JP5015880B2 - Pump control circuit for construction machinery - Google Patents

Pump control circuit for construction machinery Download PDF

Info

Publication number
JP5015880B2
JP5015880B2 JP2008215445A JP2008215445A JP5015880B2 JP 5015880 B2 JP5015880 B2 JP 5015880B2 JP 2008215445 A JP2008215445 A JP 2008215445A JP 2008215445 A JP2008215445 A JP 2008215445A JP 5015880 B2 JP5015880 B2 JP 5015880B2
Authority
JP
Japan
Prior art keywords
pump
regulator
valve
horsepower
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008215445A
Other languages
Japanese (ja)
Other versions
JP2010048396A (en
Inventor
浩之 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo SHI Construction Machinery Co Ltd
Original Assignee
Sumitomo SHI Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo SHI Construction Machinery Co Ltd filed Critical Sumitomo SHI Construction Machinery Co Ltd
Priority to JP2008215445A priority Critical patent/JP5015880B2/en
Publication of JP2010048396A publication Critical patent/JP2010048396A/en
Application granted granted Critical
Publication of JP5015880B2 publication Critical patent/JP5015880B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Description

この発明は建設機械の油圧ポンプの制御回路の技術分野に属する。更に詳細には、2個の油圧ポンプで走行制御を行っている建設機械で油圧ポンプを制御するコントローラが故障、又は配線が断線した場合に円滑な走行を可能にする油圧回路に関する。 The present invention belongs to the technical field of control circuits for hydraulic pumps of construction machinery. More specifically, the present invention relates to a hydraulic circuit that enables smooth traveling when a controller that controls the hydraulic pump in a construction machine that performs traveling control with two hydraulic pumps fails or wiring is disconnected.

従来の建設機械の油圧回路においては、左右の走行用モータを駆動するために2個の油圧ポンプを設けて各油圧ポンプで左右の走行用モータを駆動するための制御弁を制御する方式が採用されていた。また、近年の建設機械の油圧回路は電気式(又は電子式)のコントローラを採用し、制御の多様性、構成の簡便性を図っている。しかし、コントローラの故障や配線の断線が起こると想定していた制御が不能となり、事故や操作不能な事態が生じかねない。このような事態が生じない場合でも操作性能の悪化や燃費の悪化等の事態が生じる場合も起こり得る。 In a conventional hydraulic circuit for construction machinery, a system is adopted in which two hydraulic pumps are provided to drive the left and right traveling motors, and the control valve for driving the left and right traveling motors is controlled by each hydraulic pump. It had been. In recent years, hydraulic circuits of construction machines employ an electric (or electronic) controller to achieve a variety of controls and a simple configuration. However, the control that is assumed to be a failure of the controller or a disconnection of the wiring becomes impossible, and an accident or an inoperable situation may occur. Even when such a situation does not occur, a situation such as a deterioration in operating performance or a deterioration in fuel consumption may occur.

そこで、コントローラの故障や配線の断線が生じた場合でも大きな不都合が生じないような対策を施した油圧回路が提案されている。以下、このような油圧回路を冗長な油圧回路(又は、冗長回路)と呼ぶことにする。このような冗長回路としては、例えば特許文献1に開示されているものがある。本出願人も油圧ポンプが1個の場合の冗長回路を発明し、出願中である(特許文献2参照)
公開特許公報、特開平11−303809(油圧駆動機械のポンプ制御装置) 特許出願、2008−214055(建設機械のポンプ制御回路)
In view of this, a hydraulic circuit has been proposed in which measures are taken so that no major inconvenience occurs even when a controller failure or wiring breakage occurs. Hereinafter, such a hydraulic circuit is referred to as a redundant hydraulic circuit (or redundant circuit). An example of such a redundant circuit is disclosed in Patent Document 1. The present applicant also invented a redundant circuit in the case of one hydraulic pump, and has applied for it (see Patent Document 2).
Published patent publication, JP-A-11-303809 (pump control device for hydraulic drive machine) Patent application, 2008-214055 (pump control circuit for construction machinery)

図2は特許文献1に記載されている従来装置である。以下、この従来装置について簡単に説明する。エンジン50に油圧ポンプ51、61及びパイロットポンプ53が連結されている。油圧ポンプ51の吐出路には左走行用制御弁54、旋回用制御弁55、アーム用制御弁56が並列に接続されている。また。油圧ポンプ61の吐出路には右走行用制御弁64、バケット用制御弁65、ブーム用制御弁66が並列に接続されている。なお、これらの制御弁54,55,及び56(64,65及び66)にはブリード油路が無く2ポートの切換弁で構成されている。その代わりに、可変ブリード弁57(67)、絞り弁58(68)、油タンクTが油圧ポンプ51(61)の吐出路に接続されている。油圧ポンプ51(61)の吐出流量を制御するレギュレータ52(62)は絞り弁58(68)の前後の圧力によって制御する。 FIG. 2 shows a conventional apparatus described in Patent Document 1. Hereinafter, this conventional apparatus will be briefly described. Hydraulic pumps 51 and 61 and a pilot pump 53 are connected to the engine 50. A left travel control valve 54, a turning control valve 55, and an arm control valve 56 are connected in parallel to the discharge path of the hydraulic pump 51. Also. A right travel control valve 64, a bucket control valve 65, and a boom control valve 66 are connected in parallel to the discharge path of the hydraulic pump 61. These control valves 54, 55, and 56 (64, 65, and 66) do not have a bleed oil passage and are constituted by 2-port switching valves. Instead, the variable bleed valve 57 (67), the throttle valve 58 (68), and the oil tank T are connected to the discharge path of the hydraulic pump 51 (61). The regulator 52 (62) for controlling the discharge flow rate of the hydraulic pump 51 (61) is controlled by the pressure before and after the throttle valve 58 (68).

コントローラ70の入力側にはリモコン弁54a、55a、56a及び64a、65a、66aのパイロット圧が直接又はシャトル弁を介して圧力センサPによって検出され、その検出値が入力され、また、油圧ポンプ51,61の吐出圧も圧力センサPによって検出され、その検出値が入力される。コントローラ70の出力側には電磁弁59、69を介して可変ブリード弁57、67の流量を制御するように接続されている。コントローラ70はリモコン弁54a、55a、56a(64a、65a、66a)のパイロット圧の最大値を求めて、この最大値に基づいて電磁弁59(69)の制御信号を算出する。一方、リモコン弁54a、55a、56a(64a、65a、66a)のパイロット圧の最大値はシャトル弁に依っても求められ、その最大値は手動切換弁71(72)を介して可変ブリード弁57(67)のパイロットポートに接続されている。 On the input side of the controller 70, the pilot pressures of the remote control valves 54a, 55a, 56a and 64a, 65a, 66a are detected by the pressure sensor P directly or via the shuttle valve, and the detected values are input. , 61 are also detected by the pressure sensor P, and the detected value is input. An output side of the controller 70 is connected to control the flow rates of the variable bleed valves 57 and 67 through electromagnetic valves 59 and 69. The controller 70 calculates the maximum value of the pilot pressure of the remote control valves 54a, 55a, 56a (64a, 65a, 66a), and calculates the control signal of the electromagnetic valve 59 (69) based on this maximum value. On the other hand, the maximum value of the pilot pressure of the remote control valves 54a, 55a, 56a (64a, 65a, 66a) is also obtained by the shuttle valve, and the maximum value is obtained via the manual switching valve 71 (72) and the variable bleed valve 57. (67) is connected to the pilot port.

上記従来装置は以上のように構成されているので、コントローラ70が故障した場合又は配線が断線した場合等において、手動切換弁71(72)を切り換えることによってほぼ同様な制御が可能になる。しかし、手動切換弁の一方71(72)を切り換えても、他方が切り換わる訳ではない。従って、直進走行をしている場合には両方の手動切換弁を切り換える必要がある。 Since the conventional apparatus is configured as described above, substantially the same control can be performed by switching the manual switching valve 71 (72) when the controller 70 breaks down or the wiring is disconnected. However, switching one of the manual switching valves 71 (72) does not switch the other. Therefore, it is necessary to switch both manual switching valves when traveling straight.

2個の油圧ポンプを使用した場合でも各油圧ポンプの油圧回路に冗長回路を設ければ足りる場合もある。例えば、一方の油圧ポンプで作業が可能な場合である。しかし、従来の建設機械のように、左右の走行モータを2個の油圧ポンプで駆動している油圧回路では冗長機能が片方の油圧ポンプのみに作動すると、2個の油圧ポンプの吐出流量が必ずしも同等でなくなり、直線進行の操作をしているにも関わらず、左右の走行モータへの供給流量に差が生じ、曲進する危険性がある。 Even when two hydraulic pumps are used, a redundant circuit may be provided in the hydraulic circuit of each hydraulic pump. For example, it is a case where work can be performed with one hydraulic pump. However, in a hydraulic circuit in which the left and right traveling motors are driven by two hydraulic pumps as in a conventional construction machine, if the redundant function operates only on one hydraulic pump, the discharge flow rates of the two hydraulic pumps are not necessarily There is a risk of bending due to a difference in the flow rate supplied to the left and right traveling motors, despite the fact that they are not equivalent and are operated in a straight line.

本発明は、上記事実に鑑みなされたものであり、コントローラが故障した場合又は配線が断線した場合等において、手動切換弁を切り換える必要もなく、また、直進走行中にコントローラが故障した場合等に曲進する危険性もない建設機械の油圧回路を提供することを課題とする。 The present invention has been made in view of the above facts, and it is not necessary to switch the manual switching valve when the controller breaks down or when the wiring is disconnected, or when the controller breaks down during straight traveling, etc. It is an object of the present invention to provide a hydraulic circuit for a construction machine that does not have a risk of bending.

本発明は上記の課題を解決するための手段として以下の構成を採用している。即ち、
請求項1に記載の発明は、左走行用制御弁を含む一群の制御弁をカスケード接続した第1油圧ポンプと、右走行用制御弁を含む他の一群の制御弁をカスケード接続した第2油圧ポンプと、該油圧ポンプの吐出圧力検出装置、ネガコン圧検出装置又は操作量検出装置の測定結果に基づき前記各油圧ポンプの目標の吐出量を算出し、制御信号を各電磁弁に送出するコントローラと、前記各電磁弁の油圧信号により前記各油圧ポンプの吐出量を制御する各ポンプレギュレータと、前記各ポンプレギュレータの入力馬力を減少させる減馬力レギュレータと、前記減馬力レギュレータと前記ポンプレギュレータとのうちで低流量のレギュレータを優先して選択する低流量優先選択部とを設け、前記各減馬力レギュレータの第1制御ポート及び第2制御ポートに前記各油圧ポンプの吐出圧を入力した建設機械のポンプ制御回路において、
第1切換弁と第2切換弁をカスケード接続した減馬力回路を設け、前記第1切換気弁の1次側にパイロットポンプと油タンクを接続し、前記第2切換弁の1次側に前記第1切換弁の出力とパイロットポンプを接続し、前記第1切換弁及び第2切換弁の制御ポートに前記各電磁弁の出力を接続し、該第2切換弁の出力を前記各減馬力レギュレータの減馬力ポートに接続したことを特徴としている。
The present invention employs the following configuration as means for solving the above-described problems. That is,
The invention according to claim 1 is a second hydraulic pressure in which a first hydraulic pump in which a group of control valves including a left travel control valve is cascade-connected and another group of control valves in a cascade connection including a right travel control valve is cascaded. A pump, a controller that calculates a target discharge amount of each hydraulic pump based on a measurement result of a discharge pressure detection device, a negative control pressure detection device, or an operation amount detection device of the hydraulic pump, and sends a control signal to each solenoid valve; A pump regulator that controls the discharge amount of each hydraulic pump by a hydraulic signal of each solenoid valve, a horsepower regulator that reduces the input horsepower of each pump regulator, the horsepower regulator, and the pump regulator. A low flow rate priority selection unit that preferentially selects a low flow rate regulator, and the first control port and the second control port of each of the horsepower reduction regulators. Wherein the pump control circuit for a construction machine has entered the discharge pressure of the hydraulic pumps to the bets,
A horsepower reduction circuit in which a first switching valve and a second switching valve are cascade-connected is provided, a pilot pump and an oil tank are connected to the primary side of the first switching air valve, and the primary switching system is connected to the primary side of the second switching valve. The output of the first switching valve is connected to a pilot pump, the output of each solenoid valve is connected to the control port of the first switching valve and the second switching valve, and the output of the second switching valve is connected to each of the horsepower reduction regulators It is characterized by being connected to a reduced horsepower port.

なお、請求項1に記載の発明における低流量優先選択部は、前記ポンプのポンプレギュレータの油圧シリンダと前記減馬力レギュレータの油圧シリンダの各出力軸に基準バネ力を反対向きに付勢すると共に、各出力軸を第3切換弁のスプールの一側に圧接するように他の側にバネ力を反対向きに付勢し、該第3切換弁の1次側に油タンク圧と前記油圧ポンプの吐出圧が作用するように接続し、出力側をスプール弁の一方の油室に接続し、スプール弁の他方の油室に前記油圧ポンプの吐出圧を作用させ、前記ポンプレギュレータの油圧シリンダと前記減馬力レギュレータの油圧シリンダによるスプール弁の変位を等馬力状態になるようにスプール弁と連動するポンプ傾転角を制御している。 In addition, the low flow rate priority selection unit according to the invention of claim 1 urges the reference spring force in opposite directions to the output shafts of the hydraulic cylinder of the pump regulator of the pump and the hydraulic cylinder of the horsepower reduction regulator, A spring force is urged in the opposite direction to the other side so that each output shaft is pressed against one side of the spool of the third switching valve, and the oil tank pressure and the hydraulic pump are placed on the primary side of the third switching valve. Connected so that the discharge pressure acts, the output side is connected to one oil chamber of the spool valve, the discharge pressure of the hydraulic pump is applied to the other oil chamber of the spool valve, the hydraulic cylinder of the pump regulator and the The tilt angle of the pump linked with the spool valve is controlled so that the displacement of the spool valve by the hydraulic cylinder of the horsepower regulator becomes an equal horsepower state.

コントローラが故障した場合或いは断線により電磁弁の何れか一方が正常に作動しない場合に他方の減馬力レギュレータに減馬力油圧信号を送出し、双方の減馬力レギュレータを同時に減馬力することにより、直進走行中にコントローラが故障した場合等において曲進せずに円滑な直進走行が可能になる。 If either one of the solenoid valves does not operate normally due to a controller failure or a disconnection, it sends a horsepower reduction hydraulic signal to the other horsepower reduction regulator, and reduces both horsepower reduction regulators at the same time, thereby driving straight ahead. When the controller breaks down, smooth straight running is possible without turning.

以下本発明の実施形態を図に基づいて説明する。図1は、本発明を実施した油圧回路の要部を示した図である。図1において、エンジン10の出力軸に油圧ポンプ11、油圧ポンプ12及びパイロットポンプ13が連結されている。油圧ポンプ11のセンタ油路11aには左走行用制御弁を含む一群の制御弁Fp、例えば、左走行用制御弁、旋回用制御弁、アーム用制御弁、絞り弁がカスケードに接続されている。又、油圧ポンプ12のセンタ油路12aには右走行用制御弁を含む一群の制御弁Rp、例えば、右走行用制御弁、バケット用制御弁、ブーム用制御弁、絞り弁がカスケードに接続されている。何れも図示が省略されている。なお、アームの引っ張り側の油圧流量を多くするために切換弁を介して油圧ポンプ12のセンタ油路12aから圧油を合流する回路を設けてもよいし、ブームの上げ側の油圧流量を多くするために切換弁を介して油圧ポンプ11のセンタ油路11aから圧油を合流する回路を設けてもよい。 Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a main part of a hydraulic circuit embodying the present invention. In FIG. 1, a hydraulic pump 11, a hydraulic pump 12, and a pilot pump 13 are connected to the output shaft of the engine 10. A group of control valves Fp including a left travel control valve, for example, a left travel control valve, a turning control valve, an arm control valve, and a throttle valve are connected to the center oil passage 11a of the hydraulic pump 11 in a cascade. . Further, a group of control valves Rp including a right traveling control valve, for example, a right traveling control valve, a bucket control valve, a boom control valve, and a throttle valve are connected to the center oil passage 12a of the hydraulic pump 12 in cascade. ing. In either case, illustration is omitted. In order to increase the hydraulic flow rate on the pull side of the arm, a circuit for joining the pressure oil from the center oil passage 12a of the hydraulic pump 12 via a switching valve may be provided, or the hydraulic flow rate on the boom raising side may be increased. In order to do this, a circuit for joining the pressure oil from the center oil passage 11a of the hydraulic pump 11 may be provided via a switching valve.

油圧ポンプ11の吐出流量を制御するレギュレータ回路20には通常時に油圧ポンプ11の吐出流量を制御するポンプレギュレータ21とコントローラの故障、配線の断線等の異常時に油圧ポンプ11の吐出流量を減少させる減馬力レギュレータ22が設けられている。ポンプレギュレータ21の入力ポート21aにコントローラ15からの制御信号が比例電磁弁25を介して油圧信号が入力される。コントローラ15の入力側にはセンタ油路11aの最下流に設けた絞り弁(図示省略)の直前の油圧、所謂負帰還用のネガコン圧や油圧ポンプ11の吐出圧の計測値が入力され、この計測値に基づいて目標の吐出流量が算出され、出力側から目標の吐出流量相当の制御信号が比例電磁弁25に出力される。 The regulator circuit 20 that controls the discharge flow rate of the hydraulic pump 11 includes a pump regulator 21 that controls the discharge flow rate of the hydraulic pump 11 at a normal time and a controller that reduces the discharge flow rate of the hydraulic pump 11 in the event of an abnormality such as failure of the wiring or disconnection of wiring. A horsepower regulator 22 is provided. A control signal from the controller 15 is input to the input port 21 a of the pump regulator 21 via the proportional solenoid valve 25. On the input side of the controller 15, the measured value of the oil pressure just before the throttle valve (not shown) provided at the most downstream side of the center oil passage 11a, so-called negative feedback pressure for negative feedback and the discharge pressure of the hydraulic pump 11, is input. A target discharge flow rate is calculated based on the measured value, and a control signal corresponding to the target discharge flow rate is output to the proportional solenoid valve 25 from the output side.

一方、減馬力レギュレータ22は3個の入力ポート22a、22b、22cを有し、入力ポート22aには油圧ポンプ11の吐出圧がセンタ油路11aから供給され、入力ポート22bには油圧ポンプ12の吐出圧がセンタ油路12aから供給され、入力ポート22cには減馬力油圧回路40の出力油圧が供給される。 On the other hand, the horsepower reduction regulator 22 has three input ports 22a, 22b and 22c. The discharge pressure of the hydraulic pump 11 is supplied to the input port 22a from the center oil passage 11a, and the input port 22b is supplied with the hydraulic pump 12 of the hydraulic pump 12. The discharge pressure is supplied from the center oil passage 12a, and the output hydraulic pressure of the horsepower reduction hydraulic circuit 40 is supplied to the input port 22c.

油圧ポンプ12を制御するレギュレータ回路30もレギュレータ回路20と全く同じ回路構成になっている。即ち、油圧ポンプ12の吐出流量を制御するレギュレータ回路30には通常時に油圧ポンプ12の吐出流量を制御するポンプレギュレータ31とコントローラの故障、配線の断線等の異常時に油圧ポンプ12の吐出流量を減少させる減馬力レギュレータ32が設けられている。ポンプレギュレータ31の入力ポート31aにコントローラ15からの制御信号が比例電磁弁35を介して油圧信号が入力される。コントローラ15の入力側にはセンタ油路12aの最下流に設けた絞り弁(図示省略)の直前の油圧、所謂負帰還用のネガコン圧や油圧ポンプ12の吐出圧の計測値が入力され、この計測値に基づいて目標の吐出流量が算出され、出力側から目標の吐出流量相当の制御信号が比例電磁弁35に出力される。また、減馬力レギュレータ32は3個の入力ポート32a、32b、32cを有し、入力ポート32aには油圧ポンプ12の吐出圧がセンタ油路12aから供給され、入力ポート32bには油圧ポンプ12の吐出圧がセンタ油路12aから供給され、入力ポート32cには減馬力油圧回路40の出力油圧が供給される。 The regulator circuit 30 that controls the hydraulic pump 12 has the same circuit configuration as the regulator circuit 20. In other words, the regulator circuit 30 that controls the discharge flow rate of the hydraulic pump 12 reduces the discharge flow rate of the hydraulic pump 12 when the pump regulator 31 and the controller that control the discharge flow rate of the hydraulic pump 12 in the normal state, failure of wiring, disconnection, etc. A reduced horsepower regulator 32 is provided. A control signal from the controller 15 is input to the input port 31 a of the pump regulator 31 through the proportional solenoid valve 35. On the input side of the controller 15, the measured value of the oil pressure just before the throttle valve (not shown) provided in the most downstream of the center oil passage 12a, the negative feedback pressure for negative feedback and the discharge pressure of the hydraulic pump 12, is input. A target discharge flow rate is calculated based on the measured value, and a control signal corresponding to the target discharge flow rate is output to the proportional solenoid valve 35 from the output side. Further, the horsepower reducing regulator 32 has three input ports 32a, 32b, and 32c. The discharge pressure of the hydraulic pump 12 is supplied from the center oil passage 12a to the input port 32a, and the hydraulic pump 12 is supplied to the input port 32b. The discharge pressure is supplied from the center oil passage 12a, and the output hydraulic pressure of the horsepower reduction hydraulic circuit 40 is supplied to the input port 32c.

減馬力油圧回路40は2個の切換弁41、42をカスケードに接続して構成されている。切換弁41の1次側ポートには電磁弁35の出力ポートと油タンクTに接続されており、2次側ポートは切換弁42の1次側ポートに接続されている。切換弁41の制御ポートは電磁弁25の出力ポートに接続されている。切換弁42の他の1次側ポートにはパイロットポンプ13が接続されている。切換弁42の2次側ポートは減馬力レギュレータ22の入力ポート22c及び減馬力レギュレータ32の入力ポート22cに接続されている。従って、電磁弁25の2次側が油タンク圧で、電磁弁35の2次側がパイロット圧の場合は、切換弁42の2次側出力ポートはパイロットポンプ圧となり、減馬力レギュレータ22の入力ポート22c及び減馬力レギュレータ32の入力ポート32cにパイロットポンプ圧が作用する。また、逆に、電磁弁25の2次側がパイロット圧で、電磁弁35の2次側が油タンク圧の場合も同様に、減馬力レギュレータ22の入力ポート22c及び減馬力レギュレータ32の入力ポート32cにパイロットポンプ圧が作用する。 The horsepower reduction hydraulic circuit 40 is configured by connecting two switching valves 41 and 42 in a cascade. The primary side port of the switching valve 41 is connected to the output port of the electromagnetic valve 35 and the oil tank T, and the secondary side port is connected to the primary side port of the switching valve 42. The control port of the switching valve 41 is connected to the output port of the electromagnetic valve 25. The pilot pump 13 is connected to the other primary side port of the switching valve 42. The secondary port of the switching valve 42 is connected to the input port 22 c of the horsepower reduction regulator 22 and the input port 22 c of the horsepower reduction regulator 32. Therefore, when the secondary side of the solenoid valve 25 is the oil tank pressure and the secondary side of the solenoid valve 35 is the pilot pressure, the secondary output port of the switching valve 42 is the pilot pump pressure, and the input port 22c of the horsepower regulator 22 is reduced. The pilot pump pressure acts on the input port 32 c of the horsepower reduction regulator 32. Conversely, when the secondary side of the solenoid valve 25 is pilot pressure and the secondary side of the solenoid valve 35 is oil tank pressure, the input port 22c of the horsepower reduction regulator 22 and the input port 32c of the horsepower reduction regulator 32 are similarly connected. Pilot pump pressure is applied.

又、減馬力レギュレータ22の入力ポート22a、22bには同一側の油圧ポンプ11の吐出圧と反対側の油圧ポンプ12の吐出圧が作用しており、減馬力レギュレータ32の入力ポート32a、32bも同一側の油圧ポンプ12と反対側の油圧ポンプ11の吐出圧が作用している。従って、減馬力レギュレータ22と減馬力レギュレータ32の減馬力するための作用力の大きさは略等しい。 Further, the discharge pressure of the hydraulic pump 12 opposite to the discharge pressure of the hydraulic pump 11 on the same side acts on the input ports 22 a and 22 b of the horsepower reduction regulator 22, and the input ports 32 a and 32 b of the horsepower reduction regulator 32 are also The discharge pressure of the hydraulic pump 12 on the opposite side and the hydraulic pump 12 on the same side is acting. Therefore, the magnitude of the acting force for reducing horsepower of the horsepower reducing regulator 22 and the horsepower reducing regulator 32 is substantially equal.

レギュレータ回路20(又は30)の低流量優先選択部はバネ22dのバネ力を反対向きに付勢した減馬力レギュレータ32の減馬力方向(図の中心方向)に作用する偏差力22fと、バネ21dのバネ力を反対向きに付勢したポンプレギュレータ21の減馬力方向(図の中心方向)に作用する偏差力21fが切換弁23のスプールの減馬力側23aを減馬力方向に付勢しており、バネ23bが切換弁23のスプールの増馬力側23bを増馬力方向に付勢している。従って、偏差力22fと偏差力21fの合力がバネ23bのバネ力よりも大きい場合には切換弁23のスプールは減馬力方向(図の中央方向)に移動する。また、偏差力22fと偏差力21fの一方が多き場合には減馬力の大きい方が優先的に選択される。切換弁23のスプールが減馬力方向に移動すると切換弁23が切り換わり、スプール弁26のスプール26aが右方向(図の中央方向)に変位して油圧ポンプ11の吐出流量が減少する。レギュレータ回路30についても全く同様である。 The low flow rate priority selection unit of the regulator circuit 20 (or 30) includes a deviation force 22f that acts in the horsepower reduction direction (center direction in the figure) of the horsepower reduction regulator 32 that biases the spring force of the spring 22d in the opposite direction, and the spring 21d. The deviating force 21f acting in the horsepower reduction direction (center direction in the figure) of the pump regulator 21 urging the spring force of the valve in the opposite direction urges the horsepower reduction side 23a of the spool of the switching valve 23 in the horsepower reduction direction. The spring 23b urges the horsepower side 23b of the spool of the switching valve 23 in the direction of the horsepower. Therefore, when the resultant force of the deviation force 22f and the deviation force 21f is larger than the spring force of the spring 23b, the spool of the switching valve 23 moves in the horsepower reduction direction (the center direction in the figure). In addition, when one of the deviation force 22f and the deviation force 21f is large, the one having a larger horsepower is preferentially selected. When the spool of the switching valve 23 moves in the horsepower reduction direction, the switching valve 23 is switched, and the spool 26a of the spool valve 26 is displaced in the right direction (center direction in the figure), so that the discharge flow rate of the hydraulic pump 11 decreases. The same applies to the regulator circuit 30.

従って、バネ22d、21d及び23bのバネ係数を適当な値に調整しておけば、コンのローラ15の故障、配線の断線等の異常時に偏差力22fが偏差力21fよりも大きくなり、減馬力作用が働き、しかも油圧ポンプ11と油圧ポンプ12の減馬力の大きさは略等しい。従って、第1油圧ポンプのセンタ油路に左走行用制御弁を含む一群の制御弁を接続し、第2油圧ポンプのセンタ油路に右走行用制御弁を含む他の一群の制御弁を接続した場合に上記した異常事態が生じても円滑な直線走行が可能になる。 Therefore, if the spring coefficients of the springs 22d, 21d, and 23b are adjusted to appropriate values, the deviation force 22f becomes larger than the deviation force 21f when the roller 15 of the controller is broken, or the wiring is broken, etc. In addition, the magnitude of the horsepower reduction of the hydraulic pump 11 and the hydraulic pump 12 is substantially equal. Therefore, a group of control valves including a left travel control valve is connected to the center oil passage of the first hydraulic pump, and another group of control valves including a right travel control valve is connected to the center oil passage of the second hydraulic pump. In such a case, even if the above-described abnormal situation occurs, smooth straight running is possible.

以上本発明の実施形態を図面に基づいて詳述してきたが、本発明の技術的範囲はこれに限られるものではない。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the technical scope of the present invention is not limited to this.

本発明を実施した回路図を示す。1 shows a circuit diagram implementing the present invention. 従来装置の回路図を示す。The circuit diagram of a conventional apparatus is shown.

符号の説明Explanation of symbols

11、12 油圧ポンプ
15 コントローラ
20、30 レギュレータ回路
21 ポンプレギュレータ
22、32 減馬力レギュレータ
23、33 切換弁
25、35 比例電磁弁
26、36 スプール弁
40 減馬力回路
41、42 切換弁
Fp、Rp 制御弁群
11, 12 Hydraulic pump 15 Controller 20, 30 Regulator circuit 21 Pump regulator 22, 32 Horsepower regulator 23, 33 Switching valve 25, 35 Proportional solenoid valve 26, 36 Spool valve 40 Horsepower reduction circuit 41, 42 Switching valve Fp, Rp control Valve group

Claims (1)

左走行用制御弁を含む一群の制御弁をカスケード接続した第1油圧ポンプと、右走行用制御弁を含む他の一群の制御弁をカスケード接続した第2油圧ポンプと、該油圧ポンプの吐出圧力検出装置、ネガコン圧検出装置又は操作量検出装置の測定結果に基づき前記各油圧ポンプの目標の吐出量を算出し、制御信号を各電磁弁に送出するコントローラと、前記各電磁弁の油圧信号により前記各油圧ポンプの吐出量を制御する各ポンプレギュレータと、前記各ポンプレギュレータの入力馬力を減少させる減馬力レギュレータと、前記減馬力レギュレータと前記ポンプレギュレータとのうちで低流量のレギュレータを優先して選択する低流量優先選択部とを設け、前記各減馬力レギュレータの第1制御ポート及び第2制御ポートに前記各油圧ポンプの吐出圧を入力した建設機械のポンプ制御回路において、
第1切換弁と第2切換弁をカスケード接続した減馬力回路を設け、前記第1切換気弁の1次側にパイロットポンプと油タンクを接続し、前記第2切換弁の1次側に前記第1切換弁の出力とパイロットポンプを接続し、前記第1切換弁及び第2切換弁の制御ポートに前記各電磁弁の出力を接続し、該第2切換弁の出力を前記各減馬力レギュレータの減馬力ポートに接続したことを特徴とする建設機械のポンプ制御回路。

A first hydraulic pump in which a group of control valves including a left traveling control valve is cascade-connected, a second hydraulic pump in which another group of control valves including a right traveling control valve is cascade-connected, and a discharge pressure of the hydraulic pump Based on the measurement results of the detection device, the negative control pressure detection device or the operation amount detection device, the target discharge amount of each hydraulic pump is calculated, and a controller that sends a control signal to each solenoid valve, and the hydraulic signal of each solenoid valve Each pump regulator that controls the discharge amount of each hydraulic pump, a horsepower regulator that reduces the input horsepower of each pump regulator, and a low flow rate regulator among the horsepower regulator and the pump regulator are given priority. A low flow priority selection unit for selection, and the hydraulic pumps are connected to the first control port and the second control port of each horsepower reduction regulator. In pump control circuit for a construction machine has entered the discharge pressure,
A horsepower reduction circuit in which a first switching valve and a second switching valve are cascade-connected is provided, a pilot pump and an oil tank are connected to the primary side of the first switching air valve, and the primary switching system is connected to the primary side of the second switching valve. The output of the first switching valve is connected to a pilot pump, the output of each solenoid valve is connected to the control port of the first switching valve and the second switching valve, and the output of the second switching valve is connected to each of the horsepower reduction regulators A pump control circuit for a construction machine, characterized by being connected to a horsepower reduction port.

JP2008215445A 2008-08-25 2008-08-25 Pump control circuit for construction machinery Expired - Fee Related JP5015880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008215445A JP5015880B2 (en) 2008-08-25 2008-08-25 Pump control circuit for construction machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008215445A JP5015880B2 (en) 2008-08-25 2008-08-25 Pump control circuit for construction machinery

Publications (2)

Publication Number Publication Date
JP2010048396A JP2010048396A (en) 2010-03-04
JP5015880B2 true JP5015880B2 (en) 2012-08-29

Family

ID=42065640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008215445A Expired - Fee Related JP5015880B2 (en) 2008-08-25 2008-08-25 Pump control circuit for construction machinery

Country Status (1)

Country Link
JP (1) JP5015880B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5704096B2 (en) * 2012-03-09 2015-04-22 日本精工株式会社 Mounting structure for lubricant supply parts
JP2018168977A (en) * 2017-03-30 2018-11-01 川崎重工業株式会社 Hydraulic system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129401A (en) * 1988-11-09 1990-05-17 Yutani Heavy Ind Ltd Horse power allocating device for hydraulic pump
JPH0681808A (en) * 1992-09-03 1994-03-22 Hitachi Constr Mach Co Ltd Hydraulic motor driving circuit
JP2567193B2 (en) * 1993-01-19 1996-12-25 三星重工業株式會社 Hydraulic pump discharge flow control device
JP2002317771A (en) * 2001-04-23 2002-10-31 Kawasaki Heavy Ind Ltd Hydraulic pump control device
JP4453411B2 (en) * 2004-03-18 2010-04-21 コベルコ建機株式会社 Hydraulic control device for work machine
JP4667083B2 (en) * 2005-03-09 2011-04-06 株式会社加藤製作所 Hydraulic control device

Also Published As

Publication number Publication date
JP2010048396A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
JP6603568B2 (en) Hydraulic drive system
JP6220228B2 (en) Hydraulic drive system for construction machinery
JP4453411B2 (en) Hydraulic control device for work machine
KR101742322B1 (en) Hydraulic system of construction machinery comprising emergency controller for electro-hydraulic pump
JP2011256814A (en) Pump discharge amount control circuit for construction machine
JP6917871B2 (en) Hydraulic control circuit for construction machinery
WO2016185682A1 (en) System for hydraulically driving construction equipment
WO2006006448A1 (en) Hydraulic drive device for working vehicle
JP5778058B2 (en) Construction machine control device and control method thereof
KR102156447B1 (en) Hydraulic system of construction machinery
KR20130111532A (en) Device for controlling construction equipment
JP6757238B2 (en) Hydraulic drive system
KR101716506B1 (en) a hydraulic system for a construction heavy equipment and emergency driving method thereof
WO2016147597A1 (en) Hydraulic drive system for construction machine
JP5015880B2 (en) Pump control circuit for construction machinery
JP3625149B2 (en) Hydraulic control circuit for construction machinery
WO2020162353A1 (en) Hydraulic drive system
JP2010048359A (en) Pump control circuit of construction machine
US11434937B2 (en) Excavator and control valve for excavator
KR101533115B1 (en) Hydraulic pump control apparatus for construction machinery
JP6940992B2 (en) A hydraulic drive system and a hydraulic drive system including the hydraulic drive system.
CN110431317B (en) Oil pressure system
WO2013042192A1 (en) Circuit for controlling amount of discharge of construction machinery pump
US9725885B2 (en) Hydraulic construction machinery
WO2018178961A1 (en) Hydraulic system

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20101115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees