JP4977079B2 - Method for producing lithium ion secondary battery - Google Patents

Method for producing lithium ion secondary battery Download PDF

Info

Publication number
JP4977079B2
JP4977079B2 JP2008087551A JP2008087551A JP4977079B2 JP 4977079 B2 JP4977079 B2 JP 4977079B2 JP 2008087551 A JP2008087551 A JP 2008087551A JP 2008087551 A JP2008087551 A JP 2008087551A JP 4977079 B2 JP4977079 B2 JP 4977079B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
resin particles
mixture layer
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008087551A
Other languages
Japanese (ja)
Other versions
JP2009004360A (en
Inventor
和典 久保田
康博 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008087551A priority Critical patent/JP4977079B2/en
Priority to US12/122,803 priority patent/US8293405B2/en
Priority to CN2008101079301A priority patent/CN101320810B/en
Priority to KR1020080047210A priority patent/KR101058080B1/en
Publication of JP2009004360A publication Critical patent/JP2009004360A/en
Application granted granted Critical
Publication of JP4977079B2 publication Critical patent/JP4977079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池およびその製造方法に関する。   The present invention relates to a lithium ion secondary battery and a method for manufacturing the same.

近年、リチウムイオン二次電池は、高容量および高エネルギー密度が得られる特性から、モバイル用電池としての活用を業界から大いに期待されている。これらの電池は、正極板および負極板、ならびに前記正極板と負極板との間に配置されたセパレーター(絶縁性の高分子多孔フィルムなど)を有する。   In recent years, lithium ion secondary batteries are highly expected from the industry to be used as mobile batteries because of their high capacity and high energy density. These batteries have a positive electrode plate and a negative electrode plate, and a separator (such as an insulating polymer porous film) disposed between the positive electrode plate and the negative electrode plate.

通常、正極板および負極板は、活物質(正極活物質または負極活物質)、導電助剤、結着剤および溶媒を混合して作製された塗料(正極塗料または負極塗料)を集電体上に塗布し、乾燥させて形成される。このとき、リチウムイオン二次電池の放電容量を向上させるため、これらの極板(正極板および負極板)を圧延して活物質の密度を高めるのが一般的である。極板内の活物質の密度が高まるほど、リチウムイオン二次電池の容量は向上する。   Usually, the positive electrode plate and the negative electrode plate are formed by mixing a paint (positive electrode paint or negative electrode paint) prepared by mixing an active material (positive electrode active material or negative electrode active material), a conductive additive, a binder and a solvent on a current collector. It is applied to and dried. At this time, in order to improve the discharge capacity of the lithium ion secondary battery, these electrode plates (positive electrode plate and negative electrode plate) are generally rolled to increase the density of the active material. The capacity of the lithium ion secondary battery increases as the density of the active material in the electrode plate increases.

ところで、リチウムイオン二次電池には、充放電時に活物質が膨張および収縮を繰り返すため、極板の座屈が生じ、サイクル寿命が低下してしまうという問題がある。この問題を解決することを目的として、極板内に樹脂粒子を含有させる技術が開示されている(例えば、特許文献1,2参照)。特許文献1の技術では、樹脂粒子が潤滑剤として機能し、活物質の膨張を活物質が移動することにより吸収することができるため、極板の座屈を抑制することができる。また、特許文献2の技術では、中空部を有する弾性構造体がクッション材として機能するため、極板の座屈を抑制することができる。   By the way, in a lithium ion secondary battery, since an active material repeats expansion | swelling and shrinkage | contraction at the time of charging / discharging, there exists a problem that an electrode plate will buckle and cycle life will fall. In order to solve this problem, a technique for incorporating resin particles in an electrode plate has been disclosed (for example, see Patent Documents 1 and 2). In the technique of Patent Document 1, since the resin particles function as a lubricant and the expansion of the active material can be absorbed by the movement of the active material, buckling of the electrode plate can be suppressed. Moreover, in the technique of patent document 2, since the elastic structure which has a hollow part functions as a cushioning material, buckling of an electrode plate can be suppressed.

また、リチウムイオン二次電池のレート特性を向上させるため、および内部短絡の原因となるリチウムのデンドライト成長を抑制するために、活物質を中空粒子とし、その中に導電助剤を充填させる技術が開示されている(例えば、特許文献3参照)。このように中空構造の活物質の中に導電助剤を充填させることで、導電率を向上させ、かつレート特性を向上させることができる。また、負極板内の活物質がカーボンまたは金属酸化物からなる多孔質中空粒子の場合、充電時に析出するリチウムが電解液と直接接触しないため、リチウムのデンドライト成長を抑制することができる。   In addition, in order to improve the rate characteristics of lithium ion secondary batteries and to suppress the dendrite growth of lithium, which causes internal short circuits, there is a technology in which active materials are made into hollow particles and filled with a conductive auxiliary agent. It is disclosed (for example, see Patent Document 3). In this way, by filling the hollow active material with the conductive additive, the conductivity can be improved and the rate characteristics can be improved. Further, when the active material in the negative electrode plate is porous hollow particles made of carbon or metal oxide, lithium deposited during charging does not come into direct contact with the electrolytic solution, so that dendrite growth of lithium can be suppressed.

リチウムイオン二次電池は、高容量、高エネルギー密度に起因する問題点、例えば電池の内部短絡による温度の上昇を防ぐために、セパレーターに種々の工夫が施されている。セパレーターに求められる特性として、シャットダウン特性と耐ショート特性がある。シャットダウンとは、過充電や電池内外部短絡などのトラブルにより電池温度が上昇した際に、高分子多孔フィルム(セパレーター)が溶融し、孔が閉塞され電流が遮断されることをいう。また、ショートとは、シャットダウンした電池がさらに温度上昇し、セパレーターが完全に溶融して穴があく、またはセパレーターの収縮で正極板と負極板とが接触することをいう。このようなショートが生じると、正極板と負極板との間で大電流が流れ、電池が発熱してしまう。   In the lithium ion secondary battery, various devices are applied to the separator in order to prevent a problem caused by a high capacity and a high energy density, for example, an increase in temperature due to an internal short circuit of the battery. The characteristics required for the separator include shutdown characteristics and short circuit resistance characteristics. The shutdown means that when the battery temperature rises due to troubles such as overcharge or external short circuit inside the battery, the polymer porous film (separator) melts, the holes are closed, and the current is cut off. The short circuit means that the temperature of the shut-down battery further increases and the separator is completely melted to form a hole or the positive electrode plate and the negative electrode plate come into contact with each other due to the shrinkage of the separator. When such a short circuit occurs, a large current flows between the positive electrode plate and the negative electrode plate, and the battery generates heat.

上述のように、リチウムイオン二次電池においては、シャットダウン特性と耐ショート特性を両立させることが重要である。これらを両立させる技術として、耐熱性含窒素芳香族重合体およびセラミック粉末を用いることで耐熱性を付与し、260℃以下で溶融する熱可塑性樹脂を含有させることで熱暴走を抑制する技術が開示されている(例えば、特許文献4参照)。   As described above, in a lithium ion secondary battery, it is important to achieve both shutdown characteristics and short circuit resistance. As a technology to achieve both of these, a technology that imparts heat resistance by using a heat-resistant nitrogen-containing aromatic polymer and ceramic powder and suppresses thermal runaway by containing a thermoplastic resin that melts at 260 ° C. or lower is disclosed. (For example, see Patent Document 4).

また、ニッケル水素二次電池についての技術であるが、容量を低下させることなく大電流放電を実現するために、正極に電解液を保持可能な中空粒子を含ませる技術が開示されている(例えば、特許文献5参照)。このように正極内に中空粒子を含ませることで、電解液の体積を減少させることなく電極面積を大きくすることができるため、容量を低下させることなく大電流放電を実現することができる。
特開2003−168438号公報 特開2001−185152号公報 特許第3581474号公報 特開2000−030686号公報 特開2002−198043号公報
Moreover, although it is a technique about a nickel metal hydride secondary battery, in order to implement | achieve a large current discharge, without reducing a capacity | capacitance, the technique of including the hollow particle which can hold electrolyte solution in a positive electrode is disclosed (for example, , See Patent Document 5). By including hollow particles in the positive electrode in this way, the electrode area can be increased without reducing the volume of the electrolytic solution, and thus a large current discharge can be realized without reducing the capacity.
JP 2003-168438 A JP 2001-185152 A Japanese Patent No. 3581474 JP 2000-030686 A JP 2002-198043 A

しかしながら、圧延しても体積が変わらない粒子を極板内に含有させる特許文献1,2の技術には、圧延する際に粒子が反発してしまうため、圧延しても活物質の密度を高めることができず、リチウムイオン二次電池の容量を高めることができないという問題があった。   However, in the techniques of Patent Documents 1 and 2, in which particles that do not change in volume when rolled are contained in the electrode plate, the particles are repelled when rolled, so the density of the active material is increased even when rolled. There was a problem that the capacity of the lithium ion secondary battery could not be increased.

また、活物質を中空構造とする特許文献3の技術においても、活物質の密度を高めることができず、リチウムイオン二次電池の容量を高めることができないという問題があった。   Further, even in the technique of Patent Document 3 in which the active material has a hollow structure, there is a problem that the density of the active material cannot be increased and the capacity of the lithium ion secondary battery cannot be increased.

さらに、特許文献1〜3の技術には、活物質の密度を高めるために圧延する際の圧力を上げると、極板内の空孔が減少することにより電解液の浸透性が低下してしまい、レート特性が悪くなるという問題もあった。   Furthermore, in the techniques of Patent Documents 1 to 3, when the pressure at the time of rolling is increased in order to increase the density of the active material, the permeability of the electrolytic solution is reduced due to a decrease in pores in the electrode plate. There was also a problem that the rate characteristics deteriorated.

本発明は、活物質の密度が高くかつ電解液の浸透性が高い極板を有するリチウムイオン二次電池、およびその製造方法を提供することを目的とする。   An object of this invention is to provide the lithium ion secondary battery which has an electrode plate with the high density of an active material, and the permeability of an electrolyte solution, and its manufacturing method.

本発明者は、リチウムイオン二次電池を製造する際に、圧延により破砕されうる中空樹脂粒子を圧延前の正極合材層または負極合材層に含ませることで上記課題を解決できることを見出し、さらに検討を加えて本発明を完成させた。   The present inventors have found that the above problem can be solved by including hollow resin particles that can be crushed by rolling in the positive electrode mixture layer or the negative electrode mixture layer before rolling when producing a lithium ion secondary battery, Further studies were made to complete the present invention.

また、本発明、以下のリチウムイオン二次電池の製造方法に関する。
]正極活物質を含む正極塗料を正極集電体上に塗布して、正極合材層および正極集電体を有する正極を形成するステップと、
負極活物質を含む負極塗料を負極集電体上に塗布して、負極合材層および負極集電体を有する負極を形成するステップと、
前記正極を圧延して、前記正極合材層内における前記正極活物質の密度を高めるステップと、
前記負極を圧延して、前記負極合材層内における前記負極活物質の密度を高めるステップと、
前記圧延後の正極と、セパレーターと、前記圧延後の負極とを積層するステップと、
を有するリチウムイオン二次電池の製造方法であって、
前記正極塗料が、前記正極活物質100重量部に対して、前記圧延により破砕されうる、粒子径が0.1μm以上10μm以下の中空樹脂粒子を、1重量部以上20重量部以下含むか、または
前記負極塗料が、前記負極活物質100重量部に対して、前記圧延により破砕されうる、粒子径が0.1μm以上20μm以下の中空樹脂粒子を、1重量部以上50重量部以下含む、
リチウムイオン二次電池の製造方法。
]前記正極合材層または負極合材層は、前記中空樹脂粒子の破砕物を、圧延後に1g/cm以上20g/cm以下の密度で含む、[]に記載のリチウムイオン二次電池の製造方法。
]前記中空樹脂粒子の中空部の体積比率は、20%以上80%以下である、[]に記載のリチウムイオン二次電池の製造方法。
Further, the present invention relates to a method of manufacturing a lithium ion secondary battery or less.
[ 1 ] A step of applying a positive electrode paint containing a positive electrode active material on a positive electrode current collector to form a positive electrode having a positive electrode mixture layer and a positive electrode current collector;
Applying a negative electrode paint containing a negative electrode active material on a negative electrode current collector to form a negative electrode having a negative electrode mixture layer and a negative electrode current collector;
Rolling the positive electrode to increase the density of the positive electrode active material in the positive electrode mixture layer;
Rolling the negative electrode to increase the density of the negative electrode active material in the negative electrode mixture layer;
Laminating the positive electrode after rolling, a separator, and the negative electrode after rolling;
A method for producing a lithium ion secondary battery having
The positive electrode paint contains 1 to 20 parts by weight of hollow resin particles having a particle diameter of 0.1 to 10 μm that can be crushed by the rolling with respect to 100 parts by weight of the positive electrode active material, or The negative electrode paint contains 1 to 50 parts by weight of hollow resin particles having a particle diameter of 0.1 to 20 μm that can be crushed by the rolling with respect to 100 parts by weight of the negative electrode active material.
A method for producing a lithium ion secondary battery.
[2] The positive-electrode mixture layer or the negative-electrode mixture layer, the crushed product of the hollow resin particles, including later 1 g / cm 3 or more 20 g / cm 3 in the following densities rolling, the lithium ion secondary according to [1] A method for manufacturing a secondary battery.
[ 3 ] The method for producing a lithium ion secondary battery according to [ 1 ], wherein the volume ratio of the hollow part of the hollow resin particles is 20% or more and 80% or less.

本発明によれば、正極板または負極板の圧延時に中空の樹脂粒子が破砕されるため、活物質密度を容易に向上させることができ、リチウムイオン二次電池の容量を向上させることができる。また、本発明によれば、破砕された樹脂粒子が極板表面に凹凸を形成するとともに極板内に空孔を形成するため、電解液の浸透性を向上させることができ、リチウムイオン二次電池のレート特性を向上させることができる。   According to the present invention, since hollow resin particles are crushed during rolling of the positive electrode plate or the negative electrode plate, the active material density can be easily improved, and the capacity of the lithium ion secondary battery can be improved. Further, according to the present invention, since the crushed resin particles form irregularities on the surface of the electrode plate and form pores in the electrode plate, the permeability of the electrolyte can be improved, and the lithium ion secondary The rate characteristics of the battery can be improved.

1.本発明のリチウムイオン二次電池
本発明のリチウムイオン二次電池は、正極合材層を有する正極(正極板)と、負極合材層を有する負極(負極板)と、正極と負極との間に配置されたセパレーターとを有するリチウムイオン二次電池であって、正極合材層および負極合材層の少なくとも一方が樹脂粒子を含むことを特徴とする。また、本発明のリチウムイオン二次電池は、樹脂粒子を含む合材層において空孔が数多く形成されており、当該合材層における電解液の浸透性が高いという特徴も有する。
1. The lithium ion secondary battery of the present invention includes a positive electrode (positive electrode plate) having a positive electrode mixture layer, a negative electrode (negative electrode plate) having a negative electrode mixture layer, and a positive electrode and a negative electrode. A lithium ion secondary battery having a separator disposed in the at least one of the positive electrode mixture layer and the negative electrode mixture layer includes resin particles. In addition, the lithium ion secondary battery of the present invention is characterized in that a large number of pores are formed in the composite material layer containing resin particles, and the electrolyte solution has high permeability in the composite material layer.

図1は、本発明のリチウムイオン二次電池の例を示す断面図である。図1(A)〜(C)に示されるように、本発明のリチウムイオン二次電池100は、正極集電体112および正極合材層114を有する正極110と、負極集電体122および負極合材層124を有する負極120と、正極110と負極120との間に配置されたセパレーター130とを有し、正極合材層114および負極合材層124の少なくとも一方が樹脂粒子140を含む。図1(A)は正極合材層114のみが樹脂粒子140を含む例を示す図であり、図1(B)は負極合材層124のみが樹脂粒子140を含む例を示す図であり、図1(C)は正極合材層114および負極合材層124が樹脂粒子140を含む例を示す図である。   FIG. 1 is a cross-sectional view showing an example of the lithium ion secondary battery of the present invention. As shown in FIGS. 1A to 1C, a lithium ion secondary battery 100 of the present invention includes a positive electrode 110 having a positive electrode current collector 112 and a positive electrode mixture layer 114, a negative electrode current collector 122, and a negative electrode. The negative electrode 120 having the composite material layer 124 and the separator 130 disposed between the positive electrode 110 and the negative electrode 120 are included, and at least one of the positive electrode composite material layer 114 and the negative electrode composite material layer 124 includes the resin particles 140. 1A is a view showing an example in which only the positive electrode mixture layer 114 includes the resin particles 140, and FIG. 1B is a view showing an example in which only the negative electrode mixture layer 124 includes the resin particles 140. FIG. 1C is a diagram illustrating an example in which the positive electrode mixture layer 114 and the negative electrode mixture layer 124 include resin particles 140.

正極は、正極集電体と正極集電体上に形成された正極合材層とを有する。同様に、負極は、負極集電体と負極集電体上に形成された負極合材層とを有する。正極および負極において、それぞれの合材層は集電体の片面に形成されていてもよいし、両面に設けられていてもよい。   The positive electrode has a positive electrode current collector and a positive electrode mixture layer formed on the positive electrode current collector. Similarly, the negative electrode has a negative electrode current collector and a negative electrode mixture layer formed on the negative electrode current collector. In the positive electrode and the negative electrode, each composite material layer may be formed on one side of the current collector, or may be provided on both sides.

正極集電体および負極集電体は、正極合材層または負極合材層を保持するとともに集電機能を有する電極基体である。正極集電体および負極集電体は、導電性が高いものであれば特に限定されず、例えば、アルミニウム箔、銅箔、ニッケル箔などの金属箔や、PETなどの高分子フィルムの表面に金属を蒸着した積層体、導電性高分子フィルムなどである。一般的には、正極集電体としてはアルミニウム箔が用いられ、負極集電体としては銅箔が用いられることが多い。   The positive electrode current collector and the negative electrode current collector are electrode substrates that retain the positive electrode mixture layer or the negative electrode mixture layer and have a current collecting function. The positive electrode current collector and the negative electrode current collector are not particularly limited as long as they have high conductivity. For example, a metal foil such as an aluminum foil, a copper foil, or a nickel foil, or a metal film on the surface of a polymer film such as PET is used. And a conductive polymer film. In general, an aluminum foil is used as the positive electrode current collector, and a copper foil is often used as the negative electrode current collector.

正極合材層および負極合材層は、正極活物質または負極活物質を結着剤で結着して形成された層である。結着剤は、集電体と活物質との間および活物質間を結着する。正極合材層および負極合材層は、必要に応じて導電助剤などの他の物質を含んでいてもよい。   The positive electrode mixture layer and the negative electrode mixture layer are layers formed by binding a positive electrode active material or a negative electrode active material with a binder. The binder binds between the current collector and the active material and between the active materials. The positive electrode mixture layer and the negative electrode mixture layer may contain other substances such as a conductive additive as necessary.

正極活物質は、リチウムイオンを吸蔵放出可能なものであれば特に限定されないが、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムなどのリチウム遷移金属酸化物や、FeS、TiSなどの遷移金属硫化物、ポリアニリン、ポリピロールなどの有機化合物、これらの化合物を部分的に元素置換したものなどである。 The positive electrode active material is not particularly limited as long as capable of occluding and releasing lithium ion, e.g., lithium cobalt acid, lithium nickel acid, and lithium transition metal oxide such as lithium manganate, FeS, transition, such as TiS 2 Organic compounds such as metal sulfides, polyaniline, and polypyrrole, and compounds obtained by partially substituting these compounds.

負極活物質は、リチウムイオンを吸蔵放出可能なものであれば特に限定されないが、例えば、グラファイト、コークスなどの炭素系活物質や、金属リチウム、リチウム遷移金属窒化物、シリコンなどである。   The negative electrode active material is not particularly limited as long as it can occlude and release lithium ions, and examples thereof include carbon-based active materials such as graphite and coke, metal lithium, lithium transition metal nitride, and silicon.

結着剤は、特に限定されないが、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのフッ素樹脂や、フッ化ビニリデンとヘキサフルオロプロピレンとテトラフルオロエチレンとの共重合体などのフッ素ゴム、スチレン−ブタジエン共重合体ラテックス、アクリロニトリル−ブタジエン共重合体ラテックスなどのラテックス、カルボキシルメチルセルロースなどのセルロース誘導体などである。   The binder is not particularly limited. For example, fluorine resin such as polyvinylidene fluoride and polytetrafluoroethylene, fluorine rubber such as a copolymer of vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene, and styrene-butadiene. Examples thereof include latex such as copolymer latex, acrylonitrile-butadiene copolymer latex, and cellulose derivatives such as carboxymethyl cellulose.

導電助剤は、特に限定されないが、例えば、アセチレンブラック、カーボンブラック、黒鉛などの炭素粉末などである。   The conductive aid is not particularly limited, and examples thereof include carbon powders such as acetylene black, carbon black, and graphite.

前述の通り、本発明のリチウムイオン二次電池は、正極合材層および負極合材層の少なくとも一方が樹脂粒子を含むことを特徴とする。   As described above, the lithium ion secondary battery of the present invention is characterized in that at least one of the positive electrode mixture layer and the negative electrode mixture layer contains resin particles.

樹脂粒子の材質は、特に限定されないが、例えば、ポリエチレン、ポリプロピレン、アクリル、フッ素系樹脂、セルロース誘導体などである。樹脂粒子の形状および大きさは、特に限定されない。   The material of the resin particles is not particularly limited, and examples thereof include polyethylene, polypropylene, acrylic, fluorine resin, and cellulose derivatives. The shape and size of the resin particles are not particularly limited.

樹脂粒子の量は、正極合材層においては、正極活物質100重量部に対して1重量部以上20重量部以下であることが好ましく、負極合材層においては、負極活物質100重量部に対して1重量部以上50重量部以下であることが好ましい。密度で特定すると、いずれの合材層も、樹脂粒子を1g/cm以上20g/cm以下の密度で含むことが好ましい。樹脂粒子が少なすぎると、レート特性を向上させる効果(後述)を得ることができない。一方、樹脂粒子が多すぎると、合材層内の活物質の量が少なくなるため、放電容量が低下してしまう。 The amount of the resin particles is preferably 1 to 20 parts by weight with respect to 100 parts by weight of the positive electrode active material in the positive electrode mixture layer, and 100 parts by weight of the negative electrode active material in the negative electrode mixture layer. On the other hand, it is preferably 1 part by weight or more and 50 parts by weight or less. When specifying a density, any mixture layer also preferably contains a resin particle 1 g / cm 3 or more 20 g / cm 3 or less density. When there are too few resin particles, the effect (after-mentioned) which improves a rate characteristic cannot be acquired. On the other hand, when there are too many resin particles, the amount of the active material in the composite layer is reduced, so that the discharge capacity is reduced.

後述する本発明の製造方法により本発明のリチウムイオン二次電池を製造した場合、圧延により破砕された中空樹脂粒子が、上記樹脂粒子となる。   When the lithium ion secondary battery of the present invention is manufactured by the manufacturing method of the present invention to be described later, the hollow resin particles crushed by rolling become the resin particles.

正極と負極との間に配置されるセパレーターは、正極と負極とを絶縁し、かつその内部(セパレーターを構成する材料内またはセパレーター内に形成された空孔内)をリチウムイオンが移動できるものであれば特に限定されず、例えば、絶縁性の高分子多孔フィルムである。セパレーターは、例えば、アルミナシリカ、酸化マグネシウム、酸化チタン、ジルコニア、炭化ケイ素、窒化ケイ素などの無機物粒子や、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアクリロニトリル、ポリメチルメタクリレート、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリイミドなどの有機物粒子、前記無機物粒子と有機物粒子との混合物、結着剤、溶媒、各種添加剤などを混合したものを、塗布し、乾燥させ、圧延することにより形成することができる。   The separator disposed between the positive electrode and the negative electrode insulates the positive electrode from the negative electrode and allows lithium ions to move inside (in the material constituting the separator or in the pores formed in the separator). If it is, it will not specifically limit, For example, it is an insulating polymer porous film. Separator is, for example, inorganic particles such as alumina silica, magnesium oxide, titanium oxide, zirconia, silicon carbide, silicon nitride, polyethylene, polypropylene, polystyrene, polyacrylonitrile, polymethyl methacrylate, polyvinylidene fluoride, polytetrafluoroethylene, polyimide It can be formed by applying, drying and rolling a mixture of organic particles such as the above, a mixture of inorganic particles and organic particles, a binder, a solvent, various additives and the like.

正極および負極ならびにセパレーターは、電解液を保液していることが好ましい。例えば、正極および負極ならびにセパレーターを電解液内に配置することで、正極および負極ならびにセパレーターに電解液を保液させることができる。具体的には、正極と負極との間にセパレーターを配置した発電要素をステンレスケースに挿入し、このステンレスケースに電解液を注液することで、正極および負極ならびにセパレーターに電解液を保液させることができる。   The positive electrode, the negative electrode, and the separator preferably hold an electrolyte solution. For example, by arranging the positive electrode, the negative electrode, and the separator in the electrolytic solution, the electrolytic solution can be retained in the positive electrode, the negative electrode, and the separator. Specifically, a power generation element in which a separator is disposed between a positive electrode and a negative electrode is inserted into a stainless steel case, and an electrolytic solution is injected into the stainless steel case, thereby retaining the electrolytic solution in the positive electrode, the negative electrode, and the separator. be able to.

電解液に用いる非水溶媒は、特に限定されないが、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γーブチロラクトン、スルホラン、アセトニトリル、1,2−ジメトキエタン、1,3−ジメトキシプロパン、ジエチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、γーブチロラクトンなどである。この非水溶媒は、単独で使用してもよいし、2種以上を混合して使用してもよい。   The non-aqueous solvent used in the electrolytic solution is not particularly limited. Propane, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, and the like. This non-aqueous solvent may be used alone or in combination of two or more.

電解質は、特に限定されないが、例えば、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF)、ホウフッ化リチウム(LiBF)、六フッ化砒素リチウム(LiAsF)、トリフルオロメタスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CFSO]などのリチウム塩などである。 The electrolyte is not particularly limited. For example, lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), trifluoro And lithium salts such as lithium metasulfonate (LiCF 3 SO 3 ) and lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ].

前述の通り、本発明のリチウムイオン二次電池は、樹脂粒子を含む合材層が多数の空孔を有することも特徴とする。これらの空孔は合材層外に繋がっているため、本発明のリチウムイオン二次電池は、樹脂粒子を含む合材層の表面穴面積が大きいことを特徴とする。   As described above, the lithium ion secondary battery of the present invention is also characterized in that the composite material layer containing resin particles has a large number of pores. Since these pores are connected to the outside of the composite material layer, the lithium ion secondary battery of the present invention is characterized in that the surface hole area of the composite material layer containing the resin particles is large.

合材層の表面穴面積は、合材層表面の走査型電子顕微鏡像(以下「SEM像」という)を二値化処理して求めることができる。二値化処理の例には、固定閾値処理、可変閾値処理、適応二値化処理、一定分散強調処理などが含まれる。これらの方法は、例えばデジタル画像処理入門:63〜67ページ(CQ出版社)や、科学計測のための画像データ処理:111〜117ページ(CQ出版社)などに説明されている。   The surface hole area of the composite layer can be obtained by binarizing a scanning electron microscope image (hereinafter referred to as “SEM image”) on the surface of the composite layer. Examples of binarization processing include fixed threshold processing, variable threshold processing, adaptive binarization processing, constant dispersion enhancement processing, and the like. These methods are described, for example, in Digital Image Processing Introduction: Pages 63-67 (CQ Publishing Company), Image Data Processing for Scientific Measurement: Pages 111-117 (CQ Publishing Company), and the like.

例えば、固定閾値処理を行う場合、合材層表面のSEM像をモノクロ256階調(0〜255)に変換し、閾値を70として二値化(0〜69を0(黒)、70〜255を255(白)に変換)すればよい。この場合、黒画素の領域が空孔に対応する。得られた二値化画像の全画素の面積に対する黒画素の面積の割合を算出することで、合材層の表面穴面積を求めることができる。このように閾値を70とした場合、本発明のリチウムイオン二次電池では、樹脂粒子を含む合材層の表面穴面積が10%以上20%以下となる(実施例参照)。   For example, when performing the fixed threshold processing, the SEM image on the surface of the mixture layer is converted to monochrome 256 gradations (0 to 255), and binarization is performed with the threshold being 70 (0 to 69 is 0 (black), 70 to 255). Is converted to 255 (white). In this case, the black pixel region corresponds to a hole. By calculating the ratio of the area of the black pixel to the area of all the pixels of the obtained binarized image, the surface hole area of the composite layer can be obtained. Thus, when the threshold value is 70, in the lithium ion secondary battery of the present invention, the surface hole area of the composite material layer containing the resin particles is 10% or more and 20% or less (see Examples).

内部に多数の空孔を有する合材層は、電解液の浸透性が高く、活物質と電解液との接触面積が大きいため、本発明のリチウムイオン二次電池は、従来のリチウムイオン二次電池に比べて優れたレート特性を有する。   The composite material layer having a large number of pores therein has high electrolyte permeability and a large contact area between the active material and the electrolyte. Therefore, the lithium ion secondary battery of the present invention is a conventional lithium ion secondary battery. Excellent rate characteristics compared to batteries.

本発明のリチウムイオン二次電池は、例えば、次に説明する本発明の製造方法により製造することができる。   The lithium ion secondary battery of the present invention can be produced, for example, by the production method of the present invention described below.

本発明の製造方法により本発明のリチウムイオン二次電池を製造した場合、樹脂粒子を含む合材層は、その活物質密度が従来の電池の合材層に比べて高いものとなる。したがって、本発明の製造方法により製造することで、本発明のリチウムイオン二次電池の容量を従来のリチウムイオン二次電池に比べてより大きくすることができる。   When the lithium ion secondary battery of the present invention is manufactured by the manufacturing method of the present invention, the active material density of the composite material layer containing the resin particles is higher than that of the conventional composite material layer of the battery. Therefore, by producing by the production method of the present invention, the capacity of the lithium ion secondary battery of the present invention can be made larger than that of the conventional lithium ion secondary battery.

2.本発明のリチウムイオン二次電池の製造方法
本発明のリチウムイオン二次電池の製造方法は、正極塗工ステップ、負極塗工ステップ、正極圧延ステップ、負極圧延ステップおよび積層ステップを有し、塗工ステップ(正極塗工ステップまたは負極塗工ステップ)において正極塗料または負極塗料に中空樹脂粒子を含ませることを特徴とする。
2. Manufacturing method of lithium ion secondary battery of the present invention The manufacturing method of a lithium ion secondary battery of the present invention includes a positive electrode coating step, a negative electrode coating step, a positive electrode rolling step, a negative electrode rolling step, and a lamination step. In the step (positive electrode coating step or negative electrode coating step), hollow resin particles are included in the positive electrode paint or the negative electrode paint.

[塗工ステップ]
正極塗工ステップでは、正極塗料を正極集電体上に塗布して、正極合材層および正極集電体を有する正極を形成する。
[Coating step]
In the positive electrode coating step, a positive electrode paint is applied onto the positive electrode current collector to form a positive electrode having a positive electrode mixture layer and a positive electrode current collector.

正極集電体は、前述の通り、導電性が高いものであれば特に限定されず、例えば、アルミニウム箔などである。   As described above, the positive electrode current collector is not particularly limited as long as it has high conductivity, and is, for example, an aluminum foil.

正極塗料は、溶媒ならびに、溶媒に溶解または分散された正極活物質および結着剤を含む。正極活物質および結着剤は、特に限定されず、例えば前述のものから適宜選択すればよい。溶媒は、結着剤を溶解または分散させうるものであれば特に限定されず、例えば、水、N−メチル−2−ピロリドン、メチルエチルケトン、アセトン、シクロヘキサノン、酢酸ブチル、メタノール、エタノールなどである。正極塗料は、さらに導電助剤を含んでいることが好ましい。導電助剤は、特に限定されず、例えば前述のものから適宜選択すればよい。また、正極塗料は、分散剤、界面活性剤、レオロジー調整剤などの各種添加物を必要に応じてさらに含んでいてもよい。   The positive electrode paint includes a solvent, and a positive electrode active material and a binder dissolved or dispersed in the solvent. A positive electrode active material and a binder are not specifically limited, For example, what is necessary is just to select suitably from the above-mentioned thing. The solvent is not particularly limited as long as it can dissolve or disperse the binder, and examples thereof include water, N-methyl-2-pyrrolidone, methyl ethyl ketone, acetone, cyclohexanone, butyl acetate, methanol, and ethanol. The positive electrode paint preferably further contains a conductive additive. The conductive aid is not particularly limited, and may be appropriately selected from those described above, for example. Moreover, the positive electrode paint may further contain various additives such as a dispersant, a surfactant, and a rheology modifier as necessary.

負極塗工ステップでは、負極塗料を負極集電体上に塗布して、負極合材層および負極集電体を有する負極を形成する。   In the negative electrode coating step, a negative electrode paint is applied on the negative electrode current collector to form a negative electrode having a negative electrode mixture layer and a negative electrode current collector.

負極集電体は、前述の通り、導電性が高いものであれば特に限定されず、例えば、銅箔などである。   As described above, the negative electrode current collector is not particularly limited as long as it has high conductivity, and is, for example, a copper foil.

負極塗料は、溶媒ならびに、溶媒に溶解または分散された負極活物質および結着剤を含む。負極活物質および結着剤は、特に限定されず、例えば前述のものから適宜選択すればよい。溶媒は、結着剤を溶解または分散させうるものであれば特に限定されず、正極塗料と同様のものを使用することができる。負極塗料は、正極塗料と同様に、導電助剤、分散剤、界面活性剤、レオロジー調整剤などの各種添加物を必要に応じてさらに含んでいてもよい。   The negative electrode paint includes a solvent, and a negative electrode active material and a binder dissolved or dispersed in the solvent. A negative electrode active material and a binder are not specifically limited, For example, what is necessary is just to select suitably from the above-mentioned thing. The solvent is not particularly limited as long as it can dissolve or disperse the binder, and the same solvent as the positive electrode paint can be used. Similarly to the positive electrode paint, the negative electrode paint may further contain various additives such as a conductive additive, a dispersant, a surfactant, and a rheology modifier as necessary.

本発明の製造方法は、正極塗料および負極塗料の少なくとも一方に中空樹脂粒子を含ませることを特徴とする。これらの塗料に含まれる中空樹脂粒子は、この後に行われる圧延ステップ(正極圧延ステップまたは負極圧延ステップ)において破砕される。   The production method of the present invention is characterized in that at least one of the positive electrode paint and the negative electrode paint contains hollow resin particles. The hollow resin particles contained in these paints are crushed in a subsequent rolling step (positive electrode rolling step or negative electrode rolling step).

中空樹脂粒子の材質は、この後に行われる圧延ステップにおいて破砕されうるものであれば特に限定されないが、例えば、ポリエチレン、ポリプロピレン、アクリル、フッ素系樹脂、セルロース誘導体などである。中空樹脂粒子の形状は、特に限定されず、例えば球形であればよい。中空樹脂粒子の粒子径は、特に限定されないが、正極塗料に含ませる場合は0.1μm以上10μm以下であることが好ましく、負極塗料に含ませる場合は0.1μm以上20μm以下であることが好ましい。本発明の製造方法では、塗料に含ませる樹脂粒子が中空であることが特に重要であり、その中空部の体積比率は20%以上80%以下であることが好ましく、50%以上70%以下であることが特に好ましい。中空部の比率が低すぎると、中空樹脂粒子が破砕されにくいため、圧延が困難となり、放電容量の向上を望むことができない。一方、中空部の比率が高すぎると、正極塗料または負極塗料を作製する際に中空樹脂粒子が破砕されてしまうため、中空樹脂粒子を含ませる効果を得ることができない。   The material of the hollow resin particles is not particularly limited as long as it can be crushed in the subsequent rolling step, and examples thereof include polyethylene, polypropylene, acrylic, fluororesin, and cellulose derivatives. The shape of the hollow resin particles is not particularly limited, and may be, for example, a spherical shape. The particle diameter of the hollow resin particles is not particularly limited, but is preferably 0.1 μm or more and 10 μm or less when included in the positive electrode paint, and is preferably 0.1 μm or more and 20 μm or less when included in the negative electrode paint. . In the production method of the present invention, it is particularly important that the resin particles included in the paint are hollow, and the volume ratio of the hollow portion is preferably 20% or more and 80% or less, and 50% or more and 70% or less. It is particularly preferred. If the ratio of the hollow portion is too low, the hollow resin particles are difficult to be crushed, so that rolling becomes difficult and improvement in discharge capacity cannot be desired. On the other hand, when the ratio of the hollow portion is too high, the hollow resin particles are crushed when the positive electrode paint or the negative electrode paint is produced, and thus the effect of including the hollow resin particles cannot be obtained.

中空樹脂粒子の量は、正極塗料に含ませる場合は正極活物質100重量部に対して1重量部以上20重量部以下であることが好ましく、負極塗料に含ませる場合は負極活物質100重量部に対して1重量部以上50重量部以下であることが好ましい。樹脂粒子が少なすぎると、レート特性が悪化してしまう。一方、樹脂粒子が多すぎると、放電容量が低下してしまう。   The amount of the hollow resin particles is preferably 1 to 20 parts by weight with respect to 100 parts by weight of the positive electrode active material when included in the positive electrode paint, and 100 parts by weight of the negative electrode active material when included in the negative electrode paint. The amount is preferably 1 part by weight or more and 50 parts by weight or less. When there are too few resin particles, rate characteristics will deteriorate. On the other hand, when there are too many resin particles, discharge capacity will fall.

正極塗工ステップおよび負極塗工ステップにおいて、中空樹脂粒子を含む塗料を集電体上に塗布する方法は、特に限定されず、当業者に周知の方法から適宜選択すればよい。   In the positive electrode coating step and the negative electrode coating step, the method of applying the paint containing the hollow resin particles on the current collector is not particularly limited, and may be appropriately selected from methods well known to those skilled in the art.

図2(A)は、正極集電体112を準備した後の様子を示す模式図である。図2(B)は、正極集電体112の両面に中空樹脂粒子142を含む正極塗料を塗布し、乾燥させて、中空樹脂粒子142を含む正極合材層114を形成した後の様子を示す模式図である。   FIG. 2A is a schematic diagram illustrating a state after the positive electrode current collector 112 is prepared. FIG. 2B shows a state after the positive electrode paint 112 including the hollow resin particles 142 is applied to both surfaces of the positive electrode current collector 112 and dried to form the positive electrode mixture layer 114 including the hollow resin particles 142. It is a schematic diagram.

図3(A)は、負極集電体122を準備した後の様子を示す模式図である。図3(B)は、負極集電体122の両面に中空樹脂粒子142を含む正極塗料を塗布し、乾燥させて、中空樹脂粒子142を含む負極合材層124を形成した後の様子を示す模式図である。   FIG. 3A is a schematic diagram illustrating a state after the negative electrode current collector 122 is prepared. FIG. 3B shows a state after the positive electrode paint including the hollow resin particles 142 is applied to both surfaces of the negative electrode current collector 122 and dried to form the negative electrode mixture layer 124 including the hollow resin particles 142. It is a schematic diagram.

[圧延ステップ]
正極圧延ステップでは、正極塗料を正極集電体上に塗布して形成された正極を圧延して、正極合材層内における正極活物質の密度を高める。同様に、負極圧延ステップでは、負極塗料を負極集電体上に塗布して形成された負極を圧延して、負極合材層内における負極活物質の密度を高める。
[Rolling step]
In the positive electrode rolling step, the positive electrode formed by applying the positive electrode paint on the positive electrode current collector is rolled to increase the density of the positive electrode active material in the positive electrode mixture layer. Similarly, in the negative electrode rolling step, the negative electrode formed by applying the negative electrode coating material on the negative electrode current collector is rolled to increase the density of the negative electrode active material in the negative electrode mixture layer.

これらの圧延ステップにおいて、合材層に含まれる中空樹脂粒子は、活物質間のすべりを良くすることにより合材層をより潰れやすくする。中空部を有しない樹脂粒子を合材層に含ませた場合は、活物質間のすべりを向上させたとしても、樹脂粒子の体積分だけ活物質密度が低下してしまう。したがって、圧延により容易に破砕されうる中空樹脂粒子を合材層に含ませることが必要である。   In these rolling steps, the hollow resin particles contained in the composite material layer make the composite material layer more easily crushed by improving the sliding between the active materials. When resin particles that do not have hollow portions are included in the composite material layer, even if the slip between the active materials is improved, the active material density is reduced by the volume of the resin particles. Therefore, it is necessary to include hollow resin particles that can be easily crushed by rolling in the composite layer.

また、これらの圧延ステップにおいて、合材層に含まれている中空樹脂粒子が圧延により破砕されるため、破砕された樹脂粒子が合材層表面に凹凸を形成するとともに、合材層内に中空部の体積分の空孔が形成される。   Further, in these rolling steps, the hollow resin particles contained in the composite material layer are crushed by rolling, so that the crushed resin particles form irregularities on the surface of the composite material layer and are hollow in the composite material layer. Holes corresponding to the volume of the part are formed.

正極圧延ステップおよび負極圧延ステップにおいて、正極または負極を圧延する方法は、特に限定されず、当業者に周知の方法から適宜選択すればよい。圧延する際の圧力(線圧)は、使用するロールの直径や正極合材層または負極合材層の幅などに応じて適宜設定すればよいが、中空樹脂粒子が含まれている合材層における圧延後の樹脂粒子(中空樹脂粒子が破砕したもの)の密度が1g/cm以上20g/cm以下となるように設定することが好ましい。なお、中空樹脂粒子の密度が1g/cm以上20g/cm以下となるまで繰り返し圧延してもよい。 In the positive electrode rolling step and the negative electrode rolling step, the method of rolling the positive electrode or the negative electrode is not particularly limited, and may be appropriately selected from methods well known to those skilled in the art. The pressure at the time of rolling (linear pressure) may be appropriately set according to the diameter of the roll to be used, the width of the positive electrode composite material layer or the negative electrode composite material layer, etc., but the composite material layer containing the hollow resin particles It is preferable to set so that the density of the resin particles after rolling (the hollow resin particles are crushed) is 1 g / cm 3 or more and 20 g / cm 3 or less. The density of the hollow resin particles may be repeatedly rolled until 1 g / cm 3 or more 20 g / cm 3 or less.

図2(C)は、正極110を圧延した後の様子を示す模式図である。図3(C)は、負極120を圧延した後の様子を示す模式図である。これらの図において、樹脂粒子140は中空樹脂粒子142が圧延により破砕されたたものである。   FIG. 2C is a schematic diagram showing a state after the positive electrode 110 is rolled. FIG. 3C is a schematic diagram illustrating a state after the negative electrode 120 is rolled. In these drawings, resin particles 140 are obtained by crushing hollow resin particles 142 by rolling.

[積層ステップ]
積層ステップでは、圧延後の正極と、セパレーターと、圧延後の負極とを積層して、リチウムイオン二次電池を製造する。
[Lamination step]
In the stacking step, a rolled positive electrode, a separator, and a rolled negative electrode are stacked to manufacture a lithium ion secondary battery.

正極と負極との間に配置されるセパレーターは、前述の通り、正極と負極とを隔離し、かつその内部(セパレーターを構成する材料内またはセパレーター内に形成された空隙内)をリチウムイオンが移動できるものであれば特に限定されない。セパレーターを構成する材料は、特に限定されず、例えば前述のものから適宜選択すればよい。   As described above, the separator disposed between the positive electrode and the negative electrode isolates the positive electrode and the negative electrode, and lithium ions move inside (in the material constituting the separator or in the void formed in the separator). There is no particular limitation as long as it is possible. The material which comprises a separator is not specifically limited, For example, what is necessary is just to select suitably from the above-mentioned thing.

前述の通り、正極および負極ならびにセパレーターは、電解液中に配置されることが好ましい。例えば、正極と負極との間にセパレーターを配置した発電要素をステンレスケースに挿入し、このステンレスケースに電解液を注液することで、正極、負極およびセパレーターを電解液中に配置することができる。このようにして形成される電池は、積層型でも捲回型でもよい。   As described above, the positive electrode, the negative electrode, and the separator are preferably disposed in the electrolytic solution. For example, the positive electrode, the negative electrode, and the separator can be disposed in the electrolytic solution by inserting a power generation element in which a separator is disposed between the positive electrode and the negative electrode into a stainless steel case and pouring the electrolytic solution into the stainless steel case. . The battery formed in this manner may be a stacked type or a wound type.

電解液に用いる非水溶媒は、特に限定されないが、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、γーブチロラクトン、スルホラン、アセトニトリル、1,2−ジメトキエタン、1,3−ジメトキシプロパン、ジエチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、γーブチロラクトンなどである。この非水溶媒は、単独で使用してもよいし、2種以上を混合して使用してもよい。   The non-aqueous solvent used in the electrolytic solution is not particularly limited, and examples thereof include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, γ-butyrolactone, sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxy Propane, diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, and the like. This non-aqueous solvent may be used alone or in combination of two or more.

電解質は、特に限定されないが、例えば、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF)、ホウフッ化リチウム(LiBF)、六フッ化砒素リチウム(LiAsF)、トリフルオロメタスルホン酸リチウム(LiCFSO)、ビストリフルオロメチルスルホニルイミドリチウム[LiN(CFSO]などのリチウム塩などである。 The electrolyte is not particularly limited. For example, lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium hexafluoroarsenide (LiAsF 6 ), trifluoro And lithium salts such as lithium metasulfonate (LiCF 3 SO 3 ) and lithium bistrifluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ].

図1(C)は、樹脂粒子140を含む正極110と、セパレーター130と、樹脂粒子140を含む負極120とを積層した後の様子を示す模式図である。   FIG. 1C is a schematic diagram illustrating a state after the positive electrode 110 including the resin particles 140, the separator 130, and the negative electrode 120 including the resin particles 140 are stacked.

以上のように、本発明の製造方法では、圧延前の合材層に中空樹脂粒子を含ませることで、合材層を圧延する際に活物質密度を容易に向上すること、および合材層内に多数の空孔を形成することを実現することができる。したがって、本発明の製造方法によれば、リチウムイオン二次電池の容量およびレート特性を向上させることができる。   As described above, in the production method of the present invention, by including hollow resin particles in the composite material layer before rolling, the active material density is easily improved when the composite material layer is rolled, and the composite material layer It is possible to realize a large number of holes in the inside. Therefore, according to the manufacturing method of the present invention, the capacity and rate characteristics of the lithium ion secondary battery can be improved.

以下、本発明を実施例を参照してさらに詳細に説明するが、本発明はこれらの実施例により限定されない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail with reference to an Example, this invention is not limited by these Examples.

(実施例1)
実施例1では、中空樹脂粒子を含む正極塗料を用いて本発明のリチウムイオン二次電池(正極合材層が樹脂粒子を含む)を作製した例を示す。
Example 1
Example 1 shows an example in which a lithium ion secondary battery of the present invention (a positive electrode mixture layer includes resin particles) is produced using a positive electrode paint including hollow resin particles.

[正極板の作製]
コバルト酸リチウム(正極活物質)100重量部に対し、カーボンブラック(導電助剤)3重量部、ポリフッ化ビニリデン(結着剤)3重量部、N−メチル−2−ピロリドン(溶媒)40重量部、およびポリエチレン製中空粒子(粒子径;5μm、中空部の体積比率;50%、三井化学株式会社)5重量部を混合して、正極塗料を調製した。正極塗料を厚み0.02mmのアルミニウム箔(正極集電体)の片面にドクターブレードを用いて厚み0.15mmとなるように塗布した後、100℃の熱風乾燥炉で乾燥させた。同様にして、アルミニウム箔の反対側の面にも正極合材層を形成した。このようにしてアルミニウム箔の両面に正極合材層が形成された正極板を総厚みが0.2mmとなるように圧延装置を用いて圧延して、正極板を作製した。
[Production of positive electrode plate]
3 parts by weight of carbon black (conducting aid), 3 parts by weight of polyvinylidene fluoride (binder), 40 parts by weight of N-methyl-2-pyrrolidone (solvent) per 100 parts by weight of lithium cobalt oxide (positive electrode active material) And 5 parts by weight of polyethylene hollow particles (particle diameter: 5 μm, volume ratio of hollow part: 50%, Mitsui Chemicals, Inc.) were mixed to prepare a positive electrode paint. The positive electrode paint was applied to one side of a 0.02 mm thick aluminum foil (positive electrode current collector) to a thickness of 0.15 mm using a doctor blade, and then dried in a hot air drying oven at 100 ° C. Similarly, a positive electrode mixture layer was formed on the opposite surface of the aluminum foil. Thus, the positive electrode plate in which the positive electrode mixture layer was formed on both surfaces of the aluminum foil was rolled by using a rolling device so that the total thickness became 0.2 mm, and a positive electrode plate was produced.

[負極板の作製]
グラファイト(負極活物質)100重量部に対し、ポリフッ化ビニリデン(結着剤)5重量部、およびN−メチル−2−ピロリドン(溶媒)50重量部を混合して、負極塗料を調製した。負極塗料を厚み0.02mmの銅箔(負極集電体)の片面にドクターブレードを用いて厚み0.15mmに塗布した後、100℃の熱風乾燥炉で乾燥させた。同様にして、銅箔の反対の面にも負極合材層を形成した。このようにして銅箔の両面に負極合材層が形成された負極板を総厚みが0.2mmとなるように圧延装置を用いて圧延して、負極板を作製した。
[Production of negative electrode plate]
A negative electrode paint was prepared by mixing 5 parts by weight of polyvinylidene fluoride (binder) and 50 parts by weight of N-methyl-2-pyrrolidone (solvent) with 100 parts by weight of graphite (negative electrode active material). The negative electrode paint was applied to one side of a 0.02 mm thick copper foil (negative electrode current collector) to a thickness of 0.15 mm using a doctor blade, and then dried in a hot air drying oven at 100 ° C. Similarly, a negative electrode mixture layer was formed on the opposite surface of the copper foil. Thus, the negative electrode plate in which the negative electrode composite material layer was formed on both surfaces of the copper foil was rolled using a rolling device so that the total thickness became 0.2 mm, and the negative electrode plate was produced.

[組み立て]
作製した正極板と負極板との間に、厚み0.02mm、空孔率40%のポリエチレン製の高分子多孔膜(セパレーター)を配置した発電要素を、捲回し、円筒形ステンレスケースに挿入した。この円筒形ステンレスケースに、エチレンカーボネートとジエチルカーボネートとの混合液にLiPFを添加した電解液を注液して、円筒形リチウムイオン二次電池を組み立てた。
[assembly]
A power generation element in which a polyethylene polymer porous film (separator) having a thickness of 0.02 mm and a porosity of 40% was arranged between the produced positive electrode plate and negative electrode plate was wound and inserted into a cylindrical stainless steel case. . An electrolytic solution obtained by adding LiPF 6 to a mixed solution of ethylene carbonate and diethyl carbonate was poured into this cylindrical stainless steel case, and a cylindrical lithium ion secondary battery was assembled.

[レート特性の測定]
組み立てられた電池を0.2C(100mA)の定電流モードで充電した後、4.2Vの定電圧モードで充電を行った。次いで、0.2C(100mA),1C(500mA),2C(1000mA)の電流密度でそれぞれ別個に放電を行い、放電電圧3Vで容量確認を行った。0.2C放電容量を100%とし、それぞれのレート特性を容量比で算出した。それぞれのレート特性を表1に示す。
[Measurement of rate characteristics]
The assembled battery was charged in a constant current mode of 0.2 C (100 mA), and then charged in a constant voltage mode of 4.2 V. Subsequently, discharge was performed separately at current densities of 0.2 C (100 mA), 1 C (500 mA), and 2 C (1000 mA), and the capacity was confirmed at a discharge voltage of 3V. The 0.2C discharge capacity was set to 100%, and the respective rate characteristics were calculated as capacity ratios. Table 1 shows the respective rate characteristics.

(実施例2)
実施例2では、中空樹脂粒子を含む負極塗料を用いて本発明のリチウムイオン二次電池(負極合材層が樹脂粒子を含む)を作製した例を示す。
(Example 2)
Example 2 shows an example in which a lithium ion secondary battery (a negative electrode mixture layer includes resin particles) of the present invention was manufactured using a negative electrode paint including hollow resin particles.

[正極板の作製]
コバルト酸リチウム(正極活物質)100重量部に対し、カーボンブラック(導電助剤)3重量部、ポリフッ化ビニリデン(結着剤)3重量部、およびN−メチル−2−ピロリドン(溶媒)40重量部を混合して、正極塗料を調製した。正極塗料を厚み0.02mmのアルミニウム箔(正極集電体)の片面にドクターブレードを用いて厚み0.15mmとなるように塗布した後、100℃の熱風乾燥炉で乾燥させた。同様にして、アルミニウム箔の反対側の面にも正極合材層を形成した。このようにしてアルミニウム箔の両面に正極合材層が形成された正極板を総厚みが0.2mmとなるように圧延装置を用いて圧延して、正極板を作製した。
[Production of positive electrode plate]
3 parts by weight of carbon black (conducting aid), 3 parts by weight of polyvinylidene fluoride (binder), and 40 parts by weight of N-methyl-2-pyrrolidone (solvent) with respect to 100 parts by weight of lithium cobalt oxide (positive electrode active material) Parts were mixed to prepare a positive electrode paint. The positive electrode paint was applied to one side of a 0.02 mm thick aluminum foil (positive electrode current collector) to a thickness of 0.15 mm using a doctor blade, and then dried in a hot air drying oven at 100 ° C. Similarly, a positive electrode mixture layer was formed on the opposite surface of the aluminum foil. Thus, the positive electrode plate in which the positive electrode mixture layer was formed on both surfaces of the aluminum foil was rolled by using a rolling device so that the total thickness became 0.2 mm, and a positive electrode plate was produced.

[負極板の作製]
グラファイト(負極活物質)100重量部に対し、ポリフッ化ビニリデン(結着剤)0.8重量部、N−メチル−2−ピロリドン(溶媒)50重量部、およびポリエチレン製中空粒子(粒子径;5μm、中空部の体積比率;50%、三井化学株式会社)5重量部を混合して、負極塗料を調製した。負極塗料を厚み0.02mmの銅箔(負極集電体)の片面にドクターブレードを用いて厚み0.15mmに塗布した後、100℃の熱風乾燥炉で乾燥させた。同様にして、銅箔の反対の面にも負極合材層を形成した。このようにして銅箔の両面に負極合材層が形成された負極板を総厚みが0.2mmとなるように圧延装置を用いて圧延して、負極板を作製した。
[Production of negative electrode plate]
For 100 parts by weight of graphite (negative electrode active material), 0.8 parts by weight of polyvinylidene fluoride (binder), 50 parts by weight of N-methyl-2-pyrrolidone (solvent), and polyethylene hollow particles (particle diameter: 5 μm) The volume ratio of the hollow part; 50%, Mitsui Chemicals, Inc.) 5 parts by weight was mixed to prepare a negative electrode paint. The negative electrode paint was applied to one side of a 0.02 mm thick copper foil (negative electrode current collector) to a thickness of 0.15 mm using a doctor blade, and then dried in a hot air drying oven at 100 ° C. Similarly, a negative electrode mixture layer was formed on the opposite surface of the copper foil. Thus, the negative electrode plate in which the negative electrode composite material layer was formed on both surfaces of the copper foil was rolled using a rolling device so that the total thickness became 0.2 mm, and the negative electrode plate was produced.

[組み立て]
実施例1と同様にして、円筒形リチウムイオン二次電池を組み立てた。
[assembly]
A cylindrical lithium ion secondary battery was assembled in the same manner as in Example 1.

[レート特性の測定]
実施例1と同様に容量確認を行った。実施例1の0.2C放電容量を100%とし、それぞれのレート特性を容量比で算出した。それぞれのレート特性を表1に示す。
[Measurement of rate characteristics]
The capacity was confirmed in the same manner as in Example 1. The 0.2C discharge capacity of Example 1 was set to 100%, and the respective rate characteristics were calculated as capacity ratios. Table 1 shows the respective rate characteristics.

(実施例3)
実施例3では、中空樹脂粒子を含む正極塗料および負極塗料を用いて本発明のリチウムイオン二次電池(正極合材層および負極合材層が樹脂粒子を含む)を作製した例を示す。
Example 3
Example 3 shows an example in which the lithium ion secondary battery of the present invention (the positive electrode mixture layer and the negative electrode mixture layer contain resin particles) was produced using a positive electrode paint and a negative electrode paint containing hollow resin particles.

[正極板の作製]
実施例1と同様にして、正極合材層が樹脂粒子を含む正極板を作製した。
[Production of positive electrode plate]
In the same manner as in Example 1, a positive electrode plate in which the positive electrode mixture layer includes resin particles was produced.

[負極板の作製]
実施例2と同様にして、負極合材層が樹脂粒子を含む負極板を作製した。
[Production of negative electrode plate]
In the same manner as in Example 2, a negative electrode plate in which the negative electrode mixture layer contained resin particles was produced.

[組み立て]
実施例1と同様にして、円筒形リチウムイオン二次電池を組み立てた。
[assembly]
A cylindrical lithium ion secondary battery was assembled in the same manner as in Example 1.

[レート特性の測定]
実施例1と同様に容量確認を行った。実施例1の0.2C放電容量を100%とし、それぞれのレート特性を容量比で算出した。それぞれのレート特性を表1に示す。
[Measurement of rate characteristics]
The capacity was confirmed in the same manner as in Example 1. The 0.2C discharge capacity of Example 1 was set to 100%, and the respective rate characteristics were calculated as capacity ratios. Table 1 shows the respective rate characteristics.

参考例4
参考例4では、実施例1と同様に、中空樹脂粒子を含む正極塗料を用いて本発明のリチウムイオン二次電池(正極合材層が樹脂粒子を含む)を作製した例を示す。参考例4では、正極塗料の中空樹脂粒子の含有量を実施例1に比べて少なくした。
( Reference Example 4 )
In Reference Example 4 , as in Example 1, an example in which the lithium ion secondary battery of the present invention (the positive electrode mixture layer includes resin particles) using a positive electrode paint including hollow resin particles is shown. In Reference Example 4 , the content of the hollow resin particles in the positive electrode paint was reduced as compared with Example 1.

[正極板の作製]
コバルト酸リチウム(正極活物質)100重量部に対し、カーボンブラック(導電助剤)3重量部、ポリフッ化ビニリデン(結着剤)3重量部、N−メチル−2−ピロリドン(溶媒)40重量部、およびポリエチレン製中空粒子(粒子径;5μm、中空部の体積比率;50%、三井化学株式会社)0.8重量部を混合して、正極塗料を調製した。正極塗料を厚み0.02mmのアルミニウム箔(正極集電体)の片面にドクターブレードを用いて厚み0.15mmとなるように塗布した後、100℃の熱風乾燥炉で乾燥させた。同様にして、アルミニウム箔の反対側の面にも正極合材層を形成した。このようにしてアルミニウム箔の両面に正極合材層が形成された正極板を総厚みが0.2mmとなるように圧延装置を用いて圧延して、正極板を作製した。
[Production of positive electrode plate]
3 parts by weight of carbon black (conducting aid), 3 parts by weight of polyvinylidene fluoride (binder), 40 parts by weight of N-methyl-2-pyrrolidone (solvent) per 100 parts by weight of lithium cobalt oxide (positive electrode active material) And 0.8 parts by weight of polyethylene hollow particles (particle diameter: 5 μm, volume ratio of hollow part: 50%, Mitsui Chemicals, Inc.) were mixed to prepare a positive electrode paint. The positive electrode paint was applied to one side of a 0.02 mm thick aluminum foil (positive electrode current collector) to a thickness of 0.15 mm using a doctor blade, and then dried in a hot air drying oven at 100 ° C. Similarly, a positive electrode mixture layer was formed on the opposite surface of the aluminum foil. Thus, the positive electrode plate in which the positive electrode mixture layer was formed on both surfaces of the aluminum foil was rolled by using a rolling device so that the total thickness became 0.2 mm, and a positive electrode plate was produced.

[負極板の作製]
実施例1と同様にして、負極合材層が樹脂粒子を含まない負極板を作製した。
[Production of negative electrode plate]
In the same manner as in Example 1, a negative electrode plate in which the negative electrode mixture layer did not contain resin particles was produced.

[組み立て]
実施例1と同様にして、円筒形リチウムイオン二次電池を組み立てた。
[assembly]
A cylindrical lithium ion secondary battery was assembled in the same manner as in Example 1.

[レート特性の測定]
実施例1と同様に容量確認を行った。実施例1の0.2C放電容量を100%とし、それぞれのレート特性を容量比で算出した。それぞれのレート特性を表1に示す。
[Measurement of rate characteristics]
The capacity was confirmed in the same manner as in Example 1. The 0.2C discharge capacity of Example 1 was set to 100%, and the respective rate characteristics were calculated as capacity ratios. Table 1 shows the respective rate characteristics.

参考例5
参考例5では、実施例1,参考例4と同様に、中空樹脂粒子を含む正極塗料を用いて本発明のリチウムイオン二次電池(正極合材層が樹脂粒子を含む)を作製した例を示す。参考例5では、正極塗料の中空樹脂粒子の含有量を実施例1に比べて多くした。
( Reference Example 5 )
In Reference Example 5 , as in Example 1 and Reference Example 4 , an example in which the lithium ion secondary battery of the present invention (the positive electrode mixture layer includes resin particles) using a positive electrode paint including hollow resin particles was produced. Show. In Reference Example 5 , the content of the hollow resin particles in the positive electrode paint was increased as compared with Example 1.

[正極板の作製]
コバルト酸リチウム(正極活物質)100重量部に対し、カーボンブラック(導電助剤)3重量部、ポリフッ化ビニリデン(結着剤)3重量部、N−メチル−2−ピロリドン(溶媒)40重量部、およびポリエチレン製中空粒子(粒子径;5μm、中空部の体積比率;50%、三井化学株式会社)25重量部を混合して、正極塗料を調製した。正極塗料を厚み0.02mmのアルミニウム箔(正極集電体)の片面にドクターブレードを用いて厚み0.15mmとなるように塗布した後、100℃の熱風乾燥炉で乾燥させた。同様にして、アルミニウム箔の反対側の面にも正極合材層を形成した。このようにしてアルミニウム箔の両面に正極合材層が形成された正極板を総厚みが0.2mmとなるように圧延装置を用いて圧延して、正極板を作製した。
[Production of positive electrode plate]
3 parts by weight of carbon black (conducting aid), 3 parts by weight of polyvinylidene fluoride (binder), 40 parts by weight of N-methyl-2-pyrrolidone (solvent) per 100 parts by weight of lithium cobalt oxide (positive electrode active material) And 25 parts by weight of polyethylene hollow particles (particle diameter: 5 μm, volume ratio of hollow part: 50%, Mitsui Chemicals, Inc.) were mixed to prepare a positive electrode paint. The positive electrode paint was applied to one side of a 0.02 mm thick aluminum foil (positive electrode current collector) to a thickness of 0.15 mm using a doctor blade, and then dried in a hot air drying oven at 100 ° C. Similarly, a positive electrode mixture layer was formed on the opposite surface of the aluminum foil. Thus, the positive electrode plate in which the positive electrode mixture layer was formed on both surfaces of the aluminum foil was rolled by using a rolling device so that the total thickness became 0.2 mm, and a positive electrode plate was produced.

[負極板の作製]
実施例1と同様にして、負極合材層が樹脂粒子を含まない負極板を作製した。
[Production of negative electrode plate]
In the same manner as in Example 1, a negative electrode plate in which the negative electrode mixture layer did not contain resin particles was produced.

[組み立て]
実施例1と同様にして、円筒形リチウムイオン二次電池を組み立てた。
[assembly]
A cylindrical lithium ion secondary battery was assembled in the same manner as in Example 1.

[レート特性の測定]
実施例1と同様に容量確認を行った。実施例1の0.2C放電容量を100%とし、それぞれのレート特性を容量比で算出した。それぞれのレート特性を表1に示す。
[Measurement of rate characteristics]
The capacity was confirmed in the same manner as in Example 1. The 0.2C discharge capacity of Example 1 was set to 100%, and the respective rate characteristics were calculated as capacity ratios. Table 1 shows the respective rate characteristics.

参考例6)
参考例6では、実施例1と同様に、中空樹脂粒子を含む正極塗料を用いて本発明のリチウムイオン二次電池(正極合材層が樹脂粒子を含む)を作製した例を示す。参考例6では、実施例1に比べて粒子径が小さい中空樹脂粒子を使用した。
( Reference Example 6)
In Reference Example 6, as in Example 1, an example in which the lithium ion secondary battery of the present invention (the positive electrode mixture layer includes resin particles) using a positive electrode paint including hollow resin particles is shown. In Reference Example 6, hollow resin particles having a smaller particle diameter than that of Example 1 were used.

[正極板の作製]
コバルト酸リチウム(正極活物質)100重量部に対し、カーボンブラック(導電助剤)3重量部、ポリフッ化ビニリデン(結着剤)3重量部、N−メチル−2−ピロリドン(溶媒)40重量部、およびポリエチレン製中空粒子(粒子径;0.07μm、中空部の体積比率;50%、三井化学株式会社)5重量部を混合して、正極塗料を調製した。正極塗料を厚み0.02mmのアルミニウム箔(正極集電体)の片面にドクターブレードを用いて厚み0.15mmとなるように塗布した後、100℃の熱風乾燥炉で乾燥させた。同様にして、アルミニウム箔の反対側の面にも正極合材層を形成した。このようにしてアルミニウム箔の両面に正極合材層が形成された正極板を総厚みが0.2mmとなるように圧延装置を用いて圧延して、正極板を作製した。
[Production of positive electrode plate]
3 parts by weight of carbon black (conducting aid), 3 parts by weight of polyvinylidene fluoride (binder), 40 parts by weight of N-methyl-2-pyrrolidone (solvent) per 100 parts by weight of lithium cobalt oxide (positive electrode active material) And 5 parts by weight of polyethylene hollow particles (particle diameter: 0.07 μm, volume ratio of hollow part: 50%, Mitsui Chemicals, Inc.) were mixed to prepare a positive electrode paint. The positive electrode paint was applied to one side of a 0.02 mm thick aluminum foil (positive electrode current collector) to a thickness of 0.15 mm using a doctor blade, and then dried in a hot air drying oven at 100 ° C. Similarly, a positive electrode mixture layer was formed on the opposite surface of the aluminum foil. Thus, the positive electrode plate in which the positive electrode mixture layer was formed on both surfaces of the aluminum foil was rolled by using a rolling device so that the total thickness became 0.2 mm, and a positive electrode plate was produced.

[負極板の作製]
実施例1と同様にして、負極合材層が樹脂粒子を含まない負極板を作製した。
[Production of negative electrode plate]
In the same manner as in Example 1, a negative electrode plate in which the negative electrode mixture layer did not contain resin particles was produced.

[組み立て]
実施例1と同様にして、円筒形リチウムイオン二次電池を組み立てた。
[assembly]
A cylindrical lithium ion secondary battery was assembled in the same manner as in Example 1.

[レート特性の測定]
実施例1と同様に容量確認を行った。実施例1の0.2C放電容量を100%とし、それぞれのレート特性を容量比で算出した。それぞれのレート特性を表1に示す。
[Measurement of rate characteristics]
The capacity was confirmed in the same manner as in Example 1. The 0.2C discharge capacity of Example 1 was set to 100%, and the respective rate characteristics were calculated as capacity ratios. Table 1 shows the respective rate characteristics.

参考例7)
参考例7では、実施例1,参考例6と同様に、中空樹脂粒子を含む正極塗料を用いて本発明のリチウムイオン二次電池(正極合材層が樹脂粒子を含む)を作製した例を示す。参考例7では、実施例1に比べて粒子径が大きい中空樹脂粒子を使用した。
( Reference Example 7)
In Reference Example 7, as in Example 1 and Reference Example 6, an example in which the lithium ion secondary battery of the present invention (the positive electrode mixture layer includes resin particles) using a positive electrode paint including hollow resin particles was produced. Show. In Reference Example 7, hollow resin particles having a larger particle diameter than that of Example 1 were used.

[正極板の作製]
コバルト酸リチウム(正極活物質)100重量部に対し、カーボンブラック(導電助剤)3重量部、ポリフッ化ビニリデン(結着剤)3重量部、N−メチル−2−ピロリドン(溶媒)40重量部、およびポリエチレン製中空粒子(粒子径;15μm、中空部の体積比率;50%、三井化学株式会社)5重量部を混合して、正極塗料を調製した。正極塗料を厚み0.02mmのアルミニウム箔(正極集電体)の片面にドクターブレードを用いて厚み0.15mmとなるように塗布した後、100℃の熱風乾燥炉で乾燥させた。同様にして、アルミニウム箔の反対側の面にも正極合材層を形成した。このようにしてアルミニウム箔の両面に正極合材層が形成された正極板を総厚みが0.2mmとなるように圧延装置を用いて圧延して、正極板を作製した。
[Production of positive electrode plate]
3 parts by weight of carbon black (conducting aid), 3 parts by weight of polyvinylidene fluoride (binder), 40 parts by weight of N-methyl-2-pyrrolidone (solvent) per 100 parts by weight of lithium cobalt oxide (positive electrode active material) And 5 parts by weight of polyethylene hollow particles (particle size: 15 μm, volume ratio of hollow part: 50%, Mitsui Chemicals, Inc.) were mixed to prepare a positive electrode paint. The positive electrode paint was applied to one side of a 0.02 mm thick aluminum foil (positive electrode current collector) to a thickness of 0.15 mm using a doctor blade, and then dried in a hot air drying oven at 100 ° C. Similarly, a positive electrode mixture layer was formed on the opposite surface of the aluminum foil. Thus, the positive electrode plate in which the positive electrode mixture layer was formed on both surfaces of the aluminum foil was rolled by using a rolling device so that the total thickness became 0.2 mm, and a positive electrode plate was produced.

[負極板の作製]
実施例1と同様にして、負極合材層が樹脂粒子を含まない負極板を作製した。
[Production of negative electrode plate]
In the same manner as in Example 1, a negative electrode plate in which the negative electrode mixture layer did not contain resin particles was produced.

[組み立て]
実施例1と同様にして、円筒形リチウムイオン二次電池を組み立てた。
[assembly]
A cylindrical lithium ion secondary battery was assembled in the same manner as in Example 1.

[レート特性の測定]
実施例1と同様に容量確認を行った。実施例1の0.2C放電容量を100%とし、それぞれのレート特性を容量比で算出した。それぞれのレート特性を表1に示す。
[Measurement of rate characteristics]
The capacity was confirmed in the same manner as in Example 1. The 0.2C discharge capacity of Example 1 was set to 100%, and the respective rate characteristics were calculated as capacity ratios. Table 1 shows the respective rate characteristics.

参考例8
参考例8では、実施例2と同様に、中空樹脂粒子を含む負極塗料を用いて本発明のリチウムイオン二次電池(負極合材層が樹脂粒子を含む)を作製した例を示す。参考例8では、負極塗料の中空樹脂粒子の含有量を実施例2に比べて少なくした。
( Reference Example 8 )
In Reference Example 8 , as in Example 2, an example in which the lithium ion secondary battery (the negative electrode mixture layer includes resin particles) of the present invention using a negative electrode paint including hollow resin particles is shown. In Reference Example 8 , the content of the hollow resin particles in the negative electrode paint was reduced as compared with Example 2.

[正極板の作製]
実施例2と同様にして、正極合材層が樹脂粒子を含まない正極板を作製した。
[Production of positive electrode plate]
In the same manner as in Example 2, a positive electrode plate in which the positive electrode mixture layer did not contain resin particles was produced.

[負極板の作製]
グラファイト(負極活物質)100重量部に対し、ポリフッ化ビニリデン(結着剤)0.8重量部、N−メチル−2−ピロリドン(溶媒)50重量部、およびポリエチレン製中空粒子(粒子径;5μm、中空部の体積比率;50%、三井化学株式会社)0.8重量部を混合して、負極塗料を調製した。負極塗料を厚み0.02mmの銅箔(負極集電体)の片面にドクターブレードを用いて厚み0.15mmに塗布した後、100℃の熱風乾燥炉で乾燥させた。同様にして、銅箔の反対の面にも負極合材層を形成した。このようにして銅箔の両面に負極合材層が形成された負極板を総厚みが0.2mmとなるように圧延装置を用いて圧延して、負極板を作製した。
[Production of negative electrode plate]
For 100 parts by weight of graphite (negative electrode active material), 0.8 parts by weight of polyvinylidene fluoride (binder), 50 parts by weight of N-methyl-2-pyrrolidone (solvent), and polyethylene hollow particles (particle diameter: 5 μm) The volume ratio of the hollow part; 50%, Mitsui Chemicals Co., Ltd.) 0.8 part by weight was mixed to prepare a negative electrode paint. The negative electrode paint was applied to one side of a 0.02 mm thick copper foil (negative electrode current collector) to a thickness of 0.15 mm using a doctor blade, and then dried in a hot air drying oven at 100 ° C. Similarly, a negative electrode mixture layer was formed on the opposite surface of the copper foil. Thus, the negative electrode plate in which the negative electrode composite material layer was formed on both surfaces of the copper foil was rolled using a rolling device so that the total thickness became 0.2 mm, and the negative electrode plate was produced.

[組み立て]
実施例1と同様にして、円筒形リチウムイオン二次電池を組み立てた。
[assembly]
A cylindrical lithium ion secondary battery was assembled in the same manner as in Example 1.

[レート特性の測定]
実施例1と同様に容量確認を行った。実施例1の0.2C放電容量を100%とし、それぞれのレート特性を容量比で算出した。それぞれのレート特性を表1に示す。
[Measurement of rate characteristics]
The capacity was confirmed in the same manner as in Example 1. The 0.2C discharge capacity of Example 1 was set to 100%, and the respective rate characteristics were calculated as capacity ratios. Table 1 shows the respective rate characteristics.

参考例9
参考例9では、実施例2,参考例8と同様に、中空樹脂粒子を含む負極塗料を用いて本発明のリチウムイオン二次電池(負極合材層が樹脂粒子を含む)を作製した例を示す。参考例9では、負極塗料の中空樹脂粒子の含有量を実施例2に比べて多くした。
( Reference Example 9 )
In Reference Example 9 , as in Example 2 and Reference Example 8 , an example in which the lithium ion secondary battery (the negative electrode mixture layer includes resin particles) of the present invention using a negative electrode paint including hollow resin particles was produced. Show. In Reference Example 9 , the content of the hollow resin particles in the negative electrode paint was increased as compared with Example 2.

[正極板の作製]
実施例2と同様にして、正極合材層が樹脂粒子を含まない正極板を作製した。
[Production of positive electrode plate]
In the same manner as in Example 2, a positive electrode plate in which the positive electrode mixture layer did not contain resin particles was produced.

[負極板の作製]
グラファイト(負極活物質)100重量部に対し、ポリフッ化ビニリデン(結着剤)0.8重量部、N−メチル−2−ピロリドン(溶媒)50重量部、およびポリエチレン製中空粒子(粒子径;5μm、中空部の体積比率;50%、三井化学株式会社)60重量部を混合して、負極塗料を調製した。負極塗料を厚み0.02mmの銅箔(負極集電体)の片面にドクターブレードを用いて厚み0.15mmに塗布した後、100℃の熱風乾燥炉で乾燥させた。同様にして、銅箔の反対の面にも負極合材層を形成した。このようにして銅箔の両面に負極合材層が形成された負極板を総厚みが0.2mmとなるように圧延装置を用いて圧延して、負極板を作製した。
[Production of negative electrode plate]
For 100 parts by weight of graphite (negative electrode active material), 0.8 parts by weight of polyvinylidene fluoride (binder), 50 parts by weight of N-methyl-2-pyrrolidone (solvent), and polyethylene hollow particles (particle diameter: 5 μm) The volume ratio of the hollow part; 50%, Mitsui Chemicals, Inc.) 60 parts by weight was mixed to prepare a negative electrode paint. The negative electrode paint was applied to one side of a 0.02 mm thick copper foil (negative electrode current collector) to a thickness of 0.15 mm using a doctor blade, and then dried in a hot air drying oven at 100 ° C. Similarly, a negative electrode mixture layer was formed on the opposite surface of the copper foil. Thus, the negative electrode plate in which the negative electrode composite material layer was formed on both surfaces of the copper foil was rolled using a rolling device so that the total thickness became 0.2 mm, and the negative electrode plate was produced.

[組み立て]
実施例1と同様にして、円筒形リチウムイオン二次電池を組み立てた。
[assembly]
A cylindrical lithium ion secondary battery was assembled in the same manner as in Example 1.

[レート特性の測定]
実施例1と同様に容量確認を行った。実施例1の0.2C放電容量を100%とし、それぞれのレート特性を容量比で算出した。それぞれのレート特性を表1に示す。
[Measurement of rate characteristics]
The capacity was confirmed in the same manner as in Example 1. The 0.2C discharge capacity of Example 1 was set to 100%, and the respective rate characteristics were calculated as capacity ratios. Table 1 shows the respective rate characteristics.

参考例10)
参考例10では、実施例2と同様に、中空樹脂粒子を含む負極塗料を用いて本発明のリチウムイオン二次電池(負極合材層が樹脂粒子を含む)を作製した例を示す。参考例10では、実施例2に比べて粒子径が小さい中空樹脂粒子を使用した。
( Reference Example 10)
In Reference Example 10, as in Example 2, an example in which the lithium ion secondary battery of the present invention (the negative electrode mixture layer includes resin particles) using a negative electrode paint including hollow resin particles is shown. In Reference Example 10, hollow resin particles having a smaller particle diameter than that of Example 2 were used.

[正極板の作製]
実施例2と同様にして、正極合材層が樹脂粒子を含まない正極板を作製した。
[Production of positive electrode plate]
In the same manner as in Example 2, a positive electrode plate in which the positive electrode mixture layer did not contain resin particles was produced.

[負極板の作製]
グラファイト(負極活物質)100重量部に対し、ポリフッ化ビニリデン(結着剤)0.8重量部、N−メチル−2−ピロリドン(溶媒)50重量部、およびポリエチレン製中空粒子(粒子径;0.07μm、中空部の体積比率;50%、三井化学株式会社)5重量部を混合して、負極塗料を調製した。負極塗料を厚み0.02mmの銅箔(負極集電体)の片面にドクターブレードを用いて厚み0.15mmに塗布した後、100℃の熱風乾燥炉で乾燥させた。同様にして、銅箔の反対の面にも負極合材層を形成した。このようにして銅箔の両面に負極合材層が形成された負極板を総厚みが0.2mmとなるように圧延装置を用いて圧延して、負極板を作製した。
[Production of negative electrode plate]
For 100 parts by weight of graphite (negative electrode active material), 0.8 parts by weight of polyvinylidene fluoride (binder), 50 parts by weight of N-methyl-2-pyrrolidone (solvent), and polyethylene hollow particles (particle size: 0) 0.07 μm, volume ratio of hollow part; 50%, Mitsui Chemicals, Inc.) 5 parts by weight were mixed to prepare a negative electrode paint. The negative electrode paint was applied to one side of a 0.02 mm thick copper foil (negative electrode current collector) to a thickness of 0.15 mm using a doctor blade, and then dried in a hot air drying oven at 100 ° C. Similarly, a negative electrode mixture layer was formed on the opposite surface of the copper foil. Thus, the negative electrode plate in which the negative electrode composite material layer was formed on both surfaces of the copper foil was rolled using a rolling device so that the total thickness became 0.2 mm, and the negative electrode plate was produced.

[組み立て]
実施例1と同様にして、円筒形リチウムイオン二次電池を組み立てた。
[assembly]
A cylindrical lithium ion secondary battery was assembled in the same manner as in Example 1.

[レート特性の測定]
実施例1と同様に容量確認を行った。実施例1の0.2C放電容量を100%とし、それぞれのレート特性を容量比で算出した。それぞれのレート特性を表1に示す。
[Measurement of rate characteristics]
The capacity was confirmed in the same manner as in Example 1. The 0.2C discharge capacity of Example 1 was set to 100%, and the respective rate characteristics were calculated as capacity ratios. Table 1 shows the respective rate characteristics.

参考例11)
参考例11では、実施例2,参考例10と同様に、中空樹脂粒子を含む負極塗料を用いて本発明のリチウムイオン二次電池(負極合材層が樹脂粒子を含む)を作製した例を示す。参考例11では、実施例2に比べて粒子径が大きい中空樹脂粒子を使用した。
( Reference Example 11)
In Reference Example 11, as in Example 2 and Reference Example 10, an example in which the lithium ion secondary battery of the present invention (the negative electrode mixture layer includes resin particles) was prepared using the negative electrode paint including hollow resin particles. Show. In Reference Example 11, hollow resin particles having a larger particle diameter than that of Example 2 were used.

[正極板の作製]
実施例2と同様にして、正極合材層が樹脂粒子を含まない正極板を作製した。
[Production of positive electrode plate]
In the same manner as in Example 2, a positive electrode plate in which the positive electrode mixture layer did not contain resin particles was produced.

[負極板の作製]
グラファイト(負極活物質)100重量部に対し、ポリフッ化ビニリデン(結着剤)0.8重量部、N−メチル−2−ピロリドン(溶媒)50重量部、およびポリエチレン製中空粒子(粒子径;25μm、中空部の体積比率;50%、三井化学株式会社)5重量部を混合して、負極塗料を調製した。負極塗料を厚み0.02mmの銅箔(負極集電体)の片面にドクターブレードを用いて厚み0.15mmに塗布した後、100℃の熱風乾燥炉で乾燥させた。同様にして、銅箔の反対の面にも負極合材層を形成した。このようにして銅箔の両面に負極合材層が形成された負極板を総厚みが0.2mmとなるように圧延装置を用いて圧延して、負極板を作製した。
[Production of negative electrode plate]
Polyvinylidene fluoride (binder) 0.8 parts by weight, N-methyl-2-pyrrolidone (solvent) 50 parts by weight and polyethylene hollow particles (particle diameter: 25 μm) with respect to 100 parts by weight of graphite (negative electrode active material) The volume ratio of the hollow part; 50%, Mitsui Chemicals, Inc.) 5 parts by weight was mixed to prepare a negative electrode paint. The negative electrode paint was applied to one side of a 0.02 mm thick copper foil (negative electrode current collector) to a thickness of 0.15 mm using a doctor blade, and then dried in a hot air drying oven at 100 ° C. Similarly, a negative electrode mixture layer was formed on the opposite surface of the copper foil. Thus, the negative electrode plate in which the negative electrode composite material layer was formed on both surfaces of the copper foil was rolled using a rolling device so that the total thickness became 0.2 mm, and the negative electrode plate was produced.

[組み立て]
実施例1と同様にして、円筒形リチウムイオン二次電池を組み立てた。
[assembly]
A cylindrical lithium ion secondary battery was assembled in the same manner as in Example 1.

[レート特性の測定]
実施例1と同様に容量確認を行った。実施例1の0.2C放電容量を100%とし、それぞれのレート特性を容量比で算出した。それぞれのレート特性を表1に示す。
[Measurement of rate characteristics]
The capacity was confirmed in the same manner as in Example 1. The 0.2C discharge capacity of Example 1 was set to 100%, and the respective rate characteristics were calculated as capacity ratios. Table 1 shows the respective rate characteristics.

(比較例)
比較例では、中空樹脂粒子を含まない正極塗料および負極塗料を用いてリチウムイオン二次電池(正極合材層および負極合材層が樹脂粒子を含まない)を作製した例を示す。
(Comparative example)
The comparative example shows an example in which a lithium ion secondary battery (the positive electrode mixture layer and the negative electrode mixture layer do not contain resin particles) using a positive electrode paint and a negative electrode paint that do not contain hollow resin particles is shown.

[正極板の作製]
実施例2と同様にして、正極合材層が樹脂粒子を含まない正極板を作製した。
[Production of positive electrode plate]
In the same manner as in Example 2, a positive electrode plate in which the positive electrode mixture layer did not contain resin particles was produced.

[負極板の作製]
実施例1と同様にして、負極合材層が樹脂粒子を含まない負極板を作製した。
[Production of negative electrode plate]
In the same manner as in Example 1, a negative electrode plate in which the negative electrode mixture layer did not contain resin particles was produced.

[組み立て]
実施例1と同様にして、円筒形リチウムイオン二次電池を組み立てた。
[assembly]
A cylindrical lithium ion secondary battery was assembled in the same manner as in Example 1.

[レート特性の測定]
実施例1と同様に容量確認を行った。実施例1の0.2C放電容量を100%とし、それぞれのレート特性を容量比で算出した。それぞれのレート特性を表1に示す。
[Measurement of rate characteristics]
The capacity was confirmed in the same manner as in Example 1. The 0.2C discharge capacity of Example 1 was set to 100%, and the respective rate characteristics were calculated as capacity ratios. Table 1 shows the respective rate characteristics.

表1は、各実施例のリチウムイオン二次電池のレート特性の測定結果を示す表である。
Table 1 is a table | surface which shows the measurement result of the rate characteristic of the lithium ion secondary battery of each Example.

表1において、実施例1、実施例2および実施例3と比較例とを比較すると、正極塗料または負極塗料に中空樹脂粒子を含ませることで、0.2Cの放電容量を向上させうるだけでなく、レート特性も向上させうることがわかる。   In Table 1, when Example 1, Example 2 and Example 3 are compared with a comparative example, the discharge capacity of 0.2 C can be improved by including hollow resin particles in the positive electrode paint or the negative electrode paint. It can be seen that the rate characteristics can also be improved.

また、実施例1と参考例4とを比較すると、正極塗料に含まれる中空樹脂粒子の量を正極活物質100重量部に対して1重量部以上とすることで、レート特性をより向上させうることがわかる。同様に、実施例2と参考例8とを比較すると、負極塗料に含まれる中空樹脂粒子の量を負極極活物質100重量部に対して1重量部以上とすることで、レート特性をより向上させうることがわかる。 Further, when Example 1 is compared with Reference Example 4 , the rate characteristics can be further improved by setting the amount of the hollow resin particles contained in the positive electrode paint to 1 part by weight or more with respect to 100 parts by weight of the positive electrode active material. I understand that. Similarly, when Example 2 is compared with Reference Example 8 , the rate characteristics are further improved by setting the amount of the hollow resin particles contained in the negative electrode paint to 1 part by weight or more with respect to 100 parts by weight of the negative electrode active material. You can see that

また、実施例1と参考例5とを比較すると、正極塗料に含まれる中空樹脂粒子の量を正極活物質100重量部に対して20重量部以下とすることで、0.2Cの放電容量を向上させうることがわかる。同様に、実施例2と参考例9とを比較すると、負極塗料に含まれる中空樹脂粒子の量を負極極活物質100重量部に対して50重量部以下とすることで、0.2Cの放電容量を向上させうることがわかる。 In addition, when Example 1 and Reference Example 5 are compared, the discharge capacity of 0.2 C can be obtained by setting the amount of hollow resin particles contained in the positive electrode paint to 20 parts by weight or less with respect to 100 parts by weight of the positive electrode active material. It can be seen that it can be improved. Similarly, when Example 2 and Reference Example 9 are compared, the amount of hollow resin particles contained in the negative electrode paint is 50 parts by weight or less with respect to 100 parts by weight of the negative electrode active material, so that a discharge of 0.2 C is obtained. It can be seen that the capacity can be improved.

また、実施例1と参考例6とを比較すると、正極塗料に含まれる中空樹脂粒子の粒子径を0.1μm以上とすることで、正極合材層内に空孔を形成することができ、レート特性をより向上させうることがわかる。同様に、実施例2と参考例10とを比較すると、負極塗料に含まれる中空樹脂粒子の粒子径を0.1μm以上とすることで、負極合材層内に空孔を形成することができ、レート特性をより向上させうることがわかる。 Moreover, when Example 1 and Reference Example 6 are compared, pores can be formed in the positive electrode mixture layer by setting the particle diameter of the hollow resin particles contained in the positive electrode paint to 0.1 μm or more, It can be seen that the rate characteristics can be further improved. Similarly, when Example 2 and Reference Example 10 are compared, pores can be formed in the negative electrode mixture layer by setting the particle diameter of the hollow resin particles contained in the negative electrode paint to 0.1 μm or more. It can be seen that the rate characteristics can be further improved.

また、実施例1と参考例7とを比較すると、正極塗料に含まれる中空樹脂粒子の粒子径を10μm以下とすることで、正極合材層内の活物質の密度を向上させることができ、0.2Cの放電容量を向上させうることがわかる。同様に、実施例2と参考例11とを比較すると、負極塗料に含まれる中空樹脂粒子の粒子径を20μm以下とすることで、負極合材層内の活物質の密度を向上させることができ、0.2Cの放電容量を向上させうることがわかる。 Further, when Example 1 and Reference Example 7 are compared, the density of the active material in the positive electrode mixture layer can be improved by setting the particle diameter of the hollow resin particles contained in the positive electrode paint to 10 μm or less, It can be seen that the discharge capacity of 0.2C can be improved. Similarly, when Example 2 and Reference Example 11 are compared, the density of the active material in the negative electrode mixture layer can be improved by setting the particle diameter of the hollow resin particles contained in the negative electrode paint to 20 μm or less. It can be seen that the discharge capacity of 0.2C can be improved.

(実施例12)
実施例12では、正極塗料に中空樹脂粒子を含ませることで、正極合材層内の正極活物質の密度を向上させうることを示す。
(Example 12)
In Example 12, it is shown that the density of the positive electrode active material in the positive electrode mixture layer can be improved by including hollow resin particles in the positive electrode paint.

[樹脂粒子を含む正極合材層の作製]
コバルト酸リチウム(正極活物質)100重量部に対し、カーボンブラック(導電助剤)3重量部、ポリフッ化ビニリデン(結着剤)3重量部、N−メチル−2−ピロリドン(溶媒)40重量部、およびポリエチレン製中空粒子(粒子径;5μm、中空部の体積比率;50%、三井化学株式会社)5重量部を混合して、正極塗料を調製した。正極塗料を厚み0.02mmのアルミニウム箔(正極集電体)の片面にドクターブレードを用いて厚み0.15mmとなるように塗布した後、100℃の熱風乾燥炉で乾燥させた。同様にして、アルミニウム箔の反対側の面にも正極合材層を形成した。
[Preparation of positive electrode mixture layer containing resin particles]
3 parts by weight of carbon black (conducting aid), 3 parts by weight of polyvinylidene fluoride (binder), 40 parts by weight of N-methyl-2-pyrrolidone (solvent) per 100 parts by weight of lithium cobalt oxide (positive electrode active material) And 5 parts by weight of polyethylene hollow particles (particle diameter: 5 μm, volume ratio of hollow part: 50%, Mitsui Chemicals, Inc.) were mixed to prepare a positive electrode paint. The positive electrode paint was applied to one side of a 0.02 mm thick aluminum foil (positive electrode current collector) to a thickness of 0.15 mm using a doctor blade, and then dried in a hot air drying oven at 100 ° C. Similarly, a positive electrode mixture layer was formed on the opposite surface of the aluminum foil.

[樹脂粒子を含まない正極合材層の作製]
コバルト酸リチウム(正極活物質)100重量部に対し、カーボンブラック(導電助剤)3重量部、ポリフッ化ビニリデン(結着剤)3重量部、およびN−メチル−2−ピロリドン(溶媒)40重量部を混合して、正極塗料を調製した。正極塗料を厚み0.02mmのアルミニウム箔(正極集電体)の片面にドクターブレードを用いて厚み0.15mmとなるように塗布した後、100℃の熱風乾燥炉で乾燥させた。同様にして、アルミニウム箔の反対側の面にも正極合材層を形成した。
[Preparation of positive electrode mixture layer containing no resin particles]
3 parts by weight of carbon black (conducting aid), 3 parts by weight of polyvinylidene fluoride (binder), and 40 parts by weight of N-methyl-2-pyrrolidone (solvent) with respect to 100 parts by weight of lithium cobalt oxide (positive electrode active material) Parts were mixed to prepare a positive electrode paint. The positive electrode paint was applied to one side of a 0.02 mm thick aluminum foil (positive electrode current collector) to a thickness of 0.15 mm using a doctor blade, and then dried in a hot air drying oven at 100 ° C. Similarly, a positive electrode mixture layer was formed on the opposite surface of the aluminum foil.

[活物質密度の測定]
樹脂粒子を含む正極合材層を有する正極板(本発明の正極板)および樹脂粒子を含まない正極合材層を有する正極板(比較例の正極板)のそれぞれを、圧延装置を用いて5回圧延した。圧延装置のロールは直径500mmのものを使用し、線圧は1トン/mとした。また、圧延される正極板の幅は、いずれも500mmとした。それぞれの正極板について、1回圧延するごとに正極合材層における正極活物質の密度を測定した。
[Measurement of active material density]
Each of a positive electrode plate having a positive electrode mixture layer containing resin particles (positive electrode plate of the present invention) and a positive electrode plate having a positive electrode mixture layer not containing resin particles (a positive electrode plate of a comparative example) is used with a rolling device. Rolled. The roll of the rolling device was 500 mm in diameter, and the linear pressure was 1 ton / m. Moreover, the width | variety of the positive electrode plate rolled was 500 mm in all. About each positive electrode plate, the density of the positive electrode active material in a positive electrode compound material layer was measured whenever it rolled once.

表2は、本発明の正極板および比較例の正極板の正極合材層における正極活物質の密度を示す表である。
Table 2 is a table | surface which shows the density of the positive electrode active material in the positive mix layer of the positive electrode plate of this invention, and the positive electrode plate of a comparative example.

表2に示されるように、圧延を1回行っただけでは、本発明の正極板と比較例の正極板との間で活物質の密度に変化はほとんど見られないが、圧延を2回以上行うと、本発明の正極板における活物質の密度が比較例の正極板における活物質の密度に比べて高くなっていた。このことから、正極塗料に中空樹脂粒子を含ませることで、正極合材層内の正極活物質の密度を向上させうることがわかる。   As shown in Table 2, there is almost no change in the density of the active material between the positive electrode plate of the present invention and the positive electrode plate of the comparative example only by performing the rolling once, but the rolling is performed twice or more. When it did, the density of the active material in the positive electrode plate of this invention was high compared with the density of the active material in the positive electrode plate of a comparative example. This shows that the density of the positive electrode active material in the positive electrode mixture layer can be improved by including hollow resin particles in the positive electrode paint.

(実施例13)
実施例13では、正極塗料に中空樹脂粒子を含ませることで、正極合材層に凹凸および空孔を形成しうることを示す。
(Example 13)
Example 13 shows that unevenness and holes can be formed in the positive electrode mixture layer by including hollow resin particles in the positive electrode paint.

[樹脂粒子を含む正極合材層の作製]
コバルト酸リチウム(正極活物質)100重量部に対し、カーボンブラック(導電助剤)3重量部、ポリフッ化ビニリデン(結着剤)3重量部、N−メチル−2−ピロリドン(溶媒)40重量部、およびポリエチレン製中空粒子(粒子径;5μm、中空部の体積比率;50%、三井化学株式会社)5重量部を混合して、正極塗料を調製した。正極塗料を厚み0.02mmのアルミニウム箔(正極集電体)の片面にドクターブレードを用いて厚み0.15mmとなるように塗布した後、100℃の熱風乾燥炉で乾燥させた。同様にして、アルミニウム箔の反対側の面にも正極合材層を形成した。
[Preparation of positive electrode mixture layer containing resin particles]
3 parts by weight of carbon black (conducting aid), 3 parts by weight of polyvinylidene fluoride (binder), 40 parts by weight of N-methyl-2-pyrrolidone (solvent) per 100 parts by weight of lithium cobalt oxide (positive electrode active material) And 5 parts by weight of polyethylene hollow particles (particle diameter: 5 μm, volume ratio of hollow part: 50%, Mitsui Chemicals, Inc.) were mixed to prepare a positive electrode paint. The positive electrode paint was applied to one side of a 0.02 mm thick aluminum foil (positive electrode current collector) to a thickness of 0.15 mm using a doctor blade, and then dried in a hot air drying oven at 100 ° C. Similarly, a positive electrode mixture layer was formed on the opposite surface of the aluminum foil.

[樹脂粒子を含まない正極合材層の作製]
コバルト酸リチウム(正極活物質)100重量部に対し、カーボンブラック(導電助剤)3重量部、ポリフッ化ビニリデン(結着剤)3重量部、およびN−メチル−2−ピロリドン(溶媒)40重量部を混合して、正極塗料を調製した。正極塗料を厚み0.02mmのアルミニウム箔(正極集電体)の片面にドクターブレードを用いて厚み0.15mmとなるように塗布した後、100℃の熱風乾燥炉で乾燥させた。同様にして、アルミニウム箔の反対側の面にも正極合材層を形成した。
[Preparation of positive electrode mixture layer containing no resin particles]
3 parts by weight of carbon black (conducting aid), 3 parts by weight of polyvinylidene fluoride (binder), and 40 parts by weight of N-methyl-2-pyrrolidone (solvent) with respect to 100 parts by weight of lithium cobalt oxide (positive electrode active material) Parts were mixed to prepare a positive electrode paint. The positive electrode paint was applied to one side of a 0.02 mm thick aluminum foil (positive electrode current collector) to a thickness of 0.15 mm using a doctor blade, and then dried in a hot air drying oven at 100 ° C. Similarly, a positive electrode mixture layer was formed on the opposite surface of the aluminum foil.

[表面穴面積の測定]
実施例13で作製した樹脂粒子を含む正極合材層を有する正極板(実施例13の正極板)および実施例13で比較として作製した樹脂粒子を含まない正極合材層を有する正極板(比較例13の正極板)のそれぞれについて、走査型電子顕微鏡を用いてその表面の写真を撮影した。図4(A)は実施例13の正極板の表面の走査型電子顕微鏡像を示す写真であり、図4(B)は比較例13の正極板の表面の走査型電子顕微鏡像を示す写真である。これらの写真から、実施例13の正極板は、比較例13の正極板に比べてより多くの凹凸および空孔を有することがわかる。
[Measurement of surface hole area]
Positive plate having a positive-electrode mixture layer positive electrode plate having a positive-electrode mixture layer containing the resin particles produced (positive electrode plate of Example 13), and in Example 13 containing no resin particles produced as compared in Example 13 ( A photograph of the surface of each of the positive electrode plates of Comparative Example 13 was taken using a scanning electron microscope. 4A is a photograph showing a scanning electron microscope image of the surface of the positive electrode plate of Example 13 , and FIG. 4B is a photograph showing a scanning electron microscope image of the surface of the positive electrode plate of Comparative Example 13. is there. From these photographs, the positive electrode plate of Example 13 is found to have a more uneven and holes in comparison with the positive electrode plate of Comparative Example 13.

これらの写真の特定の視野(視野面積:300μm×200μm)について二値化処理を行い、それぞれの視野における表面穴面積を測定した。具体的には、図4(A)および図4(B)の写真をそれぞれモノクロ256階調(0〜255)に変換し、IMAGE ANALYZER V10 for Windows(登録商標)(東洋紡)を使用して、閾値を70として二値化(0〜69を0(黒)、70〜255を255(白)に変換)した。図4(C)は実施例13の正極板の表面を示す二値化画像であり、図4(D)は比較例13の正極板の表面を示す二値化画像である。それぞれの写真について、全画素の合計面積に対する黒画素の合計面積の割合(%)を算出し、得られた値をそれぞれの視野における表面穴面積とした。その結果、比較例13の正極板では表面穴面積がわずか6%であったのに対し、実施例13の正極板では表面穴面積が12%であった。 A binarization process was performed on a specific field of view (field area: 300 μm × 200 μm) of these photographs, and the surface hole area in each field of view was measured. Specifically, the photographs in FIGS. 4 (A) and 4 (B) are each converted into monochrome 256 gradations (0 to 255), and using IMAGE ANALYZER V10 for Windows (registered trademark) (Toyobo), The threshold was set to 70 and binarization (converted from 0 to 69 to 0 (black) and from 70 to 255 to 255 (white)). 4C is a binarized image showing the surface of the positive electrode plate of Example 13 , and FIG. 4D is a binarized image showing the surface of the positive electrode plate of Comparative Example 13 . For each photograph, the ratio (%) of the total area of black pixels to the total area of all pixels was calculated, and the obtained value was defined as the surface hole area in each field of view. As a result, in the positive electrode plate of Comparative Example 13 , the surface hole area was only 6%, whereas in the positive electrode plate of Example 13 , the surface hole area was 12%.

この結果から、正極塗料に中空樹脂粒子を含ませることで、正極合材層に空孔を形成できることがわかる。   From this result, it turns out that a void | hole can be formed in a positive mix layer by including a hollow resin particle in a positive electrode coating material.

本発明のリチウムイオン二次電池は、放電容量が大きく、かつレート特性が優れているため、例えばモバイル用電池として有用である。本発明の製造方法は、リチウムイオン二次電池だけでなく、固体電解質リチウム二次電池やニッケル水素電池などの他のエネルギー貯蔵素子にも適用することができる。   The lithium ion secondary battery of the present invention is useful as, for example, a mobile battery because of its large discharge capacity and excellent rate characteristics. The production method of the present invention can be applied not only to lithium ion secondary batteries but also to other energy storage elements such as solid electrolyte lithium secondary batteries and nickel metal hydride batteries.

本発明のリチウムイオン電池の構成例を示す断面図である。(A)は正極合材層のみが樹脂粒子を含む例を示す図であり、(B)は負極合材層のみが樹脂粒子を含む例を示す図であり、(C)は正極合材層および負極合材層が樹脂粒子を含む例を示す図である。It is sectional drawing which shows the structural example of the lithium ion battery of this invention. (A) is a figure which shows the example in which only a positive mix layer contains a resin particle, (B) is a figure which shows the example in which only a negative mix layer contains a resin particle, (C) is a positive mix layer It is a figure which shows the example in which a negative electrode compound material layer contains a resin particle. 本発明の製造方法における正極の製造工程を示す模式図である。(A)は正極集電体を準備した後の様子を示す模式図であり、(B)は正極集電体の両面に正極合材層を形成した後の様子を示す模式図であり、(C)は正極を圧延した後の示す模式図である。It is a schematic diagram which shows the manufacturing process of the positive electrode in the manufacturing method of this invention. (A) is a schematic diagram showing a state after preparing a positive electrode current collector, (B) is a schematic diagram showing a state after forming a positive electrode mixture layer on both surfaces of the positive electrode current collector, C) is a schematic view after the positive electrode is rolled. 本発明の製造方法における負極の製造工程を示す図である。(A)は負極集電体を準備した後の様子を示す模式図であり、(B)は負極集電体の両面に負極合材層を形成した後の様子を示す模式図であり、(C)は負極を圧延した後の様子を示す模式図である。It is a figure which shows the manufacturing process of the negative electrode in the manufacturing method of this invention. (A) is a schematic diagram showing a state after preparing a negative electrode current collector, (B) is a schematic diagram showing a state after forming a negative electrode mixture layer on both surfaces of the negative electrode current collector, C) is a schematic view showing a state after rolling the negative electrode. 実施例13の結果を示す写真である。(A)は本発明の正極板の表面の走査型電子顕微鏡像を示す写真であり、(B)は比較例の正極板の表面の走査型電子顕微鏡像を示す写真であり、(C)は本発明の正極板の表面を示す二値化画像であり、(D)は比較例の正極板の表面を示す二値化画像である。14 is a photograph showing the results of Example 13. (A) is a photograph showing a scanning electron microscope image of the surface of the positive electrode plate of the present invention, (B) is a photograph showing a scanning electron microscope image of the surface of the positive electrode plate of the comparative example, (C) It is a binarized image which shows the surface of the positive electrode plate of this invention, (D) is a binarized image which shows the surface of the positive electrode plate of a comparative example.

符号の説明Explanation of symbols

100 リチウムイオン二次電池
110 正極
112 正極集電体
114 正極合材層
120 負極
122 負極集電体
124 負極合材層
130 セパレーター
140 樹脂粒子
142 中空樹脂粒子
DESCRIPTION OF SYMBOLS 100 Lithium ion secondary battery 110 Positive electrode 112 Positive electrode collector 114 Positive electrode composite material layer 120 Negative electrode 122 Negative electrode current collector 124 Negative electrode composite material layer 130 Separator 140 Resin particle 142 Hollow resin particle

Claims (3)

正極活物質を含む正極塗料を正極集電体上に塗布して、正極合材層および正極集電体を有する正極を形成するステップと、
負極活物質を含む負極塗料を負極集電体上に塗布して、負極合材層および負極集電体を有する負極を形成するステップと、
前記正極を圧延して、前記正極合材層内における前記正極活物質の密度を高めるステップと、
前記負極を圧延して、前記負極合材層内における前記負極活物質の密度を高めるステップと、
前記圧延後の正極と、セパレーターと、前記圧延後の負極とを積層するステップと、
を有するリチウムイオン二次電池の製造方法であって、
前記正極塗料が、前記正極活物質100重量部に対して、前記圧延により破砕されうる、粒子径が0.1μm以上10μm以下の中空樹脂粒子を、1重量部以上20重量部以下含むか、または
前記負極塗料が、前記負極活物質100重量部に対して、前記圧延により破砕されうる、粒子径が0.1μm以上20μm以下の中空樹脂粒子を、1重量部以上50重量部以下含む、
リチウムイオン二次電池の製造方法。
Applying a positive electrode paint containing a positive electrode active material on a positive electrode current collector to form a positive electrode having a positive electrode mixture layer and a positive electrode current collector;
Applying a negative electrode paint containing a negative electrode active material on a negative electrode current collector to form a negative electrode having a negative electrode mixture layer and a negative electrode current collector;
Rolling the positive electrode to increase the density of the positive electrode active material in the positive electrode mixture layer;
Rolling the negative electrode to increase the density of the negative electrode active material in the negative electrode mixture layer;
Laminating the positive electrode after rolling, a separator, and the negative electrode after rolling;
A method for producing a lithium ion secondary battery having
The positive electrode paint contains 1 to 20 parts by weight of hollow resin particles having a particle diameter of 0.1 to 10 μm that can be crushed by the rolling with respect to 100 parts by weight of the positive electrode active material, or The negative electrode paint contains 1 to 50 parts by weight of hollow resin particles having a particle diameter of 0.1 to 20 μm that can be crushed by the rolling with respect to 100 parts by weight of the negative electrode active material.
A method for producing a lithium ion secondary battery.
前記正極合材層または負極合材層は、前記中空樹脂粒子の破砕物を、圧延後に1g/cm以上20g/cm以下の密度で含む、請求項に記載のリチウムイオン二次電池の製造方法。 2. The lithium ion secondary battery according to claim 1 , wherein the positive electrode mixture layer or the negative electrode mixture layer includes the crushed material of the hollow resin particles at a density of 1 g / cm 3 or more and 20 g / cm 3 or less after rolling. Production method. 前記中空樹脂粒子の中空部の体積比率は、20%以上80%以下である、請求項に記載のリチウムイオン二次電池の製造方法。 It said hollow volume ratio of the hollow portion of the resin particles is 20% to 80%, the method of manufacturing a lithium ion secondary battery according to claim 1.
JP2008087551A 2007-05-21 2008-03-28 Method for producing lithium ion secondary battery Active JP4977079B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008087551A JP4977079B2 (en) 2007-05-21 2008-03-28 Method for producing lithium ion secondary battery
US12/122,803 US8293405B2 (en) 2007-05-21 2008-05-19 Rechargeable lithium ion battery and method for producing the same
CN2008101079301A CN101320810B (en) 2007-05-21 2008-05-21 Rechargeable lithium ion battery and method for producing the same
KR1020080047210A KR101058080B1 (en) 2007-05-21 2008-05-21 Lithium Ion Secondary Battery and Manufacturing Method Thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007133711 2007-05-21
JP2007133711 2007-05-21
JP2008087551A JP4977079B2 (en) 2007-05-21 2008-03-28 Method for producing lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2009004360A JP2009004360A (en) 2009-01-08
JP4977079B2 true JP4977079B2 (en) 2012-07-18

Family

ID=40180735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008087551A Active JP4977079B2 (en) 2007-05-21 2008-03-28 Method for producing lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP4977079B2 (en)
CN (1) CN101320810B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11430987B2 (en) 2018-12-12 2022-08-30 Samsung Sdi Co., Ltd. Electrode and a rechargeable lithium battery including the electrode
US11508992B2 (en) 2019-05-03 2022-11-22 Samsung Sdi Co. Ltd. Rechargeable lithium battery
US11515523B2 (en) 2019-05-03 2022-11-29 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11522183B2 (en) 2019-05-03 2022-12-06 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11522185B2 (en) 2019-05-03 2022-12-06 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11658287B2 (en) 2019-05-03 2023-05-23 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11705585B2 (en) 2018-07-03 2023-07-18 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11710820B2 (en) 2019-05-03 2023-07-25 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11728522B2 (en) 2018-07-03 2023-08-15 Samsung Sdi Co., Ltd. Electrode for rechargeable lithium battery, and rechargeable lithium battery including the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472760B2 (en) 2009-12-25 2014-04-16 トヨタ自動車株式会社 Method for producing lithium ion secondary battery
JP5648896B2 (en) * 2010-04-27 2015-01-07 日産自動車株式会社 Method for manufacturing bipolar electrode for secondary battery and bipolar secondary battery
JP6237244B2 (en) * 2014-01-14 2017-11-29 株式会社ジェイテクト Dispersion degree inspection device for power storage material particles in power storage device
JP6658733B2 (en) * 2015-03-18 2020-03-04 日立化成株式会社 Binder resin composition, electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20180022719A (en) * 2015-06-26 2018-03-06 마쓰모토유시세이야쿠 가부시키가이샤 Slurry compositions for nonaqueous electrolyte secondary battery cathodes and uses thereof
JP6834870B2 (en) * 2017-09-15 2021-02-24 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery and its manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283206A (en) * 1993-03-30 1994-10-07 Canon Inc Microcapsule contained battery
JPH10188965A (en) * 1996-12-24 1998-07-21 Shin Kobe Electric Mach Co Ltd Lead-acid battery, electrode plate for lead-acid battery and manufacture thereof
JP4161237B2 (en) * 1998-11-09 2008-10-08 東洋紡績株式会社 Nonaqueous electrolyte secondary battery, electrode material and method for producing the same
JP2002270178A (en) * 2001-03-08 2002-09-20 Fdk Corp Producing method of battery active material molded body, molding material and alkaline battery
JP2005228642A (en) * 2004-02-13 2005-08-25 Matsushita Electric Ind Co Ltd Electrode plate, battery, manufacturing device of electrode plate, and manufacturing method of electrode plate
JP5112853B2 (en) * 2005-03-02 2013-01-09 パナソニック株式会社 Lithium ion secondary battery and manufacturing method thereof
US7682741B2 (en) * 2005-06-29 2010-03-23 Panasonic Corporation Composite particle for lithium rechargeable battery, manufacturing method of the same, and lithium rechargeable battery using the same
JP2008004302A (en) * 2006-06-20 2008-01-10 Matsushita Electric Ind Co Ltd Manufacturing method of lithium secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11705585B2 (en) 2018-07-03 2023-07-18 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11728522B2 (en) 2018-07-03 2023-08-15 Samsung Sdi Co., Ltd. Electrode for rechargeable lithium battery, and rechargeable lithium battery including the same
US11430987B2 (en) 2018-12-12 2022-08-30 Samsung Sdi Co., Ltd. Electrode and a rechargeable lithium battery including the electrode
US11508992B2 (en) 2019-05-03 2022-11-22 Samsung Sdi Co. Ltd. Rechargeable lithium battery
US11515523B2 (en) 2019-05-03 2022-11-29 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11522183B2 (en) 2019-05-03 2022-12-06 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11522185B2 (en) 2019-05-03 2022-12-06 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11658287B2 (en) 2019-05-03 2023-05-23 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11710820B2 (en) 2019-05-03 2023-07-25 Samsung Sdi Co., Ltd. Rechargeable lithium battery

Also Published As

Publication number Publication date
CN101320810B (en) 2010-06-02
JP2009004360A (en) 2009-01-08
CN101320810A (en) 2008-12-10

Similar Documents

Publication Publication Date Title
JP4977079B2 (en) Method for producing lithium ion secondary battery
KR101058080B1 (en) Lithium Ion Secondary Battery and Manufacturing Method Thereof
KR101592658B1 (en) A surface-treated cathode active material and lithium secondary battery using it
JP4884774B2 (en) Method for producing electrode for electrochemical cell
WO2009141991A1 (en) Electrode for non-aqueous electrolyte secondary battery, manufacturing method therefor, and non-aqueous electrolyte secondary battery
US20180248220A1 (en) Nonaqueous electrolyte secondary batteries
KR101984810B1 (en) Lithium secondary battery
CN107644972A (en) All-solid-state battery
US20070082261A1 (en) Lithium rechargeable battery
EP1139460A2 (en) Separator, gelated electrolyte, non-aqueous electrolyte, electrode and non-aqueous electrolyte cell employing the same
US8470473B2 (en) Electrode and electrochemical device
US20080241696A1 (en) Electrode and electrochemical device
JP2009048876A (en) Nonaqueous secondary battery
JP2008226566A (en) Composition for porous insulating layer formation, positive electrode for lithium-ion secondary battery, negative electrode for lithium ion secondary battery, and lithium-ion secondary battery
JP2012146590A (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery
JP2009181756A (en) Lithium-ion secondary battery and electronic apparatus using the same
JP2014165156A (en) Nonaqueous electrolyte secondary battery and manufacturing method of negative electrode plate of the nonaqueous electrolyte secondary battery
JP2002319386A (en) Nonaqueous electrolyte secondary battery
JP5017834B2 (en) Lithium ion secondary battery
JP2009295290A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
JP4543618B2 (en) Non-aqueous electrolyte battery
KR102531346B1 (en) Anodeless lithium secondary battery and preparing method thereof
US20230135194A1 (en) Negative electrode and secondary battery comprising the same
JP2002279956A (en) Nonaqueous electrolyte battery
JP2006107853A (en) Non-aqueous electrolyte secondary battery and production method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110207

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

R150 Certificate of patent or registration of utility model

Ref document number: 4977079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3