation heater, 5 ... Low pressure turbine, 6 ... Condenser, 7 ... Low pressure heater, 8 ... High pressure heater, 9 ... High temperature Demineralizer, 10 ... high temperature filter, 11 ... structural material, 12 ... protective film.

Claims (3)

蒸気発生器、タービン、復水器及び加熱器を有する加圧水型原子力プラントの二次系統を脱気器による脱気処理及び薬剤注入機器による薬剤注入が行われない非脱気処理水が循環するプラントであって、
前記非脱気処理水が接する前記系統の構造材にTiO2、Y23又はLa23からなる保護性物質を付着させることを特徴とするプラント腐食抑制方法。
A plant in which non-degassed treated water is circulated in a secondary system of a pressurized water nuclear plant having a steam generator, a turbine, a condenser, and a heater without degassing treatment by a degasser and chemical injection by a chemical injection device. Because
A plant corrosion control method, comprising: attaching a protective substance made of TiO 2 , Y 2 O 3, or La 2 O 3 to a structural material of the system that is in contact with the non-deaerated treated water.
前記構造材は、鉄鋼、非鉄鋼材、非鉄金属又は溶接金属であることを特徴とする請求項1記載のプラント腐食抑制方法。   The plant corrosion inhibiting method according to claim 1, wherein the structural material is steel, non-ferrous steel, non-ferrous metal, or weld metal. 非脱気処理水が接する系統の構造材に請求項1又は2に記載の保護性物質を付着させることを特徴とするプラント。   A plant characterized in that the protective substance according to claim 1 or 2 is attached to a structural material of a system in contact with non-deaerated treated water.
JP2011173868A 2011-08-09 2011-08-09 Plant corrosion control method and plant Active JP5017484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011173868A JP5017484B2 (en) 2011-08-09 2011-08-09 Plant corrosion control method and plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011173868A JP5017484B2 (en) 2011-08-09 2011-08-09 Plant corrosion control method and plant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010168289A Division JP4810617B1 (en) 2010-07-27 2010-07-27 Plant corrosion control method and plant

Publications (2)

Publication Number Publication Date
JP2012027030A JP2012027030A (en) 2012-02-09
JP5017484B2 true JP5017484B2 (en) 2012-09-05

Family

ID=45780079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011173868A Active JP5017484B2 (en) 2011-08-09 2011-08-09 Plant corrosion control method and plant

Country Status (1)

Country Link
JP (1) JP5017484B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111192702A (en) * 2020-02-21 2020-05-22 三门核电有限公司 Primary circulation starting primary loop deoxygenation method for pressurized water reactor nuclear power plant based on acidic condition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339793A (en) * 1997-06-06 1998-12-22 Toshiba Corp Water quality control system and water quality control method
JPH11304993A (en) * 1998-04-21 1999-11-05 Toshiba Corp Turbine equipment for power generation
JP2003232886A (en) * 2002-02-06 2003-08-22 Toshiba Corp Corrosion reduction method for metallic material
JP4776219B2 (en) * 2004-12-09 2011-09-21 株式会社東芝 Nuclear power plant, its corrosion-resistant coating formation method and nuclear reactor operation method
JP2009216289A (en) * 2008-03-10 2009-09-24 Toshiba Corp Plant protecting method

Also Published As

Publication number Publication date
JP2012027030A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
JP4810617B1 (en) Plant corrosion control method and plant
JP5651580B2 (en) Water quality management method and system for power plant
JP5637867B2 (en) Plant operating method and system
JPH10339793A (en) Water quality control system and water quality control method
JP5017484B2 (en) Plant corrosion control method and plant
EP2180483B1 (en) Method of inhibiting adhesion of radioactive substance
KR101410012B1 (en) Corrosion-resistant structure for high-temperature water system and corrosion-preventing method thereof
WO2016139837A1 (en) Method for cleaning furnace wall tube of once-through boiler
JP5837140B2 (en) Method for producing corrosion-resistant member

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5017484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3