JP4982693B2 - Method for cleaning metal nanoparticles - Google Patents

Method for cleaning metal nanoparticles Download PDF

Info

Publication number
JP4982693B2
JP4982693B2 JP2006343794A JP2006343794A JP4982693B2 JP 4982693 B2 JP4982693 B2 JP 4982693B2 JP 2006343794 A JP2006343794 A JP 2006343794A JP 2006343794 A JP2006343794 A JP 2006343794A JP 4982693 B2 JP4982693 B2 JP 4982693B2
Authority
JP
Japan
Prior art keywords
substrate
metal nanoparticles
nanoparticles
platinum
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006343794A
Other languages
Japanese (ja)
Other versions
JP2008156674A (en
Inventor
阿川  義昭
正道 松浦
敏男 河原
知二 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Ulvac Inc
Original Assignee
Osaka University NUC
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Ulvac Inc filed Critical Osaka University NUC
Priority to JP2006343794A priority Critical patent/JP4982693B2/en
Publication of JP2008156674A publication Critical patent/JP2008156674A/en
Application granted granted Critical
Publication of JP4982693B2 publication Critical patent/JP4982693B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、金属ナノ粒子のクリーニング方法、例えば燃料電池等の金属触媒ナノ粒子形成後や、カーボンナノチューブの下地膜としての金属触媒ナノ粒子形成後等に、この金属ナノ粒子をクリーニングする方法に関する。本発明において金属ナノ粒子といった場合のナノオーダは、30nm程度以下で、かつ1nm程度以上をいうものとする。   The present invention relates to a method for cleaning metal nanoparticles, for example, a method for cleaning metal nanoparticles after formation of metal catalyst nanoparticles such as a fuel cell or after formation of metal catalyst nanoparticles as an underlayer of carbon nanotubes. In the present invention, the nano-order in the case of the metal nanoparticles is about 30 nm or less and about 1 nm or more.

従来、ドライプロセスによりナノオーダの金属粒子(このナノオーダとは、上記したような範囲内である)を作製する場合には、電子ビーム蒸着法や抵抗加熱蒸着法等により、グラファイト又はアモルファスカーボン等からなる基板を200〜500℃に加熱しながら、その基板上に金属粒子を数nm蒸着し、凝集させて作製している。   Conventionally, when producing nano-order metal particles by dry process (this nano-order is in the above range), it is made of graphite or amorphous carbon by electron beam vapor deposition or resistance heating vapor deposition. While the substrate is heated to 200 to 500 ° C., several nanometers of metal particles are vapor-deposited and aggregated on the substrate.

上記電子ビーム蒸着法の場合、例えば、図1に模式的に示す電子ビーム蒸着装置を用いて金属ナノ粒子を作製している。   In the case of the electron beam evaporation method, for example, metal nanoparticles are produced using an electron beam evaporation apparatus schematically shown in FIG.

図1に示すように、電子ビーム蒸着装置は、円筒形状の真空チャンバ1からなる。この真空チャンバ1内には、その下部の底フランジに取り付けられた電子ビーム蒸着源12が設けられ、電子ビーム蒸着源12には蒸着材料13を収納するための空間(ルツボ)が設けられ、そして電子ビーム蒸着源12に対向して基板ステージ14が設けられている。この基板ステージ14は、その電子ビーム蒸着源12側に、金属ナノ粒子を蒸着するための基板Sが取り付けられるようになっている。基板ステージ14の電子ビーム蒸着源側と反対の側には、その中心に、基板マニピュレータ15が真空チャンバ1上部壁面を貫通して取り付けられ、基板Sが基板ステージ14と共に、基板マニピュレータ15により回転できるように構成されている。そして、基板Sを取り付ける基板ステージ14の面と反対側の面にはヒータ等の加熱手段16が取り付けられ、基板ステージ14、ひいては基板Sを加熱できるように構成されている。   As shown in FIG. 1, the electron beam evaporation apparatus includes a cylindrical vacuum chamber 1. In this vacuum chamber 1, an electron beam evaporation source 12 attached to the bottom flange of the lower part is provided, the electron beam evaporation source 12 is provided with a space (crucible) for storing the evaporation material 13, and A substrate stage 14 is provided facing the electron beam evaporation source 12. The substrate stage 14 is configured such that a substrate S for depositing metal nanoparticles is attached to the electron beam evaporation source 12 side. On the opposite side of the substrate stage 14 from the electron beam evaporation source side, a substrate manipulator 15 is attached through the upper wall surface of the vacuum chamber 1 at the center, and the substrate S can be rotated together with the substrate stage 14 by the substrate manipulator 15. It is configured as follows. A heating means 16 such as a heater is attached to the surface opposite to the surface of the substrate stage 14 to which the substrate S is attached, so that the substrate stage 14 and, in turn, the substrate S can be heated.

基板Sの近傍には膜厚測定子17が取り付けられて、基板に付着する金属ナノ粒子の厚みを測定できるように構成されている。   A film thickness gauge 17 is attached in the vicinity of the substrate S so that the thickness of the metal nanoparticles adhering to the substrate can be measured.

真空チャンバ1には、その壁面に真空排気系18がターボ分子ポンプ18−1、バルブ18−2及びロータリポンプ18−3の順序で設けられ、ターボ分子ポンプ18−1からロータリポンプ18−3まで金属製の真空配管18−4で接続され、真空チャンバ1内の真空排気を行うことができるように構成されている。真空チャンバ1内は、この真空排気系により10−5Pa以下に保つことができるようになっている。 The vacuum chamber 1 is provided with an evacuation system 18 on its wall surface in the order of a turbo molecular pump 18-1, a valve 18-2, and a rotary pump 18-3, from the turbo molecular pump 18-1 to the rotary pump 18-3. It is connected by a metal vacuum pipe 18-4 so that the vacuum chamber 1 can be evacuated. The inside of the vacuum chamber 1 can be maintained at 10 −5 Pa or less by this vacuum exhaust system.

図1に示す電子ビーム蒸着装置を用いて金属ナノ粒子を作製するプロセスの一例について以下説明する。例えば、基板Sとして高配向耐熱グラファイト(High Orientated Pyretic Graphite、以下、HOPGと称す)基板を用い、このHOPG基板を基板ステージ14上に載置し、加熱手段16により600℃まで加熱する。蒸着材料13としての白金を電子ビーム蒸着源12のルツボ内へ充填し、電子ビーム蒸着源を稼働させて電子ビームをルツボに投入し、白金を溶融、蒸発させてHOPG基板上に所定の厚みの白金を蒸着する。蒸着粒子の厚みは、膜厚測定子17に付着した重量から、その同じ量がHOPG基板に均一に付着したものとして、その重量を基板面積と蒸着材料の比重とから計算して算出する。蒸着した金属粒子の大きさは、AFM(原子間力顕微鏡)を用いて粒子の高さを測定し、粒子の高さが粒子の直径と比例すると仮定して算出する。   An example of a process for producing metal nanoparticles using the electron beam evaporation apparatus shown in FIG. 1 will be described below. For example, a highly oriented heat resistant graphite (hereinafter referred to as HOPG) substrate is used as the substrate S, and this HOPG substrate is placed on the substrate stage 14 and heated to 600 ° C. by the heating means 16. The crucible of the electron beam vapor deposition source 12 is filled with platinum as the vapor deposition material 13, the electron beam vapor deposition source is operated, the electron beam is injected into the crucible, and the platinum is melted and evaporated to have a predetermined thickness on the HOPG substrate. Deposit platinum. The thickness of the vapor deposition particles is calculated from the weight adhering to the film thickness gauge 17 by calculating the weight from the substrate area and the specific gravity of the vapor deposition material, assuming that the same amount is uniformly adhering to the HOPG substrate. The size of the deposited metal particles is calculated by measuring the height of the particles using an AFM (Atomic Force Microscope) and assuming that the height of the particles is proportional to the diameter of the particles.

上記したようにして基板Sの表面に蒸着された白金ナノ粒子のAFM像写真を図2に示し、また、蒸着された白金ナノ粒子の断面TEM像写真を図3に示す。これらの図面から、所定の粒径(8〜10nm)の白金ナノ粒子が得られており、この白金ナノ粒子の表面がアモルファスカーボンで被覆されていることが分かる(基板温度が600℃なので、白金が基板上で動いて基板由来のカーボンで被覆される)。白金ナノ粒子が、アモルファスカーボンにより被覆されているために、図2に示すように、その粒子自体が不鮮明に観察される。   An AFM image photograph of the platinum nanoparticles deposited on the surface of the substrate S as described above is shown in FIG. 2, and a cross-sectional TEM image photograph of the deposited platinum nanoparticles is shown in FIG. From these drawings, it is understood that platinum nanoparticles having a predetermined particle size (8 to 10 nm) are obtained, and the surface of the platinum nanoparticles is coated with amorphous carbon (since the substrate temperature is 600 ° C., Moves on the substrate and is coated with carbon from the substrate). Since the platinum nanoparticles are covered with amorphous carbon, the particles themselves are observed unclearly as shown in FIG.

従来は、上記したようにして得られたアモルファスカーボン被覆白金ナノ粒子を酸素プラズマ中に曝すことにより、表面のアモルファスカーボンを燃焼させて除去している。しかし、白金ナノ粒子を酸素プラズマ中で曝露すると、結晶化した白金ナノ粒子にイオンエネルギによるダメージが入って、結晶性が壊れたり、また、酸素が白金ナノ粒子に触れることにより、白金ナノ粒子の表面が酸化して酸化白金が生じるので、触媒活性が死活又は劣化するという問題が生じており、より簡便かつ有用なアモルファスカーボン等の不純物の除去方法の開発が求められている。   Conventionally, the amorphous carbon-coated platinum nanoparticles obtained as described above are exposed to oxygen plasma to burn and remove the amorphous carbon on the surface. However, when platinum nanoparticles are exposed in oxygen plasma, the crystallized platinum nanoparticles are damaged by ion energy, the crystallinity is broken, and oxygen touches the platinum nanoparticles. Since the surface is oxidized to produce platinum oxide, there is a problem that the catalytic activity is life-threatening or deteriorating, and there is a demand for the development of a simpler and more useful method for removing impurities such as amorphous carbon.

本発明の課題は、上述の従来技術の問題点を解決することにあり、極めて簡便な方法で金属ナノ粒子表面をクリーニングする方法を提供することにある。   An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a method for cleaning the surface of metal nanoparticles by a very simple method.

本発明の金属ナノ粒子のクリーニング方法は、粒径1〜100nmの金属ナノ粒子が付着している基板に対してサファイア板を押し付けて重ね合わせた後に、このサファイア板を剥がすことにより、基板上に付着した金属ナノ粒子の表面及びその周辺部に存在する不純物を取り除き、金属ナノ粒子の表面及びその周辺部を清浄化せしめることを特徴とする
The cleaning method of the metal nanoparticles of the present invention, after the superposed against the sapphire plate to the substrate to the metal nanoparticle particle size 1~100N m is attached, by peeling the sapphire plate, substrate The present invention is characterized in that impurities existing on the surface of the metal nanoparticles and its peripheral part attached to the surface are removed, and the surface of the metal nanoparticles and its peripheral part are cleaned .

前記サファイア板は、アニール処理して表面を清浄化したものが好ましい。   The sapphire plate preferably has a surface cleaned by annealing.

本発明によれば、基板上に付着されている金属ナノ粒子に対して、その上からサファイア板を押し付けて重ね合わせた後、このサファイア板を剥がすことにより、金属ナノ粒子の表面及びその周辺部に付着している不純物を、金属ナノ粒子の結晶性を劣化させずに、かつ表面酸化も起こさせずに、簡単に剥離することができるので、金属ナノ粒子表面を清浄化し得るというクリーニング効果を奏する。   According to the present invention, the surface of the metal nanoparticles and the peripheral portion thereof are removed by peeling off the sapphire plate after pressing the sapphire plate on the metal nanoparticle attached on the substrate and superimposing it. Impurities attached to the metal nanoparticles can be easily removed without degrading the crystallinity of the metal nanoparticles and without causing surface oxidation. Play.

以下、本発明に係る金属ナノ粒子のクリーニング方法の一実施の形態として、電子ビーム蒸着法により基板上に蒸着せしめた金属ナノ粒子に対するクリーニング方法について説明するが、この金属ナノ粒子は、電子ビーム蒸着法や抵抗加熱蒸着法等で基板上に蒸着したものでも、また、その他の方法(例えば、スパッタ法、アーク蒸着法)で基板上に付着せしめたものでも良い。   Hereinafter, as an embodiment of the cleaning method for metal nanoparticles according to the present invention, a cleaning method for metal nanoparticles deposited on a substrate by an electron beam evaporation method will be described. It may be deposited on the substrate by a method such as resistance heating deposition or the like, or may be deposited on the substrate by other methods (for example, sputtering or arc deposition).

本発明に係るクリーニング方法の一実施の形態によれば、電子ビーム蒸着法により、公知のプロセス条件で粒径1〜100nm程度の金属ナノ粒子を基板上に蒸着させ、この金属ナノ粒子が基板上に付着している状態の基板を用いてクリーニングを行う。   According to an embodiment of the cleaning method of the present invention, metal nanoparticles having a particle size of about 1 to 100 nm are deposited on a substrate under a known process condition by an electron beam deposition method, and the metal nanoparticles are deposited on the substrate. Cleaning is performed using the substrate attached to the substrate.

上記基板上の金属ナノ粒子に対しサファイア板を押し付けて、金属ナノ粒子が付着した基板とサファイア板とを重ね合わせ、所定の時間、例えば1時間程度放置した後にサファイア板を剥がすことにより、基板上に付着した金属ナノ粒子の表面及びその周辺部に存在している不純物膜が除去され、金属ナノ粒子表面及びその周辺部が清浄化される。このように、金属ナノ粒子及びその周辺部が清浄化されるのは、アモルファスカーボン等のような不純物からなる膜が金属ナノ粒子表面及びその周辺部から剥がれ、サファイア板に密着して除去されるからである。   The sapphire plate is pressed against the metal nanoparticles on the substrate, the substrate to which the metal nanoparticles are adhered and the sapphire plate are overlapped, and left for a predetermined time, for example, about 1 hour, and then peeled off the sapphire plate. The impurity film existing on the surface of the metal nanoparticles and the periphery thereof attached to the surface is removed, and the surface of the metal nanoparticles and the periphery thereof are cleaned. As described above, the metal nanoparticles and the peripheral portion thereof are cleaned because the film made of impurities such as amorphous carbon is peeled off from the surface of the metal nanoparticle and the peripheral portion thereof and adhered to the sapphire plate. Because.

本実施の形態で用いる金属ナノ粒子を蒸着せしめた基板を作製する電子ビーム蒸着装置としては、図1に示す装置を用い、また、その蒸着プロセスは上記したプロセスと同様にして行う。   As an electron beam evaporation apparatus for producing a substrate on which metal nanoparticles are evaporated used in this embodiment, the apparatus shown in FIG. 1 is used, and the evaporation process is performed in the same manner as described above.

本発明によれば、金属ナノ粒子を付着せしめるための基板としては、例えばHOPGのようなグラファイト、シリコン、アモルファスカーボン、シリカ等からなる基板を挙げることができる。   According to the present invention, examples of the substrate on which the metal nanoparticles are attached include a substrate made of graphite such as HOPG, silicon, amorphous carbon, silica, or the like.

また、付着せしめる金属ナノ粒子の金属材料としては、例えば白金、コバルト、鉄、ニッケル、クロム等を挙げることができる。   Moreover, as a metal material of the metal nanoparticle to adhere, platinum, cobalt, iron, nickel, chromium etc. can be mentioned, for example.

サファイア板は、例えば所定の温度(例えば、1300℃等)でアニール処理して表面を清浄化したものが好ましく、アニール処理により表面にステップ構造が形成されたもの等でも良い。   The sapphire plate preferably has a surface that has been cleaned by annealing at a predetermined temperature (eg, 1300 ° C., for example), and may have a step structure formed on the surface by annealing.

金属ナノ粒子が付着した基板とサファイア板とを重ね合わせて放置する時間は、特に制限はないが、例えば1〜4時間程度で良い。また、その重ね合わせる力は、金属ナノ粒子が圧壊されない程度であれば良く、例えばサファイア板の自重であっても、1kg程度までのおもりを載せても良い。   There is no particular limitation on the time for which the metal nanoparticle-attached substrate and the sapphire plate are left to stand, but may be, for example, about 1 to 4 hours. Further, the superimposing force is sufficient as long as the metal nanoparticles are not crushed. For example, the weight of the sapphire plate may be the weight of the sapphire plate or a weight of up to about 1 kg may be placed.

図1に示す電子ビーム蒸着装置を用いて、1cm×1cm角のHOPG基板S上に白金ナノ粒子を蒸着せしめた。   Platinum nanoparticles were deposited on a 1 cm × 1 cm HOPG substrate S using the electron beam deposition apparatus shown in FIG.

まず、このHOPG基板Sを基板ステージ14上に載置し、加熱手段16により500℃まで加熱した。蒸着材料としての白金を電子ビーム蒸着源12のルツボ内へ充填し、電子ビーム蒸着源を稼働させて電子ビームをルツボに投入し、白金を溶融、蒸発させてHOPG基板S上に所定の厚みの白金ナノ粒子を蒸着せしめた。蒸着粒子の大きさは、膜厚測定子17に付着した重量から、その同じ量がHOPG基板Sに均一に付着したものとして、その重量を基板面積と蒸着材料の比重とから計算して算出したところ、粒径8〜10nmであった。HOPG基板S上に蒸着された白金ナノ粒子のAFM像は図2に示したものと同様であり、粒子表面及びその周辺部に基板由来のアモルファスカーボンが存在していることが、AMF像が不鮮明なことにより確認された。   First, the HOPG substrate S was placed on the substrate stage 14 and heated to 500 ° C. by the heating means 16. The crucible of the electron beam vapor deposition source 12 is filled with platinum as a vapor deposition material, the electron beam vapor deposition source is operated, the electron beam is injected into the crucible, and the platinum is melted and evaporated to a predetermined thickness on the HOPG substrate S. Platinum nanoparticles were deposited. The size of the vapor deposition particles was calculated by calculating the weight based on the substrate area and the specific gravity of the vapor deposition material, assuming that the same amount adhered uniformly to the HOPG substrate S from the weight adhering to the film thickness gauge 17. However, the particle size was 8 to 10 nm. The AFM image of the platinum nanoparticles deposited on the HOPG substrate S is the same as that shown in FIG. 2, and the presence of amorphous carbon derived from the substrate on the particle surface and its peripheral part is unclear. That was confirmed.

次いで、サファイア板として、1300℃でアニール処理した12mm×12mm角のサファイア板を用い、このサファイア板を、上記白金ナノ粒子の蒸着されたHOPG基板Sに対して、大気中、室温で載せて重ね合わせ、100g重の圧力をかけた状態で1時間放置した。   Next, a 12 mm × 12 mm square sapphire plate annealed at 1300 ° C. is used as the sapphire plate, and this sapphire plate is placed on the HOPG substrate S on which the platinum nanoparticles are deposited at room temperature in the air. They were combined and allowed to stand for 1 hour under a pressure of 100 g.

その後、サファイア板を剥がし、HOPG基板Sの表面をAFM観察した。このAFM像を図4に示す。図4から明らかなように、AFM像で示される白金ナノ粒子の像が図2で示される白金ナノ粒子の像よりも鮮明になっていた。これは、アモルファスカーボンとサファイア板との密着性が白金とアモルファスカーボンとの密着性より強いため、白金ナノ粒子の最表面及び粒子周辺部に付着していたアモルファスカーボンが剥離してサファイア板へと移行したためである。   Thereafter, the sapphire plate was peeled off, and the surface of the HOPG substrate S was observed with AFM. This AFM image is shown in FIG. As is clear from FIG. 4, the platinum nanoparticle image shown in the AFM image was clearer than the platinum nanoparticle image shown in FIG. This is because the adhesion between the amorphous carbon and the sapphire plate is stronger than the adhesion between the platinum and the amorphous carbon, so the amorphous carbon adhering to the outermost surface of the platinum nanoparticle and the periphery of the particle is peeled off to the sapphire plate. This is because of the transition.

本発明によれば、基板上に付着した金属ナノ粒子の表面及びその周辺部を被覆していた不純物膜を、金属ナノ粒子の結晶性を劣化させずに、かつ表面酸化も起こさせずに、簡単に剥離して、金属ナノ粒子表面を清浄化することができるので、本発明は、燃料電池の触媒粒子形成技術の分野や、半導体分野における配線形成技術の分野や、カーボンナノチューブの下地膜としての触媒層形成技術の分野等において利用可能である。   According to the present invention, without impairing the crystallinity of the metal nanoparticles and causing the surface oxidation, the impurity film covering the surface of the metal nanoparticles attached on the substrate and the periphery thereof is not caused. Since the surface of the metal nanoparticles can be easily peeled off, the present invention is applied to the field of catalyst particle formation technology for fuel cells, the field of wiring formation technology in the semiconductor field, and the underlayer of carbon nanotubes. It can be used in the field of the catalyst layer forming technology.

電子ビーム蒸着装置の一構成例を模式的に示す構成図。The block diagram which shows typically the example of 1 structure of an electron beam vapor deposition apparatus. 従来の電子ビーム蒸着法により蒸着された白金ナノ粒子のAFM像写真。The AFM image photograph of the platinum nanoparticle vapor-deposited by the conventional electron beam vapor deposition method. 図2における白金ナノ粒子の断面TEM像写真。The cross-sectional TEM image photograph of the platinum nanoparticle in FIG. 実施例1で得られたクリーニング後の白金ナノ粒子のAFM像写真。4 is an AFM image photograph of the platinum nanoparticles after cleaning obtained in Example 1. FIG.

符号の説明Explanation of symbols

1 真空チャンバ 12 電子ビーム蒸着源
13 蒸着材料 14 基板ステージ
15 基板マニピュレータ 16 加熱手段
17 膜厚測定子 18 真空排気系
18−1 ターボ分子ポンプ 18−2 バルブ
18−3 ロータリポンプ 18−4 真空配管
S 基板
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 12 Electron beam evaporation source 13 Vapor deposition material 14 Substrate stage 15 Substrate manipulator 16 Heating means 17 Film thickness gauge 18 Vacuum exhaust system 18-1 Turbo molecular pump 18-2 Valve 18-3 Rotary pump 18-4 Vacuum piping S substrate

Claims (2)

粒径1〜100nmの金属ナノ粒子が付着している基板に対してサファイア板を押し付けて重ね合わせた後に、このサファイア板を剥がすことにより、基板上に付着した金属ナノ粒子の表面及びその周辺部に存在する不純物を取り除き、金属ナノ粒子の表面及びその周辺部を清浄化せしめることを特徴とする金属ナノ粒子のクリーニング方法。 After the sapphire plate is pressed against the substrate on which the metal nanoparticles having a particle size of 1 to 100 nm are adhered and overlapped, the surface of the metal nanoparticles attached on the substrate and its surroundings are removed by peeling the sapphire plate A method for cleaning metal nanoparticles, comprising removing impurities present in the part and cleaning the surface of the metal nanoparticle and its peripheral part. 前記サファイア板が、アニール処理したものであることを特徴とする請求項記載の金属ナノ粒子のクリーニング方法。 The sapphire plate, a method of cleaning a metal nanoparticle according to claim 1, wherein a is obtained by annealing.
JP2006343794A 2006-12-21 2006-12-21 Method for cleaning metal nanoparticles Active JP4982693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006343794A JP4982693B2 (en) 2006-12-21 2006-12-21 Method for cleaning metal nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006343794A JP4982693B2 (en) 2006-12-21 2006-12-21 Method for cleaning metal nanoparticles

Publications (2)

Publication Number Publication Date
JP2008156674A JP2008156674A (en) 2008-07-10
JP4982693B2 true JP4982693B2 (en) 2012-07-25

Family

ID=39657918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006343794A Active JP4982693B2 (en) 2006-12-21 2006-12-21 Method for cleaning metal nanoparticles

Country Status (1)

Country Link
JP (1) JP4982693B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187801A (en) * 1983-09-22 1986-05-06 Nippon Jiryoku Senko Kk Milling and washing method of fine metallic grain
JP2002223016A (en) * 2001-01-24 2002-08-09 Matsushita Electric Ind Co Ltd Method for manufacturing quantum device
JP2005264178A (en) * 2004-03-16 2005-09-29 Toyota Motor Corp Method for removing carbon film
JP2005353926A (en) * 2004-06-14 2005-12-22 Nikon Corp Cleaning method and manufacturing method of substrate
KR100845688B1 (en) * 2004-11-24 2008-07-11 삼성전기주식회사 Method for Surface treatment of Ni nano particle with Organic solution
JP2006150741A (en) * 2004-11-29 2006-06-15 Asahi Glass Co Ltd Method for forming pattern on transfer layer

Also Published As

Publication number Publication date
JP2008156674A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
JP6416191B2 (en) Low temperature graphene deposition method on glass, and related article / apparatus
US9816176B2 (en) Preparation method for multi-layer metal oxide porous film nano gas-sensitive material
JP2016515091A (en) Method for directly producing graphene on a dielectric substrate, and related article / apparatus
JP2011051801A (en) Method for producing graphene film
CN106756870B (en) A kind of method of plasma enhanced chemical vapor deposition growth graphene
Kumar et al. CVD growth and processing of graphene for electronic applications
CN102180439A (en) Carbon microtructure with graphene integrated on surface and preparation method thereof
US9809871B1 (en) Silver nanoparticle method on zinc oxide films
US11885011B2 (en) Infiltrating carbon nanotubes with carbon to prevent delamination from a substrate
Wang et al. Low-cost scalable production of freestanding two-dimensional metallic nanosheets by polymer surface buckling enabled exfoliation
Zhou et al. Multi-directional growth of aligned carbon nanotubes over catalyst film prepared by atomic layer deposition
JP4982693B2 (en) Method for cleaning metal nanoparticles
CN112174121B (en) Preparation method of large-size clean graphene material
Li et al. Field emission from a periodic amorphous silicon pillar array fabricated by modified nanosphere lithography
Bieberle-Hütter et al. Nanostructuring of iron thin films by high flux low energy helium plasma
CN103172059B (en) The preparation method of Graphene
JP2004182537A (en) Method of forming arranged structure of nanocarbon material
CN107777681B (en) Method for preparing double-layer and/or multi-layer graphene by utilizing nano powder catalysis
TW201031482A (en) Manufacturing method of inorganic nano-particles and a device using the same
JP5052074B2 (en) Method for forming nano metal particles and nano-order wiring
KR102324147B1 (en) Method of preparing metal-graphene-microporous graphitic carbon composite, metal-graphene-microporous graphitic carbon composite and hydrogen sensor device comprising the same
JP5783669B2 (en) Method for forming catalytic metal fine particles
JP2982055B2 (en) Method for producing fine metal particles of gold, silver or copper
CN113136547B (en) Tin dioxide oxide film, preparation method and application thereof in hydrogen detection
US20230407462A1 (en) Infiltrated carbon nanotubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

R150 Certificate of patent or registration of utility model

Ref document number: 4982693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250