JP5002845B2 - Vacuum valve - Google Patents

Vacuum valve Download PDF

Info

Publication number
JP5002845B2
JP5002845B2 JP2007252103A JP2007252103A JP5002845B2 JP 5002845 B2 JP5002845 B2 JP 5002845B2 JP 2007252103 A JP2007252103 A JP 2007252103A JP 2007252103 A JP2007252103 A JP 2007252103A JP 5002845 B2 JP5002845 B2 JP 5002845B2
Authority
JP
Japan
Prior art keywords
valve
chamber
vacuum
atmospheric pressure
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007252103A
Other languages
Japanese (ja)
Other versions
JP2009085241A (en
Inventor
龍介 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anest Iwata Corp
Original Assignee
Anest Iwata Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anest Iwata Corp filed Critical Anest Iwata Corp
Priority to JP2007252103A priority Critical patent/JP5002845B2/en
Publication of JP2009085241A publication Critical patent/JP2009085241A/en
Application granted granted Critical
Publication of JP5002845B2 publication Critical patent/JP5002845B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Driven Valves (AREA)
  • Details Of Valves (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

本発明は、スクロールポンプ、ベーンポンプ等の真空ポンプを用いて真空チャンバを真空状態とする場合に、真空ポンプと真空チャンバとを接続する排気路に介設される差圧式真空バルブの応答性を高め、真空ポンプ停止時に真空チャンバにガスが逆流するのを確実に防止できるようにした真空バルブに関する。   The present invention enhances the responsiveness of a differential pressure type vacuum valve interposed in an exhaust passage connecting the vacuum pump and the vacuum chamber when the vacuum chamber is brought into a vacuum state using a vacuum pump such as a scroll pump or a vane pump. The present invention relates to a vacuum valve capable of reliably preventing gas from flowing back into the vacuum chamber when the vacuum pump is stopped.

従来、真空ポンプにより真空チャンバ内の空気を吸引して排出させる真空装置は周知である。例えば、真空蒸着装置において、例えば半導体ウエーハの表面に金属蒸着膜を形成する場合、まず装置の蒸着室内の雰囲気を真空ポンプで排気して高真空にし、高真空状態で蒸着を行い、蒸着終了後には蒸着室内の圧力を大気圧に戻すことが行なわれている。   Conventionally, a vacuum apparatus that sucks and discharges air in a vacuum chamber by a vacuum pump is well known. For example, in a vacuum deposition apparatus, for example, when a metal deposition film is formed on the surface of a semiconductor wafer, the atmosphere in the deposition chamber of the apparatus is first evacuated with a vacuum pump to a high vacuum, and deposition is performed in a high vacuum state. In this method, the pressure in the vapor deposition chamber is returned to atmospheric pressure.

真空ポンプが停止するときの真空チャンバと真空ポンプ間の差圧によって発生する逆流を防止する手段として、真空チャンバと真空ポンプ間に真空バルブを介設している。自動開閉機能を有する真空バルブとしては、直動ソレノイド式又は差圧式の自動開閉バルブが使用されている。   A vacuum valve is interposed between the vacuum chamber and the vacuum pump as means for preventing a backflow generated by the differential pressure between the vacuum chamber and the vacuum pump when the vacuum pump is stopped. As a vacuum valve having an automatic opening / closing function, a direct acting solenoid type or a differential pressure type automatic opening / closing valve is used.

直動ソレノイド式は、開閉の応答性が良いものの、ストロークが大きく取れないことから排気抵抗が大きかったり、バルブの開閉動作を維持するためにソレノイドが多量の電力を消費するという問題がある。
これに対し、差圧式の真空バルブは、弁体に対して開動作方向に加わる力と閉動作方向に加わる力との差圧によって開動作又は閉動作を行なうものであるため、ストロークを大きく取ることができるとともに、消費電力を低減できるという利点がある。
Although the direct acting solenoid type has good responsiveness for opening and closing, there are problems that the exhaust resistance is large because the stroke is not large, and that the solenoid consumes a large amount of power to maintain the opening and closing operation of the valve.
On the other hand, the differential pressure type vacuum valve performs an opening operation or a closing operation by a differential pressure between a force applied to the valve body in the opening operation direction and a force applied in the closing operation direction. In addition, there is an advantage that power consumption can be reduced.

特許文献1(特開平5−272456号公報)には、差圧式の真空バルブの一例が開示されている。この構成を図2に基づいて説明する。図2において、この差圧式真空バルブは、ボデイ1とボンネット2を備え、ボデイ1に図示しない真空ポンプに接続された吸引ポート3が形成されるとともに、ボデイ1の外周に放射方向に取り付けられたポート部材4に、図示しない真空チャンバに接続された真空ポート5が形成されている。   Japanese Patent Application Laid-Open No. 5-272456 discloses an example of a differential pressure type vacuum valve. This configuration will be described with reference to FIG. In FIG. 2, this differential pressure type vacuum valve includes a body 1 and a bonnet 2. A suction port 3 connected to a vacuum pump (not shown) is formed on the body 1, and is attached to the outer periphery of the body 1 in the radial direction. The port member 4 is formed with a vacuum port 5 connected to a vacuum chamber (not shown).

吸引ポート3と真空ポート5を直接連通させる主流路6の真空ポート5側に弁座7が形成されている。ボデイ1とボンネット2の間はプレート9で気密に区画され、ボンネット2の内部は、受圧体の一例であるピストン10によって、真空作用室11と外部に開口した大気室12とに区画されている。真空作用室11は、後述するバイパス流路13によって吸引ポート3と真空ポート5とに連通している。   A valve seat 7 is formed on the vacuum port 5 side of the main flow path 6 that directly connects the suction port 3 and the vacuum port 5. The body 1 and the bonnet 2 are airtightly partitioned by a plate 9, and the inside of the bonnet 2 is partitioned by a piston 10 which is an example of a pressure receiving body into a vacuum working chamber 11 and an air chamber 12 opened to the outside. . The vacuum working chamber 11 communicates with the suction port 3 and the vacuum port 5 by a bypass passage 13 described later.

真空作用室11内には、ピストン10をプレート9に向けて付勢する調圧ばね14が縮設され、調圧ばね14の付勢力は、ボンネット2に気密に螺着された調圧機構15を構成する調圧ねじ回転によって調整することができる。
一端がピストン10に螺着された中空の弁棒18は、プレート9を気密に貫通した先端に、弁座7を開閉する弁体19が取り付けられており、ピストン10側の先端に大径のオリフィス23が取り付けられている。
A pressure adjusting spring 14 that urges the piston 10 toward the plate 9 is contracted in the vacuum working chamber 11, and the urging force of the pressure adjusting spring 14 is airtightly screwed to the bonnet 2. Can be adjusted by rotating the pressure adjusting screw.
A hollow valve rod 18 whose one end is screwed to the piston 10 has a valve body 19 that opens and closes the valve seat 7 attached to the tip that is airtightly penetrated through the plate 9, and has a large diameter at the tip on the piston 10 side. An orifice 23 is attached.

バイパス流路13は、ボデイ1とボンネット2に形成した流路20と、弁棒18の中空部に形成された流路18aよりなり、バイパス流路13を流れる空気の流量を調節するため、流路20に可変絞り機構21の一例としてのニードル弁が設置されている。該ニードル弁の開度は、弁体22を回転させてボンネット2に対して進退させることによって調節する。   The bypass flow path 13 is composed of a flow path 20 formed in the body 1 and the bonnet 2 and a flow path 18a formed in the hollow portion of the valve rod 18. In order to adjust the flow rate of air flowing through the bypass flow path 13, A needle valve as an example of the variable throttle mechanism 21 is installed in the path 20. The opening degree of the needle valve is adjusted by rotating the valve body 22 and moving it forward and backward with respect to the bonnet 2.

かかる構成において、図示しない真空ポンプの運転が停止し、かつ真空チャンバ内が大気圧又はそれに近いときは、該大気圧とピストン10に作用する調圧ばね14の付勢力との和が大気室12内の大気圧を上回るため、弁体19が下降して主流路6を閉鎖する。一方、吸引ポート3と真空ポート5とはバイパス流路13によって連通しており、この状態で真空ポンプを運転すると、真空チャンバ内の雰囲気は、バイパス流路13の可変絞り機構21により排出量を制御されて、徐々に真空ポンプに吸引される。   In such a configuration, when the operation of the vacuum pump (not shown) is stopped and the inside of the vacuum chamber is at or near atmospheric pressure, the sum of the atmospheric pressure and the biasing force of the pressure adjusting spring 14 acting on the piston 10 is the atmospheric chamber 12. In order to exceed the internal atmospheric pressure, the valve body 19 descends to close the main flow path 6. On the other hand, the suction port 3 and the vacuum port 5 communicate with each other through the bypass flow path 13. When the vacuum pump is operated in this state, the atmosphere in the vacuum chamber is discharged by the variable throttle mechanism 21 of the bypass flow path 13. It is controlled and gradually sucked into the vacuum pump.

従って、真空チャンバ内の雰囲気が大きく攪拌されないので、塵埃の舞い上がり等のトラブルを防止することができる。その後、真空チャンバ内のガス圧の低下により、真空作用室11における真空圧の作用力と調圧ばね14の付勢力との和が大気室12の大気圧の作用力より小さくなると、ピストン10が上昇して弁体19が主流路6を開放する。これによって、真空チャンバ内のガスが主として主流路6を通って排出される。この場合、真空チャンバ内のガス密度が低下しているので、真空チャンバ内の雰囲気が攪拌されることはない。   Accordingly, since the atmosphere in the vacuum chamber is not greatly stirred, troubles such as dust rising can be prevented. Thereafter, when the sum of the acting force of the vacuum pressure in the vacuum working chamber 11 and the biasing force of the pressure adjusting spring 14 becomes smaller than the acting force of the atmospheric pressure in the atmospheric chamber 12 due to the decrease in the gas pressure in the vacuum chamber, the piston 10 The valve body 19 rises to open the main flow path 6. Thereby, the gas in the vacuum chamber is mainly discharged through the main flow path 6. In this case, since the gas density in the vacuum chamber is lowered, the atmosphere in the vacuum chamber is not stirred.

また、特許文献2(実開平7−41173号公報)には、特許文献1と同様の差圧式真空バルブが開示されている。しかし、特許文献2に開示された差圧式真空バルブは、バルブの閉動作を流体圧アクチュエータ等の駆動部によって行なうものである。   Further, Patent Document 2 (Japanese Utility Model Publication No. 7-41173) discloses a differential pressure type vacuum valve similar to Patent Document 1. However, the differential pressure type vacuum valve disclosed in Patent Document 2 performs a valve closing operation by a drive unit such as a fluid pressure actuator.

特開平5−272456号公報JP-A-5-272456 実開平7−41173号公報Japanese Utility Model Publication No. 7-41173

差圧式の真空バルブは、特許文献1で例示したように、弁体に作用する開動作方向の力と閉動作方向の力との差圧によって開閉動作を行なうものであるため、ソレノイド式等のように強制的に弁体を動作させる方式と比べて、応答性に遅れが生じやすい。そのため、真空ポンプの稼動が停止した時、真空ポート5と吸引ポート3間に存在する差圧によって排気側(真空ポンプ側)のガスが吸引側(真空チャンバ側)に逆流する事態が発生する。これは非常に短時間で起こる。   As illustrated in Patent Document 1, the differential pressure type vacuum valve opens and closes by the differential pressure between the force in the opening operation direction and the force in the closing operation direction acting on the valve body. As compared with the method of forcibly operating the valve body as described above, the response tends to be delayed. Therefore, when the operation of the vacuum pump is stopped, a situation occurs in which the gas on the exhaust side (vacuum pump side) flows backward to the suction side (vacuum chamber side) due to the differential pressure existing between the vacuum port 5 and the suction port 3. This happens in a very short time.

そのため、逆流したガスにより真空チャンバの真空破壊が起こったり、真空ポンプの摩耗粉が真空チャンバに侵入して、真空チャンバ内に配置された機器類の汚染を起こすおそれがある。また、真空ポンプが給油式である場合に、真空ポンプの油が真空チャンバに侵入するおそれがある。   For this reason, there is a possibility that the vacuum chamber may break due to the backflowed gas, or the wear powder of the vacuum pump may enter the vacuum chamber and contaminate the devices disposed in the vacuum chamber. Further, when the vacuum pump is an oil supply type, the oil of the vacuum pump may enter the vacuum chamber.

また、複数の真空ポンプを排気路系に配設し、複数の真空ポンプを圧力センサなどで交互運転する場合、逆流したガスによる圧力上昇を誤認識して制御が不安定になるおそれがある。特許文献1を例に取れば、バルブ開閉動作は、真空作用室11又は大気室12へのガスの給排により行なうので、応答性が悪く、特に、閉動作に時間がかかる。そのため、排気側から吸引側へのガスの逆流を完全に防止することができない。   Further, when a plurality of vacuum pumps are arranged in the exhaust passage system and the plurality of vacuum pumps are alternately operated by a pressure sensor or the like, there is a possibility that the control may become unstable due to erroneous recognition of a pressure increase caused by the backflowing gas. Taking Patent Document 1 as an example, the valve opening / closing operation is performed by supplying / discharging gas to / from the vacuum working chamber 11 or the atmospheric chamber 12, so that the responsiveness is poor, and in particular, the closing operation takes time. Therefore, the backflow of gas from the exhaust side to the suction side cannot be completely prevented.

バルブ開閉動作の応答性を早くするためには、弁体に作用する力を大きくしたり、即ち、特許文献1を例に取れば、ピストン10の径を大きくしたり、あるいは真空ポンプ側排気路の流路容積を大きくして、逆流ガスの伝播速度を遅くする等の対策が考えられるが、真空バルブ又は真空装置の大型化につながるという問題がある。
また、特許文献2の差圧式真空バルブでは、バルブの閉鎖を流体圧アクチュエータ等の駆動部で行なうため、構成が複雑かつ高価になるという問題がある。
In order to speed up the responsiveness of the valve opening / closing operation, the force acting on the valve body is increased, that is, by taking Patent Document 1 as an example, the diameter of the piston 10 is increased, or the vacuum pump side exhaust passage Although measures such as increasing the volume of the flow path and slowing the propagation speed of the backflow gas can be considered, there is a problem that the vacuum valve or the vacuum device is increased in size.
Further, the differential pressure type vacuum valve disclosed in Patent Document 2 has a problem that the configuration is complicated and expensive because the valve is closed by a drive unit such as a fluid pressure actuator.

本発明は、かかる従来技術の課題に鑑み、差圧式真空バルブの弁開閉動作の応答性、特に弁閉鎖時の応答性を向上させることにおり、真空ポンプ側から真空チャンバ側へのガスの逆流を防止し、これによって、真空チャンバの真空破壊や真空チャンバ内に配置された機器類の汚染を防止することを目的とする。   In view of the problems of the prior art, the present invention is to improve the responsiveness of the valve opening / closing operation of the differential pressure type vacuum valve, particularly the responsiveness when the valve is closed, and the reverse flow of gas from the vacuum pump side to the vacuum chamber side. Accordingly, it is an object to prevent vacuum breakage of the vacuum chamber and contamination of equipment disposed in the vacuum chamber.

かかる目的を達成するため、本発明の真空バルブは、
真空ポンプと真空チャンバとに連結され該真空チャンバ内の雰囲気を排気する排気路に介設され該排気路を開閉する真空バルブにおいて、
前記排気路に介在されたバルブハウジング、及び該バルブハウジングの内部に摺動自在に収納され該バルブハウジング内に形成された弁座に当接又は離間して該排気路を開閉する弁機能体と、
該弁機能体に一体に形成され該バルブハウジング内を2つの領域に仕切る仕切り部と、
該仕切り部の一側に画成されたバネ室、及び該バネ室に装着され該弁機能体に対して該排気路を閉鎖する方向にバネ力を付勢するバネ部材と、
該仕切り部の他側に画成され該ハウジング壁に設けられた貫通孔を介して大気と連通する大気圧室と、
該バネ室を該弁機能体の出口側排気路又は該大気圧室に選択的に接続可能な連通路と、からなり、
該バネ室を該弁機能体の出口側排気路又は該大気圧室に選択的に接続させることにより該排気路を開閉するとともに、
該貫通孔から流入する大気の流量に対して該バネ室に流入する大気の流量を大きくすることにより、該排気路の急速閉塞を可能としたものである。
In order to achieve such an object, the vacuum valve of the present invention comprises:
In a vacuum valve connected to a vacuum pump and a vacuum chamber and interposed in an exhaust path for exhausting the atmosphere in the vacuum chamber and opening and closing the exhaust path,
A valve housing interposed in the exhaust passage, and a valve function body that is slidably housed in the valve housing and opens or closes the exhaust passage by contacting or separating from a valve seat formed in the valve housing; ,
A partition formed integrally with the valve functional body and partitioning the valve housing into two regions;
A spring chamber defined on one side of the partition, and a spring member attached to the spring chamber and energizing a spring force in a direction to close the exhaust path with respect to the valve function body;
An atmospheric pressure chamber that is defined on the other side of the partition and communicates with the atmosphere through a through-hole provided in the housing wall;
A communication path that can selectively connect the spring chamber to the outlet exhaust path of the valve function body or the atmospheric pressure chamber,
Opening and closing the exhaust passage by selectively connecting the spring chamber to the outlet exhaust passage of the valve function body or the atmospheric pressure chamber;
By increasing the flow rate of the air flowing into the spring chamber with respect to the flow rate of air flowing from the through hole, the exhaust passage can be quickly closed.

本発明において、真空バルブを稼動させて真空チャンバの排気運転を実施する場合には、前記連通路を介してバネ室と弁機能体の出口側排気路とを連通させて、真空ポンプを稼動する。真空バルブの稼動によって該出口側排気路は負圧になり、該出口側排気路と連通したバネ室も負圧になる。弁機能体の仕切り部には、バネ室側からバネ部材の付勢力とバネ室内のガス圧の作用力が負荷され、大気圧室側から大気圧による作用力が負荷される。バネ室が負圧となることにより、バネ室のバネ部材の付勢力とバネ室内のガス圧による作用力との和より大気圧室内の大気圧の作用力が大きくなるため、弁機能体は弁座を離れる方向に動き、排気路を開放する。   In the present invention, when exhausting the vacuum chamber by operating the vacuum valve, the vacuum pump is operated by communicating the spring chamber and the outlet side exhaust passage of the valve function body via the communication path. . Due to the operation of the vacuum valve, the outlet side exhaust passage becomes negative pressure, and the spring chamber communicating with the outlet side exhaust passage becomes negative pressure. The partitioning portion of the valve function body is loaded with the urging force of the spring member and the acting force of the gas pressure in the spring chamber from the spring chamber side, and the acting force due to the atmospheric pressure is loaded from the atmospheric pressure chamber side. Since the negative pressure in the spring chamber causes the action force of the atmospheric pressure in the atmospheric pressure chamber to be greater than the sum of the biasing force of the spring member in the spring chamber and the action force due to the gas pressure in the spring chamber, Moves away from the seat and opens the exhaust passage.

その後、真空チャンバ内を真空状態として、排気運転を終了する場合は、真空ポンプの稼動を停止すると同時に、連通路を切り替えてバネ室と大気圧室とを接続する。その際、大気圧室の貫通孔から流入する大気の流量より該バネ室に流入する大気の流量を大きくするため、一時的に大気圧室内の圧力が大気圧より低圧となり、バネ室内の圧力に近づく。即ち、大気圧室より低圧の状態で大気圧室とバネ室の圧力が均衡する。このため、弁機能体にはバネ部材の付勢力のみが負荷される結果となり、弁機能体はバネ部材の付勢力により排気路を閉鎖する方向に移動する。そして、バネ室内が大気圧に戻る時間よりも短時間で真空バルブの閉動作を行なうことができる。   Thereafter, when the vacuum chamber is evacuated and the exhaust operation is terminated, the operation of the vacuum pump is stopped, and at the same time, the communication passage is switched to connect the spring chamber and the atmospheric pressure chamber. At that time, in order to increase the flow rate of the air flowing into the spring chamber from the flow rate of the air flowing from the through hole of the atmospheric pressure chamber, the pressure in the atmospheric pressure chamber temporarily becomes lower than the atmospheric pressure, and the pressure in the spring chamber is reduced. Get closer. That is, the pressures in the atmospheric pressure chamber and the spring chamber are balanced in a state lower than the atmospheric pressure chamber. For this reason, only the urging force of the spring member is applied to the valve function body, and the valve function body moves in the direction of closing the exhaust passage by the urging force of the spring member. The vacuum valve can be closed in a shorter time than the time required for the spring chamber to return to atmospheric pressure.

このように、バネ部材による閉方向の力が弁機能体に作用するタイミングが早まり、従来よりも短時間で真空バルブを閉じることができる。従って、本発明によれば、真空バルブ又は真空装置を大型化することなく、逆流防止性能を向上させることができる。従って、逆流したガスにより真空チャンバの真空破壊が起こったり、真空ポンプの摩耗粉や潤滑油が真空チャンバに侵入して、真空チャンバ内に配置された機器類の汚染を起こすおそれがなくなる。   Thus, the timing at which the force in the closing direction by the spring member acts on the valve function body is advanced, and the vacuum valve can be closed in a shorter time than conventional. Therefore, according to the present invention, the backflow prevention performance can be improved without increasing the size of the vacuum valve or the vacuum device. Therefore, there is no possibility that the vacuum gas is broken due to the backflowed gas, or wear powder or lubricating oil of the vacuum pump enters the vacuum chamber to contaminate the devices arranged in the vacuum chamber.

本発明において、前記連通路は、前記バルブハウジング壁に設けられ前記弁機能体の出口側排気路、前記大気圧室及び前記バネ室を接続する連通路と、該連通路に設けられ該バネ室を該弁機能体の出口側排気路又は該大気圧室に切換え接続する三方弁と、からなり、該大気圧室と該バネ室とを接続する連通路の流路断面を前記貫通孔の断面より大きく形成することにより、該排気路の閉塞時に該貫通孔から流入する大気の流量より該バネ室に流入する大気の流量を大きくするように構成するとよい。   In the present invention, the communication passage is provided in the valve housing wall and connects the outlet side exhaust passage of the valve function body, the atmospheric pressure chamber, and the spring chamber, and the spring passage is provided in the communication passage. A three-way valve for switching and connecting to the outlet side exhaust passage of the valve function body or the atmospheric pressure chamber, and the cross section of the through-hole is defined as the cross section of the communication path connecting the atmospheric pressure chamber and the spring chamber It is preferable that the flow rate of the air flowing into the spring chamber is larger than the flow rate of the air flowing in from the through hole when the exhaust passage is closed.

かかる構成とすることにより、簡単な構成で真空バルブの弁開閉動作の応答性を向上させることができる。なお、該貫通孔の流路面積を調節することにより、大気圧室の圧力上昇速度を調整可能になるとともに、該貫通孔の流路断面積と大気圧室とバネ室を連通する連通路の流路断面積との比を適宜調整することにより、大気圧室とバネ室の圧力が均衡する時間を調整することができる。   With this configuration, the responsiveness of the valve opening / closing operation of the vacuum valve can be improved with a simple configuration. By adjusting the flow passage area of the through hole, the pressure increase rate of the atmospheric pressure chamber can be adjusted, and the flow passage cross-sectional area of the through hole, the communication passage connecting the atmospheric pressure chamber and the spring chamber can be adjusted. By appropriately adjusting the ratio with the flow path cross-sectional area, the time during which the pressures in the atmospheric pressure chamber and the spring chamber are balanced can be adjusted.

また、本発明において、前記弁機能体を、弁棒と、該弁棒の排気路側端部に設けられバルブハウジングに形成された弁座に当接又は離間して該排気路を開閉する弁体と、該弁棒の他端に設けられ該ハウジング内をバネ室と大気圧室とに仕切る仕切り部と、からなり、該弁棒がバルブハウジングに一体に形成された支持部に摺動自在に支持され、該支持部と該仕切り部との間に該大気圧室を画成するように構成するとよい。   Further, in the present invention, the valve function body includes a valve body and a valve body that opens or closes the exhaust path by abutting or separating from a valve seat and a valve seat formed on a valve housing provided at an end of the valve path. And a partition portion provided at the other end of the valve stem and partitioning the inside of the housing into a spring chamber and an atmospheric pressure chamber, the valve rod being slidable on a support portion formed integrally with the valve housing. The atmospheric pressure chamber may be configured to be supported and defined between the support portion and the partition portion.

かかる構成とすることにより、真空バルブの構成を簡易なものとすることができるとともに、かかる簡単な構成で真空バルブの弁開閉動作の応答性を向上させることができる。   With this configuration, the configuration of the vacuum valve can be simplified, and the responsiveness of the valve opening / closing operation of the vacuum valve can be improved with this simple configuration.

本発明によれば、真空チャンバと真空バルブとを接続する排気路に介在されたバルブハウジング、及び該バルブハウジングの内部に摺動自在に収納され該バルブハウジング内に形成された弁座に当接又は離間して該排気路を開閉する弁機能体と、該弁機能体に一体に形成され該バルブハウジング内を2つの領域に仕切る仕切り部と、該仕切り部の一側に画成されたバネ室、及び該バネ室に装着され該弁機能体に対して該排気路を閉鎖する方向にバネ力を付勢するバネ部材と、該仕切り部の他側に画成され該ハウジング壁に設けられた貫通孔を介して大気と連通する大気圧室と、該バネ室を該弁機能体の出口側排気路又は該大気圧室に選択的に接続可能な連通路と、からなり、該バネ室を該弁機能体の出口側排気路又は該大気圧室に選択的に接続させることにより該排気路を開閉するとともに、該貫通孔から流入する大気の流量に対して該バネ室に流入する大気の流量を大きくすることにより、真空バルブの構成を複雑化又は大型化することなく、弁開閉動作の応答性を向上できる。   According to the present invention, the valve housing interposed in the exhaust passage connecting the vacuum chamber and the vacuum valve, and the valve seat formed in the valve housing so as to be slidably housed in the valve housing. Alternatively, a valve function body that opens and closes the exhaust path at a distance, a partition part that is integrally formed with the valve function body and partitions the inside of the valve housing into two regions, and a spring that is defined on one side of the partition part And a spring member attached to the spring chamber and energizing a spring force in a direction to close the exhaust passage with respect to the valve function body, and is defined on the other side of the partition portion and provided on the housing wall. An atmospheric pressure chamber that communicates with the atmosphere through the through-hole, and a communication passage that can selectively connect the spring chamber to the outlet exhaust passage of the valve function body or the atmospheric pressure chamber. Are selectively connected to the outlet exhaust passage of the valve function body or the atmospheric pressure chamber. By opening and closing the exhaust passage, the structure of the vacuum valve is complicated or enlarged by increasing the air flow rate flowing into the spring chamber with respect to the air flow rate flowing from the through hole. In addition, the responsiveness of the valve opening / closing operation can be improved.

従って、真空ポンプ停止時の排気の逆流を防止することができるため、逆流したガスにより真空チャンバの真空破壊が起こったり、真空ポンプの摩耗粉や潤滑油が真空チャンバに侵入して、真空チャンバ内に配置された機器類の汚染を起こすおそれがなくなる。   Therefore, it is possible to prevent the backflow of exhaust gas when the vacuum pump is stopped. Therefore, the backflowed gas causes vacuum breakage of the vacuum chamber, or wear powder or lubricating oil of the vacuum pump enters the vacuum chamber and There is no risk of contamination of equipment placed in

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではない。
(実施形態)
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention to that unless otherwise specified.
(Embodiment)

図1は、本発明の実施形態に係る真空バルブの縦断立面図である。図1において、内部雰囲気を排気されて真空状態とされる真空チャンバ31と真空ポンプ32との間に排気路33が接続され、排気路33に該排気路を開閉可能とする真空バルブ30が介設されている。以下、真空バルブ30の構成を説明する。   FIG. 1 is a vertical elevation view of a vacuum valve according to an embodiment of the present invention. In FIG. 1, an exhaust path 33 is connected between a vacuum chamber 31 that is evacuated to a vacuum state and the vacuum pump 32, and a vacuum valve 30 that enables opening and closing of the exhaust path is interposed in the exhaust path 33. It is installed. Hereinafter, the configuration of the vacuum valve 30 will be described.

真空バルブ30は、排気路33にバルブハウジング34が介在され、バルブハウジング34には、真空チャンバ31に接続された排気路33aに連通する真空ポート35と、真空ポンプ32に接続された排気路33bに連通する吸引ポート36が形成されている。バルブハウジング34の内部には、弁機能体40が矢印a又はb方向に摺動可能に収納されている。   In the vacuum valve 30, a valve housing 34 is interposed in the exhaust path 33, and the valve housing 34 has a vacuum port 35 communicating with the exhaust path 33 a connected to the vacuum chamber 31 and an exhaust path 33 b connected to the vacuum pump 32. A suction port 36 that communicates with each other is formed. Inside the valve housing 34, a valve function body 40 is accommodated so as to be slidable in the direction of arrow a or b.

弁機能体40は、バルブハウジング34の長手方向に配置された弁棒41と、真空ポート35側に面して弁棒41の端部に取り付けられた円板状の弁体42と、弁棒41の他端に取り付けられた円板状のピストン43とから構成されている。バルブハウジング34の略中央部には内側に突出した支持部37がバルブハウジング34に一体に形成され、該支持部37が弁機能体40をバルブハウジング34の長手方向に摺動可能に支持している。支持部37と弁機能体40との間には、シール用のOリング44が介在されている。   The valve function body 40 includes a valve rod 41 arranged in the longitudinal direction of the valve housing 34, a disc-like valve body 42 attached to the end of the valve rod 41 facing the vacuum port 35, and a valve rod. The disc-shaped piston 43 is attached to the other end of the disc 41. A support portion 37 protruding inward is formed integrally with the valve housing 34 at a substantially central portion of the valve housing 34, and the support portion 37 supports the valve function body 40 so as to be slidable in the longitudinal direction of the valve housing 34. Yes. An O-ring 44 for sealing is interposed between the support portion 37 and the valve function body 40.

バルブハウジング34の真空ポート35近傍には弁座38が形成され、弁座38に対面して弁体42の入口側端面42aが配置されている。入口側端面42aにはOリング45が装着され、入口側端面42aが弁座38に当接することにより、真空ポート35が閉鎖される。また、ピストン10のバルブハウジング34との間にOリング46が設けられて、バルブハウジング34とピストン43との間をシールしている。これによって、ピストン43の両側に2つの密閉空間を形成している。   A valve seat 38 is formed in the vicinity of the vacuum port 35 of the valve housing 34, and an inlet side end face 42 a of the valve body 42 is disposed so as to face the valve seat 38. An O-ring 45 is attached to the inlet side end face 42a, and the vacuum port 35 is closed by the inlet side end face 42a coming into contact with the valve seat 38. An O-ring 46 is provided between the valve housing 34 of the piston 10 and seals between the valve housing 34 and the piston 43. Thereby, two sealed spaces are formed on both sides of the piston 43.

ピストン43の一側(図1中ピストン43の左側であって、弁機能体40の閉動作方向a)には、バルブハウジング34に貫設された貫通孔47を介して外気と連通した大気圧室50が形成されている。一方、ピストン43の他側(図1中ピストン43の右側であって、弁機能体40の開動作方向b)には、バネ室51が形成され、バネ室51には、一端がピストン43の一方の面43aに接続され、他端がバルブハウジング34の内壁に取り付けられたコイルバネ52が設けられている。これによって、ピストン43には、大気圧室50側から大気圧室50の大気圧による作用力が負荷されるとともに、バネ室51側からは、コイルバネ52のバネ力とバネ室51内のガス圧による作用力との和が負荷される。   At one side of the piston 43 (on the left side of the piston 43 in FIG. 1 and in the closing operation direction a of the valve function body 40), the atmospheric pressure communicated with the outside air through a through hole 47 provided in the valve housing 34. A chamber 50 is formed. On the other hand, a spring chamber 51 is formed on the other side of the piston 43 (on the right side of the piston 43 in FIG. 1 and in the opening operation direction b of the valve function body 40). A coil spring 52 is provided which is connected to one surface 43 a and has the other end attached to the inner wall of the valve housing 34. As a result, the piston 43 is loaded with the action force due to the atmospheric pressure of the atmospheric pressure chamber 50 from the atmospheric pressure chamber 50 side, and from the spring chamber 51 side, the spring force of the coil spring 52 and the gas pressure in the spring chamber 51 are applied. The sum with the acting force is loaded.

また、バルブハウジング34には、吸引ポート36と、大気圧室50と、バネ室51とを連通する連通孔53,54及び55が穿設されるとともに、バネ室51を吸引ポート36又は大気圧室50に選択的に連通する三方電磁弁56が設けられている。三方電磁弁56は、コントローラ57によって切り替え作動される。そして、大気圧室50とバネ室51とを連通する連通路54及び55の流路断面は貫通孔47の流路断面より大きく形成されている。   The valve housing 34 is provided with communication holes 53, 54, and 55 that connect the suction port 36, the atmospheric pressure chamber 50, and the spring chamber 51, and the spring chamber 51 is connected to the suction port 36 or atmospheric pressure. A three-way solenoid valve 56 that selectively communicates with the chamber 50 is provided. The three-way solenoid valve 56 is switched by a controller 57. The flow passage sections of the communication passages 54 and 55 that connect the atmospheric pressure chamber 50 and the spring chamber 51 are formed larger than the flow passage section of the through hole 47.

かかる構成の本実施形態において、真空ポート35が弁機能体40によって閉鎖された状態で、真空チャンバ31の排気運転を開始する。この場合の運転手順は、コントローラ57によって三方電磁弁56を作動させ、吸引ポート36とバネ室51とを連通させる。同時に、真空ポンプ32を稼動させる。真空ポンプ32の稼動開始によって、吸引ポート36が急速に負圧となり、吸引ポート36とバネ室51とが連通しているために、バネ室51も負圧となる。   In this embodiment having such a configuration, the exhaust operation of the vacuum chamber 31 is started in a state where the vacuum port 35 is closed by the valve function body 40. In this operation procedure, the controller 57 operates the three-way solenoid valve 56 to cause the suction port 36 and the spring chamber 51 to communicate with each other. At the same time, the vacuum pump 32 is operated. By starting the operation of the vacuum pump 32, the suction port 36 rapidly becomes negative pressure, and since the suction port 36 and the spring chamber 51 communicate with each other, the spring chamber 51 also becomes negative pressure.

バネ室51が真空圧になると、弁機能体40に負荷される開動作方向bの力(入口側端面42aに負荷される真空ポート35のガス圧と、ピストン43の一方の面43aに負荷される大気圧による作用力の和)が弁機能体40に負荷される閉動作方向aの力(コイルバネ52のバネ力とバネ室51内のガス圧による作用力との和)を上回ることになり、これによって、弁機能体40がバネ室51側に移動するため、真空ポート35が開放される。この状態で真空ポンプ32の稼動を継続し、真空チャンバ31内の空気を真空ポンプ32で吸引して真空チャンバ31内のを真空状態とする。   When the spring chamber 51 reaches a vacuum pressure, the force in the opening operation direction b applied to the valve function body 40 (the gas pressure of the vacuum port 35 applied to the inlet side end surface 42 a and the one surface 43 a of the piston 43 is applied. Sum of the acting force due to the atmospheric pressure) exceeds the force in the closing operation direction a (the sum of the spring force of the coil spring 52 and the acting force due to the gas pressure in the spring chamber 51) loaded on the valve function body 40. As a result, the valve function body 40 moves to the spring chamber 51 side, so that the vacuum port 35 is opened. In this state, the operation of the vacuum pump 32 is continued, and the air in the vacuum chamber 31 is sucked by the vacuum pump 32 to make the vacuum chamber 31 in a vacuum state.

真空チャンバ31を真空状態とした後、真空ポンプ32の稼動を停止する。この時、排気が真空チャンバ31側に逆流するおそれがあるので、真空バルブ30によって真空ポート35を素早く閉鎖する必要がある。そのため、本実施形態では、真空ポンプ32の停止と同時に、コントローラ57によって三方電磁弁56を作動させ、連通路53と連通路5とを遮断し、連通路54と連通路55とを連通させる。この時バネ室51は真空状態であるため、大気圧室50内の空気がバネ室51内に流入する。   After the vacuum chamber 31 is evacuated, the operation of the vacuum pump 32 is stopped. At this time, since the exhaust gas may flow back to the vacuum chamber 31 side, it is necessary to quickly close the vacuum port 35 by the vacuum valve 30. Therefore, in this embodiment, simultaneously with the stop of the vacuum pump 32, the controller 57 activates the three-way solenoid valve 56, shuts off the communication path 53 and the communication path 5, and connects the communication path 54 and the communication path 55. At this time, since the spring chamber 51 is in a vacuum state, the air in the atmospheric pressure chamber 50 flows into the spring chamber 51.

大気圧室50とバネ室51とを連通したことによって、大気圧室50とバネ室51の圧力が均衡する方向に向い、一時的に大気圧室50の圧力が大気圧室より下がり、バネ室51の圧力に近づく。本実施形態では、貫通孔47の断面積を連通路54及び55の断面積より小さくしてあるため、バネ室51が大気圧に昇圧する前に短時間で両室間の差圧が縮まり、均衡する。これによって、ピストン43に負荷される力はコイルバネ52のバネ力のみとなるので、弁機能体40が真空ポート35を閉鎖する方向に移動する。   By connecting the atmospheric pressure chamber 50 and the spring chamber 51, the pressure in the atmospheric pressure chamber 50 and the spring chamber 51 is balanced, and the pressure in the atmospheric pressure chamber 50 is temporarily lowered from the atmospheric pressure chamber. Approaching 51 pressure. In this embodiment, since the cross-sectional area of the through hole 47 is smaller than the cross-sectional area of the communication passages 54 and 55, the differential pressure between the two chambers is reduced in a short time before the spring chamber 51 is increased to the atmospheric pressure, To balance. As a result, the force applied to the piston 43 is only the spring force of the coil spring 52, so that the valve function body 40 moves in a direction to close the vacuum port 35.

このように、本実施形態によれば、真空ポンプ32の稼動停止時に、真空ポート35を閉鎖する方向に働くタイミングが早まり、従来の真空バルブよりも短時間で排気路33を閉鎖することができる。しかも簡単なバルブ構成で、応答性を向上でき、装置が大掛かりになることはない。これによって、真空ポンプの停止時に排気の真空チャンバ31側への逆流を防止することができるので、真空チャンバ31内の真空破壊や、真空ポンプ32の磨耗粉や潤滑油が真空チャンバ31内に侵入して、真空チャンバ31内に設けられた機器類を汚染するのを防止することができる。   Thus, according to the present embodiment, when the vacuum pump 32 is stopped, the timing for working in the direction of closing the vacuum port 35 is advanced, and the exhaust passage 33 can be closed in a shorter time than the conventional vacuum valve. . In addition, the responsiveness can be improved with a simple valve configuration, and the apparatus does not become large. As a result, it is possible to prevent the backflow of the exhaust gas to the vacuum chamber 31 side when the vacuum pump is stopped, so that vacuum breakage in the vacuum chamber 31, wear powder and lubricating oil of the vacuum pump 32 enter the vacuum chamber 31. As a result, it is possible to prevent the devices provided in the vacuum chamber 31 from being contaminated.

なお、貫通孔47の断面積を適宜に調整することにより、大気圧室50の圧力上昇速度を調節可能であるとともに、貫通孔47の断面積に対する連通路54及び55の断面積の比を適宜調節することによって、弁機能体40が弁閉鎖方向に移動するタイミングを適宜調整することができる。   The pressure increase rate of the atmospheric pressure chamber 50 can be adjusted by adjusting the cross-sectional area of the through-hole 47 as appropriate, and the ratio of the cross-sectional areas of the communication passages 54 and 55 to the cross-sectional area of the through-hole 47 is appropriately set. By adjusting, the timing which the valve function body 40 moves to a valve closing direction can be adjusted suitably.

本発明によれば、真空バルブの応答性を向上できるので、真空バルブ停止時に真空チャンバへの排気の逆流を防止できて、真空チャンバの真空破壊や真空チャンバ内に配置された機器類の汚染を防止することができる。   According to the present invention, since the responsiveness of the vacuum valve can be improved, the backflow of the exhaust gas to the vacuum chamber can be prevented when the vacuum valve is stopped, and vacuum breakdown of the vacuum chamber and contamination of equipment disposed in the vacuum chamber can be prevented. Can be prevented.

本発明の一実施形態に係る真空バルブの縦断立面図である。It is a vertical elevation view of a vacuum valve according to an embodiment of the present invention. 従来の真空バルブの縦断立面図である。It is a vertical sectional elevation view of a conventional vacuum valve.

符号の説明Explanation of symbols

30 真空バルブ
31 真空チャンバ
32 真空ポンプ
33a,33b 排気路
34 バルブハウジング
36 吸引ポート(出口側排気路)
37 支持部
38 弁座
40 弁機能体
41 弁棒
42 弁体
43 ピストン(仕切り部)
47 貫通孔
50 大気圧室
51 バネ室
52 コイルバネ(バネ部材)
53,54,55 連通路
56 三方電磁弁
30 Vacuum valve 31 Vacuum chamber 32 Vacuum pump 33a, 33b Exhaust path 34 Valve housing 36 Suction port (exit side exhaust path)
37 Supporting part 38 Valve seat 40 Valve functional body 41 Valve rod 42 Valve body 43 Piston (partition part)
47 Through-hole 50 Atmospheric pressure chamber 51 Spring chamber 52 Coil spring (spring member)
53, 54, 55 Communication passage 56 Three-way solenoid valve

Claims (3)

真空ポンプと真空チャンバとに連結され該真空チャンバ内の雰囲気を排気する排気路に介設され該排気路を開閉する真空バルブにおいて、
前記排気路に介在されたバルブハウジング、及び該バルブハウジングの内部に摺動自在に収納され該バルブハウジング内に形成された弁座に当接又は離間して該排気路を開閉する弁機能体と、
該弁機能体に一体に形成され該バルブハウジング内を2つの領域に仕切る仕切り部と、
該仕切り部の一側に画成されたバネ室、及び該バネ室に装着され該弁機能体に対して該排気路を閉鎖する方向にバネ力を付勢するバネ部材と、
該仕切り部の他側に画成され該バルブハウジング壁に設けられた貫通孔を介して大気と連通する大気圧室と、
該バネ室を該弁機能体の出口側排気路又は該大気圧室に選択的に接続可能な連通路と、からなり、
該バネ室を該弁機能体の出口側排気路又は該大気圧室に選択的に接続させることにより該排気路を開閉するとともに、
該貫通孔から流入する大気の流量に対して該バネ室に流入する大気の流量を大きくすることにより、該排気路の急速閉塞を可能としたことを特徴とする真空バルブ。
In a vacuum valve connected to a vacuum pump and a vacuum chamber and interposed in an exhaust path for exhausting the atmosphere in the vacuum chamber and opening and closing the exhaust path,
A valve housing interposed in the exhaust passage, and a valve function body that is slidably housed in the valve housing and opens or closes the exhaust passage by contacting or separating from a valve seat formed in the valve housing; ,
A partition formed integrally with the valve functional body and partitioning the valve housing into two regions;
A spring chamber defined on one side of the partition, and a spring member attached to the spring chamber and energizing a spring force in a direction to close the exhaust path with respect to the valve function body;
An atmospheric pressure chamber that is defined on the other side of the partition portion and communicates with the atmosphere through a through hole provided in the valve housing wall;
A communication path that can selectively connect the spring chamber to the outlet exhaust path of the valve function body or the atmospheric pressure chamber,
Opening and closing the exhaust passage by selectively connecting the spring chamber to the outlet exhaust passage of the valve function body or the atmospheric pressure chamber;
A vacuum valve characterized in that the exhaust passage can be quickly closed by increasing the air flow rate flowing into the spring chamber with respect to the air flow rate flowing from the through hole.
前記連通路は、
前記バルブハウジング壁に設けられ前記弁機能体の出口側排気路、前記大気圧室及び前記バネ室を接続する連通路と、該連通路に設けられ該バネ室を該弁機能体の出口側排気路又は該大気圧室に切換え接続する三方弁と、からなり、
該大気圧室と該バネ室とを接続する連通路の流路断面を前記貫通孔の断面より大きく形成することにより、該排気路の閉塞時に該貫通孔から流入する大気の流量より該バネ室に流入する大気の流量を大きくしたことを特徴とする請求項1に記載の真空バルブ。
The communication path is
An exhaust passage on the outlet side of the valve function body provided on the valve housing wall, a communication path connecting the atmospheric pressure chamber and the spring chamber, and an exhaust side exhaust on the outlet side of the valve function body provided in the communication path. A three-way valve connected to the road or the atmospheric pressure chamber,
By forming a flow passage cross section of the communication path connecting the atmospheric pressure chamber and the spring chamber larger than the cross section of the through hole, the spring chamber can be obtained from the flow rate of the air flowing from the through hole when the exhaust passage is closed. The vacuum valve according to claim 1, wherein the flow rate of the atmosphere flowing into the chamber is increased.
前記弁機能体は、
弁棒と、該弁棒の排気路側端部に設けられ前記バルブハウジングに形成された弁座に当接又は離間して該排気路を開閉する弁体と、該弁棒の他端に設けられ該バルブハウジング内を前記バネ室と前記大気圧室とに仕切る前記仕切り部と、からなり、
該弁棒が該バルブハウジングに一体に形成された支持部に摺動自在に支持され、該支持部と該仕切り部との間に該大気圧室が画成されていることを特徴とする請求項1又は2に記載の真空バルブ。
The valve function body is
A valve body, a valve body that is provided at an end of the valve shaft on the exhaust path side and contacts or separates from a valve seat formed on the valve housing, and is provided at the other end of the valve shaft. The partition portion that partitions the inside of the valve housing into the spring chamber and the atmospheric pressure chamber,
The valve rod is slidably supported by a support portion formed integrally with the valve housing, and the atmospheric pressure chamber is defined between the support portion and the partition portion. Item 3. The vacuum valve according to Item 1 or 2.
JP2007252103A 2007-09-27 2007-09-27 Vacuum valve Expired - Fee Related JP5002845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007252103A JP5002845B2 (en) 2007-09-27 2007-09-27 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007252103A JP5002845B2 (en) 2007-09-27 2007-09-27 Vacuum valve

Publications (2)

Publication Number Publication Date
JP2009085241A JP2009085241A (en) 2009-04-23
JP5002845B2 true JP5002845B2 (en) 2012-08-15

Family

ID=40658927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007252103A Expired - Fee Related JP5002845B2 (en) 2007-09-27 2007-09-27 Vacuum valve

Country Status (1)

Country Link
JP (1) JP5002845B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5296811B2 (en) * 2011-01-17 2013-09-25 住友重機械工業株式会社 Cryopump and vacuum valve device
CN102182856A (en) * 2011-02-11 2011-09-14 张家港富瑞特种装备股份有限公司 Valve cap of high-vacuum baffle valve
EP3561350B1 (en) 2018-04-27 2020-05-13 Pfeiffer Vacuum Gmbh Vacuum relief valve
CN108708855A (en) * 2018-07-20 2018-10-26 上海优耐特斯压缩机有限公司 One kind having oily screw vacuum pump intaking valve structure and its control method
CN111927962B (en) * 2020-09-27 2021-01-26 潍坊工程职业学院 Negative pressure control type air connecting valve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05272456A (en) * 1992-03-27 1993-10-19 Smc Corp Rapid exhaust preventing device in vacuum device
JP3032708B2 (en) * 1995-09-25 2000-04-17 シーケーディ株式会社 On-off valve for vacuum
JP3286807B2 (en) * 1996-01-22 2002-05-27 株式会社クボタ Control device for vacuum valve

Also Published As

Publication number Publication date
JP2009085241A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
EP2181263B1 (en) Capacity modulation system for compressor and method
JP5002845B2 (en) Vacuum valve
JP4331667B2 (en) Control valve for variable capacity compressor
US8496454B2 (en) Unloader system and method for a compressor
JP5247298B2 (en) Suck back valve
JPH076496B2 (en) Suction system switching device in vacuum pump
JP2009085242A (en) Vacuum valve
JP2006017035A (en) Control valve for variable displacement compressor
CA2664761C (en) Air release valve
JP2008157116A (en) Capacity control valve, variable displacement compressor and air conditioner
JPS60249690A (en) Rotary piston vacuum pump
KR20090009093A (en) Refrigerant suction structure in fixed displacement type piston compressor
JP2001012649A (en) Slow exhaust valve
WO2023286739A1 (en) Suck-back valve
JP5065979B2 (en) Suction throttle valve for screw compressor and screw compressor provided with the same
JP2004028248A (en) Pressure control device
JP2003156171A (en) Initial exhaust valve
JPH0565782A (en) Door driving gear
CN116273734A (en) Gap coating valve
JPS60249691A (en) Rotary piston vacuum pump
JPH11304037A (en) Valve
JP2002031295A (en) Sealing performance confirmation device between valve element and valve seat
JP2005146863A (en) Behavior stabilization control valve
JP2005146864A (en) Behavior stabilization control valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120501

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5002845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees