JPH11304993A - Turbine equipment for power generation - Google Patents

Turbine equipment for power generation

Info

Publication number
JPH11304993A
JPH11304993A JP10110292A JP11029298A JPH11304993A JP H11304993 A JPH11304993 A JP H11304993A JP 10110292 A JP10110292 A JP 10110292A JP 11029298 A JP11029298 A JP 11029298A JP H11304993 A JPH11304993 A JP H11304993A
Authority
JP
Japan
Prior art keywords
condensate
steam
turbine
heater
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10110292A
Other languages
Japanese (ja)
Inventor
Koji Kubo
光司 久保
Minoru Kobayashi
小林  実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10110292A priority Critical patent/JPH11304993A/en
Publication of JPH11304993A publication Critical patent/JPH11304993A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the material integrity by reducing corrosion products generating between the outlet of condensate demineralization device and a chemical injection point and reducing the iron concentration in supply water. SOLUTION: By the steam flowing out of a steam generator 1, a low pressure turbine 6 is rotated, power is generated and the steam is condensed to be condensate by the main steam condenser 7 of a condensing system. A condensate demineralization device 9 processing the condensate is provided. A high pressure heater drain system is provided to return the heater drain where the extracted steam of part of main steam is used as heat source of a high pressure supply water heater 12 to a water supply pipe 13. A low pressure heater drain is provided to return the heater drain where the extracted steam of part of steam having rotated the low pressure turbine 6 is used as heat source of a low pressure supply water heater 10 to a water supply steam. The water supply pipe 13, which returns the supply water from the low pressure heater drain system after heating with the low pressure and the high pressure supply water heaters 10 and 12 to the steam generator 1, is provided. At the outlet side of the condensate demineralization device 9, a chemical injection line 29 is provided. Between the condensate demineralization device 9 and the condensate pump 8 discharge side, an oxygen gas supply device 22 is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は揮発性薬品処理(A
VT)後の復水脱塩装置下流側の腐食を抑制し、材料の
健全性を維持、向上し得る発電用タービン設備に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the treatment of volatile chemicals (A
The present invention relates to a turbine plant for power generation that can suppress corrosion on the downstream side of a condensate desalination device after VT) and maintain and improve the soundness of materials.

【0002】[0002]

【従来の技術】図11により従来の発電用タービン設備の
1例と腐食生成物発生を抑制するための薬品注入ライン
を説明する。図11において、符号1は蒸気発生器で、例
えば沸騰水型原子炉である。蒸気発生器1には伝熱管2
7、例えば炉心が内蔵しており、蒸気発生器1には蒸気
系の主蒸気管2が接続している。主蒸気管2は高圧ター
ビン3に接続し、高圧タービン3の下流側には湿分分離
器4,再熱器5および低圧タービン6が順次接続してい
る。
2. Description of the Related Art An example of a conventional power generating turbine facility and a chemical injection line for suppressing generation of corrosion products will be described with reference to FIG. In FIG. 11, reference numeral 1 denotes a steam generator, for example, a boiling water reactor. Heat transfer tube 2 for steam generator 1
7. For example, a core is built in, and a main steam pipe 2 of a steam system is connected to the steam generator 1. The main steam pipe 2 is connected to a high-pressure turbine 3, and a moisture separator 4, a reheater 5 and a low-pressure turbine 6 are sequentially connected downstream of the high-pressure turbine 3.

【0003】低圧タービン6には復水系の主復水器7が
設けられ、主復水器7の下流側には復水ポンプ8が接続
し、復水ポンプ8の吐出側は復水脱塩装置9に接続して
いる。復水脱塩装置9の下流側給水系配管には低圧給水
加熱器10,給水ポンプ11,高圧給水加熱器12が順次接続
し、高圧給水加熱器12の下流側は給水配管13により蒸気
発生器1に接続している。
A low-pressure turbine 6 is provided with a main condenser 7 of a condensing system, a condensing pump 8 is connected downstream of the main condenser 7, and a discharge side of the condensing pump 8 is condensed and desalinated. Connected to device 9. A low-pressure feedwater heater 10, a feedwater pump 11, and a high-pressure feedwater heater 12 are sequentially connected to the downstream feedwater pipe of the condensate desalination unit 9, and a steam generator is provided downstream of the high-pressure feedwater heater 12 by a feedwater pipe 13. Connected to 1.

【0004】高圧給水加熱器12の二次側入口には高圧タ
ービン3と接続する抽気管14,湿分分離器4と接続する
湿分分離器ドレン管15および再熱器5と接続する再熱器
ドレン管16が接続されている。高圧給水加熱器12の二次
側出口は、給水ポンプ11の吸込側と接続する高圧ヒータ
ドレン管17が高圧ヒータドレンポンプ18を介して接続し
ている。
At the secondary inlet of the high-pressure feed water heater 12, a bleed pipe 14 connected to the high-pressure turbine 3, a moisture separator drain pipe 15 connected to the moisture separator 4, and a reheat pipe connected to the reheater 5. The container drain pipe 16 is connected. A high-pressure heater drain pipe 17 connected to the suction side of the water supply pump 11 is connected to a secondary outlet of the high-pressure feed water heater 12 via a high-pressure heater drain pump 18.

【0005】低圧タービン6と低圧給水加熱器10との間
は抽気管19により接続している。低圧給水加熱器10の二
次側出口と復水脱塩装置9の吐出側配管とは低圧ヒータ
ドレンバイパス管(以下、LPPDと記す)20により低
圧ヒータドレンポンプ21を介して接続している。
[0005] The low pressure turbine 6 and the low pressure feed water heater 10 are connected by a bleed pipe 19. The secondary outlet of the low-pressure feed water heater 10 and the discharge-side pipe of the condensate desalination device 9 are connected via a low-pressure heater drain pump 21 by a low-pressure heater drain bypass pipe (hereinafter referred to as LPPD) 20.

【0006】蒸気発生器附帯型原子力発電所において
は、蒸気発生器1の伝熱管27の二次側材料の健全性を維
持するために鉄錆の堆積を低減する必要がある。この鉄
錆の堆積量減少方法として、また、タービン設備の機器
・配管の腐食による機能低下抑制の方法としては、ター
ビン系に揮発性薬品処理(AVT)等を採用し腐食抑制
を図っている。
[0006] In a nuclear power plant with a steam generator, it is necessary to reduce the accumulation of iron rust in order to maintain the soundness of the secondary material of the heat transfer tube 27 of the steam generator 1. As a method of reducing the amount of accumulation of iron rust and a method of suppressing functional deterioration due to corrosion of equipment and piping of turbine equipment, a volatile chemical treatment (AVT) or the like is adopted in a turbine system to suppress corrosion.

【0007】AVTではアンモニアを添加することによ
り通常pHは約 8.7〜9.5 に保持し、またヒドラジンを
0.2〜0.6ppm添加することと脱気器の設置により給水溶
存酸素濃度をほぼ0に管理する脱酸素,還元雰囲気状態
で運転している。これらの薬品の他に海外ではモルフォ
リン,エタノールアミンあるいはジメチルアミン等のそ
れぞれ特徴のある薬品が使用されている。
In AVT, the pH is usually maintained at about 8.7 to 9.5 by adding ammonia, and hydrazine is added.
By adding 0.2 to 0.6 ppm and installing a deaerator, the operation is performed in a deoxygenating and reducing atmosphere state in which the concentration of dissolved oxygen in the feed water is controlled to almost zero. In addition to these chemicals, chemicals having respective characteristics such as morpholine, ethanolamine and dimethylamine are used overseas.

