JP5006678B2 - 貯湯式の給湯装置 - Google Patents

貯湯式の給湯装置 Download PDF

Info

Publication number
JP5006678B2
JP5006678B2 JP2007085594A JP2007085594A JP5006678B2 JP 5006678 B2 JP5006678 B2 JP 5006678B2 JP 2007085594 A JP2007085594 A JP 2007085594A JP 2007085594 A JP2007085594 A JP 2007085594A JP 5006678 B2 JP5006678 B2 JP 5006678B2
Authority
JP
Japan
Prior art keywords
hot water
heat
amount
predicted
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007085594A
Other languages
English (en)
Other versions
JP2008241209A (ja
Inventor
幸嗣 桝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2007085594A priority Critical patent/JP5006678B2/ja
Publication of JP2008241209A publication Critical patent/JP2008241209A/ja
Application granted granted Critical
Publication of JP5006678B2 publication Critical patent/JP5006678B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Fuel Cell (AREA)

Description

本発明は、貯湯式の給湯装置に関し、詳しくは、貯留される湯水を熱消費部に送出する給湯路が接続された貯湯槽と、その貯湯槽に貯留される湯水を加熱する加熱手段と、前記給湯路を通流する湯水を加熱する補助加熱手段と、前記給湯路を通して前記熱消費部に供給される湯水の熱量を計測する熱負荷計測手段と、前記熱消費部に供給される湯水の目標給湯温度を変更設定自在な目標給湯温度設定手段と、運転を制御する運転制御手段とが設けられ、
前記運転制御手段が、
前記熱負荷計測手段にて計測される熱量を時系列的な実熱負荷データとして管理して、その管理している時系列的な実熱負荷データに基づいて時系列的な予測熱負荷データを求める予測データ演算処理、
前記貯湯槽に貯留される湯水を目標貯湯温度に加熱するように加熱作動させる状態で、且つ、前記時系列的な予測熱負荷データに基づいて運転メリットが高くなるように求めた加熱作動条件にて加熱作動させる状態で、前記加熱手段の加熱作動を制御する加熱作動制御処理、及び、
前記熱消費部に供給される湯水の温度を前記目標給湯温度にするように、前記補助加熱手段の加熱作動を制御する補助加熱作動制御処理を実行するように構成された貯湯式の給湯装置に関する。
かかる貯湯式の給湯装置(以下、単に給湯装置と略称する場合がある)は、一般家庭等に設置されるものであり、加熱手段により貯湯槽に貯留される湯水が加熱されて、その貯湯タンクに貯留される湯水が給湯路を通して台所や風呂等の熱消費部に送出されることになる。ちなみに、加熱手段は、例えば、燃料電池等の熱電併給装置から発生する熱を熱源として加熱作用するように構成される。
このような給湯装置では、給湯路を通して熱消費部に供給される湯水の熱量が熱負荷計測手段により計測され、運転制御手段により、熱負荷計測手段にて計測される熱量を時系列的な実熱負荷データとして管理して、その管理している時系列的な実熱負荷データに基づいて時系列的な予測熱負荷データを求める予測データ演算処理、及び、貯湯槽に貯留される湯水を目標貯湯温度に加熱するように加熱作動させる状態で、且つ、時系列的な予測熱負荷データに基づいて運転メリットが高くなるように求めた加熱作動条件にて加熱作動させる状態で、加熱手段の加熱作動を制御する加熱作動制御処理が実行される。
ちなみに、加熱作動条件は、加熱手段を加熱作動させる運転時間帯を定める条件や、加熱手段にて出力する加熱量を定める条件や、貯湯槽の貯湯熱量を定める条件である。
尚、加熱手段が熱電併給装置から発生する熱を熱源として加熱作用するように構成される場合、運転メリットとしては、熱電併給装置を運転することによるエネルギ削減量等にて示される省エネルギ性、熱電併給装置を運転することによるエネルギコスト削減費等にて示される経済性、又は、熱電併給装置を運転することによる二酸化炭素削減量等にて示される環境性等がある。
目標給湯温度設定手段は、例えば、この給湯装置のリモコン操作部に設けられ、この給湯装置の使用者により、この目標給湯温度設定手段を用いて目標給湯温度が変更設定される。又は、この給湯装置により食器洗浄器等の湯消費機器に給湯する場合、この給湯装置の運転制御手段と湯消費機器の運転制御手段とが通信可能に接続されて、湯消費機器の運転制御手段は、湯消費機器の運転開始スイッチから運転開始が指令されると、給湯装置の運転制御手段に目標給湯温度を湯消費機器用の目標給湯温度(例えば60°C)に設定することを指令するように構成され、湯消費機器の運転開始スイッチ及び湯消費機器の運転制御手段により、目標給湯温度設定手段が構成されることになる。
そして、貯湯槽から送出される湯水の温度が目標給湯温度設定手段にて設定された目標給湯温度よりも低い場合には、運転制御手段により、熱消費部に供給される湯水の温度を前記目標給湯温度にするように、補助加熱手段の加熱作動を制御する補助加熱作動制御処理が実行される。
ちなみに、一般には、貯湯槽の湯水は循環経路を通して循環されながら加熱手段にて加熱されることになるため、加熱作動制御処理によって、貯湯槽に貯湯する目標貯湯温度(例えば、60℃)に加熱するようにしても、貯湯槽に実際に貯湯される湯の温度(以下、貯湯槽の実貯湯温度と記載する場合がある)は、目標貯湯温度よりも少し低い温度(例えば、目標貯湯温度が60°Cの場合には59°C程度)になるものであり、さらには、貯湯槽に貯湯される湯水の実貯湯温度は、加熱手段にて加熱されて貯湯された直後における目標貯湯温度よりも少し低い温度(例えば59℃)を最高として、貯湯槽内に貯湯された状態での放熱により、漸次低下することになる。
このような給湯装置において、従来、運転制御手段は、前記予測データ演算処理において、熱負荷計測手段にて計測される熱量の全てを時系列的な実熱負荷データとして管理して、その管理している時系列的な実熱負荷データに基づいて時系列的な予測熱負荷データを求めるように構成されていた(例えば、特許文献1参照。)。
特開2006−158106号公報
ところで、食器洗浄機に給湯する場合は、例えば、60°C程度の高温の湯が要求されるものであり、このように食器洗浄機に給湯する場合等、貯湯槽の実貯湯温度(例えば59°C)よりも高い目標給湯温度が目標給湯温度設定手段にて設定される場合がある。
このように貯湯槽の実貯湯温度よりも高い温度の実熱負荷が発生すると、熱消費部に供給される湯水の温度を目標給湯温度にするように補助加熱手段の加熱作動が制御されることになるが、このように補助加熱手段の加熱作動が行われる状態においては、貯湯槽の湯にて賄われる熱量は、実熱負荷から補助加熱手段にて賄われた熱量を差し引いた熱量である。
しかしながら、従来の給湯装置では、上述したように、熱負荷計測手段にて計測される熱量の全てを時系列的な実熱負荷データとして管理する構成であるので、貯湯槽の実貯湯温度よりも高い温度の実熱負荷が発生した場合には、貯湯槽の湯にて賄われた熱量に補助加熱手段にて賄われた熱量を加えた熱量が時系列的な実熱負荷データとして管理されて、そのような時系列的な実熱負荷データにより求められた時系列的な予測熱負荷データに基づいて、運転メリットが高くなるように加熱作動条件が求められて、その加熱作動条件にて加熱手段の加熱作動が制御されることになるので、貯湯槽の湯にて賄えない熱量をも貯湯槽に蓄熱すべく、加熱手段の加熱作動が制御されることになり、熱余りが発生し易くなる。
つまり、貯湯槽に貯湯される熱量にて賄うことができる湯水の温度、換言すれば、貯湯槽から出湯可能な出湯温度は、目標貯湯温度よりも少し低い温度であるため、その出湯可能な温度よりも高い温度の実熱負荷が発生したときには、その実熱負荷は、貯湯槽の熱量と補助加熱手段が発生する熱量とで賄われるものであるにも拘わらず、従来では、その実熱負荷に対応する熱量の全てを貯湯槽に蓄熱させるものとなるため、熱余りが発生する虞があった。
本発明は、かかる実情に鑑みてなされたものであり、その目的は、熱余りを抑制するように貯湯槽に貯湯し得る貯湯式の給湯装置を提供することにある。
本発明の貯湯式の給湯装置の第1特徴構成は、貯留される湯水を熱消費部に送出する給湯路が接続された貯湯槽と、その貯湯槽に貯留される湯水を加熱する加熱手段と、前記給湯路を通流する湯水を加熱する補助加熱手段と、前記給湯路を通して前記熱消費部に供給される湯水の熱量を計測する熱負荷計測手段と、前記熱消費部に供給される湯水の目標給湯温度を変更設定自在な目標給湯温度設定手段と、運転を制御する運転制御手段とが設けられ、
前記運転制御手段が、
前記熱負荷計測手段にて計測される熱量を時系列的な実熱負荷データとして管理して、その管理している時系列的な実熱負荷データに基づいて時系列的な予測熱負荷データを求める予測データ演算処理、
前記貯湯槽に貯留される湯水を目標貯湯温度に加熱するように加熱作動させる状態で、且つ、前記時系列的な予測熱負荷データに基づいて運転メリットが高くなるように求めた加熱作動条件にて加熱作動させる状態で、前記加熱手段の加熱作動を制御する加熱作動制御処理、及び、
前記熱消費部に供給される湯水の温度を前記目標給湯温度にするように、前記補助加熱手段の加熱作動を制御する補助加熱作動制御処理を実行するように構成されたものであって、
前記運転制御手段が、前記予測データ演算処理において、
前記目標給湯温度が前記貯湯槽から出湯可能な設定出湯温度よりも高い状態に対応する高温熱負荷データが存在する場合には、その高温熱負荷データを除いた時系列的な実熱負荷データを前記時系列的な実熱負荷データとして、前記時系列的な予測熱負荷データを求めるように構成されている点を特徴とする。
即ち、目標給湯温度設定手段により貯湯槽から出湯可能な設定出湯温度よりも高い目標給湯温度が設定されて、目標給湯温度が設定出湯温度よりも高い状態に対応する高温熱負荷データが存在する場合には、その高温熱負荷データを除いた時系列的な実熱負荷データを時系列的な実熱負荷データとして、時系列的な予測熱負荷データが求められる。
そして、そのように求められた時系列的な予測熱負荷データに基づいて加熱作動条件が求められるので、高温熱負荷データに対応する熱量は貯湯槽に蓄熱しないように、加熱手段の加熱作動が制御されるようにすることが可能となり、熱余りを抑制することができる。
従って、熱余りを抑制するように貯湯槽に貯湯し得る貯湯式の給湯装置を提供することができるようになった。
第2特徴構成は、貯留される湯水を熱消費部に送出する給湯路が接続された貯湯槽と、その貯湯槽に貯留される湯水を加熱する加熱手段と、前記給湯路を通流する湯水を加熱する補助加熱手段と、前記給湯路を通して前記熱消費部に供給される湯水の熱量を計測する熱負荷計測手段と、前記熱消費部に供給される湯水の目標給湯温度を変更設定自在な目標給湯温度設定手段と、運転を制御する運転制御手段とが設けられ、
前記運転制御手段が、
前記熱負荷計測手段にて計測される熱量を時系列的な実熱負荷データとして管理して、その管理している時系列的な実熱負荷データに基づいて時系列的な予測熱負荷データを求める予測データ演算処理、
前記貯湯槽に貯留される湯水を目標貯湯温度に加熱するように加熱作動させる状態で、且つ、前記時系列的な予測熱負荷データに基づいて運転メリットが高くなるように求めた加熱作動条件にて加熱作動させる状態で、前記加熱手段の加熱作動を制御する加熱作動制御処理、及び、
前記熱消費部に供給される湯水の温度を前記目標給湯温度にするように、前記補助加熱手段の加熱作動を制御する補助加熱作動制御処理を実行するように構成されたものであって、
前記運転制御手段が、前記予測データ演算処理において、
前記目標給湯温度が前記貯湯槽から出湯可能な設定出湯温度よりも高い状態に対応する高温熱負荷データが存在する場合には、その高温熱負荷データの発生時間帯における時系列的な実熱負荷データを負荷減少側に補正した時系列的な実熱負荷データを前記時系列的な実熱負荷データとして、前記時系列的な予測熱負荷データを求めるように構成されている点を特徴とする。
即ち、予測データ演算処理においては、目標給湯温度が設定出湯温度よりも高い状態に対応する高温熱負荷データが存在する場合には、その高温熱負荷データの発生時間帯における時系列的な実熱負荷データを負荷減少側に補正した時系列的な実熱負荷データが時系列的な実熱負荷データとして管理されて、そのように管理されている時系列的な実熱負荷データに基づいて時系列的な予測熱負荷データが求められる。
そして、そのように求められた時系列的な予測熱負荷データに基づいて加熱作動条件が求められることにより、高温熱負荷データの発生時間帯に対応して貯湯槽に蓄熱すべき熱量を実熱負荷よりも小さい熱量とする状態で、加熱手段の加熱作動が制御されるようにすることが可能となるので、高温熱負荷データの発生時間帯に対応して、実熱負荷よりも小さい熱量を貯湯槽に蓄熱することが可能となり、熱余りを抑制することが可能となる。
ちなみに、高温熱負荷データの発生時間帯に対応して、実熱負荷よりも小さい熱量を貯湯槽に蓄熱することが可能となることにより、上記の第1特徴構成の如く、高温熱負荷データに対応する熱量は貯湯槽に蓄熱しないようにする場合に比べて、貯湯槽に蓄熱される熱量が時系列的な予測熱負荷データに対して小さくなり過ぎるのを抑制することができるので、補助加熱手段の消費エネルギを低減することが可能となり、運転メリットを向上することが可能となる。
従って、熱余りを抑制するように貯湯槽に貯湯し得る貯湯式の給湯装置を提供することができるようになった。
第3特徴構成は、上記第2特徴構成に加えて、
前記運転制御手段が、前記予測データ演算処理において、
前記高温熱負荷データの発生時間帯における前記補助加熱手段の加熱量である補助加熱量を減じることにより、前記高温熱負荷データの発生時間帯における時系列的な実熱負荷データを負荷減少側に補正するように構成されている点を特徴とする。
即ち、予測データ演算処理においては、高温熱負荷データの発生時間帯における補助加熱手段の加熱量である補助加熱量を減じることにより、高温熱負荷データの発生時間帯における時系列的な実熱負荷データが負荷減少側に補正される。
そして、そのように補正されて管理されている時系列的な実熱負荷データに基づいて時系列的な予測熱負荷データが求められ、そのように求められた時系列的な予測熱負荷データに基づいて加熱作動条件が求められることにより、高温熱負荷データの発生時間帯に対応して貯湯槽に蓄熱すべき熱量を、実熱負荷から補助加熱手段にて賄われた熱量を差し引いた熱量に極力近い熱量とする状態で、加熱手段の加熱作動が制御されるようにすることが可能となるので、高温熱負荷データの発生時間帯に対応して、実熱負荷から補助加熱手段にて賄われた熱量を差し引いた熱量に極力近い熱量を貯湯槽に蓄熱することが可能となり、熱余りを抑制することが可能となる。
しかも、実熱負荷から補助加熱手段にて賄われた熱量を差し引いた熱量に極力近い熱量を貯湯槽に蓄熱することが可能となることにより、補助加熱手段の消費エネルギをより一層低減することが可能となるので、運転メリットをより一層向上することが可能となる。
従って、運転メリットをより一層向上しながら、熱余りを抑制するよう貯湯槽に貯湯することができるようになった。
第4特徴構成は、上記第3特徴構成に加えて、
前記給湯路における前記補助加熱手段よりも上流側又は下流側の箇所にて通流する湯水に水を混合し、且つ、その水の混合量を調節自在な水混合手段が設けられ、
前記運転制御手段が、前記予測データ演算処理において、前記補助加熱手段の加熱量調節範囲における最小加熱量又はその最小加熱量に近い加熱量を前記補助加熱量として、前記高温熱負荷データの発生時間帯における時系列的な実熱負荷データを負荷減少側に補正するように構成されている点を特徴とする。
即ち、予測データ演算処理においては、補助加熱手段の加熱量調節範囲における最小加熱量又はその最小加熱量に近い加熱量を補助加熱量として、高温熱負荷データの発生時間帯における時系列的な実熱負荷データが負荷減少側に補正される。
通常、目標給湯温度設定手段にて設定出湯温度よりも高い目標給湯温度を設定可能なようにするにしても、その目標給湯温度を設定出湯温度よりも高く設定することを許容する範囲は、補助加熱手段を最小加熱量にて加熱作動させたときに、貯湯槽から設定出湯温度で送出される湯を昇温させることが可能な温度以下に設定されるものである。
そして、高温熱負荷データの発生時間帯では、補助加熱手段を最小加熱量にて加熱作動させ、且つ、補助加熱手段を最小加熱量にて加熱作動させたときに熱消費部に供給される湯水の温度が目標給湯温度になるように、給湯路における補助加熱手段よりも上流側又は下流側の箇所にて通流する湯水に水混合手段により水を混合することにより、目標給湯温度の湯が熱消費部に供給されるように構成される場合がある。
そこで、そのような構成にて目標給湯温度の湯が熱消費部に供給される場合に、補助加熱手段の最小加熱量又はその最小加熱量に近い加熱量を補助加熱量として、高温熱負荷データの発生時間帯における時系列的な実熱負荷データが負荷減少側に補正するように構成するようにすることにより、高温熱負荷データの発生時間帯における時系列的な実熱負荷データの負荷減少側への補正を簡単に行うことができる。
第5特徴構成は、上記第3特徴構成に加えて、
前記運転制御手段が、前記予測データ演算処理において、設定流量の湯水を設定温度上昇させるための前記補助加熱手段の加熱量を前記補助加熱量として、前記高温熱負荷データの発生時間帯における時系列的な実熱負荷データを負荷減少側に補正するように構成されている点を特徴とする。
即ち、予測データ演算処理においては、設定流量の湯水を設定温度上昇させるための補助加熱手段の加熱量を補助加熱量として、高温熱負荷データの発生時間帯における時系列的な実熱負荷データが負荷減少側に補正される。
つまり、高温熱負荷データの発生時間帯では、補助加熱手段を、設定流量の湯水を設定温度上昇させるための加熱量にて加熱作動させるように構成される場合がある。
ちなみに、このように補助加熱手段を加熱作動させたときに、熱消費部に供給される湯水の温度が目標給湯温度よりも高くなる場合には、消費部に供給される湯水の温度が目標給湯温度になるように、給湯路における補助加熱手段よりも上流側又は下流側の箇所にて、水混合手段により水が混合されることになる。
そこで、高温熱負荷データの発生時間帯においては、設定流量の湯水を設定温度上昇させるための加熱量にて加熱作動させるように補助加熱手段が構成される場合に、設定流量の湯水を設定温度上昇させるための補助加熱手段の加熱量を補助加熱量として、高温熱負荷データの発生時間帯における時系列的な実熱負荷データを負荷減少側に補正するように構成することにより、高温熱負荷データの発生時間帯における時系列的な実熱負荷データの負荷減少側への補正を簡単に行うことができる。
第6特徴構成は、上記第1〜第5特徴構成のいずれかに加えて、
前記加熱作動条件が、前記加熱手段を加熱作動させる運転時間帯を定める条件、前記加熱手段にて出力する加熱量を定める条件及び前記貯湯槽の貯湯熱量を定める条件のうちの少なくとも一つを定める条件である点を特徴とする。
即ち、加熱作動条件が、加熱手段を加熱作動させる運転時間帯を定める条件、加熱手段にて出力する加熱量を定める条件及び前記貯湯槽の貯湯熱量を定める条件のうちの少なくとも一つを定める条件であるので、運転時間帯、加熱量及び貯湯槽の貯湯熱量の少なくとも一つが運転メリットが高くなるように定められて、加熱手段の加熱作動が制御される。
つまり、例えば、予測熱負荷が発生する時間帯の前に貯湯槽に貯湯すべく、加熱手段を加熱作動させる運転時間帯を定めるようにすることにより、貯湯槽からの放熱損失を抑制して運転メリットを向上することが可能となり、あるいは、予測熱負荷の大きさに対応して加熱手段にて出力する加熱量を定めるようにすることにより、熱余りを抑制して運転メリットを向上することが可能となり、あるいは、予測熱負荷が発生する時間帯の前にその予測熱負荷の大きさに対応する熱量を貯湯槽に貯湯すべく、貯湯槽の貯湯熱量を定めることにより、熱余りを抑制して運転メリットを向上することが可能となる。更に、前記運転時間帯、前記加熱量及び前記貯湯槽の貯湯熱量のうちのいずれか2つ、あるいは、全てを定めるようにすることにより、運転メリットをより一層向上することが可能となる。
従って、運転メリットを向上するように加熱手段の加熱作動を制御することができるようになった。
以下、図面に基づいて、本発明の実施の形態を説明する。
〔第1実施形態〕
以下、図面に基づいて、本発明にかかる貯湯式の給湯装置をコージェネレーションシステムに適用した場合の第1実施形態を説明する。
コージェネレーションシステムは、図1及び図2に示すように、電力と熱とを発生する熱電併給装置としての燃料電池1と、その燃料電池1が発生する熱を冷却水にて回収し、その冷却水を利用して、貯湯槽2への貯湯及び熱消費端末3への熱媒供給を行う貯湯ユニット4と、燃料電池1及び貯湯ユニット4の運転を制御する運転制御手段としての運転制御部5などから構成されている。
前記燃料電池1は、周知であるので、詳細な説明及び図示を省略して簡単に説明すると、燃料電池1は、水素を含有する燃料ガス及び酸素含有ガスが供給されて発電するセルスタック、そのセルスタックに供給する燃料ガスを生成する燃料ガス生成部、前記セルスタックに酸素含有ガスとして空気を供給するブロア等を備えて構成されている。
前記燃料ガス生成部は、供給される都市ガス(例えば、天然ガスベースの都市ガス)等の炭化水素系の原燃料ガスを脱硫処理する脱硫器、その脱硫器から供給される脱硫原燃料ガスと別途供給される水蒸気とを改質反応させて水素を主成分とする改質ガスを生成する改質器、その改質器から供給される改質ガス中の一酸化炭素を水蒸気にて二酸化炭素に変成処理する変成器、その変成器から供給される改質ガス中の一酸化炭素を別途供給される選択酸化用空気にて選択酸化する一酸化炭素除去器等から構成され、一酸化炭素を変成処理及び選択酸化処理により低減した改質ガスを前記燃料ガスとして前記セルスタックに供給するように構成されている。
そして、前記燃料ガス生成部への原燃料ガスの供給量を調節することにより、前記燃料電池1の発電出力を調節するように構成されている。
前記燃料電池1の電力の出力側には、系統連系用のインバータ6が設けられ、そのインバータ6は、燃料電池1の発電電力を商用電源7から受電する受電電力と同じ電圧及び同じ周波数にするように構成されている。
前記商用電源7は、例えば、単相3線式100/200Vであり、受電電力供給ライン8を介して、テレビ、冷蔵庫、洗濯機などの電力負荷9に電気的に接続されている。
また、インバータ6は、発電電力供給ライン10を介して受電電力供給ライン8に電気的に接続され、燃料電池1の発電電力がインバータ6及び発電電力供給ライン10を介して電力負荷9に供給されるように構成されている。
前記受電電力供給ライン8には、電力負荷9の負荷電力を計測する電力負荷計測手段11が設けられ、この電力負荷計測手段11は、受電電力供給ライン8を通して流れる電流に逆潮流が発生するか否かをも検出するように構成されている。
そして、逆潮流が生じないように、インバータ6により燃料電池1から受電電力供給ライン8に供給される電力が制御され、発電出力の余剰電力は、その余剰電力を熱に代えて回収する電気ヒータ12に供給されるように構成されている。
前記電気ヒータ12は、複数の電気ヒータから構成され、冷却水循環ポンプ15の作動により冷却水循環路13を通流する燃料電池1の冷却水を加熱するように設けられ、インバータ6の出力側に接続された作動スイッチ14によりON/OFFが切り換えられている。
また、作動スイッチ14は、余剰電力の大きさが大きくなるほど、電気ヒータ12の消費電力が大きくなるように、余剰電力の大きさに応じて電気ヒータ12の消費電力を調整するように構成されている。
尚、電気ヒータ12の消費電力を調整する構成については、上記のように複数の電気ヒータ12のON/OFFを切り換える構成以外に、その電気ヒータ12の出力を例えば位相制御等により調整する構成を採用しても構わない。
前記貯湯ユニット4は、貯留される湯水を浴槽、給湯栓、シャワー、食器洗浄機等の熱消費部に送出する給湯路27が接続された密閉式の前記貯湯槽2、その貯湯槽2に貯留される湯水を加熱する加熱手段としての加熱部H、湯水循環路16を通して貯湯槽2内の湯水を循環させる湯水循環ポンプ17、熱源用循環路20を通して熱源用湯水を循環させる熱源用循環ポンプ21、熱媒循環路22を通して熱媒を前記熱消費端末3に循環供給させる熱媒循環ポンプ23、前記湯水循環路16を通流する湯水を加熱させる貯湯用熱交換器24、前記熱源用循環路20を通流する熱源用湯水を加熱させる熱源用熱交換器25、前記熱媒循環路22を通流する熱媒を加熱させる熱媒加熱用熱交換器26、前記貯湯槽2から取り出されて給湯路27を通流する湯水及び前記熱源用循環路20を通流する熱源用湯水を加熱させる補助加熱手段としての補助加熱器28などを備えて構成されている。
前記湯水循環路16は、前記貯湯槽2の底部と頂部とに接続されて、前記湯水循環ポンプ17により、貯湯槽2の底部から取り出した湯水を貯湯槽2の頂部に戻す形態で貯湯槽2の湯水を湯水循環路16を通して循環させ、そのように湯水循環路16を通して循環される湯水を前記貯湯用熱交換器24にて加熱することにより、貯湯槽2に温度成層を形成する状態で湯水が満杯状態で貯留されるように構成されている。
前記湯水循環路16は、その一部が並列になるように分岐接続され、その接続箇所に三方弁18が設けられており、分岐された一方側の流路には、ラジエータ19が設けられている。そして、三方弁18を切り換えることにより、貯湯槽2の下部から取り出した湯水がラジエータ19を通過するように循環させる状態と、貯湯槽2の下部から取り出した湯水がラジエータ19をバイパスするように循環させる状態とに切り換えるように構成されている。
前記給湯路27は、前記湯水循環路16における前記貯湯用熱交換器24よりも下流側の箇所を介して前記貯湯槽2に接続され、その給湯路27を通して熱消費部に湯水が送出されるのに伴って貯湯槽2に給水すべく、給水路29が貯湯槽2の底部に接続されている。
前記熱源用循環路20は、前記給湯路27の一部を共用する状態で循環経路を形成するように設けられ、その熱源用循環路20には、熱源用湯水の通流を断続させる熱源用断続弁40が設けられている。
前記補助加熱器28は、前記給湯路27における前記熱源用循環路20との共用部分に設けられた補助加熱用熱交換器28a、その補助加熱用熱交換器28aを加熱するバーナ28b、そのバーナ28bに燃焼用空気を供給するファン28c等を備えて構成され、この補助加熱器28の運転は、前記運転制御部5により制御される。
又、前記給水路29から分岐された混合水路33が、前記給湯路27における前記補助加熱用熱交換器28aよりも上流側、即ち、前記補助加熱器28よりも上流側の箇所に接続され、その接続箇所には、前記貯湯槽2から送出される湯水と混合水路33から供給される水との混合比率を調節自在な水混合弁34が設けられている。
つまり、これら混合水路33及び水混合弁34により、前記給湯路27における前記補助加熱器28よりも上流側の箇所にて通流する湯水に水を混合し、且つ、その水の混合量を調節自在な水混合手段Bが構成される。
前記冷却水循環路13は、貯湯用熱交換器24側と熱源用熱交換器25側とに分岐され、その分岐箇所に、貯湯用熱交換器24側に通流させる冷却水の流量と熱源用熱交換器25側に通流させる冷却水の流量との割合を調整する分流弁30が設けられている。
そして、分流弁30は、冷却水循環路13の冷却水の全量を貯湯用熱交換器24側に通流させたり、冷却水循環路13の冷却水の全量を熱源用熱交換器25側に通流させることもできるように構成されている。
燃料電池1の発生熱を回収した冷却水を前記冷却水循環ポンプ15により冷却水循環路13を通して前記貯湯用熱交換器24を通過させて循環させ、並びに、貯湯槽2の湯水を前記湯水循環ポンプ17により湯水循環路16を通して前記貯湯用熱交換器24を通過させて循環させることにより、前記貯湯用熱交換器24において、燃料電池1の発生熱を回収した冷却水により貯湯槽2に貯湯される湯水が加熱されることになり、前記加熱部Hが、前記燃料電池1、前記冷却水循環路13、前記冷却水循環ポンプ15、前記湯水循環路16、前記湯水循環ポンプ17及び前記貯湯用熱交換器24等を備えて構成される。
前記熱源用熱交換器25においては、燃料電池1の発生熱を回収した冷却水循環路13の冷却水を通流させることにより、熱源用循環路20を通流する熱源用湯水を加熱させるように構成されている。
前記熱媒加熱用熱交換器26においては、熱源用熱交換器25や補助加熱器28にて加熱された熱源用湯水を通流させることにより、熱媒循環路22を通流する熱媒を加熱させるように構成されている。前記熱消費端末3は、床暖房装置や浴室暖房装置などの暖房端末にて構成されている。
図2に示すように、このコージェネレーションシステムのリモコン操作部35には、このコージェネレーションシステムの運転開始、停止を指令する運転スイッチ(図示省略)の他に、前記熱消費部に供給される湯水の目標給湯温度を設定する目標給湯温度設定手段Cとしての給湯温度設定部36が設けられている。
又、前記食器洗浄機Wの運転を制御する洗浄運転制御部37(湯消費機器の運転制御手段に相当する)と前記運転制御部5とは、制御情報等を通信可能に接続され、この洗浄運転制御部37は、前記食器洗浄機Wの運転スイッチ38により食器洗浄機Wの運転開始が指令されると、食器洗浄機Wへの給湯路27に設けられた食器洗浄用開閉弁(図示省略)を開弁すると共に、前記運転制御部5に、目標給湯温度を食器洗浄用の目標給湯温度(例えば60°C)に設定することを指令するように構成され、前記食器洗浄機Wの運転スイッチ38及び洗浄運転制御部37により、前記目標給湯温度設定手段Cが構成されることになる。
ちなみに、この目標給湯温度設定手段Cにて設定可能な目標給湯温度の最高温度は、前記補助加熱器28の最小燃焼量にて加熱作動させた場合に、貯湯槽2から設定出湯温度で送出される湯を昇温させることが可能な温度以下に設定される。ちなみに、詳細は後述するが、前記設定出湯温度は前記加熱部Hを加熱作動させることにより貯湯槽2に貯湯される湯の温度である。
前記給湯路27を通して前記熱消費部に供給される湯水の熱量を計測する熱負荷計測手段としての給湯熱負荷計測手段Nが設けられ、又、前記熱消費端末3での端末熱負荷を計測する端末熱負荷計測手段32も設けられている。
前記給湯熱負荷計測手段Nについて、説明を加える。
前記運転制御部5は、サンプリング時間毎に、前記熱消費部に供給される湯水の熱量Qs(kcal/サンプリング時間)を、前記熱消費部に供給される湯水の温度である給湯温度Ts(°C)、前記熱消費部に供給される湯水の流量である給湯流量Fs(リットル/サンプリング時間)、及び、前記貯湯槽2への給水温度Ti(°C)に基づいて、下記の式1により求めるように構成されている。ちなみに、前記サンプリング時間は、例えば5秒間に設定される。
尚、この実施形態では、熱量の単位をkcalにて示す場合があるが、1kWh=860kcalの関係に基づいて860に設定される係数αにて各値を除することにより、kWhの単位として求めることができる。
Qs=(Ts−Ti)×Fs……………(式1)
給湯路27を通して前記熱消費部に供給される湯水の温度を検出する給湯温度センサ41、給湯路27を通して前記熱消費部に供給される湯水の流量を検出する給湯流量センサ42、及び、前記給水路29を通して給水される水の温度を検出する給水温度センサ43が設けられている。
そして、前記運転制御部5は、上記の式1により前記熱消費部に供給される湯水の熱量Qsを求めるときには、前記給湯温度Tsを前記給湯温度センサ41の検出温度とする又は前記目標給湯温度設定手段Cにて設定された目標給湯温度とするように構成され、前記給湯流量Fsを前記給湯流量センサ42の検出流量とする又は特定の熱消費部について予め設定された設定流量とするように構成され、並びに、前記給水温度Tiを前記給水温度センサ43の検出温度とするように構成されている。
つまり、前記給湯熱負荷計測手段Nは、前記運転制御部5、前記給湯温度センサ41、前記給湯流量センサ42及び前記給水温度センサ43により構成されている。
図示は省略するが、前記端末熱負荷計測手段32は、前記熱媒循環路22を通して前記熱消費端末3に供給される熱媒の温度を検出する流入温度センサ、前記熱消費端末3から前記熱媒循環路22に流出する熱媒の温度を検出する流出温度センサ、及び、前記熱媒循環路22を通流する熱媒の流量を検出する熱媒流量センサから構成されている。
又、前記給湯路27における前記混合水路33の接続箇所よりも上流側の箇所に、前記貯湯槽2から送出される湯水の温度を検出する送出温度センサSoが設けられ、前記湯水循環路16における前記貯湯用熱交換器24よりも下流側の箇所に、前記貯湯用熱交換器24にて加熱されて貯湯槽2に供給される湯水の温度を検出する貯湯温度センサShが設けられている。
又、前記貯湯槽2には、その貯湯熱量の検出用として、貯湯槽2の上層部の上端位置の湯水の温度を検出する上端温度センサS1、貯湯槽2の上層部と中層部との境界位置の湯水の温度を検出する中間上位温度センサS2、貯湯槽2の中層部と下層部との境界位置の湯水の温度を検出する中間下位温度センサS3、及び、貯湯槽2の下層部の下端位置の湯水の温度を検出する下端温度センサS4が設けられている。
前記運転制御部5による前記貯湯槽2の貯湯熱量の演算方法について、説明する。
前記上端温度センサS1、中間上位温度センサS2、中間下位温度センサS3、下端温度センサS4夫々にて検出される貯湯槽2の湯水の温度を、夫々、T1、T2、T3、T4とし、前記給水温度センサ43にて検出される給水温度をTiとし、上層部、中層部、下層部夫々の容量をV(リットル)とする。
又、前記上層部における重み係数をA1とし、前記中層部における重み係数をA2とし、前記下層部における重み係数をA3とすると、貯湯熱量(kcal)は、下記の(式2)にて演算することができる。
貯湯熱量=(A1×T1+(1−A1)×T2−Ti)×V
+(A2×T2+(1−A2)×T3−Ti)×V
+(A3×T3+(1−A3)×T4−Ti)×V……………(式2)
重み係数A1、A2、A3は、貯湯槽2の各層における過去の温度分布データを考慮した経験値である。ここで、A1、A2、A3としては、例えば、A1=A2=0.2、A3=0.5である。A1=A2=0.2とは、上層部においては温度T2の影響が温度T1の影響よりも大きいことを示す。これは、上層部の8割の部分は温度T2に近く、2割の部分は温度T1に近いことを示す。これは、中層部においても同様である。下層部においては、温度T3とT4の影響が同じであることを示す。
以下、前記運転制御部5の制御構成について説明する。
この運転制御部5は、前記給湯熱負荷計測手段Nにて計測される熱量を時系列的な実給湯熱負荷データとして管理して、その管理している時系列的な実給湯熱負荷データに基づいて時系列的な予測給湯熱負荷データを求める予測データ演算処理、前記貯湯槽2に貯留される湯水を目標貯湯温度に加熱するように加熱作動させる状態で、且つ、前記時系列的な予測給湯熱負荷データに基づいて運転メリットが高くなるように求めた加熱作動条件にて加熱作動させる状態で、前記加熱部Hの加熱作動を制御する貯湯用の加熱作動制御処理、熱源用循環路20を通して熱源用湯水を循環させるように、前記熱源用断続弁40、前記分流弁30及び前記熱源用循環ポンプ21を作動させ、並びに、前記時系列的な予測給湯熱負荷データに基づいて運転メリットが高くなるように求めた加熱作動条件にて加熱作動させる状態で、前記加熱部Hの加熱作動を制御する熱媒循環用の加熱作動制御処理、及び、前記熱消費部に供給される湯水の温度を前記目標給湯温度にするように、前記補助加熱器28の加熱作動を制御する補助加熱作動制御処理を実行するように構成されている。
前記運転制御部5は、熱消費端末3用の端末用リモコン(図示省略)から運転の指令がされない状態では、貯湯槽2内に湯水を貯湯する貯湯運転を行い、その貯湯運転では、運転制御部5は、前記分流弁30を冷却水の全量を貯湯用熱交換器24側に通流させる状態に切り換え且つ熱源用断続弁40を閉弁した状態で、前記貯湯用の加熱作動制御処理を実行するように構成されている。
この貯湯用の加熱作動制御処理では、前記貯湯温度センサShの検出情報に基づいて、前記貯湯槽2に供給される湯水の温度が予め設定された目標貯湯温度(例えば60°C)になるように湯水循環量を調節すべく、前記湯水循環ポンプ17の作動を制御することにより、前記貯湯槽2に貯留される湯水を目標貯湯温度に加熱するように、前記加熱部Hを加熱作動させることになる。
そして、この貯湯運転により、湯水循環路16を通流する間の湯水からの放熱等を考慮して、目標貯湯温度よりも低い温度(例えば59°C)に設定された設定出湯温度の湯が貯湯槽2に貯湯されることになる。
又、前記運転制御部5は、前記端末用リモコンから運転が指令されると、前記熱消費端末3に熱媒を供給する熱媒供給運転を行い、その熱媒供給運転では、前記運転制御部5は、前記熱媒循環用の加熱作動制御処理を実行するように構成されている。
この熱媒循環用の加熱作動制御処理では、熱源用断続弁40を開弁し、熱源用循環ポンプ21を作動させ、前記分流弁30を冷却水の全量を熱源用熱交換器25側に通流させる状態に切り換えることにより、熱源用循環路20を通して熱源用湯水を循環させることになる。
前記運転制御部5は、前記熱媒供給運転の実行中に前記端末用リモコンから運転の停止が指令されると、前記分流弁30を冷却水の全量を貯湯用熱交換器24側に通流させる状態に切り換え、前記熱源用断続弁40を閉弁し、前記熱源用循環ポンプ21を停止させて、前記湯水循環ポンプ17を作動させることにより、前記熱媒供給運転から前記貯湯運転に切り換えるように構成されている。
前記貯湯用の加熱作動制御処理において前記時系列的な予測給湯熱負荷データに基づいて運転メリットが高くなるように求めた加熱作動条件にて加熱部Hを加熱作動させる処理と、前記熱媒循環用の加熱作動制御処理において前記時系列的な予測給湯熱負荷データに基づいて運転メリットが高くなるように求めた加熱作動条件にて加熱部Hを加熱作動させる処理は、同様であり、以下、このような処理を学習運転制御処理と称する場合がある。
更に、前記運転制御部5は、前記貯湯運転の実行中に、前記下端温度センサS4の検出温度が予め設定した放熱作動用設定温度以上になると、貯湯槽2の底部にまで貯湯されて、貯湯槽2の貯湯量が満杯になったとして、貯湯槽2の下部から取り出した湯水がラジエータ19を通過するように循環させる状態に三方弁18を切り換えると共に、ラジエータ19を作動させて、貯湯槽2の下部から取り出した湯水をラジエータ19にて放熱させたのち、貯湯用熱交換器24を通過させて加熱して、貯湯槽2に供給するように構成されている。
次に、前記補助加熱作動制御処理、前記予測データ演算処理及び前記学習運転制御処理の夫々について、説明を加える。
先ず、前記補助加熱作動制御処理について説明を加える。
前記運転制御部5は、補助加熱作動制御処理において、前記送出温度センサSoにて検出される送出温度が前記目標給湯温度設定手段Cにて設定された目標給湯温度よりも低い場合は、前記送出温度センサSoにて検出される湯水の温度及び前記給湯流量センサ42にて検出される湯水の流量に基づいて、前記貯湯槽2から送出される湯水を目標給湯温度に加熱するために要する前記補助加熱器28の必要燃焼量を求めて、その求めた必要燃焼量が前記補助加熱器28の燃焼量調節範囲における最小燃焼量よりも大きいか否かを判別し、必要燃焼量が最小燃焼量よりも大きい場合は、前記給湯温度センサ41の検出温度が目標給湯温度になるように前記補助加熱器28の燃焼量を調節し、且つ、水の混合量を0にすべく、前記混合水路33側を閉じるように前記水混合弁34の作動を制御し、必要燃焼量が最小燃焼量以下の場合は、前記補助加熱器28の燃焼量を最小燃焼量に調節し、且つ、熱消費部に供給される湯水の温度が目標給湯温度になるように前記水混合弁34の作動を制御するように構成されている。
この実施形態では、前記運転制御部5が、熱消費部に供給される湯水の温度を目標給湯温度にするための水混合弁34の作動の制御として、前記補助加熱器28を前記最小燃焼量にて加熱作動させると仮定したときに、前記補助加熱器28に供給される湯水を前記目標給湯温度に加熱するようにするための前記水混合弁34による水の混合量を求めて、水の混合量が求めた混合量となるように前記水混合弁34の作動を制御するように構成されている。
前記補助加熱器28を前記最小燃焼量にて加熱作動させると仮定したときに、前記補助加熱器28に供給される湯水を前記目標給湯温度に加熱するようにするための水の混合量X(リットル/サンプリング時間)は、目標給湯温度Tp(°C)、前記送出温度センサSoにて検出される送出温度To、前記給湯流量センサ42にて検出される給湯流量Fs(リットル/サンプリング時間)、前記給水温度センサ43にて検出される給水温度Ti、及び、補助加熱器28の最小燃焼量Imin(kcal/サンプリング時間)に基づいて、下記の式3にて求められる。
X={Imin−Fs(Tp−To+Ti)}÷(To−Ti)……………(式3)
ちなみに、補助加熱器28の最小燃焼量は、例えば4.71kWhであり、これをサンプリング時間当たりのkcal単位の値に換算することにより、最小燃焼量Iminが求められる。
又、前記運転制御部5は、補助加熱作動制御処理において、前記送出温度センサSoにて検出される送出温度が前記目標給湯温度設定手段Cにて設定された目標給湯温度以上の場合は、前記給湯温度センサ41にて検出される湯水の温度が前記目標給湯温度になるように、水混合量を調節すべく前記水混合弁34の作動を制御し、前記補助加熱器28を加熱作動させないように構成されている。
次に、前記予測データ演算処理について説明を加えると、前記運転制御部5は、この予測データ演算処理においては、前記時系列的な実給湯熱負荷データを管理して、管理している時系列的な実給湯熱負荷データに基づいて時系列的な予測給湯熱負荷データを求めることに加えて、前記端末熱負荷計測手段32にて計測される熱量を時系列的な実端末熱負荷データとして管理し、並びに、前記電力負荷計測手段11の計測値及び前記インバータ6の出力値に基づいて計測される電力を時系列的な実電力負荷データとして管理して、管理している時系列的な実端末熱負荷データに基づいて、時系列的な予測端末熱負荷データを求め、並びに、管理している時系列的な実電力負荷データに基づいて、時系列的な予測電力負荷データを求めるように構成されている。
前記運転制御手段5は、前記時系列的な実給湯熱負荷データ、前記時系列的な実端末熱負荷データ及び前記時系列的な実電力負荷データ夫々を、複数の運転周期からなる設定期間にわたって、複数の単位時間からなる運転周期毎に単位時間毎に区分けして管理するように構成されている。尚、前記時系列的な実給湯熱負荷データ、前記時系列的な実端末熱負荷データ及び前記時系列的な実電力負荷データは、メモリ31に記憶させることにより管理されることになる。
ちなみに、この実施形態では、前記運転周期が1日に、前記設定期間が28日(4週間)に、前記単位時間が1時間にそれぞれ設定されている。
以下、前記時系列的な実給湯熱負荷データ、前記時系列的な実端末熱負荷データ及び前記時系列的な実電力負荷データ夫々における単位時間毎の実負荷データを求める処理について説明する。
前記時系列的な実給湯熱負荷データ及び前記時系列的な実端末熱負荷データ夫々における単位時間毎の実負荷データは、サンプリング時間毎の実負荷データを積算することにより求められる。又、前記時系列的な実電力負荷データにおける単位時間毎の実負荷データは、サンプリング時間毎の実負荷データを積算した積算値を単位時間で除することにより求められる。
前記運転制御部5は、前記時系列的な実給湯熱負荷データにおける単位時間毎の実給湯熱負荷データについては、前記目標給湯温度設定手段Cにて設定された目標給湯温度が前記貯湯槽2から出湯可能な前記設定出湯温度よりも高い状態に対応する高温熱負荷データの発生時間帯においては、サンプリング時間毎に給湯熱負荷計測手段Nにて計測された熱量Qsから前記補助加熱器28の最小燃焼量Iminを減じた熱量をサンプリング時間毎の実給湯熱負荷データとし、且つ、前記高温熱負荷データの発生時間帯以外の時間帯においては、サンプリング時間毎に給湯熱負荷計測手段Nにて計測された熱量Qsをサンプリング時間毎の実給湯熱負荷データとして、サンプリング時間毎の実給湯熱負荷データを積算することにより、単位時間毎の実給湯熱負荷データを求めるように構成されている。
つまり、食器洗浄用の目標給湯温度は例えば60°Cであり、前記設定出湯温度の59°Cよりも高いので、前記食器洗浄機Wの運転スイッチ38により食器洗浄機Wの運転開始が指令されて、前記洗浄運転制御部37から、目標給湯温度を食器洗浄用の目標給湯温度に設定することが指令されている状態で、前記給湯流量センサ42により設定最小流量以上の流量が検出されている時間帯が、前記高温熱負荷データの発生時間帯となる。
又、前記給湯温度設定部36により、前記設定出湯温度よりも高い目標給湯温度が設定されている状態で、前記給湯流量センサ42により設定最小流量以上の流量が検出されている時間帯が、前記高温熱負荷データの発生時間帯となる。
前記運転制御部5は、目標給湯温度が食器洗浄用の目標給湯温度に設定されている状態での前記高温熱負荷データの発生時間帯においては、上記の式1に基づいて熱量Qsを求めるときは、前記給湯温度Tsを前記食器洗浄用の目標給湯温度とし、且つ、前記給湯流量Fsを前記食器洗浄機Wへの給湯用として予め設定された食器洗浄用設定流量とするように構成されている。ちなみに、前記食器洗浄用設定流量としては、例えば、24リットル/分に設定される。
又、前記運転制御部5は、前記給湯温度設定部36により前記設定出湯温度よりも高い目標給湯温度が設定されている状態での前記高温熱負荷データの発生時間帯においては、上記の式1に基づいて熱量Qsを求めるときは、前記給湯温度Tsを前記給湯温度設定部36により設定された目標給湯温度とし、且つ、前記給湯流量Fsを前記給湯流量センサ42の検出流量とするように構成されている。
又、前記運転制御部5は、前記高温熱負荷データの発生時間帯以外の時間帯においては、上記の式1に基づいて熱量Qsを求めるときは、前記給湯温度Tsを前記給湯温度センサ41の検出温度とし、且つ、前記給湯流量Fsを前記給湯流量センサ42の検出流量とするように構成されている。
つまり、前記運転制御部5が、上述のように、高温熱負荷データの発生時間帯において、サンプリング時間毎に給湯熱負荷計測手段Nにて計測された熱量Qsから前記補助加熱器28の最小燃焼量Iminを減じた熱量をサンプリング時間毎の実給湯熱負荷データとして、サンプリング時間毎の実給湯熱負荷データを積算することにより単位時間毎の実給湯熱負荷データを求めるように構成されていることにより、前記運転制御部5が、前記予測データ演算処理において、前記目標給湯温度が前記貯湯槽2から出湯可能な設定出湯温度よりも高い状態に対応する高温熱負荷データが存在する場合には、その高温熱負荷データの発生時間帯における時系列的な実熱負荷データを負荷減少側に補正した時系列的な実熱負荷データを前記時系列的な実熱負荷データとして、前記時系列的な予測熱負荷データを求めるように構成されることになる。
又、運転制御部5が、前記予測データ演算処理において、前記高温熱負荷データの発生時間帯における前記補助加熱器28の加熱量である補助加熱量を減じることにより、前記高温熱負荷データの発生時間帯における時系列的な実熱負荷データを負荷減少側に補正するように構成されている。
更に、運転制御部5が、前記予測データ演算処理において、前記補助加熱器28の加熱量調節範囲における最小加熱量を前記補助加熱量として、前記高温熱負荷データの発生時間帯における時系列的な実熱負荷データを負荷減少側に補正するように構成されている。
前記運転制御部5は、前記時系列的な実端末熱負荷データにおける単位時間毎の実端末熱負荷データについては、サンプリング時間毎に前記端末熱負荷計測手段32にて計測された熱量をサンプリング時間毎の実端末熱負荷データとして、そのサンプリング時間毎の実端末熱負荷データを積算することにより、単位時間毎の実端末熱負荷データを求めるように構成されている。
又、前記運転制御部5は、前記時系列的な実電力負荷データにおける単位時間毎の実電力負荷データについては、前記電力負荷計測手段11の計測値及び前記インバータ6の出力値に基づいて計測される電力をサンプリング時間毎の実電力負荷データとして、そのサンプリング時間毎の実電力負荷データを積算し、その積算値を単位時間で除することにより、単位時間毎の実電力負荷データを求めるように構成されている。
そして、前記運転制御手段5は、前記時系列的な実給湯熱負荷データ、前記時系列的な実端末熱負荷データ及び前記時系列的な実電力負荷データ夫々について、新しく1運転周期分の時系列的な実負荷データを求める毎に、最も過去の運転周期の時系列的な実負荷データを削除して、新しく求めた時系列的な実負荷データを前記メモリ31に記憶させる形態で、設定期間にわたって、前記時系列的な実給湯熱負荷データ、前記時系列的な実端末熱負荷データ及び前記時系列的な実電力負荷データを管理するように構成されている。
以下、前記時系列的な予測給湯熱負荷データ、前記時系列的な予測端末熱負荷データ及び前記時系列的な予測電力負荷データを求める処理について、説明を加える。
前記運転制御部5は、運転周期の開始時点(例えば午前3時)において、前記時系列的な実給湯熱負荷データ、前記時系列的な実端末熱負荷データ及び前記時系列的な実電力負荷データの管理データに基づいて、連続する予測用設定回数の運転周期のうちの最初の運転周期の時系列的な予測給湯熱負荷データ、時系列的な予測端末熱負荷データ及び時系列的な予測電力負荷データ、並びに、予測用設定回数の運転周期のうちの最初の運転周期に後続する運転周期の時系列的な予測給湯熱負荷データ及び時系列的な予測端末熱負荷データを求めるように構成されている。ちなみに、前記予測用設定回数は複数回数(例えば3回)に設定される。
前記時系列的な予測給湯熱負荷データ、前記時系列的な予測端末熱負荷データ及び前記時系列的な予測電力負荷データの求め方は同様であるので、以下、それらの求め方を、時系列的な実給湯熱負荷データ、前記時系列的な実端末熱負荷データ及び前記時系列的な実電力負荷データを時系列的な実負荷データと総称し、前記時系列的な予測給湯熱負荷データ、前記時系列的な予測端末熱負荷データ及び前記時系列的な予測電力負荷データを時系列的な予測負荷データと総称して説明を加える。
前記運転制御部5は、管理している設定期間分の時系列的な実負荷データデータのうち、最近の週(即ち、前週)における予測対象日と同曜日の時系列的な実負荷データDb、及び、その最近の週を除いた残りの複数週(この実施形態では2週前、3週前、4週前の3週)の時系列的な実負荷データの平均値Daに基づいて、下記の式4により、時系列的な予測負荷データDpを求めるように構成されている。
Dp=Da×γ+Db×(1−γ)……………(式4)
但し、γは定数であり、例えば0.75に設定される。
次に、前記学習運転制御処理について、説明を加える。
前記運転制御部5は、前記学習運転制御処理においては、前記時系列的な予測給湯熱負荷データに加えて、前記時系列的な予測端末熱負荷データ及び前記時系列的な予測電力負荷データに基づいて運転メリットが高くなるように求めた加熱作動条件にて加熱部Hを加熱作動させるように構成されている。
以下、前記時系列的な予測給湯熱負荷データと前記時系列的な予測端末熱負荷データとを加えた時系列的な熱負荷データを時系列的な予測熱負荷データと称して、説明を加えるが、この実施形態においては、熱の負荷状態としては、前記熱消費端末3での端末熱負荷が発生しておらず、給湯熱負荷のみが発生する状態として、時系列的な予測熱負荷データとして予測給湯熱負荷データのみが求められるとして説明する。
例えば、運転周期の開始時点において、図3や図4に示すように、予測用設定回数の運転周期のうちの最初の運転周期の予測電力負荷データ及び予測熱負荷データを単位時間毎に求め、図5に示すように、予測用設定回数の運転周期のうちの最初の運転周期に後続する運転周期(図5では、2回目の運転周期について図示)の予測熱負荷データを単位時間毎に求める。尚、図3は、運転周期の予測電力負荷及び予測熱負荷の負荷発生状態が、後述する負荷追従連続運転形態にて燃料電池1を運転すると熱不足状態が発生する単位時間(以下、熱不足単位時間と記載する場合がある)が生じるような負荷発生状態を示す図であり、図4は、運転周期の予測電力負荷及び予測熱負荷の負荷発生状態が、負荷追従連続運転形態にて燃料電池1を運転すると熱余り状態が発生する単位時間(以下、熱余り単位時間と記載する場合がある)が生じるような負荷発生状態を示す図である。
ちなみに、予測電力負荷データの単位はkWhであり、予測給湯熱負荷データの単位はkcal/hである。
この運転制御部5は、運転周期の開始時点を運転形態判別タイミングとして、その運転形態判別タイミングにおいて、時系列的な予測電力負荷及び時系列的な予測熱負荷に基づいて、燃料電池1を連続運転すると仮定したときの連続運転メリット、及び、燃料電池1を断続運転すると仮定したときの断続運転メリットを求めて、その求めた連続運転メリット及び断続運転メリット並びに運転形態選択条件に基づいて、燃料電池1の運転形態を連続運転形態及び断続運転形態のいずれかに定め、その定めた運転形態にて燃料電池1を運転するように構成されている。
この第1実施形態では、前記運転メリットとして、燃料電池1を運転することにより得られると予測される予測エネルギ削減量を求めるように構成されている。
又、前記運転形態選択条件が、連続運転メリットとしての連続運転形態の予測エネルギ削減量が設定削減量G(例えば580Wh)以上のときは、燃料電池1の運転形態を断続運転形態よりも優先して連続運転形態に定め、且つ、連続運転形態の予測エネルギ削減量が設定削減量Gよりも小さいときは、燃料電池1の運転形態を連続運転形態の予測エネルギ削減量及び断続運転形態の予測エネルギ削減量のうちのエネルギ削減量が大きい方に対応する運転形態に定める条件に設定されている。
前記連続運転形態として、予測電力負荷に対する燃料電池1の電力の出力形態を異ならせた複数種の運転形態が含まれ、前記断続運転形態として、予測電力負荷に対する燃料電池1の電力の出力形態又は燃料電池1を運転する運転時間帯を異ならせた複数種の運転形態が含まれている。
そして、前記運転制御部5が、前記連続運転メリットとして前記複数種の連続運転形態夫々についての運転メリットを求め、且つ、前記断続運転メリットとして前記複数種の断続運転形態夫々についての運転メリットを求めて、その求めた前記複数種の連続運転形態夫々についての運転メリット及び前記複数種の断続運転形態夫々についての運転メリット並びに前記運転形態選択条件に基づいて、燃料電池1の運転形態を前記複数種の連続運転形態及び前記複数種の断続運転形態のうちのいずれか1つに定めるように構成されている。
前記連続運転形態としての複数種の運転形態が、前記運転周期の全時間帯において燃料電池1の発電出力を予測電力負荷に追従させる負荷追従連続運転形態、前記運転周期の複数の単位時間のうちの一部の単位時間において前記燃料電池1の発電出力を前記予測電力負荷よりも小さな設定抑制出力とし且つ残りの単位時間において前記燃料電池1の発電出力を前記予測電力負荷に追従させる抑制連続運転形態、及び、前記運転周期の複数の単位時間のうちの一部の単位時間において前記燃料電池1の発電出力を前記予測電力負荷よりも大きな設定増大出力とし且つ残りの単位時間において前記燃料電池1の発電出力を前記予測電力負荷に追従させる強制連続運転形態である。
更に、前記抑制連続運転形態が、前記設定抑制出力とする単位時間を、前記負荷追従連続運転形態にて前記燃料電池1を運転するときに前記運転周期の複数の単位時間のうちに前記貯湯槽2の予測貯湯熱量が槽満杯貯湯熱量(設定上限量に相当する)以上になる熱余り状態が発生する単位時間が存在する場合に、前記熱余り状態が発生する単位時間よりも以前の単位時間のうちで、前記熱余り状態の発生を抑制し且つ最も運転メリットが高くなる単位時間に定めるものであり、前記強制連続運転形態が、前記設定増大出力とする単位時間を、前記負荷追従連続運転形態にて前記燃料電池1を運転するときに前記運転周期の複数の単位時間のうちに前記貯湯槽1の予測貯湯熱量が予測熱負荷に対して不足する熱不足状態が発生する単位時間が存在する場合に、前記熱不足状態が発生する単位時間よりも以前の単位時間のうちで、前記熱不足状態の発生を抑制し且つ最も運転メリットが高くなる単位時間に定めるものである
前記断続運転形態の複数種の運転形態が、燃料電池1の発電出力を前記予測電力負荷に追従させる単位時間を、前記運転時間帯として、前記運転周期の複数の単位時間のうちで最も運転メリットが高くなる単位時間に定める負荷追従断続運転形態、燃料電池1の発電出力を前記予測電力負荷よりも小さな設定抑制出力に調節する単位時間を、前記運転時間帯として、前記運転周期の複数の単位時間のうちで最も運転メリットが高くなる単位時間に定める抑制断続運転形態、及び、燃料電池1の発電出力を前記予測電力負荷よりも大きな設定増大出力に調節する単位時間を、前記運転時間帯として、前記運転周期の複数の単位時間のうちで最も運転メリットが高くなる単位時間に定める強制断続運転形態である。
更に、前記負荷追従断続運転形態として、燃料電池1の発電出力を前記予測電力負荷に追従させる単位時間を、それを定める前記運転周期における予測電力負荷及び予測熱負荷に基づく運転メリットが最も高くなる単位時間に定める単周期対応型の負荷追従断続運転形態と、燃料電池1の発電出力を前記予測電力負荷に追従させる単位時間を、それを定める前記運転周期における予測電力負荷及び予測熱負荷並びに後続する運転周期における予測熱負荷に基づく運転メリットが最も高くなる単位時間に定める複数周期対応型の負荷追従断続運転形態とが含まれる。
前記抑制断続運転形態として、燃料電池1の発電出力を前記設定抑制出力に調節する単位時間を、それを定める前記運転周期における予測電力負荷及び予測熱負荷に基づく運転メリットが最も高くなる単位時間に定める単周期対応型の抑制断続運転形態と、燃料電池1の発電出力を前記設定抑制出力に調節する単位時間を、それを定める前記運転周期における予測電力負荷及び予測熱負荷並びに後続する運転周期における予測熱負荷に基づく運転メリットが最も高くなる単位時間に定める複数周期対応型の抑制断続運転形態とが含まれる。
前記強制断続運転形態として、燃料電池1の発電出力を前記設定増大出力に調節する単位時間を、それを定める前記運転周期における予測電力負荷及び予測熱負荷に基づく運転メリットが最も高くなる単位時間に定める単周期対応型の強制断続運転形態と、燃料電池1の発電出力を前記設定増大出力に調節する単位時間を、それを定める前記運転周期における予測電力負荷及び予測熱負荷並びに後続する運転周期における予測熱負荷に基づく運転メリットが最も高くなる単位時間に定める複数周期対応型の強制断続運転形態とが含まれる。
この第1実施形態では、運転周期が1日に設定されるので、負荷追従断続運転形態、抑制断続運転形態及び強制断続運転形態夫々の単周期対応型を1日対応型と記載する。又、負荷追従断続運転形態、抑制断続運転形態及び強制断続運転形態夫々の複数周期対応型としては、後続する運転周期が1回の2日対応型のものと、後続する運転周期が2回の3日対応型のものとが含まれる。
次に、連続運転メリット及び断続運転メリットを求める運転メリット演算処理について、説明を加える。
図3及び図4に示すように、前記運転制御部5は、運転周期の開始時点において、その運転周期において負荷追従連続運転形態を行うと仮定して、運転周期の複数の単位時間夫々について、予測電力負荷に追従する燃料電池1の予測発電出力、燃料電池1の予測熱出力、貯湯槽2に湯により貯えられると予測される熱量(以下、予測貯湯熱量と記載する場合がある)、貯湯槽2の予測貯湯熱量が予測給湯熱負荷に対して不足する予測不足熱量、貯湯槽2の予測貯湯熱量が槽満杯貯湯熱量以上になってラジエータ19にて放熱される熱量(以下、予測余り熱量と記載する場合がある)、各単位時間から予測不足熱量が0よりも大きい単位時間(即ち、熱不足単位時間)まで又は予測余り熱量が0よりも大きい単位時間(即ち、熱余り単位時間)までの時間である放熱時間を求めるように構成されている。
尚、予測貯湯熱量、予測不足熱量、予測余り熱量は、夫々、各単位時間の終了時点での熱量を示す。又、この第1実施形態では、予測熱負荷は、各単位時間の開始時点に発生し、予測熱出力は予測熱負荷が発生した後に出力されるものとしている。
そして、運転制御部5は、前記熱余り単位時間が存在する場合は、前記連続運転メリットとしての連続運転形態の予測エネルギ削減量として、負荷追従連続運転形態の予測エネルギ削減量、及び、抑制連続運転形態の予測エネルギ削減量を求め、前記熱不足単位時間が存在する場合は、前記連続運転メリットとしての連続運転形態の予測エネルギ削減量として、負荷追従連続運転形態の予測エネルギ削減量、及び、強制連続運転形態の予測エネルギ削減量を求める。
又、運転制御部5は、前記断続運転メリットとしての断続運転形態の予測エネルギ削減量として、負荷追従断続運転形態、抑制断続運転形態及び強制断続運転形態夫々について、1日対応型、2日対応型、3日対応型夫々の運転形態の予測エネルギ削減量を求める。
先ず、前述の予測発電出力、予測熱出力、予測貯湯熱量、予測不足熱量及び予測余り熱量夫々の求め方について、説明を加える。
運転周期の複数の単位時間夫々の予測発電出力(kW)は、予測電力負荷が燃料電池1の最小出力(例えば0.3kW)以上且つ最大出力(例えば1.0kW)以下の範囲のときは予測電力負荷に設定され、予測電力負荷が燃料電池1の最小出力よりも小さいときはその最小出力に設定され、予測電力負荷が燃料電池1の最大出力よりも大きいときはその最大出力に設定される。
運転周期の複数の単位時間夫々の予測熱出力(kcal/h)は、下記の式5にて求められる。
予測熱出力=α×{(予測発電出力÷電池発電効率)×電池熱効率}+余剰電力×α×β−ベース放熱量……………(式5)
但し、余剰電力は、予測発電出力が予測電力負荷よりも大きい場合に、予測発電出力から予測電力負荷を減じることにより求められる。
例えば、予測電力負荷が燃料電池1の最小出力よりも小さいときは、余剰電力は、燃料電池1の最小出力から予測電力負荷を減じることにより求められる。又、詳細は後述するが、燃料電池1の発電出力を予測電力負荷に追従する電主出力よりも大きい設定増大出力に設定するときは、余剰電力は、その設定増大出力から予測電力負荷を減じることにより求められる。
αは、上述したように860に設定される係数である。
βは、電気ヒータ12にて余剰電力(kWh)を熱(kWh)に変換するときの効率であるヒータ効率であり、例えば、0.9に設定される。
電池発電効率は、燃料電池1における単位エネルギ消費量(kWh)に対する発電出力(kWh)の比率を示し、電池熱効率は、燃料電池1における単位エネルギ消費量(kWh)に対する発生熱量(kWh)の比率を示し、これら電池発電効率及び電池熱効率は発電出力に応じて変動するものであり、予め、図6に示すように、発電出力に応じて設定されて前記メモリ31に記憶されている。そして、運転制御部5は、その電池発電効率及び電池熱効率の記憶情報から予測発電出力に応じた電池発電効率及び電池熱効率を求めるように構成されている。
ベース放熱量は、このコージェネレーションシステムにおいて、熱電併給装置1の発生熱量のうち、貯湯槽2への貯湯及び熱消費端末3による暖房に用いられることなく放熱される熱量であり、例えば50kcal/hに設定されて、メモリ31に記憶されている。
各単位時間の予測貯湯熱量(kcal/h)、予測不足熱量(kcal/h)、予測余り熱量(kcal/h)は、それぞれ、下記の式6、式7、式8にて求められる。
但し、各式において、添え字「n」は、運転周期における単位時間の順序を示し、例えば、n=1のときは、運転周期の1番目の単位時間を示す。
ちなみに、予測貯湯熱量n-1は、n=1のときには予測貯湯熱量0となり、この予測貯湯熱量0は、運転周期の開始時点(即ち、初期)の予測貯湯熱量であり、前記上端温度センサS1、前記中間上位温度センサS2、前記中間下位温度センサS3、前記下端温度センサS4及び前記給水温度センサ43夫々の検出温度に基づいて、上記の式2により求められる。
予測貯湯熱量n=(予測貯湯熱量n-1−予測熱負荷n+予測熱出力n)×(1−槽放熱率)……………(式6)
予測不足熱量=予測熱負荷n−予測貯湯熱量n-1……………(式7)
予測余り熱量=(予測貯湯熱量n-1−予測熱負荷n+予測熱出力n)×(1−槽放熱率)−槽満杯貯湯熱量……………(式8)
但し、予測貯湯熱量nの最大値は、貯湯槽2の貯湯量が満杯になったときに貯湯槽2に蓄える熱量である槽満杯貯湯熱量以下に規制され、その槽満杯貯湯熱量は、例えば、貯湯槽2の貯湯温度、貯湯槽2への給水温度及び貯湯槽2の容量から求められる。ちなみに、前記貯湯温度は、上端温度センサS1、中間上位温度センサS2、中間下位温度センサS3及び下端温度センサS4夫々の検出温度のうち前記放熱作動用設定温度(例えば45°C)以上のものの平均値とされ、前記給水温度は、給水温度センサ43にて検出される給水温度の平均値とされる。
槽放熱率は、貯湯槽2からの放熱率であり、例えば、0.012に予め設定されて、前記メモリ31に記憶されている。
又、前記式7にて求められた予測不足熱量が負の値のときは、予測不足熱量を0とし、前記式8にて求められた予測余り熱量が負の値のときは、予測余り熱量を0とする。
各運転形態の予測エネルギ削減量は、下記の式9に示すように、燃料電池1を運転しない場合のエネルギ消費量から、燃料電池1を各運転形態にて運転した場合のエネルギ消費量を減じることにより演算する。
予測エネルギ削減量P=燃料電池1を運転しない場合のエネルギ消費量E1−燃料電池1を運転した場合のエネルギ消費量E2……………(式9)
前記燃料電池1を運転しない場合のエネルギ消費量E1(kWh)は、下記の式10に示すように、最初の運転周期の予測電力負荷の全てを商用電源7からの受電電力で補う場合の商用電源7におけるエネルギ消費量と、最初の運転周期の予測熱負荷の全てを補助加熱器28の発生熱で補う場合のエネルギ消費量との和として求められる。
つまり、どの運転形態の予測エネルギ削減量を求める場合でも、燃料電池1を運転しない場合のエネルギ消費量E1は、同様に求められる。
E1=予測電力負荷/商用電源発電効率+予測熱負荷/補助加熱器熱効率……………(式10)
但し、予測熱負荷はkWhに変換した値である。
一方、燃料電池1を運転した場合のエネルギ消費量E2(kWh)は、下記の式11に示すように、最初の運転周期の予測電力負荷及び予測熱負荷を燃料電池1の予測発電出力及び予測熱出力で補う場合の燃料電池1の消費エネルギである運転周期エネルギ消費量と、予測電力負荷から予測発電出力を差し引いた分に相当する予測不足電力量の全てを商用電源7からの受電電力で補う場合の商用電源7におけるエネルギ消費量と、予測不足熱量の全てを補助加熱器28の発生熱で補う場合のエネルギ消費量との和にて求められる。
E2=運転周期エネルギ消費量+予測不足電力量/商用電源発電効率+予測不足熱量/補助加熱器熱効率……………(式11)
但し、予測不足熱量はkWhに変換した値である。
但し、
商用電源発電効率:商用電源7における単位エネルギ消費量(kWh)に対する発電出力(kWh)の比率であり、例えば、0.366に設定される。
補助加熱器熱効率:補助加熱器28における単位エネルギ消費量(kWh又はkcal)に対する発生熱量(kWh又はkcal)の比率であり、例えば0.7に設定される。
運転周期エネルギ消費量は、下記の式12にて、各運転形態において燃料電池1を運転する単位時間のエネルギ消費量を求めて、その求めた単位時間のエネルギ消費量を積算することにより求める。
エネルギ消費量=(発電出力÷電池発電効率)……………(式12)
尚、燃料電池1を運転した場合のエネルギ消費量E2を求めるに当たって、運転周期内で燃料電池1を起動させるときは、その燃料電池1を起動させるときに消費する起動時消費エネルギを加え、運転周期内で燃料電池1を停止させる場合は、その燃料電池1を停止させるときに消費する停止時消費エネルギを加えることになる。
ちなみに、前記起動時消費エネルギは、前記燃料ガス生成部を構成する改質器、変成器等を夫々における処理が可能なように設定された温度にウオームアップするのに要するエネルギを含むものであり、又、停止時消費エネルギは、燃料電池1を停止させる際に燃料ガス生成部のガス通流経路にパージガス(原燃料ガス又は不活性ガス)をパージする際に要するエネルギ、具体的には、ファン、ポンプ、バルブ等を駆動するエネルギを含むものである。燃料電池1の起動時消費エネルギ及び停止時消費エネルギは、燃料電池1固有のものである。そして、それら起動時消費エネルギ及び停止時消費エネルギは、予め、実験等により求められてメモリ31に記憶されている。例えば、起動時消費エネルギは1900Whに、停止時消費エネルギは200Whに夫々設定されている。
先ず、複数種の連続運転形態夫々の予測エネルギ削減量の求め方について説明する。
負荷追従連続運転形態の予測エネルギ削減量は、以下のようにして求める。
各単位時間のエネルギ消費量を前記式12により発電出力を電主出力として求め、求めた各単位時間のエネルギ消費量を積算することにより、運転周期エネルギ消費量を求め、その運転周期エネルギ消費量に基づいて、式11により、燃料電池1を運転した場合のエネルギ消費量E2を求める。
そして、そのように求めた燃料電池1を運転した場合のエネルギ消費量E2と式10により求めた燃料電池1を運転しない場合のエネルギ消費量E1とに基づいて、式9により、予測エネルギ削減量Pを求める。
強制連続運転形態の予測エネルギ削減量は、以下のようにして求める。
先ず、熱不足単位時間(熱不足単位時間が複数存在するときは、運転周期の開始時点に最も近いもの)よりも以前の各単位時間について、増大出力設定条件に基づいて、予測電力負荷よりも大きな設定増大出力を設定する。
そして、燃料電池1の発電出力を前記設定増大出力とする単位時間を、運転周期における前記熱不足単位時間よりも以前の単位時間のうちで、最も予測エネルギ削減量が大きくなる単位時間に定めたときの予測エネルギ削減量を強制連続運転形態の予測エネルギ削減量として求める。
この強制連続運転形態の予測エネルギ削減量の求め方について、説明を加える。
先ず、前記設定増大出力の設定の仕方について、説明を加える。
前記増大出力設定条件は、燃料電池1の発電出力を電主出力よりも大きくすることによるメリットを評価するための増大時メリット評価用指標がメリットが得られる値として求められる電力に設定増大出力を設定する条件としてある。
具体的には、図3に示すように、熱不足単位時間(17番目の単位時間)よりも以前の各単位時間について、電主出力よりも大きい仮設定増大出力を、段階的に(例えば、0.1kW間隔)で設定して、各仮設定増大出力について、下記の式13にて増大時メリット評価用指標を求める。そして、熱不足単位時間よりも以前の各単位時間について、増大時メリット評価用指標がメリットが得られる値として求められる仮設定増大出力のうちの電力が最大のものを設定増大出力に設定する。
増大時メリット評価用指標={(増大出力時有効貯湯熱量−電主出力時有効貯湯熱量)÷補助加熱器熱効率−(増大出力時エネルギ消費量−電主出力時エネルギ消費量)}÷(増大出力時有効貯湯熱量−電主出力時有効貯湯熱量)……………(式13)
増大出力時有効貯湯熱量は、単位時間において燃料電池1の発電出力を電主出力よりも大きくすることにより得られる熱量から熱不足単位時間までの貯湯槽2からの放熱量を減じた熱量であり、下記の式14にて、発電出力として仮設定増大出力を代入して求める。
又、電主出力時有効貯湯熱量は、単位時間において燃料電池1の発電出力を電主出力に調節することにより得られる熱量から熱不足単位時間までの貯湯槽2からの放熱量を減じた熱量であり、下記の式14にて、発電出力として電主出力を代入して求める。
有効貯湯熱量=〔α×{(発電出力÷電池発電効率)×電池熱効率}+余剰電力×α×β−ベース放熱量〕×(1−槽放熱率)t……………(式14)
但し、tは放熱時間である。
増大出力時エネルギ消費量は、燃料電池1の発電出力を仮設定増大出力に調節したときの燃料電池1のエネルギ消費量であり、前記式12にて、発電出力として仮設定増大出力を代入して求めた値をkcalに変換し、電主出力時エネルギ消費量は、燃料電池1の発電出力を電主出力に調節したときの燃料電池1のエネルギ消費量であり、前記式12にて、発電出力として電主出力を代入して求めた値をkcalに変換する。
前記式13の分子において、「(増大出力時有効貯湯熱量−電主出力時有効貯湯熱量)÷補助加熱器熱効率」は、燃料電池1の発電出力を電主出力よりも大きくすることにより増加する有効貯湯熱量を補助加熱器28の発生熱量で得るとすると必要となるエネルギ量を示すものであり、メリットとなるエネルギ量を示すものである。
又、前記式13の分子において、「(増大出力時エネルギ消費量−電主出力時エネルギ消費量)」は、燃料電池1の発電出力を電主出力よりも大きくすることにより増加する燃料電池1におけるエネルギ消費量を示すものであり、ディメリットとなるエネルギ量を示すものである。
つまり、前記式13の分子の「(増大出力時有効貯湯熱量−電主出力時有効貯湯熱量)÷補助加熱器熱効率−(増大出力時エネルギ消費量−電主出力時エネルギ消費量)」は、正の値として求められると、燃料電池1の発電出力を電主出力よりも大きくすることによりメリットが得られることを意味し、その値が大きくなるほどメリットが大きいことを意味する。
前記式13の分母の「増大出力時有効貯湯熱量−電主出力時有効貯湯熱量」は、燃料電池1の発電出力を電主出力よりも大きくすることにより増加する有効貯湯熱量を示すものであって、正の値として求められる。
つまり、前記式13にて求められる増大時メリット評価用指標が正の値のときは、燃料電池1の発電出力を電主出力よりも大きくすることによりメリットが得られることを意味し、その値が大きくなるほどメリットが大きいことを意味する。
図3では、17番目の単位時間が最も運転周期の開始時点に近い熱不足単位時間であるので、17番目の単位時間よりも以前の各単位時間について、設定増大出力を設定することになる。
例えば、1番目の単位時間については、電主出力が0.3kWであるので、仮設定増大出力として、0.4kW,0.5kW,0.6kW,0.7kW,0.8kW,0.9kW,1.0kWを設定し、夫々の仮設定増大出力について増大時メリット評価用指標を求める。
仮設定増大出力が0.4kW,0.5kW,0.6kW,0.7kW,0.8kWについては、増大時メリット評価用指標が正の値として求められ、仮設定増大出力が0.9kW,1.0kWについては、増大時メリット評価用指標が負の値として求められるので、設定増大出力としては、仮設定増大出力のうち、増大時メリット評価用指標が正の値で且つ電力が最大の仮設定増大出力、即ち、0.8kWに設定する。
ちなみに、6番目の単位時間については、仮設定増大出力として0.9kW,1.0kWを設定するが、いずれの仮設定増大出力についても、増大時メリット評価用指標が負の値として求められるので、設定増大出力は設定しない。
次に、熱不足単位時間よりも以前に1つ又は連続する複数の単位時間からなる時間帯を発電出力を設定増大出力に調節する強制運転用時間帯とする強制運転用の仮運転パターンを全て形成する。
つまり、運転周期における複数の単位時間のうちの熱不足単位時間よりも以前の複数の単位時間のうちで、選択した1つ又は連続する複数の単位時間を強制運転用時間帯とし且つ運転周期の残りの単位時間を発電出力を電主出力に調節する電主運転用時間帯とする形態で、前記強制運転用時間帯として選択する単位時間を異ならせることにより、強制運転用の仮運転パターンを全て形成する。ちなみに、強制運転用時間帯が設定増大出力の設定されていない単位時間のみで形成される仮運転パターンは、強制運転用の仮運転パターンから除外する。
例えば、図3に示すように、17番目の単位時間(単位時間17)が熱不足単位時間である場合、図7に示すように、単位時間1から強制運転用時間帯とするパターンとして、単位時間1を強制運転用時間帯とするパターン1や、単位時間1,2を強制運転用時間帯とするパターン2、単位時間1,2,3を強制運転用時間帯とするパターン3・・・単位時間1〜16を強制運転用時間帯とするパターン16の16種類がある。また、単位時間2から強制運転用時間帯とするパターンとして、この単位時間2を強制運転用時間帯とするパターン17、単位時間2,3を強制運転用時間帯とするパターン18・・・単位時間2〜16を強制運転用時間帯とするパターン31の15種類がある。このように、熱不足単位時間17の直前の単位時間16を強制運転用時間帯とするパターン136までの136種類のパターンのうち、強制運転用時間帯が設定増大出力の設定されていない単位時間のみで形成されるパターン、例えば、単位時間7のみを強制運転用時間帯とするパターン82等を除外したパターンを、強制運転用の仮運転パターンとする。
そして、全ての強制運転用の仮運転パターン夫々について、前記式9〜式11に基づいて予測エネルギ削減量Pを求め、更に、運転周期の強制運転用時間帯の単位時間では発電出力を設定増大出力に調節し且つ電主運転用時間帯の単位時間では発電出力を電主出力に調節する状態で燃料電池1を運転すると仮定して、各単位時間について、予測熱出力、予測貯湯熱量、予測不足熱量、予測余り熱量を求める。
尚、強制運転用時間帯の単位時間のエネルギ消費量を前記式12により発電出力を設定増大出力として求め、電主運転用時間帯の単位時間のエネルギ消費量を前記式12により発電出力を電主出力として求めて、求めた各単位時間のエネルギ消費量を積算することにより、運転周期エネルギ消費量を求め、その運転周期エネルギ消費量に基づいて、式11により、燃料電池1を運転した場合のエネルギ消費量E2を求めることになる。
続いて、全ての強制運転用の仮運転パターンのうちで熱余り単位時間が生ぜず且つ予測エネルギ削減量が最も高い強制運転用の仮運転パターンを求め、その求めた仮運転パターンにおいて熱不足単位時間が生じない場合は、その強制運転用の仮運転パターンを強制連続運転形態の運転パターンに定め、その強制運転用の仮運転パターンの予測エネルギ削減量を強制連続運転形態の予測エネルギ削減量として求める。
尚、熱余り単位時間が生ぜず且つ予測エネルギ削減量が最も高い強制運転用の仮運転パターンにおいて、未だ、熱不足単位時間が生じるときは、上述のように、熱不足単位時間よりも以前の各単位時間について設定増大出力を設定して、熱余り単位時間が生ぜず且つ最も予測エネルギ削減量が高い強制運転用の仮運転パターンを求めることにより、強制連続運転形態の運転パターンを設定すると共に強制連続運転形態の予測エネルギ削減量を求める処理を、熱不足単位時間が生じなくなるまで繰り返すことになる。
但し、既に発電出力を設定増大出力に調節すると定められている強制運転設定済みの単位時間については予測発電出力を設定増大出力とする状態で、強制運転設定済みの単位時間以外の単位時間について設定増大出力を設定して、上述の処理を実行する。つまり、強制運転用単位時間が強制運転設定済みの単位時間のみで形成される仮運転パターンは、強制運転用の仮運転パターンから除外することになる。
抑制連続運転形態の予測エネルギ削減量は、以下のようにして求める。
先ず、熱余り単位時間(熱余り単位時間が複数存在するときは、運転周期の開始時点に最も近いもの)よりも以前の各単位時間について、抑制出力設定条件に基づいて、予測電力負荷よりも小さな設定抑制出力を設定する。
そして、燃料電池1の発電出力を前記設定抑制出力とする単位時間を、運転周期における前記熱余り単位時間よりも以前の単位時間のうちで、最も予測エネルギ削減量が大きくなる単位時間に定めたときの予測エネルギ削減量を抑制連続運転形態の予測エネルギ削減量として求める。
この抑制連続運転形態の予測エネルギ削減量の求め方について、説明を加える。
先ず、前記設定抑制出力の設定の仕方について、説明を加える。
前記抑制出力設定条件は、燃料電池1の発電出力を電主出力よりも小さくすることによるメリットを評価するための抑制時メリット評価用指標がメリットが得られる値として求められる電力に設定抑制出力を設定する条件としてある。
具体的には、図4に示すように、熱余り単位時間(17番目の単位時間)よりも以前の各単位時間について、電主出力よりも小さい仮設定抑制出力を、段階的に(例えば、0.1kW間隔)で設定して、各仮設定抑制出力について、下記の式15にて抑制時メリット評価用指標を求める。そして、熱余り単位時間よりも以前の各単位時間について、抑制時メリット評価用指標がメリットが得られる値として求められる仮設定抑制出力のうちの電力が最小のものを設定抑制出力に設定する。
抑制時メリット評価用指標={(電主出力時エネルギ消費量−抑制出力時エネルギ消費量)−α×(抑制出力時不足電力量−電主出力時不足電力量)÷商用電源発電効率}÷(抑制出力時有効貯湯熱量−電主出力時有効貯湯熱量)……………(式15)
電主出力時エネルギ消費量は、上述した強制連続運転形態の予測エネルギ削減量を求める場合と同様に求め、抑制出力時エネルギ消費量は、燃料電池1の発電出力を仮設定抑制出力に調節したときの燃料電池1のエネルギ消費量であり、前記式12にて、発電出力として仮設定抑制出力を代入して求めた値をkcalに変換する。
電主出力時不足電力量は、燃料電池1の発電出力を電主出力に調節したときに予測電力負荷に対して不足する電力量であり、下記の式16にて、発電出力として電主出力を代入して求め、抑制出力時不足電力量は、燃料電池1の発電出力を仮設定抑制出力に調節したときに予測電力負荷に対して不足する電力量であり、下記の式16にて、発電出力として仮設定抑制出力を代入して求める。但し、電主出力時不足電力量及び抑制出力時不足電力量は、いずれも、0よりも小さい値として求められたときは0とする。
不足電力量=予測電力負荷−発電出力……………(式16)
電主出力時有効貯湯熱量は、上述した強制連続運転形態の予測エネルギ削減量を求める場合と同様に求め、抑制出力時有効貯湯熱量は、単位時間において燃料電池1の発電出力を電主出力よりも小さくすることにより得られる熱量から熱余り単位時間までの貯湯槽2からの放熱量を減じた熱量であり、前記式14にて、発電出力として仮設定抑制出力を代入して求める。
前記式15の分子において、「(電主出力時エネルギ消費量−抑制出力時エネルギ消費量)」は、燃料電池1の発電出力を電主出力よりも小さくすることにより減少する燃料電池1におけるエネルギ消費量を示すものであり、メリットとなるエネルギ量を示すものである。
又、燃料電池1の発電出力を電主出力よりも小さくすることにより、その燃料電池1の発電出力が予測電力負荷に対して不足する不足電力量が増加することになり、前記式15の分子において、「(抑制出力時不足電力量−電主出力時不足電力量)×α÷商用電源発電効率」は、燃料電池1の発電出力を電主出力よりも小さくすることにより増加する不足電力量を商用電源7にて得るとすると必要となるエネルギ量を示すものであり、ディメリットとなるエネルギ量を示すものである。
つまり、前記式15の「(電主出力時エネルギ消費量−抑制出力時エネルギ消費量)−(抑制出力時不足電力量−電主出力時不足電力量)×α÷商用電源発電効率」は、正の値として求められると、燃料電池1の発電出力を電主出力よりも小さくすることによりメリットが得られることを意味し、その値が大きくなるほどメリットが大きいことを意味する。
前記式15の分母の「抑制出力時有効貯湯熱量−電主出力時有効貯湯熱量」は、燃料電池1の発電出力を電主出力よりも小さくすることにより減少する有効貯湯熱量を示すものであって、負の値として求められる。
つまり、前記式15にて求められる抑制時メリット評価用指標が負の値のときは、燃料電池1の発電出力を電主出力よりも小さくすることによりメリットが得られることを意味し、その絶対値が大きくなるほどメリットが大きいことを意味する。
図4では、17番目の単位時間が最も運転周期の開始時点に近い熱余り単位時間であるので、17番目の単位時間よりも以前の各単位時間について、設定抑制出力を設定することになる。
例えば、3番目の単位時間については、電主出力が0.6kWであるので、仮設定抑制出力として、0.5kW,0.4kW,0.3kWを設定し、夫々の仮設定抑制出力について抑制時メリット評価用指標を求める。
仮設定抑制出力が0.5kW,0.4kW,0.3kWの全てについて、抑制時メリット評価用指標が負の値として求められるので、設定抑制出力としては、仮設定抑制出力のうち、抑制時メリット評価用指標が負の値で且つ電力が最小の仮抑制出力、即ち、0.3kWを設定する。
ちなみに、2番目の単位時間については、仮設定抑制出力として0.4kW,0.3kWを設定するが、いずれの仮設定抑制出力についても、抑制時メリット評価用指標が正の値として求められるので、設定抑制出力は設定しない。
次に、熱余り単位時間よりも以前に1つ又は連続する複数の単位時間からなる時間帯を発電出力を設定抑制出力に調節する抑制運転用時間帯とする抑制運転用の仮運転パターンを全て形成する。
つまり、運転周期における複数の単位時間のうちの熱余り単位時間よりも以前の複数の単位時間のうちで、選択した1つ又は連続する複数の単位時間を抑制運転用時間帯とし且つ運転周期の残りの単位時間を発電出力を電主出力に調節する電主運転用時間帯とする形態で、前記抑制運転用時間帯として選択する単位時間を異ならせることにより、抑制運転用の仮運転パターンを全て形成する。ちなみに、抑制運転用時間帯が設定抑制出力の設定されていない単位時間のみで形成される仮運転パターンは、抑制運転用の仮運転パターンから除外する。
例えば、図4に示すように、17番目の単位時間(単位時間17)が熱余り単位時間である場合、上述した強制運転用の仮運転パターンを形成するのと同様に、図7に示す如き136種類のパターンのうち、抑制運転用時間帯が設定抑制出力の設定されていない単位時間のみで形成されるパターン、例えば、単位時間10,11,12,13,14,15を抑制運転用時間帯とするパターン121等を除外したパターンを、抑制運転用の仮運転パターンとする。
そして、全ての抑制運転用の仮運転パターン夫々について、前記式9〜式11に基づいて予測エネルギ削減量Pを求め、更に、運転周期の抑制運転用時間帯の単位時間では発電出力を設定抑制出力に調節し且つ電主運転用時間帯の単位時間では発電出力を電主出力に調節する状態で燃料電池1を運転すると仮定して、各単位時間について、予測熱出力、予測貯湯熱量、予測不足熱量、予測余り熱量を求める。
尚、抑制運転用時間帯の単位時間のエネルギ消費量は前記式12により発電出力を設定抑制出力として求め、電主運転用時間帯の単位時間のエネルギ消費量は前記式12により発電出力を電主出力として求めて、求めた各単位時間のエネルギ消費量を積算することにより、運転周期エネルギ消費量を求め、その運転周期エネルギ消費量に基づいて、式11により、燃料電池1を運転した場合のエネルギ消費量E2を求めることになる。
続いて、全ての抑制運転用の仮運転パターンのうちで熱不足単位時間が生ぜず且つ予測エネルギ削減量が最も高い抑制運転用の仮運転パターンを求め、その求めた仮運転パターンにおいて熱余り単位時間が生じない場合は、その抑制運転用の仮運転パターンを抑制連続運転形態の運転パターンに定め、その抑制運転用の仮運転パターンの予測エネルギ削減量を抑制連続運転形態の予測エネルギ削減量として求める。
尚、熱不足単位時間が生ぜず且つ予測エネルギ削減量が最も高い抑制運転用の仮運転パターンにおいて、未だ、熱余り単位時間が生じるときは、上述のように、熱余り単位時間よりも以前の各単位時間について設定抑制出力を設定して、熱不足単位時間が生ぜず且つ最も予測エネルギ削減量が高い抑制運転用の仮運転パターンを求めることにより、抑制連続運転形態の運転パターンを設定すると共に抑制連続運転形態の予測エネルギ削減量を求める処理を、熱余り単位時間が生じなくなるまで繰り返すことになる。
但し、既に発電出力を設定抑制出力に調節すると定められている抑制運転設定済みの単位時間については予測発電出力を設定抑制出力とする状態で、抑制運転設定済みの単位時間以外の単位時間について設定抑制出力を設定して、上述の処理を実行する。つまり、抑制運転用単位時間が抑制運転設定済みの単位時間のみで形成される仮運転パターンは、抑制運転用の仮運転パターンから除外することになる。
次に、複数種の断続運転形態夫々の予測エネルギ削減量の求め方について説明する。
図8に示すように、1つ又は連続する複数の単位時間からなる運転時間帯を1つ設定する断続運転用の仮運転パターンの全てがメモリ31に記憶されている。
つまり、運転周期の複数の単位時間のうちで、選択した1つ又は連続する複数の単位時間を前記運転時間帯を構成する単位時間とし且つ運転周期の残りの単位時間を燃料電池1を停止する停止時間帯を構成する単位時間とする形態で、前記運転時間帯を構成する単位時間として選択する単位時間を異ならせることにより、全ての断続運転用の仮運転パターンが形成される。
例えば、単位時間1から運転を開始させるパターンとして、単位時間1を運転時間帯とするパターン1や、単位時間1,2を運転時間帯とするパターン2、単位時間1,2,3を運転時間帯とするパターン3・・・単位時間1〜24を運転時間帯とするパターン24の24種類がある。また、単位時間2から運転開始させるパターンとして、この単位時間2を運転時間帯とするパターン25、単位時間2,3を運転時間帯とするパターン26・・・単位時間2〜24を運転時間帯とするパターン47の23種類がある。このように、運転周期の最後の単位時間24を運転時間帯とするパターン300まで、断続運転用の仮運転パターンは、パターン1からパターン300までの300種類のものがある。
又、運転周期の複数の単位時間夫々について、増大出力設定条件に基づいて予測電力負荷よりも大きな設定増大出力を設定し、抑制出力設定条件に基づいて予測電力負荷よりも小さな設定抑制出力を設定する。
前記増大出力設定条件は、電主出力よりも大きい複数段階の仮設定出力、及び、前記燃料電池1の発電出力を仮設定出力に調節したときに燃料電池1から発生する出力増大時発生熱量に基づいて、出力増大時発生熱量が最大の仮設定出力を設定増大出力に設定する条件としてある。
又、前記抑制出力設定条件は、電主出力よりも小さい複数段階の仮設定出力、及び、仮設定出力を燃料電池1にて得る場合と商用電源7にて得る場合とのエネルギ消費量の差である出力抑制時発電用エネルギ量差に基づいて、出力抑制時発電用エネルギ量差が最小の仮設定出力を設定抑制出力に設定する条件としてある。
前記設定増大出力及び前記設定抑制出力の設定方法について、説明を加える。
図9に示すように、増大出力設定用又は抑制出力設定用の仮設定出力を段階的(例えば、0.05kW間隔)に設定し、各仮設定出力について、前記出力増大時発生熱量(kW)を下記の式17にて求め、前記出力抑制時発電用エネルギ量差(kW)を下記の式18にて求めて、それら出力増大時発生熱量及び出力抑制時発電用エネルギ量差を各仮設定出力に対応付けて、メモリ31に記憶させてある。
出力増大時発生熱量=(仮設定出力÷電池発電効率)×電池熱効率……………(式17)
出力抑制時発電用エネルギ量差=仮設定出力÷電池発電効率−仮設定出力÷商用電源発電効率……………(式18)
ちなみに、電池発電効率よりも商用電源発電効率の方が大きいため、出力抑制時発電用エネルギ量差が小さいほど、燃料電池1の発電出力を電主出力よりも小さくしたときに、エネルギ消費の面で有利となる。
そして、運転制御部5は、運転周期の各単位時間について、電主出力よりも大きい仮設定出力のうち、出力増大時発生熱量が最大のものを設定増大出力として設定し、電主出力よりも小さい仮設定出力のうち、出力抑制時発電用エネルギ量差が最小のものを設定抑制出力として設定するように構成されている。
例えば、図3に示すように、1番目の単位時間については、電主出力が0.3kWであるので、その0.3kWよりも大きい仮設定出力のうち、1.0kWの仮設定出力が出力増大時発生熱量が最大であるので、その1.0kWの仮設定出力を設定増大出力として設定することになる。但し、電主出力が燃料電池1の最大出力の単位時間については、設定増大出力を設定しない。
又、例えば図4に示すように、3番目の単位時間については、電主出力が0.6kWであるので、その0.6kWよりも小さい仮設定出力のうち、0.5kWの仮設定出力が出力抑制時発電用エネルギ量差が最小であるので、その0.5kWの仮設定出力を設定抑制出力として設定することになる。但し、電主出力が燃料電池1の最小出力の単位時間については、設定抑制出力を設定しない。
1日対応型の負荷追従断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を予測電力負荷に追従させる単位時間を、それを定める前記運転周期における予測電力負荷及び予測熱負荷に基づく予測エネルギ削減量が最も大きくなる単位時間に定めたときの予測エネルギ削減量を、1日対応型の負荷追従断続運転形態の予測エネルギ削減量として求める。
説明を加えると、メモリ31に記憶されている全ての断続運転用の仮運転パターンの夫々について、各仮運転パターンにて設定されている運転時間帯において発電出力を電主出力に調節する状態で燃料電池1を運転すると仮定して、前記式9〜式11に基づいて予測エネルギ削減量Pを求め、更に、最初の運転周期の各単位時間について、予測熱出力、予測貯湯熱量を求める。
尚、運転時間帯に含まれる単位時間のエネルギ消費量は前記式12により発電出力を電主出力として求め、運転時間帯に含まれない単位時間のエネルギ消費量は0として、各単位時間のエネルギ消費量を積算することにより、運転周期エネルギ消費量を求め、その運転周期エネルギ消費量に基づいて、式11により、燃料電池1を運転した場合のエネルギ消費量E2を求めることになる。
又、運転時間帯に含まれない単位時間の予測熱出力は、0になり、運転時間帯に含まれない単位時間の予測貯湯熱量は、前記式6により、予測熱出力nを0として求める。
そして、全ての断続運転用の仮運転パターンのうちの運転周期の全時間帯を運転時間帯とするパターン24を除いた仮運転パターンのうちで、予測エネルギ削減量が最も高い断続運転用の仮運転パターンを求めて、その断続運転用の仮運転パターンを1日対応型の負荷追従断続運転形態の運転パターンに設定し、その断続運転用の仮運転パターンの予測エネルギ削減量を1日対応型の負荷追従断続運転形態の予測エネルギ削減量と求める。
2日対応型の負荷追従断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を予測電力負荷に追従させる単位時間を、それを定める前記運転周期における予測電力負荷及び予測熱負荷並びに2回目の運転周期における予測熱負荷に基づく予測エネルギ削減量が最も大きくなる単位時間に定めたときの予測エネルギ削減量を、2日対応型の負荷追従断続運転形態の予測エネルギ削減量として求める。
説明を加えると、全ての断続運転用の仮運転パターンのうち、上述のように運転時間帯において発電出力を電主出力に調節したときに最初の運転周期における最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンを2日対応型の仮運転パターンとして選択する。
そして、2日対応型の仮運転パターンの全てについて、最初の運転周期の最終の単位時間の予測貯湯熱量が2回目の運転周期の予測熱負荷として利用されたとして、図5に示すように、2回目の運転周期の複数の単位時間夫々について、予測貯湯熱量(kcal)及び予測熱負荷として利用された予測利用熱量(kcal)とを求める。
各単位時間の予測貯湯熱量は、前記式6により、予測熱出力nを0として求める。
又、各単位時間の予測利用熱量は、下記の式19〜式21により求める。
予測貯湯熱量n-1≧予測熱負荷nのときは、
予測利用熱量n=予測熱負荷n……………(式19)
予測貯湯熱量n-1<予測熱負荷nのときは、
予測利用熱量n=予測貯湯熱量n-1……………(式20)
予測貯湯熱量n-1=0のときは、
予測利用熱量n=0……………(式21)
2日対応型の仮運転パターンの夫々について、夫々について上述のように求めた予測エネルギ削減量Pに、2回目の運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合のエネルギ消費量(予測利用熱量の合計/補助加熱器熱効率)を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量を2で割って1運転周期(1日)当たりのエネルギ削減量としたものを、2日対応型の仮運転パターンの予測エネルギ削減量とする。
そして、全ての2日対応型の仮運転パターンのうちで予測エネルギ削減量が最も高い2日対応型の仮運転パターンを求め、その2日対応型の仮運転パターンを2日対応型の負荷追従断続運転形態の運転パターンに設定し、その2日対応型の仮運転パターンの予測エネルギ削減量を2日対応型の負荷追従断続運転形態の予測エネルギ削減量として求める。
3日対応型の負荷追従断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を予測電力負荷に追従させる単位時間を、それを定める前記運転周期における予測電力負荷及び予測熱負荷並びに2回目及び3回目の運転周期における予測熱負荷に基づく予測エネルギ削減量が最も大きくなる単位時間に定めたときの予測エネルギ削減量を、3日対応型の負荷追従断続運転形態の予測エネルギ削減量として求める。
説明を加えると、全ての2日対応型の仮運転パターンのうち、2回目の運転周期における最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンを3日対応型の仮運転パターンとして選択する。
そして、3日対応型の仮運転パターンの全てについて、2回目の運転周期の最終の単位時間の予測貯湯熱量が3回目の運転周期の予測熱負荷として利用されたとして、上述した2回目の運転周期におけるのと同様に、3回目の運転周期の複数の単位時間夫々について、予測貯湯熱量及び予測熱負荷として利用された予測利用熱量とを求める。
3日対応型の仮運転パターンの夫々について、夫々について上述のように求めた予測エネルギ削減量Pに、2回目及び3回目の運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合のエネルギ消費量(予測利用熱量の合計/補助加熱器熱効率)を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量を3で割って1運転周期(1日)当たりのエネルギ削減量としたものを、3日対応型の仮運転パターンの予測エネルギ削減量とする。
そして、全ての3日対応型の仮運転パターンのうちで予測エネルギ削減量が最も高い3日対応型の仮運転パターンを求め、その3日対応型の仮運転パターンを3日対応型の負荷追従断続運転形態の運転パターンに設定し、その3日対応型の仮運転パターンの予測エネルギ削減量を3日対応型の負荷追従断続運転形態の予測エネルギ削減量として求める。
1日対応型の強制断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を前記設定増大出力に調節する単位時間を、それを定める前記運転周期における予測電力負荷及び予測熱負荷に基づく予測エネルギ削減量が最も大きくなる単位時間に定めたときの予測エネルギ削減量を、1日対応型の強制断続運転形態の予測エネルギ削減量として求める。
説明を加えると、メモリ31に記憶されている全ての断続運転用の仮運転パターンのうちで、運転時間帯が設定増大出力の設定されていない単位時間のみで形成されるパターンを除いた全ての仮運転パターンを強制断続運転用の仮運転パターンとして、その強制断続運転用の仮運転パターン夫々について、各仮運転パターンにて設定されている運転時間帯において発電出力を設定増大出力に調節する状態で燃料電池1を運転すると仮定して、前記式9〜式11に基づいて予測エネルギ削減量Pを求め、更に、最初の運転周期の各単位時間について、予測熱出力、予測貯湯熱量を求める。
尚、運転時間帯に含まれる単位時間のエネルギ消費量は前記式12により発電出力を設定増大出力として求め、運転時間帯に含まれない単位時間のエネルギ消費量は0として、各単位時間のエネルギ消費量を積算することにより、運転周期エネルギ消費量を求め、その運転周期エネルギ消費量に基づいて、式11により、燃料電池1を運転した場合のエネルギ消費量E2を求めることになる。
そして、全ての強制断続運転用の仮運転パターンのうちの運転周期の全時間帯を運転時間帯とするパターン24を除いた仮運転パターンのうちで、予測エネルギ削減量が最も高い強制断続運転用の仮運転パターンを求めて、その強制断続運転用の仮運転パターンを1日対応型の強制断続運転形態の運転パターンに設定し、その強制断続運転用の仮運転パターンの予測エネルギ削減量を1日対応型の強制断続運転形態の予測エネルギ削減量と求める。
2日対応型の強制断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を前記設定増大出力に調節する単位時間を、それを定める前記運転周期における予測電力負荷及び予測熱負荷並びに2回目の運転周期における予測熱負荷に基づく予測エネルギ削減量が最も大きくなる単位時間に定めたときの予測エネルギ削減量を、2日対応型の強制断続運転形態の予測エネルギ削減量として求める。
説明を加えると、全ての強制断続運転用の仮運転パターンのうち、上述のように運転時間帯において発電出力を設定増大出力に調節したときに最初の運転周期における最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンを2日対応型の仮運転パターンとして選択する。
そして、2日対応型の仮運転パターンの全てについて、上記の2日対応型の負荷追従断続運転形態の予測エネルギ削減量を求める場合と同様に、2回目の運転周期の複数の単位時間夫々について、予測貯湯熱量及び予測熱負荷として利用された予測利用熱量とを求める。
2日対応型の仮運転パターンの夫々について、夫々について上述のように求めた予測エネルギ削減量Pに、2回目の運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合のエネルギ消費量を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量を2で割って1運転周期当たりのエネルギ削減量としたものを、2日対応型の仮運転パターンの予測エネルギ削減量とする。
そして、全ての2日対応型の仮運転パターンのうちで予測エネルギ削減量が最も高い2日対応型の仮運転パターンを求め、その2日対応型の仮運転パターンを2日対応型の強制断続運転形態の運転パターンに設定し、その2日対応型の仮運転パターンの予測エネルギ削減量を2日対応型の強制断続運転形態の予測エネルギ削減量として求める。
3日対応型の強制断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を前記設定増大出力に調節する単位時間を、それを定める前記運転周期における予測電力負荷及び予測熱負荷並びに2回目及び3回目の運転周期における予測熱負荷に基づく予測エネルギ削減量が最も大きくなる単位時間に定めたときの予測エネルギ削減量を、3日対応型の強制断続運転形態の予測エネルギ削減量として求める。
説明を加えると、全ての2日対応型の仮運転パターンのうち、2回目の運転周期における最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンを3日対応型の仮運転パターンとして選択する。
そして、3日対応型の仮運転パターンの全てについて、上記の3日対応型の負荷追従断続運転形態の予測エネルギ削減量を求める場合と同様に、3回目の運転周期の複数の単位時間夫々について、予測貯湯熱量及び予測熱負荷として利用された予測利用熱量とを求める。
3日対応型の仮運転パターンの夫々について、夫々について上述のように求めた予測エネルギ削減量Pに、2回目及び3回目の運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合のエネルギ消費量を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量を3で割って1運転周期(1日)当たりのエネルギ削減量としたものを、3日対応型の仮運転パターンの予測エネルギ削減量とする。
そして、全ての3日対応型の仮運転パターンのうちで予測エネルギ削減量が最も高い3日対応型の仮運転パターンを求め、その3日対応型の仮運転パターンを3日対応型の強制断続運転形態の運転パターンに設定し、その3日対応型の仮運転パターンの予測エネルギ削減量を3日対応型の強制断続運転形態の予測エネルギ削減量として求める。
1日対応型の抑制断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を前記設定抑制出力に調節する単位時間を、それを定める前記運転周期における予測電力負荷及び予測熱負荷に基づく予測エネルギ削減量が最も大きくなる単位時間に定めたときの予測エネルギ削減量を、1日対応型の抑制断続運転形態の予測エネルギ削減量として求める。
説明を加えると、メモリ31に記憶されている全ての断続運転用の仮運転パターンのうちで、運転時間帯が設定抑制出力の設定されていない単位時間のみで形成されるパターンを除いた全ての仮運転パターンを抑制断続運転用の仮運転パターンとして、その抑制断続運転用の仮運転パターン夫々について、各仮運転パターンにて設定されている運転時間帯において発電出力を設定抑制出力に調節する状態で燃料電池1を運転すると仮定して、前記式9〜式11に基づいて予測エネルギ削減量Pを求め、更に、最初の運転周期の各単位時間について、予測熱出力、予測貯湯熱量を求める。
尚、運転時間帯に含まれる単位時間のエネルギ消費量は前記式12により発電出力を設定抑制出力として求め、運転時間帯に含まれない単位時間のエネルギ消費量は0として、各単位時間のエネルギ消費量を積算することにより、運転周期エネルギ消費量を求め、その運転周期エネルギ消費量に基づいて、式11により、燃料電池1を運転した場合のエネルギ消費量E2を求めることになる。
そして、全ての抑制断続運転用の仮運転パターンのうちの運転周期の全時間帯を運転時間帯とするパターン24を除いた仮運転パターンのうちで、予測エネルギ削減量が最も高い抑制断続運転用の仮運転パターンを求めて、その抑制断続運転用の仮運転パターンを1日対応型の抑制断続運転形態の運転パターンに設定し、その抑制断続運転用の仮運転パターンの予測エネルギ削減量を1日対応型の抑制断続運転形態の予測エネルギ削減量と求める。
2日対応型の抑制断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を前記設定抑制出力に調節する単位時間を、それを定める前記運転周期における予測電力負荷及び予測熱負荷並びに2回目の運転周期における予測熱負荷に基づく予測エネルギ削減量が最も大きくなる単位時間に定めたときの予測エネルギ削減量を、2日対応型の抑制断続運転形態の予測エネルギ削減量として求める。
説明を加えると、全ての抑制断続運転用の仮運転パターンのうち、上述のように運転時間帯において発電出力を設定抑制出力に調節したときに最初の運転周期における最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンを2日対応型の仮運転パターンとして選択する。
そして、2日対応型の仮運転パターンの全てについて、上記の2日対応型の負荷追従断続運転形態の予測エネルギ削減量を求める場合と同様に、2回目の運転周期の複数の単位時間夫々について、予測貯湯熱量及び予測熱負荷として利用された予測利用熱量とを求める。
2日対応型の仮運転パターンの夫々について、夫々について上述のように求めた予測エネルギ削減量Pに、2回目の運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合のエネルギ消費量を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量を2で割って1運転周期当たりのエネルギ削減量としたものを、2日対応型の仮運転パターンの予測エネルギ削減量とする。
そして、全ての2日対応型の仮運転パターンのうちで予測エネルギ削減量が最も高い2日対応型の仮運転パターンを求め、その2日対応型の仮運転パターンを2日対応型の抑制断続運転形態の運転パターンに設定し、その2日対応型の仮運転パターンの予測エネルギ削減量を2日対応型の抑制断続運転形態の予測エネルギ削減量として求める。
3日対応型の抑制断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、燃料電池1の発電出力を前記設定抑制出力に調節する単位時間を、それを定める前記運転周期における予測電力負荷及び予測熱負荷並びに2回目及び3回目の運転周期における予測熱負荷に基づく予測エネルギ削減量が最も大きくなる単位時間に定めたときの予測エネルギ削減量を、3日対応型の抑制断続運転形態の予測エネルギ削減量として求める。
説明を加えると、全ての2日対応型の仮運転パターンのうち、2回目の運転周期における最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンを3日対応型の仮運転パターンとして選択する。
そして、3日対応型の仮運転パターンの全てについて、上記の3日対応型の負荷追従断続運転形態の予測エネルギ削減量を求める場合と同様に、3回目の運転周期の複数の単位時間夫々について、予測貯湯熱量及び予測熱負荷として利用された予測利用熱量とを求める。
3日対応型の仮運転パターンの夫々について、夫々について上述のように求めた予測エネルギ削減量Pに、2回目及び3回目の運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合のエネルギ消費量を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量を3で割って1運転周期(1日)当たりのエネルギ削減量としたものを、3日対応型の仮運転パターンの予測エネルギ削減量とする。
そして、全ての3日対応型の仮運転パターンのうちで予測エネルギ削減量が最も高い3日対応型の仮運転パターンを求め、その3日対応型の仮運転パターンを3日対応型の抑制断続運転形態の運転パターンに設定し、その3日対応型の仮運転パターンの予測エネルギ削減量を3日対応型の抑制断続運転形態の予測エネルギ削減量として求める。
そして、前記運転制御部5は、前記熱余り単位時間が存在する場合は、上述のように、負荷追従連続運転形態の予測エネルギ削減量及び抑制連続運転形態の予測エネルギ削減量を求め、それらのうち大きい方を連続運転形態の予測エネルギ削減量に設定し、前記熱不足単位時間が存在する場合は、負荷追従連続運転形態の予測エネルギ削減量及び強制連続運転形態の予測エネルギ削減量を求め、それらのうち大きい方を連続運転形態の予測エネルギ削減量に設定する。
又、運転制御部5は、上述のように求めた1日対応型、2日対応型及び3日対応型夫々の負荷追従断続運転形態の予測エネルギ削減量、1日対応型、2日対応型及び3日対応型夫々の強制断続運転形態の予測エネルギ削減量、並びに、1日対応型、2日対応型及び3日対応型夫々の抑制断続運転形態の予測エネルギ削減量の9個の予測エネルギ削減量のうちで、最大のものを断続運転形態の予測エネルギ削減量として設定する。
更に、運転制御部5は、上述のように設定した連続運転形態の予測エネルギ削減量及び断続運転形態の予測エネルギ削減量並びに前記運転形態選択条件に基づいて、燃料電池1の運転形態を定める。
つまり、上述のように連続運転形態の予測エネルギ削減量及び断続運転形態の予測エネルギ削減量並びに前記運転形態選択条件に基づいて燃料電池1の運転形態を定めることが、前記加熱作動条件を求めることに相当し、その加熱作動条件が、前記加熱部Hを加熱作動させる、即ち、前記燃料電池1を運転する運転時間帯を定める条件、前記加熱部Hにて出力する加熱量、即ち、前記燃料電池1の発電出力を定める条件、及び、前記貯湯槽2の貯湯熱量を定める条件の3つの条件を定める条件である。
以下、図10ないし図12に示すフローチャートに基づいて、前記学習運転制御処理について説明する。
燃料電池1を停止させていても、例えば発電可能な状態に維持しておく等のために、エネルギ(電力)が消費されるものであり、運転周期内の全時間帯において燃料電池1を停止させているときにコージェネレーションシステムにて消費されるエネルギを、予め実験等により求めて、待機時消費エネルギZとして、運転制御部5に記憶させてある。
図10及び図11に示すように、運転制御部5は、運転周期の開始時点(例えば、午前3時)になる毎に、予測データ演算処理を実行して予測電力負荷データ及び予測熱負荷データを求め、続いて、運転メリット演算処理を実行する(ステップ#1〜3)。
図12に示すように、運転メリット演算処理では、負荷追従連続運転形態を行うと仮定したときに運転周期に熱余り単位時間が存在する場合は、負荷追従連続運転形態の予測エネルギ削減量Pc1、及び、抑制連続運転形態の予測エネルギ削減量Pc2を求め、更に、強制連続運転形態の予測エネルギ削減量Pc3を牽制用の設定値Jに定め、負荷追従連続運転形態を行うと仮定したときに運転周期に熱不足単位時間が存在する場合は、負荷追従連続運転形態の予測エネルギ削減量Pc1、及び、強制連続運転形態の予測エネルギ削減量Pc3を求め、更に、抑制連続運転形態の予測エネルギ削減量Pc2を前記設定値Jに定め、負荷追従連続運転形態を行うと仮定したときに運転周期に熱余り単位時間及び熱不足単位時間いずれも存在しない場合は、負荷追従連続運転形態の予測エネルギ削減量Pc1を求め、更に、抑制連続運転形態の予測エネルギ削減量Pc2及び強制連続運転形態の予測エネルギ削減量Pc3夫々を前記設定値Jに定める(ステップ#101〜105)。
ちなみに、前記設定値Jは、種々の予測電力負荷及び予測熱負荷に対応して負荷追従連続運転形態の予測エネルギ削減量Pc1、抑制連続運転形態の予測エネルギ削減量Pc2及び強制連続運転形態の予測エネルギ削減量Pc3夫々として求められると予測される値のうちの最小値よりも小さく設定してある。尚、その最小値が負の値として求められると予測される場合は、前記設定値Jを前記最小値よりも絶対値が大きい負の値に設定することになる。
続いて、1日対応型の負荷追従断続運転形態の予測エネルギ削減量Pi1、1日対応型の抑制断続運転形態の予測エネルギ削減量Pi2、1日対応型の強制断続運転形態の予測エネルギ削減量Pi3、2日対応型の負荷追従断続運転形態の予測エネルギ削減量Pi4、2日対応型の抑制断続運転形態の予測エネルギ削減量Pi5、2日対応型の強制断続運転形態の予測エネルギ削減量Pi6、3日対応型の負荷追従断続運転形態の予測エネルギ削減量Pi7、3日対応型の抑制断続運転形態の予測エネルギ削減量Pi8、3日対応型の強制断続運転形態の予測エネルギ削減量Pi9を求める(ステップ#106)。
図10及び図11に示すように、ステップ#4において、負荷追従連続運転形態の予測エネルギ削減量Pc1が設定削減量G以上か否かを判断して、設定削減量G以上のときは燃料電池1の運転形態を負荷追従連続運転形態に定め、負荷追従連続運転形態の予測エネルギ削減量Pc1が設定削減量Gよりも小さいときは、抑制連続運転形態の予測エネルギ削減量Pc2が設定削減量G以上か否かを判断して、設定削減量G以上のときは燃料電池1の運転形態を抑制連続運転形態に定め、抑制連続運転形態の予測エネルギ削減量Pc2が設定削減量Gよりも小さいときは、強制連続運転形態の予測エネルギ削減量Pc3が設定削減量G以上か否かを判断して、設定削減量G以上のときは燃料電池1の運転形態を強制連続運転形態に定め(ステップ#4〜9)、強制連続運転形態の予測エネルギ削減量Pc3が設定削減量Gよりも小さいときは、ステップ#10に進む。
ちなみに、前記牽制用の設定値Jは、設定削減量Gよりも小さい値に設定してある。
ステップ#10では、運転周期の開始時点における貯湯熱量にてその運転周期の予測熱負荷を賄える程度を示す熱負荷賄い率U/Lを求め、ステップ#11では、その求めた熱負荷賄い率U/Lと下位設定値Kとを比較して、熱負荷賄い率U/Lが下位設定値Kよりも大きいときは、待機条件を満たすと判断し、熱負荷賄い率U/Lが下位設定値K以下のときは、待機条件を満たさないと判断する。
ちなみに、熱負荷賄い率U/LのLは、最初の運転周期の各単位時間の予測熱負荷を合計することにより求めた運転周期の予測熱負荷である。
又、熱負荷賄い率U/LのUは、燃料電池1の予測熱出力を0として、最初の運転周期の予測熱負荷のうち、最初の運転周期の開始時点における貯湯熱量にて賄えると予測される予測利用熱量である。
例えば、運転周期の開始時点が、図5にて示す2回目の運転周期の開始時点の状態であると仮定すると、Lは、図5に示す如き、運転周期の各単位時間の予測熱負荷を合計した値となり、Uは、図5に示す如き、運転周期の各単位時間の予測利用熱量を合計した値となる。
尚、前記下位設定値Kは、例えば、0.4に設定する。
つまり、貯湯槽2からは放熱があることから、最初の運転周期の開始時点における貯湯槽2の貯湯熱量にて最初の運転周期における予測熱負荷を賄える程度を示す熱負荷賄い率を求めるに当たっては、最初の運転周期の開始時点の貯湯槽2の貯湯熱量そのものを用いるよりも、最初の運転周期の予測熱負荷のうち、最初の運転周期の開始時点における貯湯熱量にて賄えると予測される予測利用熱量Uを用いる方が、貯湯槽2からの放熱を考慮することができるので、熱負荷賄賄い率を適切に求めることができる。
ステップ#11で、待機条件を満たさないと判断したときは、負荷追従連続運転形態、抑制連続運転形態及び強制連続運転形態の3種の連続運転形態の予測エネルギ削減量Pc1,Pc2,Pc3のうちの最大のものを連続運転形態の予測エネルギ削減量Pcに設定し、1日対応型の負荷追従断続運転形態、1日対応型の抑制断続運転形態、1日対応型の強制断続運転形態、2日対応型の負荷追従断続運転形態、2日対応型の抑制断続運転形態、2日対応型の強制断続運転形態、3日対応型の負荷追従断続運転形態、3日対応型の抑制断続運転形態及び3日対応型の強制断続運転形態の9種の断続運転形態の予測エネルギ削減量Pi1,Pi2,Pi3,Pi4,Pi5,Pi6,Pi7,Pi8,Pi9のうちの最大のものを断続運転形態の予測エネルギ削減量Piに設定する(ステップ#12,13)。
続いて、ステップ#14において、連続運転形態の予測エネルギ削減量Pc及び断続運転形態の予測エネルギ削減量Piのうちの最大のものが待機時消費エネルギZの負の値「−Z」よりも小さいか否かを判断することにより、連続運転形態及び断続運転形態のうちのいずれか1つを実行した方が運転周期の全時間帯において燃料電池1を停止させる待機モードにするよりも省エネルギになるかを判断する。
つまり、連続運転形態や断続運転形態を実行したときのエネルギ消費量が燃料電池1を運転しないときのエネルギ消費量よりも多くなって、連続運転形態の予測エネルギ削減量Pcや断続運転形態の予測エネルギ削減量Piが負の値として求められる場合があるが、それらの正負に拘らず、連続運転形態の予測エネルギ削減量Pc及び断続運転形態の予測エネルギ削減量Piのうちの最大のものが待機時消費エネルギZの負の値「−Z」よりも大きいときは、連続運転形態及び断続運転形態のいずれかを実行した方が待機モードにするよりも省エネルギになる。
そして、ステップ#14にて、連続運転形態の予測エネルギ削減量Pc及び断続運転形態の予測エネルギ削減量Piのうちの最大のものが待機時消費エネルギZの負の値「−Z」よりも小さくないと判断したときは、ステップ#15において、連続運転形態の予測エネルギ削減量Pc及び断続運転形態の予測エネルギ削減量Piのうち、断続運転形態の予測エネルギ削減量Piが最大か否かを判断し、断続運転形態の予測エネルギ削減量Piが最大である場合は、燃料電池1の運転形態を9種の断続運転形態のうちの予測エネルギ削減量が最大の断続運転形態に定め(ステップ#17)、断続運転形態の予測エネルギ削減量Piが最大でない場合は、燃料電池1の運転形態を3種の連続運転形態のうちの予測エネルギ削減量が最大の連続運転形態に定める(ステップ#16)。
又、ステップ#11で待機条件を満たすと判断したときは、ステップ#18で、燃料電池1が運転中か否かを判断して、運転中のときは、ステップ#19で、熱負荷賄い率U/Lが前記下位設定値Kよりも大きい上位設定値Mよりも大きいか否かを判断して、大きくないと判断したときは、ステップ#20において、燃料電池1の運転を継続する運転継続条件を満たすか否かを判断する。
つまり、メモリ31に記憶されている仮運転パターンのうち、開始時点に引き続き且つ個数が1〜設定数(例えば10個)の単位時間からなる時間帯を運転時間帯として仮定する全ての仮運転パターンの夫々について、運転時間帯に発電出力を電主出力に調節するとして、最初の運転周期における最終の単位時間の貯湯熱量が0になるか否かを判断し、その貯湯熱量が0になる仮運転パターンが存在するときは、貯湯槽2の湯を使い切る状態で燃料電池1の運転を継続することが可能であり、運転継続条件を満たすと判断し、その貯湯熱量が0になる仮運転パターンが存在しないときは、運転継続条件を満たさないと判断する。
そして、ステップ#20において、運転継続条件を満たすと判断すると、ステップ#21において、燃料電池1の運転形態を負荷追従運転継続モードに定め、ステップ#22において、前記運転継続時間を設定する運転継続時間設定処理を実行する。
前記運転継続時間設定処理では、ステップ#20にて最初の運転周期における最終の単位時間の貯湯熱量が0になると判断した仮運転パターンのうち、予測エネルギ削減量Pが最大となる仮運転パターンの運転時間帯を運転継続時間に設定する。
つまり、ステップ#20にて最初の運転周期における最終の単位時間の貯湯熱量が0になると判断した仮運転パターンの夫々について、燃料電池1を運転した場合のエネルギ消費量E2を前記式11により求めて、その求めたエネルギ消費量E2及び前記式10により求めた燃料電池1を運転しない場合のエネルギ消費量E1を前記式9に代入することにより、予測エネルギ削減量Pを求め、求めた予測エネルギ削減量Pが最大の仮運転パターンの運転時間帯を運転継続時間に設定する。
ステップ#14にて、連続運転形態時の予測エネルギ削減量Pc及び断続運転形態の予測エネルギ削減量Piのうちの最大のものが待機時消費エネルギZの負の値「−Z」よりも小さいと判断したとき、ステップ#18にて、燃料電池1が停止中であると判断したとき、ステップ#19にて、熱負荷賄い率U/Lが上位設定値Mよりも大きいと判断したとき、ステップ#20にて、運転継続条件を満たさないと判断したときは、待機モードに設定する(ステップ#23)。
運転制御手段5は、前記学習運転制御処理にて定めた運転形態にて燃料電池1を運転する。
つまり、燃料電池1の運転形態を負荷追従連続運転形態に定めたときは、運転周期の全時間帯にわたって燃料電池1の発電出力を現在要求されている現電力負荷に追従させる現電力負荷追従運転を実行する。
その現電力負荷追従運転では、1分等の比較的短い所定の出力調整周期毎に現電力負荷を求め、最小出力(例えば300W)から最大出力(例えば1000W)の範囲内で、連続的に現電力負荷に追従する電主出力を決定し、燃料電池1の発電出力をその決定した電主出力に調整する形態で運転する。
尚、前記現電力負荷は、前記電力負荷計測手段11の計測値及び前記インバータ6の出力値に基づいて計測し、更に、その現電力負荷は、前の出力調整周期において前記サンプリング時間でサンプリングしたデータの平均値として求められる。
燃料電池1の運転形態を抑制連続運転形態に定めたときは、燃料電池1の発電出力を設定抑制出力にすると定められている単位時間では燃料電池1の発電出力を設定抑制出力に調節し、他の単位時間では現電力負荷追従運転を実行する。
燃料電池1の運転形態を強制連続運転形態に定めたときは、燃料電池1の発電出力を設定増大出力にすると定められている単位時間では燃料電池1の発電出力を設定増大出力に調節し、他の単位時間では現電力負荷追従運転を実行する。
燃料電池1の運転形態を1日対応型、2日対応型、3日対応型のいずれの負荷追従断続運転に定めたときも、運転時間帯に含まれる単位時間においては現電力負荷追従運転を実行し、停止時間帯に含まれる単位時間においては燃料電池1を停止させる。
燃料電池1の運転形態を1日対応型、2日対応型、3日対応型のいずれの抑制断続運転に定めたときも、運転時間帯に含まれる単位時間のうち設定抑制出力が設定されている単位時間では燃料電池1の発電出力を設定抑制出力に調節し、停止時間帯に含まれる単位時間においては燃料電池1を停止させる。
燃料電池1の運転形態を1日対応型、2日対応型、3日対応型のいずれの強制断続運転に定めたときも、運転時間帯に含まれる単位時間のうち設定増大出力が設定されている単位時間では燃料電池1の発電出力を設定増大出力に調節し、停止時間帯に含まれる単位時間においては燃料電池1を停止させる。
つまり、運転周期の開始時点になる毎に学習運転制御処理を実行し、その学習運転制御処理では、上述のように、熱負荷賄い率U/Lが下位設定値Kよりも大きくて待機条件を満たすと判断したときに、燃料電池1が停止中であると判断した場合、燃料電池1が運転中で且つ熱負荷賄い率U/Lが上位設定値Mよりも大きいと判断した場合、及び、燃料電池1が運転中で且つ熱負荷賄い率U/Lが上位設定値M以下で且つ運転継続条件を満たさないと判断した場合のいずれかの場合では、待機モードに設定するように構成されているので、先の学習運転制御処理にて2日対応型又は3日対応型の負荷追従、抑制又は強制のいずれかの断続運転形態に設定されて、今回の学習運転制御処理を行う時点が2日対応型又は3日対応型の断続運転形態における2回目の運転周期の開始時点に相当するときに、その学習運転制御処理にて前述のように待機モードに設定されると、その2日対応型又は3日対応型の断続運転形態における2回目の運転周期の全時間帯にわたって燃料電池1が停止されることになり、2日対応型又は3日対応型の断続運転形態が継続される。
又、2日対応型又は3日対応型の断続運転形態においてその1回目の運転周期における実際の熱負荷が予測熱負荷よりも多くなって、又は、3日対応型の断続運転形態においてその2回目の運転周期における実際の熱負荷が予測熱負荷よりも多くなって、熱負荷賄い率U/Lが下位設定値K以下で待機条件を満たさないと判断されると、新たに、いずれかの断続運転形態に定められることになる。
又、熱負荷賄い率U/Lが下位設定値Kよりも大きくて待機条件を満たすと判断したときに、燃料電池1が運転中で且つ熱負荷賄い率U/Lが上位設定値M以下で且つ運転継続条件を満たすと判断されると、貯湯槽2の湯を使い切る状態で燃料電池1の運転が負荷追従運転にて継続されるので、起動時消費エネルギを消費することなく、最初の運転周期の熱負荷を十分に賄うことが可能となり、省エネルギ性を一段と向上することができる。
〔第2実施形態〕
以下、本発明の第2実施形態を説明するが、この第2実施形態は、運転制御部5の補助加熱作動制御処理及び予測データ演算処理における制御動作の別の実施形態を説明するものであって、コージェネレーションシステムの全体構成は第1実施形態と同様であるので、コージェネレーションシステムの全体構成については説明を省略して、主として、補助加熱作動制御処理及び予測データ演算処理における制御動作について説明する。
先ず、前記補助加熱作動制御処理について説明する。
前記運転制御部5は、補助加熱作動制御処理において、前記送出温度センサSoにて検出される送出温度が前記目標給湯温度設定手段Cにて設定された目標給湯温度よりも低いときに、その送出温度と目標給湯温度との温度差が水混合用設定温度以内の場合は、水混合後の湯水の温度を目標給湯温度よりも水混合用設定温度低くするための前記水混合弁34による水混合量を求めて、水の混合量が求めた混合量となるように前記水混合弁34の作動を制御し、且つ、前記給湯温度センサ41の検出温度が目標給湯温度になるように前記補助加熱器28の燃焼量を調節し、前記送出温度と目標給湯温度との温度差が水混合用設定温度よりも大きい場合は、水の混合量を0にすべく、前記混合水路33側を閉じるように前記水混合弁34の作動を制御し、且つ、前記給湯温度センサ41の検出温度が目標給湯温度になるように前記補助加熱器28の燃焼量を調節するように構成されている。
ちなみに、前記水混合用設定温度は、例えば5°Cに設定される。
又、前記運転制御部5は、補助加熱作動制御処理において、前記送出温度センサSoにて検出される送出温度が前記目標給湯温度設定手段Cにて設定された目標給湯温度以上の場合は、上記の第1実施形態と同様に、前記給湯温度センサ41にて検出される湯水の温度が前記目標給湯温度になるように、水混合量を調節すべく前記水混合弁34の作動を制御し、前記補助加熱器28を加熱作動させないように構成されている。
次に、前記予測データ演算処理について説明を加えるが、この第2実施形態は、高温熱負荷データの発生時間帯における時系列的な実熱負荷データを負荷減少側に補正する処理の別の実施形態を説明するものであり、それ以外は上記の第1実施形態と同様であるので、主として、実熱負荷データを負荷減少側に補正する処理について説明する。
前記運転制御部5は、前記時系列的な実給湯熱負荷データにおける単位時間毎の実給湯熱負荷データについては、前記目標給湯温度設定手段Cにて設定された目標給湯温度が前記貯湯槽2から出湯可能な前記設定出湯温度よりも高い状態に対応する高温熱負荷データの発生時間帯においては、サンプリング時間毎に給湯熱負荷計測手段Nにて計測された熱量Qsから補正用設定流量の湯水を補正用設定温度上昇させるための前記補助加熱器28の燃焼量に相当する熱量を減じた熱量をサンプリング時間毎の実給湯熱負荷データとし、且つ、前記高温熱負荷データの発生時間帯以外の時間帯においては、サンプリング時間毎に給湯熱負荷計測手段Nにて計測された熱量Qsをサンプリング時間毎の実給湯熱負荷データとして、サンプリング時間毎の実給湯熱負荷データを積算することにより、単位時間毎の実給湯熱負荷データを求めるように構成されている。
ちなみに、この第2実施形態では、前記補正用設定温度は、前記水混合用設定温度に設定され、前記補正用設定流量は、前記食器洗浄用設定流量に設定される。
前記運転制御部5は、目標給湯温度が食器洗浄用の目標給湯温度に設定されている状態での前記高温熱負荷データの発生時間帯においては、上記の式1に基づいて熱量Qsを求めるときは、上記の第1実施形態と同様に、前記給湯温度Tsを前記食器洗浄用の目標給湯温度とし、且つ、前記給湯流量Fsを前記食器洗浄用設定流量とするように構成されている。
又、前記運転制御部5は、前記給湯温度設定部36により前記設定出湯温度よりも高い目標給湯温度が設定されている状態での前記高温熱負荷データの発生時間帯においては、上記の式1に基づいて熱量Qsを求めるときは、上記の第1実施形態と同様に、前記給湯温度Tsを前記給湯温度設定部36により設定された目標給湯温度とし、且つ、前記給湯流量Fsを前記給湯流量センサ42の検出流量とするように構成されている。
つまり、この第2実施形態においては、前記運転制御部5が、前記予測データ演算処理において、補正用設定流量の湯水を補正用設定温度上昇させるための前記補助加熱器28の加熱量を前記補助加熱量として、前記高温熱負荷データの発生時間帯における時系列的な実熱負荷データを負荷減少側に補正するように構成されている。
〔第3実施形態〕
以下、本発明の第3実施形態を説明するが、この第3実施形態は、水混合手段Bの構成及び運転制御部5の補助加熱作動制御処理における制御動作の別の実施形態を説明するものであって、混合手段B以外のコージェネレーションシステムの構成、及び、補助加熱作動制御処理以外の各種処理における制御動作は上記の第1実施形態と同様であるので、主として、水混合手段Bの構成及び運転制御部5の補助加熱作動制御処理における制御動作について説明する。
図13に示すように、前記給水路29から分岐された混合水路44が、前記給湯路27における前記補助加熱用熱交換器28aよりも下流側、即ち、前記補助加熱器28よりも下流側の箇所に接続され、その接続箇所には、前記貯湯槽2から送出される湯水と混合水路44から供給される水との混合比率を調節自在な水混合弁45が設けられている。
つまり、これら混合水路44及び水混合弁45により、前記給湯路27における前記補助加熱器28よりも下流側の箇所にて通流する湯水に水を混合し、且つ、その水の混合量を調節自在な水混合手段Bが構成される。
前記運転制御部5は、上記の第1実施形態と同様に、補助加熱作動制御処理において、前記送出温度センサSoにて検出される送出温度が前記目標給湯温度設定手段Cにて設定された目標給湯温度よりも低い場合は、前記送出温度センサSoにて検出される湯水の温度及び前記給湯流量センサ42にて検出される湯水の流量に基づいて、前記貯湯槽2から送出される湯水を目標給湯温度に加熱するために要する前記補助加熱器28の必要燃焼量を求めて、その求めた必要燃焼量が前記補助加熱器28の燃焼量調節範囲における最小燃焼量よりも大きいか否かを判別し、必要燃焼量が最小燃焼量よりも大きい場合は、前記給湯温度センサ41の検出温度が目標給湯温度になるように前記補助加熱器28の燃焼量を調節し、且つ、水の混合量を0にすべく、前記混合水路44側を閉じるように前記水混合弁45の作動を制御し、必要燃焼量が最小燃焼量以下の場合は、前記補助加熱器28の燃焼量を最小燃焼量に調節し、且つ、熱消費部に供給される湯水の温度が目標給湯温度になるように前記水混合弁45の作動を制御するように構成されている。
但し、この第3実施形態では、前記運転制御部5は、熱消費部に供給される湯水の温度を目標給湯温度にするための水混合弁45の作動の制御としては、前記給湯温度センサ41にて検出される湯水の温度が前記目標給湯温度になるように、水混合量を調節すべく前記水混合弁34の作動を制御するように構成されている。
又、前記運転制御部5は、補助加熱作動制御処理において、前記送出温度センサSoにて検出される送出温度が前記目標給湯温度設定手段Cにて設定された目標給湯温度以上の場合は、前記給湯温度センサ41にて検出される湯水の温度が前記目標給湯温度になるように、水混合量を調節すべく前記水混合弁45の作動を制御し、前記補助加熱器28を加熱作動させないように構成されている。
〔第4実施形態〕
以下、本発明の第4実施形態を説明するが、この第4実施形態は、水混合手段Bの構成及び運転制御部5の補助加熱作動制御処理及び予測データ演算処理における制御動作の別の実施形態を説明するものであって、混合手段B以外のコージェネレーションシステムの構成、及び、補助加熱作動制御処理及び予測データ演算処理以外の各種処理における制御動作は上記の第1実施形態と同様であるので、主として、水混合手段Bの構成及び運転制御部5の補助加熱作動制御処理及び予測データ演算処理における制御動作について説明する。
但し、前記水混合手段Bの構成は、上記の第3実施形態と同様であるので、説明を省略する。
前記運転制御部5は、補助加熱作動制御処理において、前記送出温度センサSoにて検出される送出温度が前記目標給湯温度設定手段Cにて設定された目標給湯温度よりも低いときに、その送出温度と目標給湯温度との温度差が補助加熱用設定温度以内の場合は、前記送出温度センサSoにて検出される送出温度と前記補助加熱器28に内蔵の流量センサにて検出される流量とに基づいて、湯水を目標給湯温度よりも前記補助加熱用設定温度高い温度に加熱するための燃焼量を求めて、その求めた燃焼量にて前記補助加熱器28を加熱作動させ、且つ、前記給湯温度センサ41にて検出される湯水の温度が前記目標給湯温度になるように、水混合量を調節すべく前記水混合弁45の作動を制御し、前記送出温度と目標給湯温度との温度差が補助加熱用設定温度よりも大きい場合は、前記給湯温度センサ41の検出温度が目標給湯温度になるように前記補助加熱器28の燃焼量を調節し、且つ、水の混合量を0にすべく、前記混合水路44側を閉じるように前記水混合弁45の作動を制御するように構成されている。
ちなみに、前記補助加熱用設定温度は、例えば5°Cに設定される。
又、前記運転制御部5は、補助加熱作動制御処理において、前記送出温度センサSoにて検出される送出温度が前記目標給湯温度設定手段Cにて設定された目標給湯温度以上の場合は、上記の第1実施形態と同様に、前記給湯温度センサ41にて検出される湯水の温度が前記目標給湯温度になるように、水混合量を調節すべく前記水混合弁45の作動を制御し、前記補助加熱器28を加熱作動させないように構成されている。
前記運転制御部5の予測データ演算処理における制御動作は、上記の第2実施形態と同様であるので、説明を省略する。
但し、前記高温熱負荷データの発生時間帯において、サンプリング時間毎に給湯熱負荷計測手段Nにて計測された熱量Qsから補正用設定流量の湯水を補正用設定温度上昇させるための前記補助加熱器28の燃焼量に相当する熱量を減じた熱量をサンプリング時間毎の実給湯熱負荷データとする処理において、この第4実施形態では、前記補正用設定温度は、前記補助加熱用設定温度に設定され、前記補正用設定流量は、前記食器洗浄用設定流量に設定される。
〔第5実施形態〕
以下、本発明の第5実施形態を説明するが、この第5実施形態は、予測データ演算処理における制御動作の別の実施形態を説明するものであって、コージェネレーションシステムの全体構成は第1実施形態と同様であるので、コージェネレーションシステムの全体構成については説明を省略して、主として、予測データ演算処理における制御動作について説明する。
そして、特に、前記予測データ演算処理のうち、前記目標給湯温度が前記設定出湯温度よりも高い状態に対応する高温熱負荷データが存在する場合に、時系列的な実熱負荷データを管理するための制御動作についての別の実施形態を説明するものであり、予測データ演算処理におけるその他の制御動作は上記の第1実施形態と同様であるので、主として、前記予測データ演算処理のうち、第1実施形態と異なる制御動作について説明する。
即ち、前記運転制御部5は、前記予測データ演算処理において、前記目標給湯温度が前記貯湯槽2から出湯可能な設定出湯温度よりも高い状態に対応する高温熱負荷データが存在する場合には、その高温熱負荷データの発生時間帯を除いた時系列的な実熱負荷データを前記時系列的な実熱負荷データとして、前記時系列的な予測熱負荷データを求めるように構成されている。
説明を加えると、前記運転制御部5は、前記高温熱負荷データの発生時間帯以外の時間帯において、サンプリング時間毎に給湯熱負荷計測手段Nにて計測された熱量Qsをサンプリング時間毎の実給湯熱負荷データとして、サンプリング時間毎の実給湯熱負荷データを積算することにより、単位時間毎の実給湯熱負荷データを求めるように構成されている。
〔別実施形態〕
次に別実施形態を説明する。
(イ) 上記の各実施形態においては、目標給湯温度設定手段Cにより前記設定出湯温度よりも高い目標給湯温度が設定されている時間帯を、前記高温熱負荷データの発生時間帯とする場合について例示したが、前記給湯温度センサ41にて検出される温度が前記設定出湯温度よりも高い時間帯を、前記高温熱負荷データの発生時間帯とするように構成しても良い。
(ロ) 前記運転制御部5を、予測データ演算処理において、前記目標給湯温度が前記設定出湯温度よりも高い状態に対応する高温熱負荷データが存在する場合には、その高温熱負荷データの発生時間帯を除いた時系列的な実熱負荷データを前記時系列的な実熱負荷データとして、前記時系列的な予測熱負荷データを求めるように構成する場合に、上記の第5実施形態における制御動作に代えて、以下のような制御動作としも良い。
即ち、高温熱負荷データの発生時間帯及びそれ以外の時間帯のいずれにおいても、サンプリング時間毎に給湯熱負荷計測手段Nにて計測された熱量をサンプリング時間毎の実給湯熱負荷データとして、サンプリング時間毎の実給湯熱負荷データを積算することにより、単位時間毎の実給湯熱負荷データを求める。
そして、時系列的な予測給湯熱負荷データを求めるときは、高温熱負荷データの発生時間帯を含む単位時間を除いた単位時間毎の実給湯熱負荷データに基づいて、時系列的な予測給湯熱負荷データを求めるように構成する。
(ハ) 上記の各実施形態においては、目標給湯温度が食器洗浄用の目標給湯温度に設定されている状態での前記高温熱負荷データの発生時間帯において、上記の式1に基づいて熱量Qsを求めるときは、前記給湯温度Tsを前記食器洗浄用の目標給湯温度とし、且つ、前記給湯流量Fsを前記食器洗浄用設定流量とするように構成する場合について例示したが、前記給湯温度Tsを給湯温度センサ41の検出温度とし、前記給湯流量Fsを前記給湯流量センサ42の検出流量とするように構成しても良い。
又、上記の各実施形態においては、前記給湯温度設定部36により前記設定出湯温度よりも高い目標給湯温度が設定されている状態での前記高温熱負荷データの発生時間帯において、上記の式1に基づいて熱量Qsを求めるときは、前記給湯温度Tsを前記給湯温度設定部36により設定された目標給湯温度とする場合について例示したが、前記給湯温度Tsを給湯温度センサ41の検出温度とするように構成しても良い。
(ニ) 上記の各実施形態においては、上記の式1に基づいて熱量Qsを求めるときに、給水温度Tiを前記給水温度センサ43の検出温度とする場合について例示したが、給水温度Tiを予め設定した温度とするように構成しても良い。
(ホ)上記の各実施形態においては、サンプリング時間毎の実給湯熱負荷データを単位時間毎に積算した時系列的なデータを時系列的な実給湯負荷データとして管理するように構成する場合について例示したが、サンプリング時間毎の実給湯熱負荷データそのものを時系列的な実給湯熱負荷データとして管理するように構成しても良い。
(ヘ) 上記の各実施形態においては、加熱作動条件を、前記燃料電池1を運転する運転時間帯を定める条件、前記燃料電池1の発電出力を定める条件及び前記貯湯槽2の貯湯熱量を定める条件の3つの条件を定める条件とする場合について例示したが、前記燃料電池1を運転する運転時間帯を定める条件、前記燃料電池1の発電出力を定める条件及び前記貯湯槽2の貯湯熱量を定める条件のうちのいずれか一つ又はいずれか二つを定める条件とするように構成しても良い。
加熱作動条件を、前記燃料電池1を運転する運転時間帯を定める条件とする場合は、例えば、断続運転形態を実行するように構成して、運転メリットが高くなるように運転時間帯を設定するように構成することになる。
又、加熱作動条件を、前記燃料電池1の発電出力を定める条件とする場合は、例えば、負荷追従連続運転形態、抑制連続運転形態及び強制連続運転形態のうち、運転メリットが最も高い運転形態を選択するように構成することになる。
(ト) 上記の第1〜第4の各実施形態において、前記給湯路27から、前記設定出湯温度よりも高い目標給湯温度の湯を供給するための高温用の給湯路と、前記設定出湯温度以下の目標給湯温度の湯を供給するための通常用の給湯路とを分岐させて、高温用の給湯路と通常用の給湯路とにおいて同時に給湯負荷が発生したときには、予測データ演算処理において、高温用の給湯路において発生する時系列的な実給湯熱負荷データのみを負荷減少側に補正するように構成しても良い。
(チ) 上記の第5実施形態において、前記給湯路27から、前記設定出湯温度よりも高い目標給湯温度の湯を供給するための高温用の給湯路と、前記設定出湯温度以下の目標給湯温度の湯を供給するための通常用の給湯路とを分岐させて、高温用の給湯路と通常用の給湯路とにおいて同時に給湯負荷が発生したときには、予測データ演算処理において、高温用の給湯路において発生する時系列的な実給湯熱負荷データのみを除くように構成しても良い。
(リ) 上記の第1、第2及び第5の各実施形態においては、前記水混合手段Bを構成する水混合弁34の作動の制御を前記運転制御部5に実行させる場合について例示したが、前記水混合弁34の作動の制御を実行させる専用の制御手段を設けても良い。
又、上記の第3及び第4の各実施形態においては、前記水混合手段Bを構成する水混合弁45の作動の制御を前記運転制御部5に実行させる場合について例示したが、前記水混合弁45の作動の制御を実行させる専用の制御手段を設けても良い。
(ヌ) 運転メリットとしては、上記の各実施形態において例示した予測エネルギ削減量等の省エネルギ性に限定されるものではなく、例えば、予測エネルギコスト削減額等の経済性や、予測二酸化炭素削減量等の環境性を用いても良い。
ちなみに、予測エネルギコスト削減額は、燃料電池1を運転させない場合のエネルギコストから、燃料電池1を運転したときのエネルギコストを減じて求めることができる。
前記燃料電池1を運転させない場合のエネルギコストは、予測電力負荷の全てを商用電源7から買電するときのコストと、予測熱負荷の全てを補助加熱器28で賄うときのエネルギコスト(燃料コスト)の和として求められる。
一方、燃料電池1を運転したときのエネルギコストは、予測電力負荷及び予測熱負荷を燃料電池1の予測発電電力及び予測発生熱で補う場合の燃料電池1のエネルギコスト(燃料コスト)と、予測電力負荷から予測発電電力を差し引いた分に相当する不足電力負荷を商用電源7から買電するときのコストと、予測熱負荷から予測利用熱量を差し引いた分に相当する不足熱負荷を補助加熱器28の発生熱で補う場合のエネルギコスト(燃料コスト)との和として求められる。
又、予測二酸化炭素削減量は、燃料電池1を運転させない場合の二酸化炭素発生量から、燃料電池1を運転したときの二酸化炭素発生量を減じて求めることができる。
前記燃料電池1を運転させない場合の二酸化炭素発生量は、予測電力負荷の全てを商用電源7から買電するときの二酸化炭素発生量と、予測熱負荷の全てを補助加熱器28で賄うときの二酸化炭素発生量との和として求められる。
一方、燃料電池1を運転したときの二酸化炭素発生量は、予測電力負荷及び予測熱負荷を燃料電池1の予測発電電力及び予測発生熱で補う場合の燃料電池1からの二酸化炭素発生量と、予測電力負荷から予測発電電力を差し引いた分に相当する不足電力負荷を商用電源7から買電するときの二酸化炭素発生量と、予測熱負荷から予測利用熱量を差し引いた分に相当する不足熱負荷を補助加熱器28の発生熱で補う場合の二酸化炭素発生量との和として求められる。
(ル) 上記の各実施形態においては、熱消費端末3を設けた場合について例示して、熱負荷を給湯熱負荷と端末熱負荷とを合わせたものとしたが、熱消費端末3を設けない場合は、熱負荷を給湯熱負荷のみとすることになる。又、燃料電池1から発生する熱を回収した冷却水の温度に比べて、熱消費端末3において必要とされる熱媒の温度が高い場合は、熱消費端末3が設けられていても、熱負荷を給湯熱負荷のみとする。
(ヲ) 熱電併給装置として、上記の各実施形態では燃料電池1を適用したが、これ以外に、例えば、ガスエンジンにより発電機を駆動するように構成したもの等、種々のものを適用することができる。
(ワ) 上記の実施形態では、加熱部Hを、熱電併給装置から発生する熱を熱源とするように構成する場合について例示したが、ガスバーナや電気ヒータや電気式のヒートポンプ等の専用の熱源を備えて構成したり、ガスエンジンやガソリンエンジン等によりコンプレッサを駆動するエンジン駆動式のヒートポンプから発生する熱を熱源とするように構成することができる。
第1及び第2の各実施形態に係るコージェネレーションシステムの全体構成を示すブロック図 第1及び第2の各実施形態に係るコージェネレーションシステムの制御構成を示すブロック図 最初の運転周期における予測電力負荷及び予測熱負荷に対する燃料電池の運転状態及び熱利用状態を示す説明図 最初の運転周期における予測電力負荷及び予測熱負荷に対する燃料電池の運転状態及び熱利用状態を示す説明図 2回目の運転周期における予測熱負荷に対する熱利用状態を示す説明図 電池発電効率及び電池熱効率を示す図 強制運転用及び抑制運転用の仮運転パターンを説明する図 断続運転形態の仮運転パターンを説明する図 出力増大時増加エネルギ量及び出力抑制時必要エネルギ量差を示す図 学習運転制御処理における制御動作のフローチャートを示す図 学習運転制御処理における制御動作のフローチャートを示す図 学習運転制御処理における制御動作のフローチャートを示す図 第3及び第4の各実施形態に係るコージェネレーションシステムの全体構成を示すブロック図
符号の説明
2 貯湯槽
5 運転制御手段
27 給湯路
28 補助加熱手段
B 水混合手段
C 目標給湯温度設定手段
H 加熱手段
N 熱負荷計測手段

Claims (6)

  1. 貯留される湯水を熱消費部に送出する給湯路が接続された貯湯槽と、その貯湯槽に貯留される湯水を加熱する加熱手段と、前記給湯路を通流する湯水を加熱する補助加熱手段と、前記給湯路を通して前記熱消費部に供給される湯水の熱量を計測する熱負荷計測手段と、前記熱消費部に供給される湯水の目標給湯温度を変更設定自在な目標給湯温度設定手段と、運転を制御する運転制御手段とが設けられ、
    前記運転制御手段が、
    前記熱負荷計測手段にて計測される熱量を時系列的な実熱負荷データとして管理して、その管理している時系列的な実熱負荷データに基づいて時系列的な予測熱負荷データを求める予測データ演算処理、
    前記貯湯槽に貯留される湯水を目標貯湯温度に加熱するように加熱作動させる状態で、且つ、前記時系列的な予測熱負荷データに基づいて運転メリットが高くなるように求めた加熱作動条件にて加熱作動させる状態で、前記加熱手段の加熱作動を制御する加熱作動制御処理、及び、
    前記熱消費部に供給される湯水の温度を前記目標給湯温度にするように、前記補助加熱手段の加熱作動を制御する補助加熱作動制御処理を実行するように構成された貯湯式の給湯装置であって、
    前記運転制御手段が、前記予測データ演算処理において、
    前記目標給湯温度が前記貯湯槽から出湯可能な設定出湯温度よりも高い状態に対応する高温熱負荷データが存在する場合には、その高温熱負荷データを除いた時系列的な実熱負荷データを前記時系列的な実熱負荷データとして、前記時系列的な予測熱負荷データを求めるように構成されている貯湯式の給湯装置。
  2. 貯留される湯水を熱消費部に送出する給湯路が接続された貯湯槽と、その貯湯槽に貯留される湯水を加熱する加熱手段と、前記給湯路を通流する湯水を加熱する補助加熱手段と、前記給湯路を通して前記熱消費部に供給される湯水の熱量を計測する熱負荷計測手段と、前記熱消費部に供給される湯水の目標給湯温度を変更設定自在な目標給湯温度設定手段と、運転を制御する運転制御手段とが設けられ、
    前記運転制御手段が、
    前記熱負荷計測手段にて計測される熱量を時系列的な実熱負荷データとして管理して、その管理している時系列的な実熱負荷データに基づいて時系列的な予測熱負荷データを求める予測データ演算処理、
    前記貯湯槽に貯留される湯水を目標貯湯温度に加熱するように加熱作動させる状態で、且つ、前記時系列的な予測熱負荷データに基づいて運転メリットが高くなるように求めた加熱作動条件にて加熱作動させる状態で、前記加熱手段の加熱作動を制御する加熱作動制御処理、及び、
    前記熱消費部に供給される湯水の温度を前記目標給湯温度にするように、前記補助加熱手段の加熱作動を制御する補助加熱作動制御処理を実行するように構成された貯湯式の給湯装置であって、
    前記運転制御手段が、前記予測データ演算処理において、
    前記目標給湯温度が前記貯湯槽から出湯可能な設定出湯温度よりも高い状態に対応する高温熱負荷データが存在する場合には、その高温熱負荷データの発生時間帯における時系列的な実熱負荷データを負荷減少側に補正した時系列的な実熱負荷データを前記時系列的な実熱負荷データとして、前記時系列的な予測熱負荷データを求めるように構成されている貯湯式の給湯装置。
  3. 前記運転制御手段が、前記予測データ演算処理において、
    前記高温熱負荷データの発生時間帯における前記補助加熱手段の加熱量である補助加熱量を減じることにより、前記高温熱負荷データの発生時間帯における時系列的な実熱負荷データを負荷減少側に補正するように構成されている請求項2記載の貯湯式の給湯装置。
  4. 前記給湯路における前記補助加熱手段よりも上流側又は下流側の箇所にて通流する湯水に水を混合し、且つ、その水の混合量を調節自在な水混合手段が設けられ、
    前記運転制御手段が、前記予測データ演算処理において、前記補助加熱手段の加熱量調節範囲における最小加熱量又はその最小加熱量に近い加熱量を前記補助加熱量として、前記高温熱負荷データの発生時間帯における時系列的な実熱負荷データを負荷減少側に補正するように構成されている請求項3記載の貯湯式の給湯装置。
  5. 前記運転制御手段が、前記予測データ演算処理において、設定流量の湯水を設定温度上昇させるための前記補助加熱手段の加熱量を前記補助加熱量として、前記高温熱負荷データの発生時間帯における時系列的な実熱負荷データを負荷減少側に補正するように構成されている請求項3記載の貯湯式の給湯装置。
  6. 前記加熱作動条件が、前記加熱手段を加熱作動させる運転時間帯を定める条件、前記加熱手段にて出力する加熱量を定める条件及び前記貯湯槽の貯湯熱量を定める条件のうちの少なくとも一つを定める条件である請求項1〜5のいずれか1項に記載の貯湯式の給湯装置。
JP2007085594A 2007-03-28 2007-03-28 貯湯式の給湯装置 Expired - Fee Related JP5006678B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007085594A JP5006678B2 (ja) 2007-03-28 2007-03-28 貯湯式の給湯装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007085594A JP5006678B2 (ja) 2007-03-28 2007-03-28 貯湯式の給湯装置

Publications (2)

Publication Number Publication Date
JP2008241209A JP2008241209A (ja) 2008-10-09
JP5006678B2 true JP5006678B2 (ja) 2012-08-22

Family

ID=39912773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007085594A Expired - Fee Related JP5006678B2 (ja) 2007-03-28 2007-03-28 貯湯式の給湯装置

Country Status (1)

Country Link
JP (1) JP5006678B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5251656B2 (ja) * 2009-03-25 2013-07-31 パナソニック株式会社 貯湯式給湯装置及びその運転方法
JP5601465B2 (ja) * 2010-10-28 2014-10-08 株式会社ノーリツ 温水システム
JP5727270B2 (ja) * 2011-03-23 2015-06-03 大阪瓦斯株式会社 貯湯システム及びその運転方法、並びに、貯湯システム用の制御装置
JP5925037B2 (ja) * 2012-04-20 2016-05-25 リンナイ株式会社 貯湯式給湯システム
JP6119414B2 (ja) * 2013-05-14 2017-04-26 三菱電機株式会社 貯湯式給湯機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240346A (ja) * 2002-02-13 2003-08-27 Tokyo Gas Co Ltd 温水供給装置及びその制御方法
JP2005009841A (ja) * 2003-06-23 2005-01-13 Tokyo Gas Co Ltd コージェネレーションシステム
JP3966416B2 (ja) * 2003-11-10 2007-08-29 東京瓦斯株式会社 コージェネレーションシステム
JP4649182B2 (ja) * 2004-11-30 2011-03-09 大阪瓦斯株式会社 エネルギ発生装置用のエネルギ負荷データ作成装置及びコージェネレーションシステム

Also Published As

Publication number Publication date
JP2008241209A (ja) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5006678B2 (ja) 貯湯式の給湯装置
JP2011185520A (ja) コージェネレーションシステム
JP5048354B2 (ja) コージェネレーションシステム
JP5222100B2 (ja) 貯湯式の給湯装置
JP5032857B2 (ja) コージェネレーションシステム
JP5064856B2 (ja) コージェネレーションシステム
JP4912837B2 (ja) コージェネレーションシステム
JP5551942B2 (ja) コージェネレーションシステム
JP5722970B2 (ja) コージェネレーションシステム
JP5438540B2 (ja) コージェネレーションシステム
JP4897855B2 (ja) コージェネレーションシステム
JP5143603B2 (ja) コージェネレーションシステム
JP5069455B2 (ja) 集合式のコージェネレーションシステム
JP5433071B2 (ja) コージェネレーションシステム
JP6278763B2 (ja) エネルギー管理システム
JP2009243851A (ja) コージェネレーションシステム
JP5210010B2 (ja) コージェネレーションシステム
JP5122247B2 (ja) 貯湯式の給湯装置
JP5037959B2 (ja) コージェネレーションシステム
JP4897780B2 (ja) コージェネレーションシステム
JP4359248B2 (ja) コージェネレーションシステム
JP5406640B2 (ja) コージェネレーションシステム
JP5507615B2 (ja) コージェネレーションシステム
JP5551953B2 (ja) 貯湯式の給湯装置
JP2009243850A (ja) コージェネレーションシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees