JP2011185520A - コージェネレーションシステム - Google Patents

コージェネレーションシステム Download PDF

Info

Publication number
JP2011185520A
JP2011185520A JP2010050706A JP2010050706A JP2011185520A JP 2011185520 A JP2011185520 A JP 2011185520A JP 2010050706 A JP2010050706 A JP 2010050706A JP 2010050706 A JP2010050706 A JP 2010050706A JP 2011185520 A JP2011185520 A JP 2011185520A
Authority
JP
Japan
Prior art keywords
heat
hot water
predicted
time
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010050706A
Other languages
English (en)
Inventor
Yukitsugu Masumoto
幸嗣 桝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010050706A priority Critical patent/JP2011185520A/ja
Publication of JP2011185520A publication Critical patent/JP2011185520A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】熱媒循環経路の熱媒から貯湯槽の湯水に熱を回収した場合でも、熱の過不足を抑制するように熱電併給装置を運転し得るコージェネレーションシステムを提供する。
【解決手段】熱媒加熱循環手段U2と、熱回収手段U3と、回収熱量取得手段43とが設けられ、運転制御手段5が、回収熱量計測手段43の取得情報に基づいて、熱回収手段U3により回収可能な時系列的な実回収熱量データを管理して、その管理している時系列的な実回収熱量データに基づいて熱回収手段U3により回収されると予測される時系列的な予測回収熱量データを運転周期毎に区分けして求めるように構成され、且つ、時系列的な予測負荷電力データ及び時系列的な予測負荷熱量データに加えて、時系列的な予測回収熱量データに基づいて、運転メリットが高くなるように運転条件を定めるように構成されている。
【選択図】図1

Description

本発明は、電力と熱とを併せて発生する熱電併給装置と、その熱電併給装置にて発生する熱により貯湯槽に貯湯する貯湯手段と、運転を制御する運転制御手段とが設けられ、
前記運転制御手段が、時系列的な予測負荷電力データ及び時系列的な予測負荷熱量データを運転周期毎に区分けして管理し、且つ、運転周期の開始時点において、前記時系列的な予測負荷電力データ及び前記時系列的な予測負荷熱量データに基づいて、運転メリットが高くなるように当該運転周期における前記熱電併給装置の運転条件を定めるように構成されたコージェネレーションシステムに関する。
かかるコージェネレーションシステムは、例えば、一般家庭等に設置して、熱電併給装置の発電電力を電気機器等にて消費し、熱電併給装置から発生する熱にて貯湯槽に貯湯して、その貯湯槽に貯湯されている湯水を台所や風呂等にて消費するものである。ちなみに、熱電併給装置は、燃料電池やエンジン駆動式の発電機等にて構成される。
このようなコージェネレーションシステムでは、時系列的な予測負荷電力データ及び時系列的な予測負荷熱量データを運転周期毎に区分けして管理し、運転周期の開始時点において、時系列的な予測負荷電力データ及び時系列的な予測負荷熱量データに基づいて、運転メリットが高くなるように当該運転周期における熱電併給装置の運転条件を定めて、その定めた運転条件で熱電併給装置を運転するように構成されていた(例えば、特許文献1参照。)。
熱電併給装置の運転条件としては、例えば、運転周期中における熱電併給装置の運転時間帯や、熱電併給装置の出力電力を定める。
ちなみに、運転時間帯としては、例えば、熱電併給装置の出力電力を予測負荷電力データに追従する電主出力に調整すると仮定したときに、その電主出力、熱電併給装置が電主出力にて運転されることにより発生する熱量、時系列的な予測負荷電力データ及び時系列的な予測負荷熱量データに基づいて求められる運転メリットが高くなる時間帯が定められる。
特開2006−127867号公報
ところで、熱を供給するための熱媒を熱消費部を経由する熱媒循環経路を通して循環させて、熱消費部に熱を供給することができる熱媒加熱循環手段と、熱媒循環経路の熱媒から貯湯槽の湯水に熱を回収することができる熱回収手段とが設けられる場合がある。
熱消費部の具体例としては、例えば、浴槽、床暖房装置、浴室暖房乾燥装置等が挙げられる。そして、熱消費部としての浴槽が適用される場合、熱媒循還経路の熱媒は浴槽の湯水であり、浴槽の湯水から貯湯槽の湯水に熱が回収されることになる。
しかしながら、従来のコージェネレーションシステムでは、熱媒循環経路の熱媒から貯湯槽の湯水に熱を回収した場合、時系列的な予測負荷電力データ及び時系列的な予測負荷熱量データに基づいて運転メリットが高くなるように定めた運転条件で熱電併給装置を運転すると、貯湯槽にはその貯湯槽に貯えられる熱により賄われる負荷熱量(以下、給湯負荷熱量と記載する場合がある)よりも多い熱量が貯えられることになって、熱余りが生じ易かった。
つまり、従来のコージェネレーションシステムは、貯湯槽の湯水に熱を貯めておくということを基本としているが、例えば、浴槽に湯が残っている場合等、熱消費部を経由する熱媒循環経路の熱媒が利用可能な熱を保有している場合に、その保有熱も利用する観点で熱電併給装置の運転条件が定められておらず、結果的に、熱の有効利用の点で改善の余地があった。
本発明は、かかる実情に鑑みてなされたものであり、その目的は、熱媒循環経路の熱媒から貯湯槽の湯水に熱を回収した場合でも、熱の過不足を抑制するように熱電併給装置を運転し得るコージェネレーションシステムを提供することにある。
本発明のコージェネレーションシステムは、電力と熱とを併せて発生する熱電併給装置と、その熱電併給装置にて発生する熱により貯湯槽に貯湯する貯湯手段と、運転を制御する運転制御手段とが設けられ、前記運転制御手段が、時系列的な予測負荷電力データ及び時系列的な予測負荷熱量データを運転周期毎に区分けして管理し、且つ、運転周期の開始時点において、前記時系列的な予測負荷電力データ及び前記時系列的な予測負荷熱量データに基づいて、運転メリットが高くなるように当該運転周期における前記熱電併給装置の運転条件を定めるように構成されたものであって、
第1特徴構成は、熱を供給するための熱媒を熱消費部を経由する熱媒循環経路を通して循環させて、前記熱消費部に熱を供給することができる熱媒加熱循環手段と、前記熱媒循環経路の熱媒と前記貯湯槽内の湯水又は外部から前記貯湯槽に供給される水とを熱交換させて前記熱媒循環経路の熱媒から前記貯湯槽の湯水に熱を回収することができる熱回収手段と、その熱回収手段により回収可能な熱量又はその熱量を求めるための熱量関連情報を取得する回収熱量取得手段とが設けられ、
前記運転制御手段が、
前記回収熱量取得手段の取得情報に基づいて、前記熱回収手段により回収可能な時系列的な実回収熱量データを管理して、その管理している時系列的な実回収熱量データに基づいて前記熱回収手段により回収されると予測される時系列的な予測回収熱量データを運転周期毎に区分けして求めるように構成され、且つ、
前記時系列的な予測負荷電力データ及び前記時系列的な予測負荷熱量データに加えて、前記時系列的な予測回収熱量データに基づいて、運転メリットが高くなるように前記運転条件を定めるように構成されている点にある。
上記特徴構成によれば、熱回収手段が作動すると、熱媒循環経路の熱媒から貯湯槽の湯水に熱が回収される。又、回収熱量取得手段により、熱回収手段にて回収可能な熱量又はその熱量を求めるための熱量関連情報が取得される。
運転制御手段は、回収熱量取得手段の取得情報に基づいて、熱回収手段により回収可能な時系列的な実回収熱量データを管理して、その管理している時系列的な実回収熱量データに基づいて時系列的な予測回収熱量データを運転周期毎に区分けして求める。
そして、運転制御手段は、時系列的な予測負荷電力データ及び時系列的な予測負荷熱量データに加えて、時系列的な予測回収熱量データに基づいて、運転メリットが高くなるように熱電併給装置の運転条件を定める。
つまり、管理している過去の時系列的な実回収熱量データに基づいて、運転条件を定める対象の運転周期のどの時間帯に、どれだけの熱量が熱媒循環経路の熱媒から貯湯槽の湯水に回収可能かを予測することができる。
そして、そのように熱媒循環経路の熱媒から貯湯槽の湯水の熱量が回収可能と予測される時間帯では、熱媒循環経路の熱媒から回収される分だけ貯湯槽に貯えられる熱量が増加するとして、運転メリットが高くなるように当該運転周期における熱電併給装置の運転条件を定めるので、給湯負荷熱量に対する過不足を抑制すべく貯湯槽に熱を貯えるように、運転条件を定めることができる。
従って、熱媒循環経路の熱媒から貯湯槽の湯水に熱を回収した場合でも、熱の過不足を抑制するように熱電併給装置を運転し得るコージェネレーションシステムを提供することができるようになった。
第2特徴構成は、上記第1特徴構成に加えて、
前記熱消費部での熱消費が終了したことを示す熱消費終了情報を人為操作で入力する熱消費終了入力手段が設けられ、
前記運転制御手段が、前記熱消費終了入力手段により前記熱消費終了情報が入力されると、前記熱回収手段を作動させるように構成されている点にある。
上記特徴構成によれば、使用者が熱消費終了入力手段により熱消費終了情報を入力すると、自動的に熱回収手段が作動して、熱媒循環経路の熱媒から貯湯槽の湯水に熱量が回収される。
つまり、熱回収手段により熱媒循環経路から熱を回収するのは、熱消費部での熱の消費が終了した後に行うのが好ましい。
一方、例えば、熱消費部の一例が浴槽の場合、浴槽の使用が終了するタイミング、即ち、熱消費部での熱消費が終了するタイミングは、使用者の意図により決まるものである。
そこで、本特徴構成の如き構成とすることにより、例えば入浴の終了等、熱消費部での熱消費終了のタイミングが使用者の意図で決まる場合に、的確に熱消費部での熱消費が終了した後に熱回収手段を作動させて、熱媒循環経路の熱媒から貯湯槽の湯水に熱量を回収することができる。
第3特徴構成は、上記第2特徴構成に加えて、
前記運転制御手段が、前記熱回収手段において熱交換される前記熱媒循環経路の熱媒と前記貯湯槽内の湯水又は外部から前記貯湯槽に供給される水との温度関係が、前記熱媒循環経路の熱媒の温度の方が高い条件で、前記熱回収手段を作動させるように構成されている点にある。
上記特徴構成によれば、回収手段において熱交換される熱媒循環経路の熱媒と貯湯槽内の湯水又は外部から貯湯槽に供給される水との温度関係が、熱媒循環経路の熱媒の温度の方が高くて、熱媒循環経路の熱媒から貯湯槽の湯水への熱量の回収が可能な状態のときだけ、熱回収手段が作動される。
従って、熱媒循環経路の熱媒から極力多くの熱量を的確に貯湯槽の湯水に回収することができる。
第4特徴構成は、上記第3特徴構成に加えて、
前記熱媒循環経路の熱媒の凍結を防止する凍結防止手段が設けられ、
前記運転制御手段が、
前記熱媒循環経路の熱媒の温度が処理開始用設定温度以下になると、前記凍結防止手段を作動させるように構成され、且つ、
前記熱回収手段を作動させているときに、前記熱媒循環経路の熱媒の温度が前記処理開始用設定温度よりも処理回避用設定温度幅高い温度以下になると、前記熱回収手段を停止するように構成されている点にある。
上記特徴構成によれば、熱媒循環経路の熱媒の温度が処理開始用設定温度以下になると、凍結防止手段が作動するので、熱媒循環経路の熱媒の凍結が防止される。
ちなみに、処理開始用設定温度は、例えば、熱媒循環経路の熱媒が凍結する虞がある温度よりもやや高い温度に設定される。
そして、熱回収手段が作動しているときに、熱媒循環経路の熱媒の温度が処理開始用設定温度よりも処理回避用設定温度幅高い温度以下になると、熱回収手段が停止されるので、処理回避用設定温度幅を適宜に設定することにより、熱回収手段の停止後、熱媒循環経路の熱媒の温度が低下しても、処理開始用設定温度よりも低くならないようにすることが可能となる。
従って、熱媒循環経路の熱媒が凍結する虞があるほど気温が低いときに、熱媒循環経路の熱媒から貯湯槽の湯水に熱量を回収するにしても、熱媒循環経路の熱媒の凍結を防止しながら凍結防止手段が作動されないようにして、無駄なエネルギを消費しないようにすることができる。
第5特徴構成は、上記第1〜第4特徴構成のいずれか1つに加えて、
前記熱媒加熱循環手段が、前記熱消費部としての浴槽の湯水を熱媒として前記熱媒循環経路を通して循環させるように構成されている点にある。
上記特徴構成によれば、熱媒加熱循環手段が、熱消費部としての浴槽の湯水を熱媒として熱媒循環経路を通して循環させるように構成されているので、熱回収手段により、浴槽の湯水の熱量が貯湯槽の湯水に回収される。
つまり、浴槽には多量の湯水が貯留され、その湯水によって多量の熱量が貯えられるので、多量の熱量を貯湯槽の湯水に回収することができる。
従って、給湯負荷熱量を十分に賄いながらも、熱電併給装置の運転のために消費するエネルギを低減することが可能となるので、省エネルギ性を一層向上することができるようになった。
第6特徴構成は、上記第1〜第4特徴構成のいずれか1つに加えて、
前記熱媒加熱循環手段が、前記熱消費部としての熱消費端末を経由して前記熱媒循環経路を通して熱媒を循環させるように構成されている点にある。
上記特徴構成によれば、熱回収手段により、熱消費端末を経由する熱媒循環経路の熱媒から貯湯槽の湯水に熱が回収される。
つまり、熱消費端末の例として、床暖房装置、浴室暖房乾燥装置等の熱媒循環式暖房装置が挙げられる。
そして、このような熱媒循環式暖房装置の運転を停止した後に、熱媒循環経路の熱媒に残存している熱量を貯湯槽の湯水に回収することができる。
第7特徴構成は、上記第1〜第6特徴構成のいずれか1つに加えて、
前記回収熱量取得手段が、前記熱回収手段により回収される熱量又はその熱量を求めるための熱量関連情報を計測する回収熱量計測手段にて構成されている点にある。
上記特徴構成によれば、回収熱量計測手段により、熱回収手段により実際に回収された熱量又はその熱量を求めるための熱量関連情報が計測される。
そして、運転制御手段は、回収熱量計測手段の計測情報に基づいて、熱回収手段により実際に回収された時系列的な実回収熱量データを管理して、その管理している時系列的な実回収熱量データに基づいて時系列的な予測回収熱量データを運転周期毎に区分けして求める。
つまり、熱回収手段により実際に回収された熱量のデータに基づいて、時系列的な予測回収熱量データが求められるので、熱媒循環経路の熱媒から貯湯槽の湯水の熱量が回収されると予測される時間帯や、回収熱量の大きさの予測精度を高くすることができる。
従って、予測精度の高い予測回収熱量データに基づいて運転条件を定めるので、熱の過不足を一段と抑制するように熱電併給装置を運転することができるようになった。
第8特徴構成は、上記第1〜第7特徴構成のいずれか1つに加えて、
前記運転制御手段が、運転周期の全時間帯にわたって前記熱電併給装置を運転する連続運転形態、運転周期の一部の時間帯で前記熱電併給装置を運転する断続運転形態、及び、運転周期の全時間帯にわたって前記熱電併給装置を停止する待機形態のうちの少なくとも二つのうちから、前記時系列的な予測負荷電力データ、前記時系列的な予測負荷熱量データ及び前記時系列的な予測回収熱量データに基づいて求めた運転メリットが高いものを選定することにより、前記運転条件を定めるように構成されている点にある。
上記特徴構成によれば、連続運転形態、断続運転形態及び待機形態のうちの少なくとも二つのうちから、時系列的な予測負荷電力データ、時系列的な予測負荷熱量データ及び時系列的な予測回収熱量データに基づいて求めた運転メリットが高いものが、熱電併給装置の運転形態として選定される。
つまり、季節等により、運転周期の負荷電力や負荷熱量が変動する。
そして、連続運転形態は、運転周期の全時間帯にわたって熱電併給装置を運転するものであるので、負荷電力及び負荷熱量がかなり大きい場合に、負荷熱量に対する過不足を抑制しながら運転メリットが高くなるように、熱電併給装置を運転することができる。
断続運転形態は、運転周期の一部の時間帯で熱電併給装置を運転するものであるので、負荷電力及び負荷熱量が比較的小さい場合に、負荷熱量に対する過不足を抑制しながら運転メリットが高くなるように、熱電併給装置を運転することができる。
更に、負荷電力及び負荷熱量がかなり小さくなると、熱電併給装置を連続運転形態又は断続運転形態で運転するよりも、運転周期の全時間帯において熱電併給装置を停止させて運転を待機させる方が運転メリットが高くなる場合がある。
そこで、本特徴構成の如き構成とすることにより、運転周期の負荷電力や負荷熱量が変動しても、運転メリットを高くするように熱電併給装置を運転することができるようになった。
コージェネレーションシステムの全体構成を示すブロック図 コージェネレーションシステムの制御構成を示すブロック図 熱媒加熱循環ユニット及び熱回収ユニットの構成を示すブロック図 予測エネルギ削減量を求める処理を説明する図 コージェネレーションシステムの制御動作のフローチャートを示す図 コージェネレーションシステムの制御動作のフローチャートを示す図
以下、図面に基づいて、本発明の実施の形態を説明する。
コージェネレーションシステムは、図1及び図2に示すように、電力と熱とを発生する熱電併給装置としての燃料電池1と、その燃料電池1が発生する熱により貯湯槽2に貯湯したり、熱消費端末3へ循環供給する熱媒を加熱する貯湯手段としての貯湯ユニットU1と、このコージェネレーションシステムの運転を制御する運転制御手段としての運転制御部5などから構成されている。
このコージェネレーションシステムには、更に、熱を供給するための熱媒を熱消費部Bを経由する熱媒循環経路Rを通して循環させて、熱消費部Bに熱を供給することができる熱媒加熱循環手段としての熱媒加熱循環ユニットU2と、熱媒循環経路Rの熱媒と貯湯槽2内の湯水とを熱交換させて熱媒循環経路Rの熱媒から貯湯槽2の湯水に熱を回収することができる熱回収手段としての熱回収ユニットU3と、熱媒循環経路Rの熱媒の凍結を防止する凍結防止手段Dとが設けられている。
燃料電池1は、周知であるので、詳細な説明及び図示を省略して簡単に説明すると、燃料電池1は、水素を含有する燃料ガス及び酸素含有ガスが供給されて発電するセルスタック、そのセルスタックに供給する燃料ガスを生成する燃料ガス生成部、セルスタックに酸素含有ガスとして空気を供給するブロア等を備えて構成されている。
燃料ガス生成部は、供給される都市ガス(例えば、天然ガスベースの都市ガス)等の炭化水素系の原燃料ガスを脱硫処理する脱硫器、その脱硫器から供給される脱硫原燃料ガスと別途供給される水蒸気とを改質反応させて水素を主成分とする改質ガスを生成する改質器、その改質器から供給される改質ガス中の一酸化炭素を水蒸気にて二酸化炭素に変成処理する変成器、その変成器から供給される改質ガス中の一酸化炭素を別途供給される選択酸化用空気にて選択酸化する一酸化炭素除去器等から構成され、一酸化炭素を変成処理及び選択酸化処理により低減した改質ガスを前記燃料ガスとして前記セルスタックに供給するように構成されている。
そして、燃料ガス生成部への原燃料ガスの供給量を調節することにより、燃料電池1の出力電力を調節するように構成されている。
図1に示すように、燃料電池1の電力の出力側には、系統連系用のインバータ6が設けられ、そのインバータ6は、燃料電池1の出力電力を商用電源7から受電する受電電力と同じ電圧及び同じ周波数にするように構成されている。
商用電源7は受電電力供給ライン8を介して、テレビ、冷蔵庫、洗濯機などの電力負荷9に電気的に接続されている。
また、インバータ6は、発電電力供給ライン10を介して受電電力供給ライン8に電気的に接続され、燃料電池1の発電電力がインバータ6及び発電電力供給ライン10を介して電力負荷9に供給するように構成されている。
受電電力供給ライン8には、電力負荷9の負荷電力を計測する負荷電力計測手段11が設けられ、この負荷電力計測手段11は、受電電力供給ライン8を通して流れる電流に逆潮流が発生するか否かをも検出するように構成されている。
そして、逆潮流が生じないように、インバータ6により燃料電池1から受電電力供給ライン8に供給される電力が制御され、出力電力の余剰電力は、その余剰電力を熱に代えて回収する電気ヒータ12に供給されるように構成されている。
電気ヒータ12は、複数の電気ヒータから構成されて、冷却水循環ポンプ15の作動により冷却水循環路14を通流する燃料電池1の冷却水を加熱するように設けられ、インバータ6の出力側に接続された作動スイッチ13により各別にON/OFFが切り換えられている。
作動スイッチ13は、余剰電力の大きさが大きくなるほど、電気ヒータ12の消費電力が大きくなるように、余剰電力の大きさに応じて電気ヒータ12の消費電力を調整するように構成されている。
尚、電気ヒータ12の消費電力を調整する構成については、上記のように複数の電気ヒータ12のON/OFFを切り換える構成以外に、その電気ヒータ12の出力を例えば位相制御等により調整する構成を採用しても構わない。
貯湯ユニットU1は、温度成層を形成する状態で湯水を貯湯する前記貯湯槽2、湯水循環路16を通して貯湯槽2内の湯水を循環させる湯水循環ポンプ17、熱源用循環路20を通して熱源用湯水を循環させる熱源用循環ポンプ21、端末用熱媒循環路22を通して熱媒を熱消費端末3に循環供給させる端末用熱媒循環ポンプ23、湯水循環路16を通流する湯水を加熱させる貯湯用熱交換器24、熱源用循環路20を通流する熱源用湯水を加熱させる熱源用熱交換器25、端末用熱媒循環路22を通流する熱媒を加熱させる熱媒加熱用熱交換器26、貯湯槽2から取り出されて給湯路27を通流する湯水及び熱源用循環路20を通流する熱源用湯水を加熱する燃焼式の補助加熱器28などを備えて構成されている。
湯水循環路16は、貯湯槽2の底部と頂部とに接続されて、湯水循環ポンプ17により、貯湯槽2の底部から取り出した湯水を貯湯槽2の頂部に戻す形態で貯湯槽2の湯水を湯水循環路16を通して循環させ、そのように湯水循環路16を通して循環される湯水を貯湯用熱交換器24にて加熱することにより、貯湯槽2に温度成層を形成する状態で湯水が貯留されるように構成されている。
給湯路27は、湯水循環路16における貯湯用熱交換器24よりも下流側の箇所を介して貯湯槽2に接続され、その給湯路27を通して貯湯槽2内の湯水が浴槽33、給湯栓34等の給湯先に給湯され、そのように給湯されるのに伴って貯湯槽2に給水すべく、給水路35が貯湯槽2の底部に接続されている。
熱源用循環路20は、給湯路27の一部を共用する状態で循環経路を形成するように設けられ、その熱源用循環路20には、熱源用湯水の通流を断続させる熱源用断続弁29が設けられている。
冷却水循環路14は、貯湯用熱交換器24側と熱源用熱交換器25側とに分岐され、その分岐箇所に、貯湯用熱交換器24側に通流させる冷却水の流量と熱源用熱交換器25側に通流させる冷却水の流量との割合を調整する分流弁30が設けられている。
そして、分流弁30は、冷却水循環路14の冷却水の全量を貯湯用熱交換器24側に通流させたり、冷却水循環路14の冷却水の全量を熱源用熱交換器25側に通流させることもできるように構成されている。
貯湯用熱交換器24においては、燃料電池1の発生熱を回収した冷却水循環路14の冷却水を通流させることにより、湯水循環路16を通流する湯水を加熱させるように構成されている。熱源用熱交換器25においては、燃料電池1の発生熱を回収した冷却水循環路14の冷却水を通流させることにより、熱源用循環路20を通流する熱源用湯水を加熱させるように構成されている。
熱媒加熱用熱交換器26においては、熱源用熱交換器25や補助加熱器28にて加熱された熱源用湯水を通流させることにより、端末用熱媒循環路22を通流する熱媒を加熱させるように構成されている。ちなみに、熱消費端末3として、床暖房装置、浴室暖房乾燥装置又はファンコンベクタ等の暖房端末が設けられる。
給湯路27には、給湯先に湯水を給湯するときの給湯負荷熱量を計測する給湯負荷熱量計測手段31が設けられ、又、熱消費端末3での端末負荷熱量を計測する端末負荷熱量計測手段32も設けられている。尚、図示は省略するが、これら給湯負荷熱量計測手段31及び端末負荷熱量計測手段32は、通流する湯水や熱媒の温度を検出する温度センサと、湯水や熱媒の流量を検出する流量センサとを備えて構成され、温度センサの検出温度と流量センサの検出流量とに基づいて負荷熱量を検出するように構成されている。
図3にも示すように、浴槽33と補助加熱器28とにわたって浴槽33の湯水を循環させるように風呂用循環路36が設けられている。
この風呂用循環路36は、浴槽33の湯水を補助加熱器28に戻す戻り路36rと、補助加熱器28から浴槽33へ湯水を供給する往き路36fを備えて構成され、戻り路36rには、風呂用循環路36を通して湯水を循環させる風呂循環ポンプ37が設けられている。
給湯路27から湯張り用分岐路27dが分岐され、その湯張り用分岐路27dが風呂用循環路36の戻り路36rに接続されて、貯湯槽2の湯水が湯張り用分岐路27d及び風呂用循環路36を通して浴槽33に供給されるように構成されている。
湯張り用分岐路27dには、浴槽33への湯張りを断続する湯張り用断続弁38、浴槽33側からの逆流を阻止する逆止弁39、及び、バキュームブレーカ40が設けられている。
湯水循環路16には、2系統の流路に分かれた後に再び合流する並列状部分が設けられ、その並列状部分の合流箇所に三方弁41が設けられており、2系統の流路の一方側には、貯湯槽2の底部から取り出された貯湯槽2内の湯水と風呂用循環路36の戻り路36rを通流する湯水とを熱交換させる熱回収用熱交換器42が設けられている。
この実施形態では、熱消費部Bとして浴槽33が適用され、熱媒循環経路Rとして風呂循環路36が適用されて、熱媒加熱循環ユニットU2が、浴槽33の湯水を補助加熱器28で加熱しながら風呂循環路36を通して循環させて、浴槽33に熱を供給するように構成されている。
又、熱回収ユニットU3が、湯水循環路16、湯水循環ポンプ17、風呂循環路36、風呂循環ポンプ37及び熱回収用熱交換器42等を備えて構成されている。
つまり、三方弁41を湯水が熱回収用熱交換器42を通って通流する状態(以下、熱交換状態と記載する場合がある)に切り換えた状態で、湯水循環ポンプ17を作動させて貯湯槽2の湯水を湯水循環路16を通して循環させ、並びに、風呂循環ポンプ37を作動させて、浴槽33の湯水を風呂循環路36を通して循環させることにより、熱回収用熱交換器42において貯湯槽2の湯水と浴槽33の湯水とを熱交換させて、浴槽33の湯水から貯湯槽2の湯水に熱を回収するように構成されている。
熱回収ユニットU3により回収される熱量を求めるための熱量関連情報を計測する回収熱量計測手段43が設けられている。
この回収熱量計測手段43は、戻り路36rにおける熱回収用熱交換器42よりも上流側に設けられた熱交換前温度センサ44、戻り路36rにおける熱回収用熱交換器42よりも下流側に設けられた熱交換後温度センサ45、及び、戻り路36rを通流する湯水の流量を検出する風呂循環流量センサ46を備えて構成されている。
そして、運転制御部5は、熱交換前温度センサ44、熱交換後温度センサ45及び風呂循環流量センサ46夫々の検出情報に基づいて、熱回収用熱交換器42において浴槽33の湯水から貯湯槽2の湯水に回収される熱量を求めるように構成されている。
つまり、熱回収ユニットU3により回収可能な熱量又はその熱量を求めるための熱量関連情報を取得する回収熱量取得手段が、回収熱量計測手段43にて構成されていることになる。
又、戻り路36rには、浴槽33の水位を検出する水位センサ47、及び、水流スイッチ48が設けられている。
更に、戻り路36r及び往き路36fの夫々には、流路内部の湯水の凍結を防止する凍結防止用の電気ヒータ49が設けられている。
補助加熱器28について、説明を加えると、図3に示すように、補助加熱器28は、給湯路27を通流する湯水及び熱源用循環路20を通流する熱源用湯水を加熱する給湯用加熱部28A、及び、風呂循環路36を通流する浴槽33の湯水を加熱する風呂用加熱部28Bを備えて構成され,この補助加熱器28の運転は運転制御部5により制御される。
給湯用加熱部28A及び風呂用加熱部28Bは同様の構成であり、熱交換器e、その熱交換器eを加熱するバーナb、そのバーナbに燃焼用空気を供給するファンf、熱交換器eに流入する湯水の流入温度を検出する流入温度センサ(図示省略)、熱交換器eから流出する湯水の流出温度を検出する流出温度センサ(図示省略)、熱交換器eに流入する湯水の流量を検出する流量センサ(図示省略)等を備えて構成されている。
ちなみに、給湯用加熱部28Aの熱交換器eは、給湯路27における熱源用循環路20との共用部分に設けられている。
運転制御部5による補助加熱器28の運転制御について簡単に説明する。
図2に示すように、コージェネレーションシステムには、メインリモコン50、及び、風呂リモコン51が設けられている。
メインリモコン50には、給湯栓に給湯する目標給湯温度を設定する給湯温度設定部(図示省略)等が設けられている。
又、風呂リモコン51には、浴槽33への湯張りを指令する湯張りスイッチ51a、浴槽33の追い焚きを指令する追焚スイッチ51b、オンされることにより浴槽33の使用が終了したことを示す風呂使用終了情報を入力する風呂使用終了スイッチ51c、浴槽33への目標湯張り温度を設定する湯張り温度設定部51d、浴槽33の目標水位を設定する水位設定部51e等が設けられている。
運転制御部5は、前記流量センサが設定流量以上の流量を検出している状態で、前記流入温度センサにて検出される流入温度が目標加熱温度未満になるとバーナbを燃焼させ、且つ、前記流出温度センサにて検出される流出温度が前記目標加熱温度になるようにバーナbの燃焼量を調節し、バーナbの燃焼中に前記流量センサの検出流量が前記設定流量未満になるとバーナbを消火させる。
ちなみに、給湯用加熱部28Aに対応する目標加熱温度は、熱消費端末3の運転が停止中のときは、メインリモコン50の給湯温度設定部にて設定される目標給湯温度に基づいて設定され、湯張りスイッチ51aにより湯張り運転が指令されたときは、風呂リモコン51の湯張り温度設定部51dにて設定される目標湯張り温度に基づいて設定され、熱消費端末3の運転中のときは、予め設定された所定の温度に設定される。
又、風呂用加熱部28Bに対応する目標加熱温度は、風呂リモコン51の湯張り温度設定部51dにて設定される目標湯張り温度に基づいて設定される。
図1及び図3に示すように、湯水循環路16における貯湯用熱交換器24よりも下流側の箇所に、貯湯用熱交換器24にて加熱されて貯湯槽2に供給される湯水の温度を検出する貯湯温度センサShが設けられている。
又、貯湯槽2には、その貯湯熱量の検出用として、貯湯槽2の上端の湯水の温度を検出する上端温度センサS1、貯湯槽2を上下方向に概ね三等分した等分部分の中層部における上端部分の湯水の温度を検出する中間上位温度センサS2、貯湯槽2の中層部における下端部分の湯水の温度を検出する中間下位温度センサS3、及び、貯湯槽2の下端の湯水の温度を検出する下端温度センサS4が設けられ、更に、給水路35には、貯湯槽2に供給される水の給水温度を検出する給水温度センサSiが設けられている。
運転制御部5による貯湯槽2の貯湯熱量の演算方法について、説明する。
上端温度センサS1、中間上位温度センサS2、中間下位温度センサS3、下端温度センサS4夫々にて検出される貯湯槽2の湯水の温度を、夫々、T1、T2、T3、T4とし、給水温度センサSiにて検出される給水温度をTiとし、上層部、中層部、下層部夫々の容量をV(リットル)とする。
又、前記上層部における重み係数をA1とし、前記中層部における重み係数をA2とし、前記下層部における重み係数をA3とすると、貯湯熱量(kcal)は、下記の式1にて演算することができる。尚、この実施形態では、熱量の単位をkcalの単位にて示す場合があるが、1kWh=860kcalの関係に基づいて860に設定される係数αにて各値を除することにより、kWhの単位として求めることができる。
貯湯熱量=(A1×T1+(1−A1)×T2−Ti)×V
+(A2×T2+(1−A2)×T3−Ti)×V
+(A3×T3+(1−A3)×T4−Ti)×V……………(式1)
重み係数A1、A2、A3は、貯湯槽2の各層における過去の温度分布データを考慮した経験値である。ここで、A1、A2、A3としては、例えば、A1=A2=0.2、A3=0.5である。A1=A2=0.2とは、上層部においては温度T2の影響が温度T1の影響よりも大きいことを示す。これは、上層部の8割の部分は温度T2に近く、2割の部分は温度T1に近いことを示す。これは、中層部においても同様である。下層部においては、温度T3とT4の影響が同じであることを示す。
次に、運転制御部5による貯湯ユニットU1の運転制御について説明する。
運転制御部5は、燃料電池1の運転中には冷却水循環ポンプ15を作動させる状態で、燃料電池1の運転を制御し、並びに、湯水循環ポンプ17、熱源用循環ポンプ21、端末用熱媒循環ポンプ23、分流弁30及び熱源用断続弁29夫々の作動を制御することによって、貯湯槽2内に湯水を貯湯する貯湯運転や、熱消費端末3に熱媒を供給する熱媒供給運転を行うように構成されている。
運転制御部5は、熱消費端末3用の端末用リモコン(図示省略)から運転の指令がされない状態では、貯湯運転を行い、その貯湯運転では、分流弁30を冷却水の全量を貯湯用熱交換器24側に通流させる状態に切り換え且つ熱源用断続弁29を閉弁した状態で、貯湯温度センサShの検出情報に基づいて、貯湯槽2に供給される湯水の温度が予め設定された目標貯湯温度(例えば60°C)になるように湯水循環量を調節すべく、湯水循環ポンプ17の作動を制御するように構成されている。
又、運転制御部5は、端末用リモコンから運転が指令されると、熱媒供給運転を行い、その熱媒供給運転では、熱源用断続弁29を開弁し、熱源用循環ポンプ21を予め設定された設定回転速度で作動させる状態で、熱消費端末3での端末負荷熱量に応じた量の冷却水を熱源用熱交換器25に通流させるように分流弁30を制御するように構成され、そのように熱媒供給運転を行う状態で、分流弁30が貯湯用熱交換器24側にも冷却水を通流させる状態に制御するときは、前述のように湯水循環ポンプ17の作動を制御して、熱媒供給運転に並行して貯湯運転を実行するように構成されている。
運転制御部5は、熱媒供給運転の実行中に端末用リモコンから運転の停止が指令されると、分流弁30を冷却水の全量を貯湯用熱交換器24側に通流させる状態に切り換えると共に、熱源用断続弁29を閉弁し、熱源用循環ポンプ21を停止させて、湯水循環ポンプ17を作動させることにより、熱媒供給運転から貯湯運転に切り換えるように構成されている。
尚、運転制御部5は、貯湯運転の実行中において、風呂リモコン51の風呂使用終了スイッチ51cがオン操作されて後述する熱回収運転を実行しているときは、三方弁41を熱交換状態に切り換え、熱回収運転を実行していないときは、三方弁41を湯水が熱回収用熱交換器42を迂回して通流する状態(以下、非熱交換状態と記載する場合がある)に切り換えるように構成されている。
そして、給湯路27を通して貯湯槽2の湯水が給湯先に給湯されるとき、及び、熱媒供給運転の実行中は、運転制御部5は、補助加熱器28の給湯用加熱部28Aに供給される湯水の温度が前記目標加熱温度よりも低いときは、給湯用加熱部28Aに供給される湯水を前記目標加熱温度に加熱して出湯すべく、バーナcへのガス燃料の供給量を調節することになる。
次に、運転制御部5による熱媒加熱ユニットU2及び熱回収ユニットU3の運転制御について説明する。
運転制御部5は、風呂リモコン51の湯張りスイッチ51aがオン操作されると湯張り運転を実行し、追焚スイッチ51bがオン操作されると追焚運転を実行し、風呂使用終了スイッチ51cがオン操作されると、熱回収ユニットU3を作動させる熱回収運転を実行する。
又、運転制御部5は、熱交換前温度センサ44の検出温度が予め設定された処理開始用設定温度以下になると、凍結防止運転を実行する。ちなみに、処理開始用設定温度は、例えば5℃に設定される。
先ず、湯張り運転について、説明を加える。
運転制御部5は、湯張り運転では、先ず、湯張り用断続弁38を開弁し、水位センサ47にて検出される水位が水位設定部51eで設定された目標水位に達すると湯張り用断続弁38を閉弁する。
続いて、風呂循環ポンプ37を作動させて、補助加熱器28の風呂用加熱部28Bにおける流入温度センサの検出温度を読み込み、その流入温度センサの検出温度が湯張り温度設定部51dにて設定された目標湯張り温度以上のときは、直ちに風呂循環ポンプ37を停止させて湯張り運転を終了し、流入温度センサの検出温度が目標湯張り温度よりも低いときは、補助加熱器28の風呂用加熱部28Bのバーナbを燃焼させると共に上述のようにバーナbの燃焼量を調整し、流入温度センサの検出温度が目標湯張り温度以上になると風呂循環ポンプ37を停止させて湯張り運転を終了する。
次に、追焚運転について、説明を加える。
運転制御部5は、追焚運転では、先ず、風呂循環ポンプ37を作動させて、水流スイッチ48がオンすると、補助加熱器28の風呂用加熱部28Bにおける流入温度センサの検出温度を読み込み、その流入温度センサの検出温度が湯張り温度設定部51dにて設定された目標湯張り温度以上のときは、直ちに風呂循環ポンプ37を停止させ、流入温度センサの検出温度が目標湯張り温度よりも低いときは、補助加熱器28の風呂用加熱部28Bのバーナbを燃焼させると共に上述のようにバーナbの燃焼量を調整し、流入温度センサの検出温度が目標湯張り温度以上になると風呂循環ポンプ37を停止させて、追焚運転を終了する。
次に、凍結防止運転について、説明を加える。
運転制御部5は、風呂循環ポンプ37を作動させて風呂循環路36を通して湯水を循環させることにより、風呂循環路36の湯水の凍結を防止する湯水循環型の凍結防止運転と、電気ヒータ49を作動させて風呂循環路36の湯水を加熱することにより、風呂循環路36の湯水の凍結を防止する湯水加熱型の凍結防止運転のいずれかを選択して実行可能に構成されている。
そして、運転制御部5は、熱交換前温度センサ44の検出温度が処理開始用設定温度以下になると、先ず、風呂循環ポンプ37を作動させ、そして、水流スイッチ48がオンすると浴槽33内に湯水が貯まっていることになるので、風呂循環ポンプ37の作動を継続して、湯水循環型の凍結防止運転を実行し、一方、水流スイッチ48がオンしないときは、浴槽33内に湯水が貯まっていないことになるので、直ちに風呂循環ポンプ37を停止させると共に電気ヒータ49を作動させて、湯水加熱型の凍結防止運転を実行する。
尚、運転制御部5は、湯水循環型の凍結防止運転を実行する場合は、熱交換前温度センサ44の検出温度が処理開始用設定温度以下である条件で、湯水循環型の凍結防止運転を凍結防止用周期で凍結防止用設定時間の間実行し、湯水加熱型の凍結防止運転を実行する場合は、熱交換前温度センサ44の検出温度が処理開始用設定温度以下になる度に、湯水加熱型の凍結防止運転を凍結防止用設定時間の間実行する。
ちなみに、凍結防止用周期は、例えば5分間に設定され、凍結防止用設定時間は、例えば1分間に設定される。
つまり、風呂循環ポンプ37及び電気ヒータ49の夫々が、熱媒循環経路Rの熱媒の凍結を防止する凍結防止手段Dに相当する。
次に、熱回収運転について、説明を加える。
運転制御部5は、風呂使用終了スイッチ51cがオン操作されると、熱回収ユニットU3(具体的には、熱回収用熱交換器42)において熱交換される風呂循環路36の湯水と貯湯槽2内の湯水との温度関係が、風呂循環路36の湯水の温度の方が高い条件で、補助加熱器28の風呂用加熱部28Bのバーナbを燃焼させない状態、即ち、風呂用加熱部28Bの加熱作動を停止した状態で、熱回収ユニットU3を作動させて、熱回収運転を実行するように構成されている。
ちなみに、風呂循環路36の湯水の温度として、熱交換前温度センサ44の検出温度を用い、貯湯槽2内の湯水の温度として、下端温度センサS4の検出温度を用いるように構成されている。
運転制御部5は、熱回収運転では、三方弁41を熱交換状態に切り換えると共に、風呂循環ポンプ37及び湯水循環ポンプ17を作動させる。
又、運転制御部5が、熱回収ユニットU3を作動させているときに、風呂循環路36の湯水の温度が処理開始用設定温度よりも処理回避用設定温度幅高い温度以下になると、熱回収ユニットU3を停止するように構成されている。
処理回避用設定温度幅は、処理を実行している時点から所定の設定時刻までの時間間隔に応じて、その時間間隔が長いほど大きくなるように設定されて、運転制御部5のメモリに記憶されている。
例えば、設定時刻は、気温が最低になると予想される時刻(例えば、午前6時)に設定される。又、処理回避用設定温度幅は、風呂循環路36からの自然放熱を考慮して、風呂循環路36の湯水が循環及び加熱されることなく設定時刻まで放置されて風呂循環路36の湯水の温度が低下しても、処理開始用設定温度までは低下しないように時間間隔に応じて設定される。
そして、運転制御部5は、処理回避用設定温度幅に関する記憶情報から、現時点と設定時刻までの時間間隔に対応する処理回避用設定温度幅を求めて、その求めた処理回避用設定温度幅を処理開始用設定温度に加えることにより、現時点と設定時刻までの時間間隔に応じた処理停止用設定温度を求め、熱交換前温度センサ44の検出温度が処理停止用設定温度よりも高いか否かにより、熱回収運転を継続可能か否かを判断することになる。
尚、風呂リモコン51の風呂使用終了スイッチ51cにより入力される風呂使用終了情報は、熱消費部Bでの熱消費が終了したことを示す熱消費終了情報に相当し、この風呂使用終了スイッチ51cは、熱消費終了情報を人為操作で入力する熱消費終了入力手段に相当することになる。
次に、運転制御部5による燃料電池1の運転の制御について説明する。
この運転制御部5は、時系列的な予測負荷電力データ及び時系列的な予測負荷熱量データを運転周期毎に区分けして管理し、且つ、運転周期の開始時点において、時系列的な予測負荷電力データ及び時系列的な予測負荷熱量データに基づいて、運転メリットが高くなるように当該運転周期における燃料電池1の運転条件を定めるように構成されている。
そして、本発明では、運転制御部5が、回収熱量計測手段43の計測情報に基づいて、熱回収ユニットU3により回収される時系列的な実回収熱量データを管理して、その管理している時系列的な実回収熱量データに基づいて熱回収ユニットU3により回収されると予測される時系列的な予測回収熱量データを運転周期毎に区分けして求めるように構成され、且つ、時系列的な予測負荷電力データ及び時系列的な予測負荷熱量データに加えて、時系列的な予測回収熱量データに基づいて、運転メリットが高くなるように燃料電池1の運転条件を定めるように構成されている。
この実施形態では、運転制御部5が、運転周期の全時間帯にわたって燃料電池1を運転する連続運転形態、運転周期の一部の時間帯で燃料電池1を運転する断続運転形態、及び、運転周期の全時間帯にわたって燃料電池1を停止する待機形態のうちから、時系列的な予測負荷電力データ、時系列的な予測負荷熱量データ及び時系列的な予測回収熱量データに基づいて求めた運転メリットが最も高いものを選定することにより、燃料電池1の運転条件を定めるように構成されている。
ここで、本実施形態では、運転周期は1日に設定され、その運転周期を構成する複数の単位時間が1時間に設定されている。又、運転制御部5は、運転メリットとして、燃料電池1を運転することにより得られると予測される予測エネルギ削減量を求めるように構成されている。
運転制御部5により時系列的な予測負荷電力データ、時系列的な予測負荷熱量データ及び時系列的な予測回収熱量データを求める処理について、説明を加える。ちなみに、負荷熱量データは、給湯先に湯水を給湯するときの給湯負荷熱量データと、熱消費端末3での端末負荷熱量データとからなる。
運転制御部5は、実負荷電力データ、実給湯負荷熱量データ、実端末負荷熱量データ及び実回収熱量データを運転周期及び単位時間に対応付けて運転制御部5のメモリに記憶することにより、過去の時系列的な負荷電力データ、過去の時系列的な負荷熱量データ及び過去の時系列的な回収熱量データを、設定期間(例えば、運転日前の4週間)にわたって、運転周期毎に単位時間毎に対応付けて管理するように構成されている。
ちなみに、実負荷電力は、負荷電力計測手段11の計測値及びインバータ6の出力値に基づいて計測され、実給湯負荷熱量は前記給湯負荷熱量計測手段31にて計測され、実端末負荷熱量は前記端末負荷熱量計測手段32にて計測され、実回収熱量は回収熱量計測手段43により計測される。
そして、運転制御部5は、運転周期の開始時点(例えば午前3時)において、時系列的な過去負荷電力データ、時系列的な過去負荷熱量データ及び時系列的な過去回収熱量データの管理データに基づいて、時系列に並ぶ複数(この実施形態では3回)の運転周期からなる運転条件設定対象期間の最初の運転周期の時系列的な予測負荷熱量データ、時系列的な予測負荷電力データ及び時系列的な予測回収熱量データ、並びに、運転条件設定対象期間のうちの最初の運転周期に後続する全ての運転周期の時系列的な予測負荷熱量データ及び時系列的な予測回収熱量データを単位時間毎に区分けして求めるように構成されている。ちなみに、時系列的な予測負荷熱量データは、時系列的な予測給湯負荷熱量データと時系列的な予測端末負荷熱量データとを加えたデータであるが、この実施形態においては、熱の負荷状態としては、熱消費端末3での端末負荷熱量が発生しておらず、給湯負荷熱量データのみが発生するとして説明する。
例えば、運転周期の開始時点において、図4に示すように、運転条件設定対象期間のうちの最初の運転周期の時系列的な予測負荷電力データ、時系列的な予測給湯負荷熱量データ及び時系列的な予測回収熱量データを単位時間毎に求め、運転条件設定対象期間のうちの最初の運転周期に後続する全ての運転周期(図4では、2回目の運転周期の一部についてのみ図示)の時系列的な予測給湯負荷熱量データ及び時系列的な予測回収熱量データを求める。ちなみに、予測負荷電力データの単位はkWhであり、予測給湯負荷熱量データ及び予測回収熱量データの単位はkcal/hである。
図4に示す結果では、最初の運転周期のうちの第21番目の単位時間、及び、2回目の運転周期のうちの第20番目の単位時間の夫々で、3000kcal/hの熱量が回収されると予測されている。
燃料電池1の運転形態について説明を加える。
連続運転形態は、運転周期の全時間帯にわたって燃料電池1の出力電力を実負荷電力に追従する電主出力に調整する運転形態である。
断続運転形態は、運転周期内のうちで時系列的な予測負荷電力データ、時系列的な予測負荷熱量データ及び時系列的な予測回収熱量データに基づいて求められる予測エネルギ削減量(運転メリットに相当する)が最大となる時間帯を運転時間帯として設定し、その設定した運転時間帯の開始時点で燃料電池1の運転を開始して運転中は燃料電池1の出力電力を実負荷電力に追従する電主出力に調整し、停止条件が満たされると燃料電池1の運転を停止する運転形態である。
断続運転形態には、更に、運転条件設定対象期間の最初の運転周期内の時間帯において燃料電池1を運転すると仮定したときに、最初の運転周期の時系列的な予測負荷電力データ、時系列的な予測負荷熱量データ及び時系列的な予測回収熱量データに基づいて求められる予測エネルギ削減量が最大になる時間帯に運転時間帯を定める単周期対応型の断続運転形態、及び、運転条件設定対象期間の最初の運転周期内の時間帯において燃料電池1を運転すると仮定したときに、最初の運転周期の時系列的な予測負荷電力データ、時系列的な予測負荷熱量データ及び時系列的な予測回収熱量データ並びに運転条件設定対象期間のうちの最初の運転周期に後続する運転周期の時系列的な予測負荷熱量データ及び時系列的な予測回収熱量データに基づいて求められる予測エネルギ削減量が最大となる時間帯に運転時間帯を設定する複数周期対応型の断続運転形態が含まれる。
そして、複数周期対応型の断続運転形態には、運転条件設定対象期間のうちの最初及び2回目の運転周期の時系列的な予測負荷熱量データ及び時系列的な予測回収熱量データに基づいて予測エネルギ削減量を求める2周期対応型、及び、運転条件設定対象期間の全ての運転周期の時系列的な予測負荷熱量データ及び時系列的な予測回収熱量データに基づいて予測エネルギ削減量を求める3周期対応型がある。
尚、この実施形態では、運転周期が1日に設定されるので、以下の説明では、単周期対応型、2周期対応型、3周期対応型の断続運転形態を、夫々、1日対応型、2日対応型、3日対応型の断続運転形態と記載する。
この実施形態では、前記停止条件が、実負荷電力に基づいて出力電力を調整する形態で燃料電池1を運転することにより発生した熱量が、時系列的な予測負荷電力に基づいて出力電力を調整する形態で燃料電池1を運転時間帯の間運転すると仮定したときに発生すると予測される熱量に達する条件に設定されている。
ところで、燃料電池1を停止させていても、例えば発電可能な状態に維持しておく等のために、エネルギ(電力)が消費されるものであり、運転周期内の全時間帯において燃料電池1を停止させているときにコージェネレーションシステムにて消費されるエネルギを待機時消費エネルギZとして、予め実験等により求めて、運転制御部5のメモリに記憶させてある。例えば、待機時消費エネルギZは、下記の式にて求められる。
Z=待機時の消費電力×待機時間/商用電源7の発電効率
連続運転形態の予測エネルギ削減量、断続運転形態の予測エネルギ削減量が、負の値として求められる場合がある。
そして、例えば、負の値として求められた連続運転形態の予測エネルギ削減量が、待機時消費エネルギZの負の値よりも大きい場合は、燃料電池1を連続運転形態で運転した方が運転を待機させるよりも省エネルギとなり、逆に、負の値として求められた連続運転形態の予測エネルギ削減量が、待機時消費エネルギZの負の値よりも小さい場合は、燃料電池1を連続運転形態にて運転するよりも運転を待機させる方が省エネルギとなる。
運転制御部5は、毎運転周期の開始時点において運転形態選定処理を実行し、その運転形態選定処理では、連続運転形態、1日対応型の断続運転形態、2日対応型の断続運転形態及び3日対応型の断続運転形態の夫々について予測エネルギ削減量を求めて、連続運転形態、1日対応型の断続運転形態、2日対応型の断続運転形態、3日対応型の断続運転形態及び待機形態のうちで、省エネルギの面で最も優れたものを燃料電池1の運転形態に定めるように構成されている。