【0008】AVTの薬品は、復水脱塩装置9で薬品が
除去されることから、薬品注入は復水脱塩装置9の下流
で行われる。この注入点は、配置や配管ルートあるいは
注入の場所の関連から、復水脱塩装置9の出口から配管
で10mから20m程度下流になる場合が多い。
[0008] Since the chemicals of the AVT are removed by the condensate desalination unit 9, the chemicals are injected downstream of the condensate desalination unit 9. This injection point is often about 10 m to 20 m downstream from the outlet of the condensate desalination device 9 by piping, depending on the arrangement, the piping route, or the location of the injection.

【0009】[0009]

【発明が解決しようとする課題】蒸気発生器附帯型原子
力発電所では、AVTを採用しても、給水鉄濃度は数pp
b 程度存在するため、蒸気発生器附帯型原子力発電所で
は蒸気発生器での鉄錆の堆積量が経年的に増加し、そこ
での不純物の濃縮が起こることにより蒸気発生器伝熱管
2次側の粒界腐食損傷(IGA)が発生する課題があ
る。
In a nuclear power plant with a steam generator, even if AVT is adopted, the iron concentration of the feedwater is several pp.
b, the amount of iron rust accumulated in the steam generator increases with time in the steam generator-attached nuclear power plant, and the concentration of impurities there causes the concentration of impurities on the secondary side of the steam generator heat transfer tube. There is a problem that intergranular corrosion damage (IGA) occurs.

【0010】給水鉄濃度上昇の要因として、高圧ヒータ
ドレン系やヒータドレン系の給水への流入時に、系統か
ら持ち込まれる腐食生成物の流入、復水脱塩装置をリー
クした腐食生成物の下流への流出あるいは復水脱塩装置
出口から給水系での腐食生成物の発生などの課題があ
る。
[0010] The factors that cause the increase in the iron concentration of the feedwater include the inflow of corrosion products brought in from the system when the high-pressure heater drain system or the heater drain system flows into the feedwater, and the outflow of corrosion products leaked from the condensate desalination unit to the downstream. Alternatively, there is a problem such as generation of corrosion products in a water supply system from a condensate desalination apparatus outlet.

【0011】とくに、従来の蒸気発生器附帯型原子力発
電所の場合、腐食抑制のために注入する薬品は、復水脱
塩装置で除去されることから、その下流で再度注入して
いるが、この注入するまでの間は薬品が存在しない状態
のため、機器や配管からの腐食が増加する課題がある。
Particularly, in the case of a conventional steam generator-attached nuclear power plant, chemicals to be injected for corrosion control are removed again by a condensate demineralizer, so they are injected again downstream of the condensate. Since there is no chemical before the injection, there is a problem that corrosion from equipment and piping increases.

【0012】本発明は上記課題を解決するためになされ
たもので、復水脱塩装置出口から薬品注入点での間で発
生する腐食生成物量を低減し、給水鉄濃度を低減するこ
とにより材料の健全性を維持、向上できる発電用タービ
ン設備を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to reduce the amount of corrosion products generated from the outlet of a condensate demineralizer to the point of injection of chemicals, and to reduce the concentration of iron feedwater. It is an object of the present invention to provide a turbine facility for power generation that can maintain and improve the soundness of a turbine.

【0013】[0013]

【課題を解決するための手段】請求項1に対応する発明
は、蒸気発生器から流出した蒸気により、タービンを回
転させて発電し、復水系の復水器により前記蒸気を凝縮
して復水とし、この復水を復水脱塩装置により処理した
復水と、前記主蒸気の一部を取り出した抽気を高圧給水
加熱器の熱源として使用したヒータドレンを給水に戻す
高圧ヒータドレン系と、前記タービンを回転させた蒸気
の一部を抽気して低圧給水加熱器の熱源として使用した
ヒータドレンを給水系に戻した低圧ヒータドレン系を給
水として給水加熱器とで加熱し、前記蒸気発生器に戻
し、前記復水脱塩装置の出口側に薬品注入ラインを設け
てなる発電用タービン設備において、前記復水脱塩装置
と前記復水系の復水ポンプの吐出側との間に酸素ガス供
給装置を設けたことを特徴とする。
According to a first aspect of the present invention, a steam is generated from a steam generator by rotating a turbine to generate power, and the steam is condensed by a condenser in a condensing system to condense the steam. Condensate obtained by treating the condensate with a condensate desalination device; a high-pressure heater drain system for returning a heater drain used as a heat source of a high-pressure feed water heater with extracted air obtained by extracting a part of the main steam to the feed water; The heater drain used as the heat source of the low-pressure feed water heater was extracted by extracting a part of the steam that was rotated, and the low-pressure heater drain system was returned to the feed water system, and the low-pressure heater drain system was heated with the feed water heater as feed water, and returned to the steam generator. In a power generation turbine facility provided with a chemical injection line on the outlet side of a condensate desalination device, an oxygen gas supply device is provided between the condensate desalination device and the discharge side of a condensate pump of the condensate system. thing And it features.

【0014】請求項2に対応する発明は、前記復水脱塩
装置は復水脱塩塔を複数基並列に設置してなり、前記復
水脱塩塔の出口部各々に前記薬品注入ラインを設けてな
ることを特徴とする。
According to a second aspect of the present invention, in the condensate desalination apparatus, a plurality of condensate demineralization towers are installed in parallel, and the chemical injection line is connected to each outlet of the condensate demineralization tower. It is characterized by being provided.

【0015】請求項3に対応する発明は、前記薬品注入
ラインの直前または下流に中空糸膜フィルタを設けてな
ることを特徴とする。請求項4に対応する発明は、前記
復水脱塩装置の下流部の直後に、酸素注入装置を設けて
なることを特徴とする。
[0015] The invention corresponding to claim 3 is characterized in that a hollow fiber membrane filter is provided immediately before or downstream of the chemical injection line. The invention corresponding to claim 4 is characterized in that an oxygen injection device is provided immediately downstream of the condensate desalination device.

【0016】請求項5に対応する発明は、前記復水脱塩
装置の下流から前記薬品注入ラインまでの機器または配
管を耐腐食性鋼で形成してなることを特徴とする。請求
項6に対応する発明は、蒸気発生器から流出した蒸気に
より、タービンを回転させて発電し、復水系の復水器に
より前記蒸気を凝縮して復水とし、この復水を復水脱塩
装置により処理した復水と、前記主蒸気の一部を取り出
した抽気を高圧給水加熱器の熱源として使用したヒータ
ドレンを給水に戻す高圧ヒータドレン系と、前記タービ
ンを回転させた蒸気の一部を抽気して低圧給水加熱器の
熱源として使用したヒータドレンを給水系に戻した低圧
ヒータドレン系を給水として給水加熱器とで加熱し、前
記蒸気発生器に戻し、前記復水脱塩装置の出口側に薬品
注入ラインを設けてなる発電用タービン設備において、
前記低圧給水加熱器の二次側出口に低圧ヒータドレン管
の一端を接続し、この低圧ヒータドレンの他端を前記復
水器に接続してなることを特徴とする。
The invention corresponding to claim 5 is characterized in that equipment or piping from the downstream of the condensate desalination apparatus to the chemical injection line is made of corrosion-resistant steel. According to a sixth aspect of the present invention, a steam is generated from a steam generator by rotating a turbine to generate power, and the steam is condensed by a condenser of a condensing system into condensate water. Condensed water treated by a salt device, a high-pressure heater drain system that returns the heater drain used as a heat source of the high-pressure feed water heater with the extracted air that takes out a part of the main steam to the feed water, and a part of the steam that rotates the turbine The heater drain used as a heat source of the low-pressure feedwater heater that has been bled and returned to the feedwater system is heated with the feedwater heater using the low-pressure heater drain system as feedwater, returned to the steam generator, and placed at the outlet side of the condensate desalination device. In a power generation turbine facility equipped with a chemical injection line,
One end of a low-pressure heater drain pipe is connected to a secondary outlet of the low-pressure feed water heater, and the other end of the low-pressure heater drain is connected to the condenser.

【0017】請求項7に対応する発明は、前記復水脱塩
装置は復水脱塩塔を複数基並列に設置してなり、前記復
水脱塩塔の出口部各々に前記薬品注入ラインを設けてな
ることを特徴とする。請求項8に対応する発明は、前記
薬品注入ラインの直前または下流に中空糸膜フィルタを
設けてなることを特徴とする。
According to a seventh aspect of the present invention, in the condensate desalination apparatus, a plurality of condensate demineralization towers are installed in parallel, and the chemical injection line is connected to each outlet of the condensate demineralization tower. It is characterized by being provided. The invention corresponding to claim 8 is characterized in that a hollow fiber membrane filter is provided immediately before or downstream of the chemical injection line.

【0018】請求項9に対応する発明は、前記復水脱塩
装置の下流部の直後に、酸素注入装置を設けてなること
を特徴とする。請求項10に対応する発明は、前記復水脱
塩装置の下流から前記薬品注入ラインまでの機器または
配管を耐腐食性鋼で形成してなることを特徴とする。
[0018] The invention corresponding to claim 9 is characterized in that an oxygen injection device is provided immediately downstream of the condensate desalination device. The invention corresponding to claim 10 is characterized in that equipment or piping from the downstream of the condensate desalination apparatus to the chemical injection line is made of corrosion-resistant steel.

【0019】請求項11に対応する発明は、前記酸素注入
量は復水脱塩装置出口での濃度で7ppb 以上とすること
を特徴とする。本発明はタービン設備の材料健全性を維
持、向上するために、使用する薬品をタービン系の蒸気
や水の接触部すべてに行き渡ること、あるいは腐食速度
の小さい環境を作ること、あるいは材料を改善し腐食量
を低減することにより給水から蒸気発生器へ流入する鉄
錆量の低減を達成することができる。
[0019] The invention corresponding to claim 11 is characterized in that the oxygen injection amount is 7 ppb or more in concentration at the outlet of the condensate desalination apparatus. In order to maintain and improve the material integrity of the turbine equipment, the present invention distributes the chemicals used to all the steam and water contacts of the turbine system, creates an environment with a low corrosion rate, or improves the material. By reducing the amount of corrosion, it is possible to achieve a reduction in the amount of iron rust flowing from the feedwater to the steam generator.

【0020】図5には、溶存酸素が存在すると炭素鋼の
腐食が抑制されることが示されており、腐食速度の小さ
い環境を作ることが可能となる。溶存酸素が存在すると
Fe2 3 の安定な酸化皮膜が形成されることによるこ
とが知られている。
FIG. 5 shows that the presence of dissolved oxygen suppresses the corrosion of carbon steel, making it possible to create an environment with a low corrosion rate. It is known that the presence of dissolved oxygen results in the formation of a stable oxide film of Fe 2 O 3 .

【0021】なお、図5はGordon etal,“Hydrogen wat
er chemistry for BWRs ”EPRI NP-3935M(1985) の文献
から引用したもので、200 〜300 ℃( 392〜 572F°)
の温度範囲で異なる酸素濃度に1000hr晒した炭素鋼の腐
食率と溶出率を溶存酸素濃度との関係で示している。
FIG. 5 shows Gordon et al., “Hydrogen wat.
er chemistry for BWRs "EPRI NP-3935M (1985), cited in the literature, 200-300 ° C (392-572F °)
The corrosion rate and elution rate of carbon steel exposed to different oxygen concentrations for 1000 hours in the temperature range above are shown in relation to the dissolved oxygen concentration.

【0022】図6から図8には、低合金鋼は従来使用し
ている炭素鋼に比べ腐食生成物の発生を少なくするため
の耐エロージョン・コロージョン性が極めて高いことが
示されており、材料の改善による腐食生成物の低減が可
能となる。
FIGS. 6 to 8 show that the low-alloy steel has extremely high erosion-corrosion resistance for reducing the generation of corrosion products as compared with conventionally used carbon steel. It is possible to reduce corrosion products by improving the corrosion resistance.

【0023】図6から図8は「火力原子力発電:発電プ
ラントの腐食とその防止,腐食形態と対策2」vol.47 N
o.6 p677 〜 Jun.1996から引用したもので、低炭素鋼
は炭素鋼に比較して耐エロージョン,コロージョン性が
極めて高いことが明らかにされている。
FIGS. 6 to 8 show "Thermal and Nuclear Power Generation: Corrosion of Power Plants and Its Prevention, Corrosion Forms and Countermeasures 2" vol.47N
o.6 From p677 to Jun.1996, it is clear that low carbon steel has extremely high erosion and corrosion resistance compared to carbon steel.

【0024】すなわち、図6は炭素鋼,Ni−Cr−C
u鋼およびCr−Mo鋼についてエロージョン,コロー
ジョン減量に及ぼす影響を示しており、図7は同じく蒸
気湿り度の影響を示し、図8は炭素鋼とCr−Mo鋼に
ついてエロージョン,コロージョン減量に及ぼす蒸気湿
度の影響を示している。さらに、配管は少し複雑になる
が、薬品注入配管を分岐したり、必要本数接続すること
により、現状よりも上流部から薬品を注入することも有
効である。
FIG. 6 shows carbon steel, Ni--Cr--C.
7 shows the effect on the erosion and corrosion reduction of the u-steel and the Cr-Mo steel. FIG. 7 also shows the effect of the steam wetness, and FIG. 8 shows the effect of the steam on the erosion and the corrosion loss of the carbon steel and the Cr-Mo steel. This shows the effect of humidity. Further, although the piping is slightly complicated, it is also effective to inject the chemical from an upstream portion than the current state by branching the chemical injection piping or connecting a necessary number of them.

【0025】請求項1においては、タービン設備の高圧
および低圧ヒータドレン系が給水に入る場合の蒸気発生
器への腐食生成物の持ち込みを抑制することができる。
請求項2においては、腐食生成物低減に使用する薬品を
タービン系の蒸気や水の接触部に行き渡るために現状注
入していない部分までラインを引いて対処する。
According to the first aspect, it is possible to suppress the introduction of corrosion products to the steam generator when the high-pressure and low-pressure heater drain systems of the turbine equipment enter the feedwater.
According to the second aspect, a line is drawn to a portion where the chemical used for reducing the corrosion product is not injected at present so that the chemical used for reducing the corrosion product can reach the contact portion of the steam or water of the turbine system.

【0026】請求項3においては、腐食生成物を下流へ
流出しないために、発生した腐食生成物を中空糸膜フィ
ルタにて除去する。請求項4においては、腐食速度の小
さい環境を作り腐食量を低減する。請求項5において
は、材料改善により腐食量を低減する。請求項6におい
ては、タービン設備の高圧ヒータドレン系が給水に入る
場合の蒸気発生器への腐食生成物持ち込み抑制の手段を
提供する。
In the third aspect, the generated corrosion products are removed by a hollow fiber membrane filter so that the corrosion products do not flow downstream. In claim 4, an environment having a low corrosion rate is created to reduce the amount of corrosion. In claim 5, the amount of corrosion is reduced by improving the material. Claim 6 provides a means for suppressing the introduction of corrosion products into the steam generator when the high-pressure heater drain system of the turbine facility enters the feedwater.

【0027】請求項7においては、請求項6の腐食生成
物低減の具体的手段の1つである使用する薬品をタービ
ン系の蒸気や水の接触部に行き渡るために現状注入して
いない部分までラインを引いて対処する。請求項8にお
いては、腐食性生物を下流へ流出しないために、発生し
た腐食生成物を中空糸膜フィルタにて除去する。請求項
9においては、腐食速度の小さい環境を作り腐食量を低
減する。請求項10においては、材料改善により腐食量を
低減する。請求項11においては、請求項1および6で設
置した酸素注入装置からの酸素注入量制限を規定するこ
とができる。
According to the present invention, the chemical used as one of the concrete means for reducing the corrosion product of the present invention is distributed to the steam or water contact portion of the turbine system up to the portion which is not currently injected. Draw a line and deal with it. In claim 8, generated corrosion products are removed by a hollow fiber membrane filter so that corrosive organisms do not flow downstream. In claim 9, an environment with a low corrosion rate is created to reduce the amount of corrosion. In claim 10, the amount of corrosion is reduced by improving the material. According to the eleventh aspect, it is possible to regulate the amount of oxygen to be injected from the oxygen injector installed in the first and sixth aspects.

【0028】[0028]

【発明の実施の形態】図1により本発明に係る蒸気発生
器附帯型発電用タービン設備の第1の実施の形態を説明
する。図1において、符号1は蒸気発生器で、例えば沸
騰水型原子炉である。蒸気発生器1には伝熱管27として
例えば炉心が内蔵しており、蒸気発生器1には主蒸気管
2が接続している。主蒸気管2はタービン系の高圧ター
ビン3に接続し、高圧タービン3の下流側には湿分分離
器4,再熱器5および低圧タービン6が順次接続してい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a steam generator-attached power generation turbine facility according to the present invention will be described with reference to FIG. In FIG. 1, reference numeral 1 denotes a steam generator, for example, a boiling water reactor. The steam generator 1 incorporates, for example, a core as a heat transfer tube 27, and the main steam tube 2 is connected to the steam generator 1. The main steam pipe 2 is connected to a high-pressure turbine 3 of a turbine system, and a moisture separator 4, a reheater 5, and a low-pressure turbine 6 are sequentially connected downstream of the high-pressure turbine 3.

【0029】低圧タービン6には復水系の主復水器7が
設けられ、主復水器7の下流側には復水ポンプ8が接続
し、復水ポンプ8の吐出側は復水脱塩装置9に接続して
いる。復水脱塩装置9の下流側給水系には低圧給水加熱
器10,給水ポンプ11,高圧給水加熱器12が順次直列接続
し、高圧給水加熱器12の下流側は給水配管13により蒸気
発生器1に接続している。
The low-pressure turbine 6 is provided with a main condenser 7 of a condensing system, a condensing pump 8 is connected to the downstream side of the main condenser 7, and a discharge side of the condensing pump 8 is condensed and desalinated. Connected to device 9. A low-pressure feedwater heater 10, a feedwater pump 11, and a high-pressure feedwater heater 12 are sequentially connected in series to the downstream feedwater system of the condensate desalination unit 9. The downstream side of the high-pressure feedwater heater 12 is connected to a steam generator by a feedwater pipe 13. Connected to 1.

【0030】高圧給水加熱器12の二次側入口には高圧タ
ービン3と接続する抽気管14,湿分分離器ドレン管15お
よび再熱器5と接続する再熱器ドレン管16が接続し、高
圧給水加熱器12の二次側出口には給水ポンプ11の吸込側
に接続する高圧ヒータドレン管17が高圧ヒータドレンポ
ンプ18を介して接続している。
The secondary inlet of the high-pressure feed water heater 12 is connected to a bleed pipe 14 connected to the high-pressure turbine 3, a moisture separator drain pipe 15, and a reheater drain pipe 16 connected to the reheater 5. A high pressure heater drain pipe 17 connected to the suction side of the water supply pump 11 is connected to a secondary outlet of the high pressure feed water heater 12 via a high pressure heater drain pump 18.

【0031】低圧タービン6と低圧給水加熱器10の二次
側入口とは抽気管19により接続している。低圧給水加熱
器10の二次側出口と復水脱塩装置9の出口側配管とは、
低圧ヒータドレンバイパス管(以下、LPPDと記す)
20により、低圧ヒータドレンポンプ21を介して接続して
いる。
The low-pressure turbine 6 and the secondary-side inlet of the low-pressure feedwater heater 10 are connected by a bleed pipe 19. The secondary outlet of the low pressure feed water heater 10 and the outlet pipe of the condensate desalination device 9
Low pressure heater drain bypass pipe (hereinafter referred to as LPPD)
20 is connected through a low pressure heater drain pump 21.

【0032】図1中、符号22は酸素ガス供給装置で、こ
の酸素ガス供給装置22は加圧ポンプ23を介して復水脱塩
装置9の入口側配管に接続している。また、符号28は薬
注装置で、この薬注装置28は薬注ライン29を接続し、薬
注ライン29は復水脱塩装置9の出口側配管に接続してい
る。
In FIG. 1, reference numeral 22 denotes an oxygen gas supply device. The oxygen gas supply device 22 is connected to the inlet side pipe of the condensate desalination device 9 via a pressure pump 23. Reference numeral 28 denotes a chemical injection device, which is connected to a chemical injection line 29, and which is connected to an outlet pipe of the condensate desalination device 9.

【0033】ここで、本実施の形態では、復水脱塩装置
9の下流側の腐食抑制のために、復水脱塩装置9の上流
側に酸素ガス供給装置22から供給された酸素ガスを加圧
ポンプ23により機器,配管が適切な溶存酸素濃度になる
ように供給する。酸素注入量は復水脱塩装置の出口での
濃度で7ppb 以上とする。
In this embodiment, the oxygen gas supplied from the oxygen gas supply device 22 is supplied upstream of the condensate desalination device 9 in order to suppress corrosion on the downstream side of the condensate demineralization device 9. The pressurized pump 23 supplies the equipment and piping so that the dissolved oxygen concentration becomes appropriate. The oxygen injection amount should be 7ppb or more at the outlet of the condensate desalination unit.

【0034】酸素注入の効果が下流にある場合には、復
水脱塩装置9の下流側に酸素ガス供給装置22を設けるこ
ともできる。また、脱気器を設けた場合には溶存した酸
素は脱気器で除去される。
If the effect of oxygen injection is downstream, an oxygen gas supply device 22 can be provided downstream of the condensate and desalination device 9. When a deaerator is provided, dissolved oxygen is removed by the deaerator.

【0035】また、腐食の絶対量を低減するために、復
水脱塩装置9の下流で薬注ライン29の接続箇所までの機
器や配管をステンレス鋼または低合金鋼で構成する。こ
れにより、復水脱塩装置9の下流側が緻密な酸化皮膜を
形成し、腐食が抑制されることによって給水鉄濃度が低
いレベルに維持できる。
Further, in order to reduce the absolute amount of corrosion, the equipment and piping to the connection point of the chemical injection line 29 downstream of the condensate demineralizer 9 are made of stainless steel or low alloy steel. As a result, a dense oxide film is formed on the downstream side of the condensate desalination device 9, and corrosion is suppressed, so that the iron concentration of the feedwater can be maintained at a low level.

【0036】つぎに本実施の形態に係る作用効果を数値
例により説明する。なお、タービン設備の配置や容量に
よって違いはあるが、下記条件の数値であった場合の効
果を算定する。
Next, the operation and effect according to this embodiment will be described with reference to numerical examples. In addition, although there are differences depending on the arrangement and capacity of the turbine equipment, the effect is calculated when the numerical values under the following conditions are satisfied.

【0037】条件としては、図1において、復水脱塩装
置9の出口から薬注ライン29の接続部までの配管部が、
溶存酸素濃度が低く薬品が注入されていない復水が流れ
ており、その配管として図3に示したように、復水脱塩
装置各塔9a,9b,9cの出口部 300Aの配管10mが
3本, 600A配管10mである。
In FIG. 1, the piping from the outlet of the condensate desalination unit 9 to the connection of the chemical injection line 29 is as follows.
As shown in FIG. 3, the condensate having a low dissolved oxygen concentration and containing no chemical is flowing, and as shown in FIG. This is a 10 meter 600A pipe.

【0038】また、腐食率は、 500mg/dm2 /月(図9
から中性になると腐食率は増加し、図10により流速があ
ると腐食率は高くなる)とし、給水流量が 3000t/h ,
給水での腐食生成物の濃度が5ppb の場合である。
The corrosion rate was 500 mg / dm 2 / month (FIG. 9).
The corrosion rate increases when the water flow becomes neutral, and as shown in Fig. 10, the corrosion rate increases when the flow velocity increases.)
This is the case when the concentration of corrosion products in the feed water is 5 ppb.

【0039】計算; 表面積; 300π×10×3/1000+ 600π×10/1000=4
7.0m2 流量;3000t/h とすると、 腐食量は 47× 100× 500/1000=2350g/月 したがって、濃度は2350/(3000×24× 365/12)×10
3 ppb=1.07ppb1.07/5=0.21となる。
Calculation; surface area; 300π × 10 × 3/1000 + 600π × 10/1000 = 4
Assuming a flow rate of 7.0 m 2 and 3000 t / h, the amount of corrosion is 47 × 100 × 500/1000 = 2350 g / month. Therefore, the concentration is 2350 / (3000 × 24 × 365/12) × 10
3 ppb = 1.07 ppb1.07 / 5 = 0.21.

【0040】本発明により、腐食生成物は、2350g/
月、また給水換算濃度は、1.07ppb 抑制でき、給水に流
入する腐食生成物の21%が低減できることになる。な
お、図9は炭素鋼および銅の腐食に及ぼすpHの影響を
示しており、図10は炭素鋼(SB46)の腐食率と溶存酸
素濃度の関係を示している。33±2℃,導電率<0.5 μ
オーム/cm,浸漬時間は 500時間である。
According to the invention, the corrosion products are 2350 g /
The monthly and feedwater equivalent concentration can be reduced by 1.07 ppb, which means that 21% of the corrosion products flowing into the feedwater can be reduced. FIG. 9 shows the effect of pH on the corrosion of carbon steel and copper, and FIG. 10 shows the relationship between the corrosion rate of carbon steel (SB46) and the dissolved oxygen concentration. 33 ± 2 ℃, conductivity <0.5 μ
Ohms / cm, immersion time is 500 hours.

【0041】つぎに図2により本発明に係る発電用ター
ビン設備の第2の実施の形態を説明する。本実施の形態
が第1の実施の形態と異なる点は蒸気発生器1と高圧給
水加熱器12とを接続する給水配管13に止め弁24を有する
給水再循環ライン25の一端を接続し、給水再循環ライン
25の他端を主復水器7に接続したことにある。
Next, a second embodiment of the turbine equipment for power generation according to the present invention will be described with reference to FIG. The present embodiment is different from the first embodiment in that one end of a feed water recirculation line 25 having a stop valve 24 is connected to a feed water pipe 13 connecting the steam generator 1 and the high-pressure feed water heater 12 to supply water. Recirculation line
The other end of 25 is connected to the main condenser 7.

【0042】また、LPPD20の下流側に復水脱塩装置
上流戻り配管34の一端を接続し、この上流戻り配管34の
他端を復水脱塩装置上流戻り弁37を介して復水ポンプ8
の吐出側配管に接続し、復水脱塩装置9と低圧給水加熱
器10との間に中空糸膜フィルタ(以下、HFFと記す)
32を設けたことにある。
Further, one end of a condensate desalination device upstream return pipe 34 is connected to the downstream side of the LPPD 20, and the other end of the upstream return pipe 34 is connected to the condensate pump 8 via a condensate desalination device upstream return valve 37.
And a hollow fiber membrane filter (hereinafter, referred to as HFF) between the condensate desalination unit 9 and the low-pressure feedwater heater 10.
32.

【0043】さらに、復水脱塩装置9の前後にバイパス
管33を設け、復水脱塩装置上流戻り配管34とHFF32の
前後の配管にHFF上流戻り弁38を有するHFF上流戻
り配管と、HFF下流戻り弁39を有するHFF下流戻り
配管36を接続したことにある。その他の部分は図1に示
した第1の実施の形態と同様である。
Further, a bypass pipe 33 is provided before and after the condensate desalination apparatus 9, and an HFF upstream return pipe having an HFF upstream return valve 38 at pipes before and after the condensate desalination apparatus upstream return pipe 34 and HFF 32; The HFF downstream return pipe 36 having the downstream return valve 39 is connected. The other parts are the same as in the first embodiment shown in FIG.

【0044】本実施の形態は図2に示したように、復水
脱塩装置9の下流に中空糸膜を用いたHFF32を設置し
た発電用タービン設備の構成としている。HFF32は運
転中に発生する復水脱塩装置9と薬注装置28から薬注ラ
イン29を通る薬品注入点までの機器や配管で発生した腐
食生成物を極めて高効率で除去できる。
In this embodiment, as shown in FIG. 2, a turbine facility for power generation is provided in which an HFF 32 using a hollow fiber membrane is installed downstream of a condensate desalination unit 9. The HFF 32 can remove corrosion products generated in the equipment and piping from the condensate desalination device 9 and the chemical injection device 28 to the chemical injection point passing through the chemical injection line 29 during operation with extremely high efficiency.

【0045】また、タービン設備停止時に発生した復水
脱塩装置9の上流部からの腐食生成物を、タービン設備
起動初期に復水脱塩装置9をバイパスライン33を用いて
バイパスし、HFF32で除去することにより水質の悪化
を抑制できる。
In addition, corrosion products generated from the upstream part of the condensate desalination unit 9 generated when the turbine equipment is stopped are bypassed using the bypass line 33 in the initial stage of the turbine equipment start-up, and the HFF 32 is used. By removing, deterioration of water quality can be suppressed.

【0046】プラント起動時にLPPD20の鉄濃度が高
くなった場合は、LPPDの戻りを復水脱塩装置上流戻
り配管34または復水脱塩装置9とHFF32との間のHF
F上流戻り配管35へ戻せるように復水脱塩装置上流戻り
弁37またはHFF上流戻り弁38を切り替えて運用をする
ことができる。
If the iron concentration of the LPPD 20 becomes high at the time of starting the plant, the LPPD is returned to the HF between the condensate desalination unit 9 and the HFF 32 by returning the condensate desalination unit upstream return pipe 34 or the HFF 32.
The condensate desalination device upstream return valve 37 or the HFF upstream return valve 38 can be switched and operated so as to return to the F upstream return pipe 35.

【0047】また、給水配管13の途中から分岐し、主復
水器7に戻す給水再循環ライン25により、復水脱塩装置
9のバイパスライン33を使用してHFF32で除去する。
これにより、タービン設備停止中に混入した不純物を、
復水,給水浄化によりタービン設備起動前に除去でき
る。
The feed water recirculation line 25, which branches off from the middle of the feed water pipe 13 and returns to the main condenser 7, removes the water by the HFF 32 using the bypass line 33 of the condensate desalination unit 9.
As a result, impurities mixed during turbine facility shutdown
It can be removed before starting turbine equipment by condensing and purifying water.

【0048】つぎに図1および図3により本発明に係る
発電用タービン設備の第3の実施の形態を説明する。本
実施の形態は図1に示した第1の実施の形態において復
水脱塩装置9を図3に示したように第1の復水脱塩塔9
a,第2の復水脱塩塔9bおよび第3の復水脱塩塔9c
を3基並列配置し、第1から第3の復水脱塩塔9a,9
b,9cにそれぞれ入口弁30および出口弁31を接続し、
入口弁30側を復水ポンプ8の吐出側配管に接続し、出口
弁31側に薬注ライン29を接続するとともに下流側を低圧
給水加熱器10に接続したことにある。
Next, a third embodiment of the power generation turbine equipment according to the present invention will be described with reference to FIGS. This embodiment is different from the first embodiment shown in FIG. 1 in that the condensate desalination apparatus 9 is replaced with the first condensate desalination tower 9 as shown in FIG.
a, the second condensate desalination tower 9b and the third condensate desalination tower 9c
Are arranged in parallel, and the first to third condensate desalination towers 9a, 9
b and 9c are connected with the inlet valve 30 and the outlet valve 31, respectively.
That is, the inlet valve 30 is connected to the discharge-side pipe of the condensate pump 8, the outlet line 31 is connected to the chemical injection line 29, and the downstream side is connected to the low-pressure feed water heater 10.

【0049】本実施の形態によれば、復水脱塩装置9の
各塔9a〜9cの下流側に薬注ライン29を接続すること
により各塔9a〜9cそれぞれの出口配管および下流部
の機器や配管で薬品が存在する状態にでき、これにより
腐食量を低減することができる。
According to the present embodiment, by connecting the chemical injection line 29 to the downstream side of each of the towers 9a to 9c of the condensate desalination apparatus 9, the outlet pipe of each of the towers 9a to 9c and the equipment in the downstream part are connected. And piping can be in a state in which chemicals are present, thereby reducing the amount of corrosion.

【0050】つぎに図4により本発明に係る発電用ター
ビン設備の第4の実施の形態を説明する。本実施の形態
が第1の実施の形態と異なる点は蒸気発生器1に接続す
る給水配管13と主復水器7との間に止め弁24を有する給
水再循環ライン25を設け、LPPD20の下流側を主復水
器7に直接接続し、復水脱塩装置9の前後にバイパス管
33を設けたことにある。その他の構成は図1と同様なの
で、図4中図1と同一部分には同一符号を付して重複す
る部分の説明は省略する。
Next, a fourth embodiment of the turbine plant for power generation according to the present invention will be described with reference to FIG. This embodiment is different from the first embodiment in that a feed water recirculation line 25 having a stop valve 24 is provided between a feed water pipe 13 connected to the steam generator 1 and the main condenser 7, and the LPPD 20 The downstream side is directly connected to the main condenser 7, and bypass pipes are provided before and after the condensate desalination unit 9.
33. Since other configurations are the same as those in FIG. 1, the same portions as those in FIG. 1 in FIG.

【0051】本実施の形態によれば、低圧ヒータドレン
系を主復水器7に流入する構成となっており、LPPD
20での鉄錆濃度が高くなっても、主復水器7に流入させ
て全てHFF32に鉄錆を除去できるので、弁の切り替え
で流入先を変える操作は必要がなく、しかもこのための
ラインを設ける必要はない。よって、設備費用のコスト
削減とともに、構造を単純化でき、コンパクト化でき
る。
According to the present embodiment, the low-pressure heater drain system is configured to flow into the main condenser 7, and the LPPD
Even if the iron rust concentration at 20 increases, the iron rust can be removed to the HFF 32 by flowing into the main condenser 7, so there is no need to change the inflow destination by switching valves, and the line for this purpose It is not necessary to provide. Accordingly, the structure can be simplified and the device can be made compact, while reducing the cost of equipment.

【0052】[0052]

【発明の効果】本発明によれば、揮発性薬品処理(AV
T)除去後の復水脱塩装置下流側の腐食を抑制すること
ができる。また、復水脱塩装置下流側への腐食生成物の
流出を防止できる。よって、腐食性生成物が低減でき、
蒸気発生器に流入する腐食生成物の量を抑制できるた
め、材料の健全性を維持、向上できる。
According to the present invention, volatile chemical treatment (AV
T) Corrosion on the downstream side of the condensate desalination apparatus after removal can be suppressed. In addition, it is possible to prevent corrosion products from flowing out to the downstream side of the condensate desalination apparatus. Therefore, corrosive products can be reduced,
Since the amount of corrosion products flowing into the steam generator can be suppressed, the soundness of the material can be maintained and improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る発電用タービン設備の第1の実施
の形態を示す系統図。
FIG. 1 is a system diagram showing a first embodiment of a power generation turbine facility according to the present invention.

【図2】本発明に係る発電用タービン設備の第2の実施
の形態を示す系統図。
FIG. 2 is a system diagram showing a second embodiment of the power generation turbine equipment according to the present invention.

【図3】本発明に係る発電用タービン設備の第3の実施
の形態の要部を示す系統図。
FIG. 3 is a system diagram showing a main part of a third embodiment of the power generation turbine equipment according to the present invention.

【図4】本発明に係る発電用タービン設備の第4の実施
の形態を示す系統図。
FIG. 4 is a system diagram showing a fourth embodiment of the power generation turbine equipment according to the present invention.

【図5】本発明の作用を従来例と対比して説明するため
の溶存酸素と炭素鋼の腐食率と溶出率の関係を示す曲線
図。
FIG. 5 is a curve diagram showing the relationship between dissolved oxygen, the corrosion rate of carbon steel, and the elution rate for explaining the operation of the present invention in comparison with a conventional example.

【図6】同じく、炭素鋼と低炭素鋼と比較してエロージ
ョン,コロージョン減量に及ぼす蒸気流速の影響を示す
曲線図。
FIG. 6 is a curve diagram showing the effect of the steam flow rate on the erosion and corrosion weight loss as compared with carbon steel and low carbon steel.

【図7】同じく、エロージョン,コロージョン減量に及
ぼす蒸気湿り度の影響を示す曲線図。
FIG. 7 is a curve diagram showing the effect of steam wetness on erosion and corrosion weight loss.

【図8】同じく、エロージョン,コロージョン減量に及
ぼす蒸気温度の影響を示す曲線図。
FIG. 8 is a curve diagram showing the effect of steam temperature on erosion and corrosion loss.

【図9】同じく、炭素鋼および銅の腐食に及ぼすpHの
影響を示す曲線図。
FIG. 9 is a curve diagram showing the effect of pH on corrosion of carbon steel and copper.

【図10】同じく炭素鋼(SB46)の腐食率と溶存酸素
濃度の関係を示す曲線図。
FIG. 10 is a curve diagram showing the relationship between the corrosion rate of carbon steel (SB46) and the concentration of dissolved oxygen.

【図11】従来の発電用タービン設備を示す系統図。FIG. 11 is a system diagram showing a conventional power generation turbine facility.

【符号の説明】[Explanation of symbols]

1…蒸気発生器、2…主蒸気管、3…高圧タービン、4
…湿分分離器、5…再熱器、6…低圧タービン、7…主
復水器、8…復水ポンプ、9…復水脱塩装置、9a,9
b,9c…復水脱塩装置各塔、10…低圧給水加熱器、11
…給水ポンプ、12…高圧給水加熱器、13…給水配管、14
…抽気管、15…湿分分離器ドレン管、16…再熱器ドレン
管、17…高圧ヒータドレン管、18…高圧ヒータドレンポ
ンプ、19…抽気管、20…低圧ヒータドレンバイパス管
(LPPD)、21…低圧ヒータドレンポンプ、22…酸素
ガス供給装置、23…加圧ポンプ、24…止め弁、25…給水
再循環ライン、27…蒸気発生器伝熱管、28…薬注装置、
29…薬注ライン、30…入口弁、31…出口弁、32…中空糸
膜フィルタ(HFF)、33…復水脱塩装置バイパス管、
34…復水脱塩装置上流戻り配管、35…HFF上流戻り配
管、36…HFF下流戻り配管、37…復水脱塩装置上流戻
り弁、38…HFF上流戻り弁、39…HFF下流戻り弁。
DESCRIPTION OF SYMBOLS 1 ... Steam generator, 2 ... Main steam pipe, 3 ... High pressure turbine, 4
... Moisture separator, 5 ... Reheater, 6 ... Low pressure turbine, 7 ... Main condenser, 8 ... Condenser pump, 9 ... Condensate desalination equipment, 9a, 9
b, 9c ... condensate desalination equipment each tower, 10 ... low pressure feed water heater, 11
... water supply pump, 12 ... high pressure water heater, 13 ... water supply piping, 14
… Extraction pipe, 15… moisture separator drain pipe, 16… reheater drain pipe, 17… high pressure heater drain pipe, 18… high pressure heater drain pump, 19… extraction pipe, 20… low pressure heater drain bypass pipe (LPPD), 21: low pressure heater drain pump, 22: oxygen gas supply device, 23: pressurization pump, 24: stop valve, 25: water supply recirculation line, 27: steam generator heat transfer tube, 28: chemical injection device,
29: Chemical injection line, 30: Inlet valve, 31: Outlet valve, 32: Hollow fiber membrane filter (HFF), 33: Condensate desalination device bypass pipe,
34 ... condensate desalination unit upstream return line, 35 ... HFF upstream return line, 36 ... HFF downstream return line, 37 ... condensate desalination unit upstream return valve, 38 ... HFF upstream return valve, 39 ... HFF downstream return valve.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G21D 1/00 G21D 1/00 W S ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI G21D 1/00 G21D 1/00 WS

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 蒸気発生器から流出した蒸気により、タ
ービンを回転させて発電し、復水系の復水器により前記
蒸気を凝縮して復水とし、この復水を復水脱塩装置によ
り処理した復水と、前記主蒸気の一部を取り出した抽気
を高圧給水加熱器の熱源として使用したヒータドレンを
給水に戻す高圧ヒータドレン系と、前記タービンを回転
させた蒸気の一部を抽気して低圧給水加熱器の熱源とし
て使用したヒータドレンを給水系に戻した低圧ヒータド
レン系を給水として給水加熱器とで加熱し、前記蒸気発
生器に戻し、前記復水脱塩装置の出口側に薬品注入ライ
ンを設けてなる発電用タービン設備において、前記復水
脱塩装置と前記復水系の復水ポンプの吐出側との間に酸
素ガス供給装置を設けたことを特徴とする発電用タービ
ン設備。
The steam generated by a steam generator rotates a turbine to generate electric power. The steam is condensed by a condenser in a condensing system to be condensed, and the condensed water is treated by a condensate desalination apparatus. And a high-pressure heater drain system that returns the heater drain used as a heat source of the high-pressure feed water heater to the feed water by using the extracted air from which a part of the main steam is taken out, and a low pressure by extracting a part of the steam that has rotated the turbine. The heater drain used as a heat source of the feedwater heater is returned to the feedwater system, and the low-pressure heater drain system is heated with the feedwater heater as feedwater, returned to the steam generator, and a chemical injection line is provided on the outlet side of the condensate desalination device. A turbine plant for power generation, wherein an oxygen gas supply device is provided between the condensate desalination device and a discharge side of a condensate pump of the condensate system.
【請求項2】 前記復水脱塩装置は復水脱塩塔を複数基
並列に設置してなり、前記復水脱塩塔の出口部各々に前
記薬品注入ラインを設けてなることを特徴とする請求項
1記載の発電用タービン設備。
2. The condensate desalination apparatus comprises a plurality of condensate desalination towers arranged in parallel, and the chemical injection line is provided at each outlet of the condensate desalination tower. The turbine facility for power generation according to claim 1.
【請求項3】 前記薬品注入ラインの直前または下流に
中空糸膜フィルタを設けてなることを特徴とする請求項
1記載の発電用タービン設備。
3. The power generation turbine facility according to claim 1, wherein a hollow fiber membrane filter is provided immediately before or downstream of the chemical injection line.
【請求項4】 前記復水脱塩装置の下流部の直後に、酸
素注入装置を設けてなることを特徴とする請求項1記載
の発電用タービン設備。
4. The turbine plant for power generation according to claim 1, wherein an oxygen injection device is provided immediately downstream of the condensate desalination device.
【請求項5】 前記復水脱塩装置の下流から前記薬品注
入ラインまでの機器または配管を耐腐食性鋼で形成して
なることを特徴とする請求項1記載の発電用タービン設
備。
5. The turbine equipment for power generation according to claim 1, wherein equipment or piping from the downstream of the condensate desalination apparatus to the chemical injection line is formed of corrosion-resistant steel.
【請求項6】 蒸気発生器から流出した蒸気により、タ
ービンを回転させて発電し、復水系の復水器により前記
蒸気を凝縮して復水とし、この復水を復水脱塩装置によ
り処理した復水と、前記主蒸気の一部を取り出した抽気
を高圧給水加熱器の熱源として使用したヒータドレンを
給水に戻す高圧ヒータドレン系と、前記タービンを回転
させた蒸気の一部を抽気して低圧給水加熱器の熱源とし
て使用したヒータドレンを給水系に戻した低圧ヒータド
レン系を給水として給水加熱器とで加熱し、前記蒸気発
生器に戻し、前記復水脱塩装置の出口側に薬品注入ライ
ンを設けてなる発電用タービン設備において、前記低圧
給水加熱器の二次側出口に低圧ヒータドレン管の一端を
接続し、この低圧ヒータドレンの他端を前記復水器に接
続してなることを特徴とする発電用タービン設備。
6. The steam that has flowed out of the steam generator rotates a turbine to generate electricity, and the steam is condensed by a condenser in a condensing system to be condensed, and this condensate is treated by a condensate desalination apparatus. And a high-pressure heater drain system that returns the heater drain used as a heat source of the high-pressure feed water heater to the feed water by using the extracted air from which a part of the main steam is taken out, and a low pressure by extracting a part of the steam that has rotated the turbine. The heater drain used as a heat source of the feedwater heater is returned to the feedwater system, and the low-pressure heater drain system is heated with the feedwater heater as feedwater, returned to the steam generator, and a chemical injection line is provided on the outlet side of the condensate desalination device. In the power generating turbine equipment provided, one end of a low pressure heater drain pipe is connected to a secondary outlet of the low pressure feed water heater, and the other end of the low pressure heater drain is connected to the condenser. Power generation turbine equipment.
【請求項7】 前記復水脱塩装置は復水脱塩塔を複数基
並列に設置してなり、前記復水脱塩塔の出口部各々に前
記薬品注入ラインを設けてなることを特徴とする請求項
6記載の発電用タービン設備。
7. The condensate demineralization apparatus comprises a plurality of condensate demineralization towers installed in parallel, and the chemical injection line is provided at each outlet of the condensate demineralization tower. The turbine plant for power generation according to claim 6.
【請求項8】 前記薬品注入ラインの直前または下流に
中空糸膜フィルタを設けてなることを特徴とする請求項
6記載の発電用タービン設備。
8. The turbine plant for power generation according to claim 6, wherein a hollow fiber membrane filter is provided immediately before or downstream of the chemical injection line.
【請求項9】 前記復水脱塩装置の下流部の直後に、酸
素注入装置を設けてなることを特徴とする請求項6記載
の発電用タービン設備。
9. The power generation turbine facility according to claim 6, wherein an oxygen injection device is provided immediately downstream of the condensate desalination device.
【請求項10】 前記復水脱塩装置の下流から前記薬品
注入ラインまでの機器または配管を耐腐食性鋼で形成し
てなることを特徴とする請求項6記載の発電用タービン
設備。
10. The turbine equipment for power generation according to claim 6, wherein equipment or piping from the downstream of the condensate desalination apparatus to the chemical injection line is formed of corrosion-resistant steel.
【請求項11】 前記酸素注入量は復水脱塩装置出口で
の濃度で7ppb 以上とすることを特徴とする請求項1ま
たは6記載の発電用タービン設備。
11. The turbine equipment for power generation according to claim 1, wherein the oxygen injection amount is 7 ppb or more at the outlet of the condensate desalination apparatus.
JP10110292A 1998-04-21 1998-04-21 Turbine equipment for power generation Pending JPH11304993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10110292A JPH11304993A (en) 1998-04-21 1998-04-21 Turbine equipment for power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10110292A JPH11304993A (en) 1998-04-21 1998-04-21 Turbine equipment for power generation

Publications (1)

Publication Number Publication Date
JPH11304993A true JPH11304993A (en) 1999-11-05

Family

ID=14532006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10110292A Pending JPH11304993A (en) 1998-04-21 1998-04-21 Turbine equipment for power generation

Country Status (1)

Country Link
JP (1) JPH11304993A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096534A (en) * 2008-10-14 2010-04-30 Japan Atom Power Co Ltd:The Water treatment system and method for secondary cooling system in pwr power plant
US20110318223A1 (en) * 2009-03-10 2011-12-29 Kabushiki Kaisha Toshiba Method and system for controlling water chemistry in power generation plant
WO2012014894A1 (en) * 2010-07-27 2012-02-02 株式会社東芝 Method for suppressing corrosion of plant, and plant
JP2012027030A (en) * 2011-08-09 2012-02-09 Toshiba Corp Corrosion inhibition method for plant and plant

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096534A (en) * 2008-10-14 2010-04-30 Japan Atom Power Co Ltd:The Water treatment system and method for secondary cooling system in pwr power plant
US20110318223A1 (en) * 2009-03-10 2011-12-29 Kabushiki Kaisha Toshiba Method and system for controlling water chemistry in power generation plant
US9758880B2 (en) * 2009-03-10 2017-09-12 Kabushiki Kaisha Toshiba Method and system for controlling water chemistry in power generation plant
WO2012014894A1 (en) * 2010-07-27 2012-02-02 株式会社東芝 Method for suppressing corrosion of plant, and plant
CN103026420A (en) * 2010-07-27 2013-04-03 株式会社东芝 Method for suppressing corrosion of plant, and plant
AU2011283740B2 (en) * 2010-07-27 2014-05-22 Kabushiki Kaisha Toshiba Method for suppressing corrosion of plant, and plant
EP2600352A4 (en) * 2010-07-27 2015-07-01 Toshiba Kk Method for suppressing corrosion of plant, and plant
US10006127B2 (en) 2010-07-27 2018-06-26 Kabushiki Kaisha Toshiba Method for suppressing corrosion in plant and plant
JP2012027030A (en) * 2011-08-09 2012-02-09 Toshiba Corp Corrosion inhibition method for plant and plant

Similar Documents

Publication Publication Date Title
AU2010222160B2 (en) Method and system for controlling water quality in power generation plant
JP3667525B2 (en) Steam generator-attached nuclear power generation turbine facility
CN105417668B (en) A kind of compound basifier and application thereof
JPH11304993A (en) Turbine equipment for power generation
Tyapkov et al. Water chemistry of the secondary circuit at a nuclear power station with a VVER power reactor
US20110070123A1 (en) Corrosion reduction system for power generation plants during shutdown
JP2000292589A (en) Reactor power generation facility
JPH11236689A (en) Water treating apparatus for power generating plant and water treatment
JP7132162B2 (en) Corrosion suppression method for carbon steel piping
JP4745990B2 (en) Turbine equipment and initial switching method for oxygen treatment of turbine equipment
JP2543905B2 (en) Nuclear power plant turbine system
JPS6398597A (en) Condensate system
JP2007064501A (en) Steaming method for boiler plant, boiler plant, and steaming device for boiler plant
JP3605854B2 (en) Power plant water treatment method
JPH0579303A (en) Monitoring method and device where steam of condensed water circulation system flows
JP2010216762A (en) Method of preventing corrosion of water supply line and condensate line of high-pressure boiler system
WO1984004952A1 (en) Condensate feed apparatus for steam generator
JP2002055193A (en) Feed water system for neuclear power plant and its clad reducing method
JPH11132673A (en) Water-treatment method and facility
JP2022176464A (en) Power-generating plant
JPS6333680B2 (en)
JPS63113204A (en) Turbine system of nuclear power plant
Man’kina et al. Use of oxygen for the cleaning, passivation, and preservation of power-generating equipment at the Kharanorskaya SAPP
JPS60198494A (en) Auxiliary facility for generating plant
JPH06221779A (en) Power generating plant

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050510