つまり、運転制御部5は、上述のように求めた連続運転形態、1日対応型の断続運転形態、2日対応型の断続運転形態及び3日対応型の断続運転形態夫々の予測エネルギ削減量のうちの最大のものが待機時消費エネルギZの負の値よりも大きい場合は、それら連続運転形態、1日対応型の断続運転形態、2日対応型の断続運転形態及び3日対応型の断続運転形態のうちの予測エネルギ削減量が最大のものを燃料電池1の運転形態に定め、連続運転形態、1日対応型の断続運転形態、2日対応型の断続運転形態及び3日対応型の断続運転形態夫々の予測エネルギ削減量のうちの最大のものが待機時消費エネルギZの負の値以下の場合は、待機形態を燃料電池1の運転形態に定める。
次に、運転制御手段5により複数種の運転形態夫々についての予測エネルギ削減量を求める処理について、説明を加える。
各運転形態の予測エネルギ削減量は、下記の式2に示すように、燃料電池1を運転しない場合の予測エネルギ消費量から、燃料電池1を各運転形態にて運転した場合の予測エネルギ消費量を減じることにより演算する。
予測エネルギ削減量P=燃料電池1を運転しない場合の予測エネルギ消費量E1−燃料電池1を運転した場合の予測エネルギ消費量E2……………(式2)
燃料電池1を運転しない場合の予測エネルギ消費量E1(kWh)は、下記の式3に示すように、最初の運転周期の予測負荷電力の全てを商用電源7からの受電電力で補う場合の商用電源7における予測エネルギ消費量と、最初の運転周期の予測負荷熱量の全てを補助加熱器28の発生熱で補う場合の予測エネルギ消費量との和として求められる。
E1=予測負荷電力/商用電源発電効率+予測負荷熱量/補助加熱器熱効率……………(式3)
但し、
予測負荷熱量はkWhに変換した値である。
補助加熱器熱効率は、補助加熱器28の発熱効率であり、補助加熱器28における単位エネルギ消費量に対する発生熱量の比率である。
一方、燃料電池1を運転した場合の予測エネルギ消費量E2(kWh)は、下記の式4に示すように、最初の運転周期の予測負荷電力及び予測負荷熱量を燃料電池1の予測出力電力及び予測熱出力で補う場合の燃料電池1の消費エネルギである運転周期予測エネルギ消費量と、予測負荷電力から予測出力電力を差し引いた分に相当する予測不足電力量の全てを商用電源7からの受電電力で補う場合の商用電源7における予測エネルギ消費量と、予測不足熱量の全てを補助加熱器28の発生熱で補う場合の予測エネルギ消費量との和にて求められる。
E2=運転周期予測エネルギ消費量+予測不足電力量/商用電源発電効率+予測不足熱量/補助加熱器熱効率+起動時エネルギ消費量……………(式4)
上記式4の運転周期予測エネルギ消費量は、下記の式5にて、各運転形態において燃料電池1を運転する単位時間当たりの予測エネルギ消費量を求めて、その求めた単位時間当たりの予測エネルギ消費量を積算することにより求める。
予測エネルギ消費量=予測出力電力÷電池発電効率……………(式5)
但し、電池発電効率は、燃料電池1における単位エネルギ消費量(kWh)に対する出力電力(kWh)の比率を示し、出力電力に応じて設定されて運転制御部5のメモリに記憶されている。
上記式4の予測不足熱量は、予測不足熱量を求める対象の単位時間の予測給湯負荷熱量からその単位時間の直前の単位時間における貯湯槽2の予測貯湯熱量を減じることにより求められ、kWhの単位に変換される。
貯湯槽2の予測貯湯熱量は、貯湯槽2に湯水にて貯えられると予測される熱量であり、各単位時間の予測貯湯熱量(kcal/h)は、下記の式6、式7にて求められる。つまり、直前の単位時間の予測貯湯熱量に、予測貯湯熱量を求める単位時間の予測熱出力及び予測回収熱量を加えたものから、予測貯湯熱量を求める単位時間の予測給湯負荷熱量を減じることにより求める。但し、貯湯槽2からの放熱を考慮する。
尚、各式において、添え字「n」は、運転周期における単位時間の順序を示し、例えば、n=1のときは、運転周期の1番目の単位時間を示す。
但し、n=1のときの式6における予測貯湯熱量n-1としての予測貯湯熱量0は、運転周期の開始時点の予測貯湯熱量であり、上記の式1に基づいて求められた値とされる。
予測貯湯熱量n=(予測貯湯熱量n-1−予測給湯負荷熱量n+予測熱出力n+予測回収熱量n)×(1−槽放熱率)……………(式6)
予測熱出力n=α×{(予測出力電力n÷電池発電効率)×電池熱効率}+余剰電力×α×β−ベース放熱量……………(式7)
但し、
上記式6の槽放熱率は、貯湯槽2からの放熱率であり、例えば、0.012に予め設定されて、運転制御部5のメモリに記憶されている。
上記式7の電池熱効率は、燃料電池1における単位エネルギ消費量(kWh)に対する発生熱量(kWh)の比率を示し、出力電力に応じて設定されて運転制御部5のメモリに記憶されている。
ベース放熱量は、このコージェネレーションシステムにおいて、燃料電池1の発生熱量のうち、貯湯槽2への貯湯及び熱消費端末3による暖房に用いられることなく放熱される熱量であり、予め設定されている。
余剰電力は、予測出力電力が予測負荷電力よりも大きい場合に、予測出力電力から予測負荷電力を減じることにより求められる。
例えば、予測負荷電力が燃料電池1の出力電力調整範囲における最小出力よりも小さいときは、余剰電力は、燃料電池1の最小出力から予測負荷電力を減じることにより求められる。
αは、上述したように860に設定される係数である。
βは、電気ヒータ12にて余剰電力(kWh)を熱(kWh)に変換するときの効率であるヒータ効率であり、予め設定されている。
上記式4の起動時エネルギ消費量は、燃料電池1を構成する改質器、変成器等を夫々における処理が可能なように設定された温度にウオームアップするのに要するエネルギを含むものであり、予め、実験等により求められて運転制御部5のメモリに記憶されている。
以下、運転制御部5により予測エネルギ削減量を求める処理について、運転形態毎に説明を加える。
連続運転形態の予測エネルギ削減量Pc1は、以下のようにして求める。
即ち、式3により、燃料電池1を運転しない場合の予測エネルギ消費量E1を求め、式4により、起動時エネルギ消費量を消費しない(即ち、起動時エネルギ消費量=0)として、燃料電池1を運転した場合の予測エネルギ消費量E2を求めて、それらE1、E2により、式2により、予測エネルギ削減量Pc1を求める。
尚、各単位時間の予測エネルギ消費量を式5により予測出力電力を電主出力として求め、求めた各単位時間の予測エネルギ消費量を積算することにより、運転周期予測エネルギ消費量を求める。そして、そのように求めた運転周期予測エネルギ消費量に基づいて、式4により、燃料電池1を運転した場合の予測エネルギ消費量E2を求める。
1日対応型の断続運転形態の予測エネルギ削減量Pi1は、以下のようにして求める。
即ち、運転周期の複数の単位時間のうちで、選択した1つ又は連続する複数の単位時間を運転時間帯を構成する単位時間とし且つ運転周期の残りの単位時間を燃料電池1を停止する停止時間帯を構成する単位時間とする形態で、運転時間帯を構成する単位時間として選択する単位時間を異ならせることにより、全ての仮運転パターンが形成され、その全ての仮運転パターンのうち、運転周期の全単位時間を運転時間帯とするパターンを除いた全ての仮運転パターンが1日対応型断続運転用の仮運転パターンとして運転制御部5のメモリに記憶されている。
即ち、第1番目の単位時間から運転を開始させるパターンとして、第1番目の単位時間を運転時間帯とするパターン、第1、第2番目の単位時間を運転時間帯とするパターン、第1〜第3番目の単位時間を運転時間帯とするパターン・・・第1〜第23番目の単位時間を運転時間帯とするパターンの23種類がある。また、第2番目の単位時間から運転開始させるパターンとして、この第2番目の単位時間を運転時間帯とするパターン、第2、第3番目の単位時間を運転時間帯とするパターン・・・第2〜第24番目の単位時間を運転時間帯とするパターンの23種類がある。このように、運転周期の最後の第24番目の単位時間を運転時間帯とするパターンまで、1日対応型断続運転用の仮運転パターンは、299種類のものがある。
全ての1日対応型断続運転用の仮運転パターンの夫々について、各仮運転パターンにて設定されている運転時間帯において出力電力を電主出力に調節する状態で燃料電池1を運転すると仮定して、式3により、燃料電池1を運転しない場合の予測エネルギ消費量E1を求め、式4により、燃料電池1を運転した場合の予測エネルギ消費量E2を求めて、それらE1、E2により、式2により、予測エネルギ削減量Pを求める。更に、最初の運転周期の各単位時間について、予測熱出力、予測貯湯熱量を求める。
但し、式4により燃料電池1を運転した場合の予測エネルギ消費量E2に当たっては、運転周期の開始時点において燃料電池1が停止中のときは、全ての仮運転パターンについて、起動時エネルギ消費量を消費するとして予測エネルギ消費量E2を求め、運転周期の開始時点において燃料電池1が運転中のときは、運転周期の開始時点から始まる運転時間帯の仮運転パターンについては起動時エネルギ消費量を消費しない(即ち、起動時エネルギ消費量=0)として予測エネルギ消費量E2を求め、運転周期の開始時点から間隔をあけて始まる運転時間帯の運転パターンについては起動時エネルギ消費量を消費するとして予測エネルギ消費量E2を求める。
又、運転時間帯に含まれる単位時間の予測エネルギ消費量は、式5により予測出力電力を電主出力として求め、運転時間帯に含まれない単位時間の予測エネルギ消費量は0として、各単位時間の予測エネルギ消費量を積算することにより、運転周期予測エネルギ消費量を求める。
又、運転時間帯に含まれない単位時間の予測熱出力は0になり、運転時間帯に含まれない単位時間の予測貯湯熱量は、式6により予測熱出力nを0として求める。
そして、全ての1日対応型断続運転用の仮運転パターンのうち、予測エネルギ削減量が最大の仮運転パターンを求めて、その仮運転パターンを1日対応型の断続運転形態の運転パターンに設定し、その仮運転パターンの予測エネルギ削減量を1日対応型の断続運転形態の予測エネルギ削減量Pi1として求める。
2日対応型の負荷追従断続運転形態の予測エネルギ削減量は、以下のようにして求める。
即ち、全ての1日対応型断続運転用の仮運転パターンに運転周期の全ての単位時間を運転時間帯とする仮運転パターンを加えた全ての仮運転パターンのうち、上述のように運転時間帯において出力電力を電主出力に調節したときに最初の運転周期における最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンを2日対応型の仮運転パターンとして選択する。
そして、2日対応型の仮運転パターンの全てについて、最初の運転周期の最終の単位時間の予測貯湯熱量が2回目の運転周期の予測給湯負荷熱量として利用されたとして、2回目の運転周期の複数の単位時間夫々について、予測貯湯熱量及び予測給湯負荷熱量として利用される予測利用熱量を求める。
各単位時間の予測貯湯熱量は、前記式6により、予測熱出力nを0として求める。
又、各単位時間の予測利用熱量は、下記の式8〜式10により求める。
予測貯湯熱量n-1≧予測給湯負荷熱量nのときは、
予測利用熱量n=予測給湯負荷熱量n……………(式8)
予測貯湯熱量n-1<予測給湯負荷熱量nのときは、
予測利用熱量n=予測貯湯熱量n-1……………(式9)
予測貯湯熱量n-1=0のときは、
予測利用熱量n=0……………(式10)
2日対応型の仮運転パターンの夫々について、上述のように求めた1日対応型の断続運転形態の予測エネルギ削減量に、2回目の運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合の予測エネルギ消費量(予測利用熱量の合計/補助加熱器熱効率)を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量を2で割って1運転周期(1日)当たりのエネルギ削減量としたものを、2日対応型の仮運転パターンの予測エネルギ削減量とする。
そして、全ての2日対応型の仮運転パターンのうちで予測エネルギ削減量が最大の2日対応型の仮運転パターンを、2日対応型の断続運転形態の運転パターンに設定し、その2日対応型の仮運転パターンの予測エネルギ削減量を2日対応型の断続運転形態の予測エネルギ削減量Pi2として求める。
図4に、5番目から23番目までの単位時間を運転時間帯とする仮運転パターンを例にして、1日対応型断続運転用の仮運転パターンを用いて1日対応型の断続運転の予測エネルギ削減量を求めるときに、最初の運転周期の各単位時間について、予測熱出力及び予測貯湯熱量を求めた結果、並びに、2日対応型の断続運転の予測エネルギ削減量を求めるときに、2回目の運転周期の各単位時間について、予測貯湯熱量及び予測利用熱量を求めた結果を示す。
但し、図4における運転周期が「最初」の欄の部分(即ち、図4における上側の表の部分)が、1日対応型の断続運転の予測エネルギ削減量を求めるときの予測熱出力及び予測貯湯熱量の演算結果を示す。又、図4における運転周期が「2回目」の欄の部分(即ち、図3における下側の表の部分)が、2日対応型の断続運転の予測エネルギ削減量を求めるときの予測貯湯熱量及び予測利用熱量の演算結果を示す。
3日対応型の断続運転形態の予測エネルギ削減量Pi3は、以下のようにして求める。
即ち、全ての2日対応型の仮運転パターンのうち、2回目の運転周期における最終の単位時間の予測貯湯熱量が0よりも大きい仮運転パターンを3日対応型の仮運転パターンとして選択し、3日対応型の仮運転パターンの全てについて、2回目の運転周期の最終の単位時間の予測貯湯熱量が3回目の運転周期の予測給湯負荷熱量として利用されたとして、上述した2回目の運転周期におけるのと同様に、3回目の運転周期の複数の単位時間夫々について、予測貯湯熱量及び予測利用熱量を求める。
3日対応型の仮運転パターンの夫々について、上述のように求めた1日対応型の断続運転形態の予測エネルギ削減量に、2回目及び3回目の運転周期における予測利用熱量(kWhに変換したもの)の合計を補助加熱器28の発生熱で補う場合の予測エネルギ消費量(予測利用熱量の合計/補助加熱器熱効率)を加えることにより予測エネルギ削減量を求め、その求めた予測エネルギ削減量を3で割って1運転周期(1日)当たりのエネルギ削減量としたものを、3日対応型の仮運転パターンの予測エネルギ削減量とする。
そして、全ての3日対応型の仮運転パターンのうちで予測エネルギ削減量が最大の3日対応型の仮運転パターンを、3日対応型の断続運転形態の運転パターンに設定し、その3日対応型の仮運転パターンの予測エネルギ削減量を3日対応型の断続運転形態の予測エネルギ削減量Pi3として求める。
前記停止条件について、説明を加える。
運転制御部5は、出力電力を予測負荷電力に調整する形態で運転時間帯の間燃料電池1を運転すると仮定して、上記式7により単位時間毎に予測熱出力を求めると共に、求めた単位時間毎の予測熱出力を積算することにより、目標発生熱量を求める。
又、運転制御部5は、運転時間帯の開始時点から、出力電力を実負荷電力に追従する電主出力に調整する形態で燃料電池1を運転して、単位時間毎に下記の式11により実熱出力を求めると共に、求めた単位時間毎の実熱出力を積算することにより、積算実発生熱量を求める。
実熱出力=α×{(電主出力÷電池発電効率)×電池熱効率}+余剰電力×α×β−ベース放熱量……………(式11)
そして、運転制御部5は、燃料電池1の運転中、積算実発生熱量と目標発生熱量とを比較して、積算実発生熱量が目標発生熱量以上になると停止条件が満たされたとして、燃料電池1を停止させる。
以下、図5及び図6に示すフローチャートに基づいて、運転制御部5の制御動作を説明する。
先ず、図5に基づいて、運転形態設定処理における制御動作を説明する。
運転制御部5は、運転周期の開始時点(例えば、午前3時)になると、予測負荷データ演算処理を実行して、時系列的な予測負荷電力データ、時系列的な予測負荷熱量データ、及び、時系列的な予測回収熱量データを求め、続いて、予測エネルギ削減量演算処理を実行して、連続運転形態の予測エネルギ削減量Pc、1日対応型の断続運転形態の予測エネルギ削減量Pi1、2日対応型の断続運転形態の予測エネルギ削減量Pi2及び3日対応型の断続運転形態の予測エネルギ削減量Pi3を求める(ステップ#1〜3)。
続いて、ステップ#4にて、1日対応型の断続運転形態の予測エネルギ削減量Pi1、2日対応型の断続運転形態の予測エネルギ削減量Pi2及び3日対応型の断続運転形態の予測エネルギ削減量Pi3のうち最大のものを断続運転形態の予測エネルギ削減量Piとする。
続いて、ステップ#5にて、連続運転形態の予測エネルギ削減量Pcと断続運転形態の予測エネルギ削減量Piとのうち大きい方が待機時消費エネルギZの負の値「−Z」よりも大きいか否かを判別し、大きいときは(ステップ#5:Yes)、ステップ#7に進み、大きくないときは(ステップ#5:No)、燃料電池1の運転形態を待機形態に設定する(ステップ#6)。
ステップ#7では、連続運転形態の予測エネルギ削減量Pcと断続運転形態の予測エネルギ削減量Piとを比較して、Pc≧Piの場合は(ステップ#7:Yes)、ステップ#8にて、燃料電池1の運転形態を連続運転形態に設定する。
ステップ#7にて、Pc≧Piでないと判断した場合は(ステップ#7:No)、ステップ#9にて、熱負荷賄い率U/Lを求め、ステップ#10では、その求めた熱負荷賄い率U/Lと設定値Kとを比較して、熱負荷賄い率U/Lが設定値Kよりも大きい場合は(ステップ#10:Yes)、ステップ#6にて、燃料電池1の運転形態を待機形態に設定し、熱負荷賄い率U/Lが設定値K以下の場合は(ステップ#10:No)、ステップ#11にて、燃料電池1の運転形態を予測エネルギ削減量が最大の断続運転形態に設定する。
ちなみに、熱負荷賄い率U/LのLは、最初の運転周期の各単位時間の予測給湯負荷熱量を合計することにより求めた運転周期の予測給湯負荷熱量である。
又、熱負荷賄い率U/LのUは、燃料電池1の予測出力熱量を0として、最初の運転周期の予測給湯負荷熱量のうち、最初の運転周期の開始時点における貯湯熱量にて賄えると予測される運転周期の予測利用熱量である。
即ち、最初の運転周期の開始時点における貯湯熱量がその運転周期の予測給湯負荷熱量として利用されるとして、その運転周期の複数の単位時間夫々について、予測貯湯熱量及び予測利用熱量を求め、各単位時間の予測利用熱量を合計することにより、運転周期の予測利用熱量Uを求めることになる。
尚、前記設定値Kは、例えば、0.4に設定する。
そして、運転制御手段5は、運転形態選定処理にて定めた運転形態にて燃料電池1を運転する。
燃料電池1の運転形態を待機形態に定めたときは、運転周期の全時間帯にわたって燃料電池1を停止させる。
又、燃料電池1の運転形態を連続運転形態に定めたときは、運転周期の全時間帯にわたって、燃料電池1の出力電力を実負荷電力に追従させる実負荷電力追従運転を実行する。
その実負荷電力追従運転では、1分等の比較的短い所定の出力調整周期毎に実負荷電力を求め、最小出力から最大出力の範囲内で、連続的に実負荷電力に追従する電主出力を決定し、燃料電池1の出力電力をその決定した電主出力に調整する形態で運転する。
尚、実負荷電力は、負荷電力計測手段11の計測値及びインバータ6の出力値に基づいて計測し、更に、その実負荷電力は、前の出力調整周期において所定のサンプリング時間(例えば5秒)でサンプリングしたデータの平均値として求められる。
燃料電池1の運転形態を断続運転形態に定めたときは、運転形態選定処理にて設定した運転時間帯の開始時点になると、実負荷電力追従運転を開始し、その実負荷電力追従運転の実行中は、積算実発生熱量が目標発生熱量以上か否かを判断することにより停止条件が満たされるか否かを判断して、次の運転周期の開始時点になるまでに停止条件が満たされると燃料電池1を停止し、停止条件が満たされないまま次の運転周期の開始時点になると、運転形態選定処理を実行する。
つまり、運転周期の開始時点になる毎に運転形態選定処理を実行し、その運転形態選定処理では、上述のように、熱負荷賄い率U/Lが設定値Kよりも大きい場合は、燃料電池1の運転形態が待機形態に設定される。
従って、先の運転形態選定処理にて燃料電池1の運転形態を2日対応型又は3日対応型の断続運転形態に設定して、今回の運転形態選定処理を行う時点が2日対応型又は3日対応型の断続運転形態における2回目の運転周期の開始時点に相当するときに、その運転形態選定処理にて前述のように待機形態に設定されると、その運転周期の全時間帯にわたって燃料電池1が停止されることになり、2日対応型又は3日対応型の断続運転形態が継続される。
又、2日対応型又は3日対応型の断続運転形態においてその1回目の運転周期における実際の給湯負荷熱量が予測給湯負荷熱量よりも多くなって、又は、3日対応型の断続運転形態においてその2回目の運転周期における実際の給湯負荷熱量が予測給湯負荷熱量よりも多くなって、熱負荷賄い率U/Lが設定値K以下になると、新たに、燃料電池1の運転形態が1日対応型、2日対応型、3日対応型の断続運転形態のうちの予測エネルギ削減量が最大の断続運転形態に定められることになる。
次に、図6に基づいて、熱回収運転における制御動作を説明する。
運転制御部5は、風呂使用終了スイッチ51cがオン操作されると(ステップ#21:Yes)、風呂循環ポンプ37を作動させて、水流スイッチ48がオンであり(ステップ#23:Yes)、熱交換前温度センサ44の検出温度Tbが下端温度センサS4の検出温度T4よりも高く(ステップ#24:Yes)、しかも、熱交換前温度センサ44の検出温度Tbが現時点と設定時刻までの時間間隔に応じて求めた処理停止用設定温度Tsよりも高い場合は(ステップ#25:Yes)、熱回収運転の実行が可能であるので、熱回収運転を実行するための次のステップ#26に進む。
一方、水流スイッチ48がオフの場合(ステップ#23:No)、水流スイッチ48がオンでも、熱交換前温度センサ44の検出温度Tbが下端温度センサS4の検出温度T4以下の場合(ステップ#24:No)、及び、水流スイッチ48がオンで、熱交換前温度センサ44の検出温度Tbが下端温度センサS4の検出温度T4よりも高くても、熱交換前温度センサ44の検出温度Tbが現時点と設定時刻までの時間間隔に応じて求めた処理停止用設定温度Ts以下の場合は(ステップ#25:No)、熱回収運転の実行が不可能であるので、リターンする。
ステップ#26では、三方弁41を熱交換状態に切り換えて、熱回収運転を開始する。但し、ステップ#27で、貯湯運転が実行中か否かを判断して、実行中でない場合は、ステップ#28で湯水循環ポンプ17を作動させる。
以降、熱交換前温度センサ44の検出温度Tbが下端温度センサS4の検出温度T4よりも高く、且つ、熱交換前温度センサ44の検出温度Tbが現時点と設定時刻までの時間間隔に応じて求めた処理停止用設定温度Tsよりも高い状態(ステップ#29:Yes、ステップ#30:Yes)が満たされる間は、熱回収運転を継続する。
一方、熱交換前温度センサ44の検出温度Tbが下端温度センサS4の検出温度T4以下になるか(ステップ#29:No)、あるいは、熱交換前温度センサ44の検出温度Tbが下端温度センサS4の検出温度T4よりも高くても、熱交換前温度センサ44の検出温度Tbが現時点と設定時刻までの時間間隔に応じて求めた処理停止用設定温度Ts以下になると(ステップ#30:No)、風呂循環ポンプ37を停止させ、三方弁41を非熱交換状態に切り換えて(ステップ#31,32)、熱回収運転を終了し、更に、現時点が貯湯運転を実行すべき状態であるか否かを判断して(ステップ#33)、実行すべき状態でない場合は(ステップ#33:No)、湯水循環ポンプ17も停止させて(ステップ#34)、リターンする。
〔別実施形態〕
次に別実施形態を説明する。
(イ) 熱媒加熱循環ユニットU2の具体構成は、上記の実施形態において説明した構成に限定されるものではない。
例えば、上記の実施形態で説明したコージェネレーションシステムの構成において、熱消費端末3を熱消費部Bとして適用して、熱媒加熱循環ユニットU2を、熱消費端末3を経由する熱媒循環経路Rとしての端末用熱媒循環路22と、その端末用熱媒循環路22を通して熱媒を循環させる端末用熱媒循環ポンプ23と、端末用熱媒循環路22を通流する熱媒を加熱する加熱手段とを備えて構成しても良い。つまり、熱消費部Bとして、床暖房装置や浴室暖房乾燥装置を適用することになる。この場合、加熱手段としては、上記の実施形態と同様の構成であっても良いし、端末用熱媒循環路22を通流する熱媒を直接加熱するように熱源機を設けても良い。
又、上記の実施形態のように、熱消費部Bとして浴槽33を適用する場合、風呂用循環路36を通流する浴槽33の湯水を、補助加熱器28のみならず、貯湯槽2の湯水により加熱するように構成しても良い。
又、熱媒加熱循環ユニットU2を、貯湯槽2の湯水を熱媒循環経路Rを通して熱消費部Bに循環供給するように構成して、熱媒循環経路Rを通流する熱媒を加熱する加熱手段を省略しても良い。
更に、貯湯槽2の底部から取り出した湯水を燃料電池1を通過させたのち貯湯槽2の頂部に戻す電池経由湯水循環路と、その電池経由湯水循環路を通して貯湯槽2の湯水を循環させる電池経由循環ポンプを設けて、これら電池経由湯水循環路及び電池経由循環ポンプ等を備えて貯湯ユニットU1を構成する。
そして、熱回収ユニットU3を、熱媒循還経路Rの熱媒と前記電池経由湯水循環路における燃料電池1よりも上流側の部分を通流する湯水とを熱交換するように構成しても良い。
(ロ) 上記の実施形態では、熱回収ユニットU3を構成するに、熱媒循環経路Rの熱媒と貯湯槽2内の湯水とを熱交換させるように構成したが、熱媒循環経路Rの熱媒と外部から貯湯槽2に供給される水(上記の実施形態では、給水路35を通流する水)とを熱交換させるように構成しても良い。
この場合は、熱回収ユニットU3において熱交換される熱媒循環経路Rの熱媒と外部から貯湯槽2に供給される水との温度関係が、熱媒循環経路Rの熱媒の温度の方が高い条件で、熱回収ユニットU3を作動させるように構成することになる。
(ハ) 熱消費終了入力手段の具体構成は、上記の実施形態において説明した構成、即ち、熱消費終了情報としての風呂使用終了情報を人為操作で入力する風呂使用終了スイッチ51cに限定されるものではなく、熱消費終了情報が自動的に入力される構成としても良い。
例えば、床暖房装置や浴室暖房乾燥装置等の熱媒加熱循環ユニットU2の運転をタイムアップすると自動的に停止するタイマー手段が設けられる場合、タイムアップすることが熱消費終了情報が入力されることに相当するようにして、タイマー手段を熱消費終了入力手段として機能させるようにしても良い。
(ニ) 回収熱量計測手段43の具体構成は、上記の実施形態の構成、即ち、熱交換前温度センサ44、熱交換後温度センサ45及び風呂循環流量センサ46を備えた構成に限定されるものではない。
例えば、水位センサ47と熱交換前温度センサ44を備えて構成して、水位センサ47にて検出される水位、及び、熱交換前温度センサ44にて検出される浴槽33の湯水の温度を熱回収手段U3により回収される熱量を求めるための熱量関連情報として計測する構成でも良い。ちなみに、水位センサ47にて検出される水位に基づいて浴槽33の湯水の量を求め、その湯水の量と熱交換前温度センサ44の検出温度に基づいて、熱回収手段U3により回収される熱量を求めることになる。
(ホ) 上記の実施形態では、処理回避用設定温度幅を、設定時刻までの時間間隔に応じてその時間間隔が長いほど大きくなるように設定したが、所定の一定の値に設定しても良い。
(ヘ) 湯水循環型の凍結防止運転において、補助加熱器28の風呂用加熱部28Bを加熱作動させて、補助加熱器28の風呂用加熱部28Bにて加熱しながら風呂循環路36を通して熱媒を循環させることにより、熱媒の凍結を防止するように構成して、凍結防止手段Dを風呂循環ポンプ37及び補助加熱器28により構成しても良い。
(ト) 回収熱量取得手段の具体構成は、上記の実施形態において例示した回収熱量計測手段43に限定されるものではなく、例えば、熱媒循還経路Rの熱媒が保有している熱量を求めると共に、その求めた熱量から熱回収ユニットU3により回収可能な熱量を求めるように構成しても良い。ちなみに、熱媒循還経路Rに貯められる熱媒の容量は予め分かるので、熱媒循還経路Rの熱媒の温度を計測して、この計測温度と予め分かっている熱媒の容量とにより、熱媒循還経路Rの熱媒が保有している熱量を求めることができる。
この場合は、熱媒循還経路Rの熱媒から実際に熱量が回収されるか否かに拘わらず、熱媒循還経路Rの熱媒から回収可能な熱量を用いて、予測回収熱量データが求められるので、熱媒循還経路Rの熱媒が保有している熱をより一層有効利用することができる。
(チ) 熱消費部Bとして熱消費端末3を適用し、熱媒循環経路Rの熱媒として不凍液を用いる場合、凍結防止手段Dが不要となる。
従って、この場合は、熱回収ユニットU3において熱交換される熱媒循環経路Rの熱媒と貯湯槽2内の湯水又は外部から貯湯槽2に供給される水との温度関係が互いに等しくなるまで、熱回収ユニットU3を作動させることができる。
(リ) 運転メリットとしては、上記の実施形態で説明したエネルギ削減量に限定されるものではなく、燃料電池1を運転することによる予測エネルギコスト削減額、又は、燃料電池1を運転することによる予測二酸化炭素削減量等を用いることができる。
ちなみに、予測エネルギコスト削減額は、燃料電池1を運転させない場合のエネルギコストから、燃料電池1を運転したときのエネルギコストを減じて求めることができる。
燃料電池1を運転させない場合のエネルギコストは、予測負荷電力の全てを商用電源7から買電するときのコストと、予測負荷熱量の全てを補助加熱器28で賄うときのエネルギコスト(燃料コスト)の和として求められる。
一方、燃料電池1を運転したときのエネルギコストは、予測負荷電力及び予測負荷熱量を燃料電池1の予測発電電力及び予測発生熱で補う場合の燃料電池1のエネルギコスト(燃料コスト)と、予測不足電力量を商用電源7から買電するときのコストと、予測不足熱量を補助加熱器28の発生熱で補う場合のエネルギコスト(燃料コスト)との和として求められる。
又、予測二酸化炭素削減量は、燃料電池1を運転させない場合の二酸化炭素発生量から、燃料電池1を運転したときの二酸化炭素発生量を減じて求めることができる。
前記燃料電池1を運転させない場合の二酸化炭素発生量は、予測負荷電力の全てを商用電源7から買電するときの二酸化炭素発生量と、予測負荷熱量の全てを補助加熱器28で賄うときの二酸化炭素発生量との和として求められる。
一方、燃料電池1を運転したときの二酸化炭素発生量は、予測負荷電力及び予測負荷熱量を燃料電池1の予測発電電力及び予測発生熱で補う場合の燃料電池1からの二酸化炭素発生量と、予測不足電力量を商用電源7から買電するときの二酸化炭素発生量と、予測不足熱量を補助加熱器28の発生熱で補う場合の二酸化炭素発生量との和として求められる。
(ヌ) 燃料電池1の運転条件の定め方は、上記の実施形態において説明した定め方、即ち、連続運転形態、断続運転形態及び待機形態のうち、運転メリットが高いものを選定することにより運転条件を定める定め方に限定されるものではない。
例えば、連続運転形態、断続運転形態及び待機形態のうちのいずれか2つのうちから運転メリットが高いものを選定することにより運転条件を定めるように構成しても良い。
あるいは、断続運転形態のみを実行する場合、運転周期のうちで運転メリットが優れた時間帯を運転時間帯に設定することにより運転条件を定めるように構成しても良い。
(ル) 熱電併給装置として、上記の実施形態では、燃料電池1を適用したが、これ以外に、エンジンにより発電機を駆動するように構成したもの等、種々のものを適用することができる。
以上説明したように、熱媒循環経路の熱媒から貯湯槽の湯水に熱を回収した場合でも、熱の過不足を抑制するように熱電併給装置を運転し得るコージェネレーションシステムを提供することができる。
1 熱電併給装置
2 貯湯槽
5 運転制御手段
33 浴槽
43 回収熱量計測手段、回収熱量取得手段
51c 熱消費終了入力手段
B 熱消費部
D 凍結防止手段
R 熱媒循環経路
U1 貯湯手段
U2 熱媒加熱循環手段
U3 熱回収手段

Claims (8)

  1. 電力と熱とを併せて発生する熱電併給装置と、その熱電併給装置にて発生する熱により貯湯槽に貯湯する貯湯手段と、運転を制御する運転制御手段とが設けられ、
    前記運転制御手段が、時系列的な予測負荷電力データ及び時系列的な予測負荷熱量データを運転周期毎に区分けして管理し、且つ、運転周期の開始時点において、前記時系列的な予測負荷電力データ及び前記時系列的な予測負荷熱量データに基づいて、運転メリットが高くなるように当該運転周期における前記熱電併給装置の運転条件を定めるように構成されたコージェネレーションシステムであって、
    熱を供給するための熱媒を熱消費部を経由する熱媒循環経路を通して循環させて、前記熱消費部に熱を供給することができる熱媒加熱循環手段と、前記熱媒循環経路の熱媒と前記貯湯槽内の湯水又は外部から前記貯湯槽に供給される水とを熱交換させて前記熱媒循環経路の熱媒から前記貯湯槽の湯水に熱を回収することができる熱回収手段と、その熱回収手段により回収可能な熱量又はその熱量を求めるための熱量関連情報を取得する回収熱量取得手段とが設けられ、
    前記運転制御手段が、
    前記回収熱量取得手段の取得情報に基づいて、前記熱回収手段により回収可能な時系列的な実回収熱量データを管理して、その管理している時系列的な実回収熱量データに基づいて前記熱回収手段により回収されると予測される時系列的な予測回収熱量データを運転周期毎に区分けして求めるように構成され、且つ、
    前記時系列的な予測負荷電力データ及び前記時系列的な予測負荷熱量データに加えて、前記時系列的な予測回収熱量データに基づいて、運転メリットが高くなるように前記運転条件を定めるように構成されているコージェネレーションシステム。
  2. 前記熱消費部での熱消費が終了したことを示す熱消費終了情報を人為操作で入力する熱消費終了入力手段が設けられ、
    前記運転制御手段が、前記熱消費終了入力手段により前記熱消費終了情報が入力されると、前記熱回収手段を作動させるように構成されている請求項1に記載のコージェネレーションシステム。
  3. 前記運転制御手段が、前記熱回収手段において熱交換される前記熱媒循環経路の熱媒と前記貯湯槽内の湯水又は外部から前記貯湯槽に供給される水との温度関係が、前記熱媒循環経路の熱媒の温度の方が高い条件で、前記熱回収手段を作動させるように構成されている請求項2に記載のコージェネレーションシステム。
  4. 前記熱媒循環経路の熱媒の凍結を防止する凍結防止手段が設けられ、
    前記運転制御手段が、
    前記熱媒循環経路の熱媒の温度が処理開始用設定温度以下になると、前記凍結防止手段を作動させるように構成され、且つ、
    前記熱回収手段を作動させているときに、前記熱媒循環経路の熱媒の温度が前記処理開始用設定温度よりも処理回避用設定温度幅高い温度以下になると、前記熱回収手段を停止するように構成されている請求項3に記載のコージェネレーションシステム。
  5. 前記熱媒加熱循環手段が、前記熱消費部としての浴槽の湯水を熱媒として前記熱媒循環経路を通して循環させるように構成されている請求項1〜4のいずれか1項に記載のコージェネレーションシステム。
  6. 前記熱媒加熱循環手段が、前記熱消費部としての熱消費端末を経由して前記熱媒循環経路を通して熱媒を循環させるように構成されている請求項1〜4のいずれか1項に記載のコージェネレーションシステム。
  7. 前記回収熱量取得手段が、前記熱回収手段により回収される熱量又はその熱量を求めるための熱量関連情報を計測する回収熱量計測手段にて構成されている請求項1〜6のいずれか1項に記載のコージェネレーションシステム。
  8. 前記運転制御手段が、運転周期の全時間帯にわたって前記熱電併給装置を運転する連続運転形態、運転周期の一部の時間帯で前記熱電併給装置を運転する断続運転形態、及び、運転周期の全時間帯にわたって前記熱電併給装置を停止する待機形態のうちの少なくとも二つのうちから、前記時系列的な予測負荷電力データ、前記時系列的な予測負荷熱量データ及び前記時系列的な予測回収熱量データに基づいて求めた運転メリットが高いものを選定することにより、前記運転条件を定めるように構成されている請求項1〜7のいずれか1項に記載のコージェネレーションシステム。
JP2010050706A 2010-03-08 2010-03-08 コージェネレーションシステム Pending JP2011185520A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010050706A JP2011185520A (ja) 2010-03-08 2010-03-08 コージェネレーションシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010050706A JP2011185520A (ja) 2010-03-08 2010-03-08 コージェネレーションシステム

Publications (1)

Publication Number Publication Date
JP2011185520A true JP2011185520A (ja) 2011-09-22

Family

ID=44792029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010050706A Pending JP2011185520A (ja) 2010-03-08 2010-03-08 コージェネレーションシステム

Country Status (1)

Country Link
JP (1) JP2011185520A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104579A (ja) * 2011-11-10 2013-05-30 Osaka Gas Co Ltd 貯湯式給湯システム及びその運転制御方法
WO2013094085A1 (ja) * 2011-12-20 2013-06-27 パナソニック株式会社 燃料電池システム及びその運転方法
JP2013160491A (ja) * 2012-02-09 2013-08-19 Panasonic Corp 給湯装置
JP2013167391A (ja) * 2012-02-15 2013-08-29 Panasonic Corp 給湯装置
JP2013174379A (ja) * 2012-02-24 2013-09-05 Panasonic Corp 給湯装置
JP2013228150A (ja) * 2012-04-26 2013-11-07 Toho Gas Co Ltd 給湯暖房システム
JP2015148384A (ja) * 2014-02-06 2015-08-20 リンナイ株式会社 熱供給装置
JP7504529B1 (ja) 2023-03-22 2024-06-24 株式会社誠和 資源循環型施設園芸シミュレーション装置、コンピュータプログラム及び記録媒体

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013104579A (ja) * 2011-11-10 2013-05-30 Osaka Gas Co Ltd 貯湯式給湯システム及びその運転制御方法
WO2013094085A1 (ja) * 2011-12-20 2013-06-27 パナソニック株式会社 燃料電池システム及びその運転方法
JPWO2013094085A1 (ja) * 2011-12-20 2015-04-27 パナソニックIpマネジメント株式会社 燃料電池システム及びその運転方法
JP2013160491A (ja) * 2012-02-09 2013-08-19 Panasonic Corp 給湯装置
JP2013167391A (ja) * 2012-02-15 2013-08-29 Panasonic Corp 給湯装置
JP2013174379A (ja) * 2012-02-24 2013-09-05 Panasonic Corp 給湯装置
JP2013228150A (ja) * 2012-04-26 2013-11-07 Toho Gas Co Ltd 給湯暖房システム
JP2015148384A (ja) * 2014-02-06 2015-08-20 リンナイ株式会社 熱供給装置
JP7504529B1 (ja) 2023-03-22 2024-06-24 株式会社誠和 資源循環型施設園芸シミュレーション装置、コンピュータプログラム及び記録媒体

Similar Documents

Publication Publication Date Title
JP2011185520A (ja) コージェネレーションシステム
JP5222100B2 (ja) 貯湯式の給湯装置
JP2007247968A (ja) コージェネレーションシステム
JP5658606B2 (ja) 熱電併給システム
JP5032857B2 (ja) コージェネレーションシステム
JP5006678B2 (ja) 貯湯式の給湯装置
JP4916197B2 (ja) コージェネレーションシステム
JP5064856B2 (ja) コージェネレーションシステム
JP5551942B2 (ja) コージェネレーションシステム
JP5722970B2 (ja) コージェネレーションシステム
JP4897855B2 (ja) コージェネレーションシステム
JP4912837B2 (ja) コージェネレーションシステム
JP5143603B2 (ja) コージェネレーションシステム
JP6278763B2 (ja) エネルギー管理システム
JP5122247B2 (ja) 貯湯式の給湯装置
JP5438540B2 (ja) コージェネレーションシステム
JP5433071B2 (ja) コージェネレーションシステム
JP5462849B2 (ja) コージェネレーションシステム
JP4359248B2 (ja) コージェネレーションシステム
JP2009243851A (ja) コージェネレーションシステム
JP5406640B2 (ja) コージェネレーションシステム
JP5210010B2 (ja) コージェネレーションシステム
JP5551953B2 (ja) 貯湯式の給湯装置
JP5507615B2 (ja) コージェネレーションシステム
JP5037959B2 (ja) コージェネレーションシステム