JP4974215B2 - 電磁石電源装置 - Google Patents

電磁石電源装置 Download PDF

Info

Publication number
JP4974215B2
JP4974215B2 JP2006242537A JP2006242537A JP4974215B2 JP 4974215 B2 JP4974215 B2 JP 4974215B2 JP 2006242537 A JP2006242537 A JP 2006242537A JP 2006242537 A JP2006242537 A JP 2006242537A JP 4974215 B2 JP4974215 B2 JP 4974215B2
Authority
JP
Japan
Prior art keywords
current
power supply
output
electromagnet power
electromagnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006242537A
Other languages
English (en)
Other versions
JP2008067490A (ja
Inventor
誠 安富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2006242537A priority Critical patent/JP4974215B2/ja
Publication of JP2008067490A publication Critical patent/JP2008067490A/ja
Application granted granted Critical
Publication of JP4974215B2 publication Critical patent/JP4974215B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rectifiers (AREA)

Description

本発明は、交流電源からの交流を直流に変換して電磁石コイルに給電する電磁石電源装置に係り、特に改善された地絡電流検出手段を有する電磁石電源装置に関する。
例えば、医療・物理学研究に用いられる加速器用電磁石コイルを励磁するための電磁石電源装置は、高エネルギーで安定した陽子ビームを生成するために、非常に高い精度が要求される。このため電磁石電源装置は、定格直流電流Ioに対し、電流リプルΔIrの正規化値(ΔIr/Io)は10-4〜10-6オーダ以下の高精度制御が求められ、電流検出器および電流の制御回路は高い安定性と高い精度が要求される。
ここで、負荷である電磁石コイルが内部絶縁劣化等によって地絡した場合、上記のように電流の高精度制御を実施しているため、電磁石電源装置の出力電流値は一定に保たれるが、地絡が発生すると想定した磁力と実際の磁力の間に誤差が発生し、ビームの制御に不具合が生ずるという問題がある。従って、このような地絡を確実に検出し、必要な保護動作を行うことが電磁石電源装置にとって重要な機能となる。
上記の地絡電流は、通常電磁石電源装置に付随して設けられた接地抵抗を介して循環するため、従来の方式においては、接地抵抗に流れる電流値を検出、監視することにより地絡を検出するようにしていた。また、より地絡検出の精度を高めるため、電磁石コイルとコイルケース間に直流電源によって直流電圧を加え、この電圧変化を検出することによって地絡検出を行う提案が為されている(例えば、特許文献1参照。)。
特開平7−170652号公報(第2−4頁、図1)
従来の接地抵抗による接地電流検出方法によれば、接地抵抗には常時機器と対地間の浮遊容量を介して交直変換器等が発生するリプル電流が流れているため、微小な地絡電流の検出が困難であった。また、加速器は設備規模が大きくさまざまな周辺機器と共に電磁石、および直流ブスが配置されているため目視による点検では地絡箇所を発見することも困難であった。
これに対して特許文献1に示された手法によれば、検出精度の向上は図れるものの、回路構成が複雑となる上、複数の電磁石電源と、複数の電磁石を直列に配置した構成では、地絡電流が複数のループに分散されるため、電磁石の地絡を確実に検出することが困難な場合もあった。
本発明は、上記のような課題を解決するために為されたものであり、その目的は、比較的簡単な回路構成で、地絡電流を精度良く検出することが可能な電磁石電源装置を提供することにある。
上記目的を達成するための手段の特徴を以下に記す。
本発明の第1の発明である電磁石電源装置は、交流電源から供給される交流を直流に変換する交直変換器及びこの交直変換器の直流出力を平滑する受動フィルタとから成り、その出力を負荷となる電磁石コイルN(Nは2以上の整数)台と交互に直列接続して直流を供給する電磁石電源ユニットN台と、前記各々の電磁石電源ユニットの出力を短絡するN台のバイパススイッチと、前記N台電磁石電源ユニットのうち、何れか1台の電磁石電源ユニットの直流出力の正側に設けられた第1の電流検出器と、前記N台の電磁石電源ユニットのうち、当該1台の電磁石電源ユニットの直流出力の負側に設けられた第2の電流検出器と、前記第1または第2の電流検出器で検出される電流が所定の値になるように前記N台の電磁石電源ユニットの各々の交直変換器の出力を制御する電流制御手段とを具備し、
前記1台の電磁石電源ユニットの交直変換器を運転して、他の(N−1)台の交直変換器を停止し、当該1台の電磁石電源ユニットの出力のバイパススイッチを開放して、他の(N−1)台のバイパススイッチを短絡したとき、前記第1の電流検出器で検出される電流と前記第2の電流検出器で検出される電流の差電流によって、前記N台の電磁石コイルのうち何れかの電磁石コイルの地絡を検出するようにしたことを特徴としている。
また、本発明の第2の発明である電磁石電源装置は、交流電源から供給される交流を直流に変換する交直変換器及びこの交直変換器の直流出力を平滑する受動フィルタとから成り、その出力を負荷となる電磁石コイルN(Nは2以上の整数)台と交互に直列接続して直流を供給する電磁石電源ユニットN台と、前記N台の電磁石電源ユニットの各々の直流出力の正側に設けられた第1の電流検出器と、前記N台の電磁石電源ユニットの各々の直流出力の負側に設けられた第2の電流検出器と、前記第1または第2の電流検出器で検出される電流が所定の値になるように前記N台の電磁石電源ユニットの各々の交直変換器の出力を制御する電流制御手段とを具備し、前記N台のうちの1台の電磁石電源ユニットの出力側の前記第1の電流検出器で検出される電流と、当該1台の電磁石電源ユニットと、地絡検出対象となる1台の電磁石コイルを介して隣り合う電磁石電源ユニットの出力側の前記第2の電流検出器で検出される電流との差電流によって、当該1台の電磁石コイルの地絡を検出するようにしたことを特徴としている。
本発明によれば、比較的簡単な回路構成で、地絡電流を精度良く検出することが可能な電磁石電源装置を提供することができる。
以下,図面を参照して本発明の実施例を説明する。
図1は,本発明の実施例1に係る電磁石電源装置の回路構成図である。
図1において、交流電源1から与えられる交流電圧を変圧器2によって降圧して交直変換器3に供給する。交直変換器3によって得られた直流は、受動フィルタ4によって平滑され、接地抵抗5を介して電磁石コイル8に給電される。交直変換器3は、複数個の自己消弧形素子、例えばIGBT(Insulated Gate Bipolar Transistor)によって構成され、IGBTを詳細は後述する制御回路20からの信号によってオン/オフ制御することにより電磁石コイル8へ直流電流を供給する。交直変換器3の変換方式例としては、電流型コンバータや電圧型コンバータ+チョッパ等が挙げられる。また、受動フィルタ4は,交直変換器3の出力に含まれる電流リプルを低減するために用いられる。通常は、リアクトル、コンデンサ及び抵抗による2次のローパスフィルタで構成される。
ここで変圧器2、交直変換器3、受動フィルタ4及び接地抵抗5は電磁石電源ユニット10を形成している。
電磁石電源ユニット10の正側直流出力には地絡検出用の電流検出器6が、また負側直流出力には制御用の電流検出器7が接続されており、その各々の出力は制御回路20に与えられる。以下制御回路20の内部構成について説明する。
電流基準発生器21は電磁石コイル8を励磁するための直流電流基準Idを生成する。そして、減算器22によってこの直流電流基準Idから制御用の電流検出器7で検出された直流電流値Idを減算し、その出力である直流電流偏差ΔI(ΔI=Id−Id)を電流制御器23に与える。電流制御器23は直流電流偏差ΔIに応じた直流電流の制御量を出力し、この直流電流の制御量に合わせてゲート制御器24を介して,交直変換器3内のIGBTにオン/オフ制御信号が与えられる。このようにして直流電流偏差ΔIがゼロとなるように直流電流値Idが制御される。
電流検出器6の出力は減算器25に与えられ、この減算器25によって電流検出器6の出力から電流検出器7の出力を減算し、その差分を電流検出回路26に与える。
以上の構成において、電流検出器6と電流検出器7の検出電流値は通常同一値となる。電磁石電源装置は高精度に出力電流を制御し、その電磁石電流リプルは10-4〜10-6オーダ以下であるため直流母線と対地間あるいは、電磁石コイルと対地間の浮遊容量を介して流れ出す電流は極めて少ない。電磁石コイル部分で微少な地絡電流が発生したとき、電流検出器6と電流検出器7の検出電流値の差分が地絡電流に比例して増加する。電流検出器6で検出した電流をImとし、電磁石コイル部分の地絡電流をIgとすれば、電流検出器7で検出される電流はId=Im−Igとなる。
従って、電流検出器6と電流検出器7の検出電流値の差分がIgとなり、この値が設定値以上になることを検出する電流検出回路26により電磁石コイル内部で発生した微少な地絡を検出することが可能となる。
図2は本発明の実施例2に係る電磁石電源装置の回路構成図である。この実施例2の各部について、図1の実施例1に係る電磁石電源装置の回路構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例2が実施例1と異なる点は、電磁石電源ユニット及び電磁石コイルを、電磁石電源ユニット10a、10b、・・・、10n、電磁石コイル8a、8b、・・・、8nと夫々nセット設け、これらの出力を直列接続する構成とした点、電磁石電源ユニット10a、10b、・・・、10nの夫々の出力を短絡することができるバイパススイッチ9a、9b、・・・、9nを夫々設けた点、地絡検出用の電流検出器6n及び制御用の電流検出器7nを電磁石電源ユニット10nの正側及び負側の出力に夫々設けるように構成した点である。尚、ここでnは2以上の整数である。
上記構成において、バイパススイッチ9nのみを開放し、他の(n−1)台のバイパススイッチ9a、9b、・・・は短絡する。そして電磁石電源ユニット10nのみを運転し、他の(n−1)台の電磁石電源ユニット10a、10b、・・・は停止する。
この運転状態において、実施例1の場合と同様、電流検出器6nと電流検出器7nの検出電流値は通常同一値となる。そして電磁石コイル8a、8b、・・・、8nのいずれかの電磁石コイル部分で微少な地絡電流が発生したとき、電流検出器6nと電流検出器7nの検出電流値の差分が地絡電流に比例して増加する。電流検出器6nで検出した電流をImとし、例えば電磁石コイル8bにおける地絡電流をIgとすれば、電流検出器7nで検出される電流はId=Im−Igとなる。
以上のように電磁石電源ユニット及び電磁石コイルをセットとして複数組設け、これらを直列接続した構成において、地絡電流検出を行うセット以外のセットの電磁石電源ユニットを停止させ、且つバイパススイッチを短絡するようにすれば、何れかのセットの電磁石コイル内部で発生した微少な地絡を検出することが可能な電磁石電源装置を提供することができる。
尚、図2において、電磁石電源ユニット10nの出力のみに電流検出器6n及び電流検出器7nを設ける構成としているが、他のセットの電磁石電源ユニットの出力にもこれらの電流検出器が設けられていても良い。同様に、図2においては電磁石電源ユニット10nの出力電流のみを制御するようにし、ゲート制御器24の出力を全ての電磁石電源ユニットに供給するようにしているが、各々のセットで個別に制御を行うように構成しても良い。
以下、本発明の実施例3に係る電磁石電源装置を図3及び図4を参照して説明する。
図3は本発明の実施例3に係る電磁石電源装置の回路構成図である。この実施例3の各部について、図2の実施例2に係る電磁石電源装置の回路構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例3が実施例2と異なる点は、地絡検出用の電流検出器6a、6b、・・・、6n及び7a、7b、・・・、7nを電磁石電源ユニット10a、10b、・・・、10nの正側及び負側の出力に夫々設けるようにし、これらの出力を電流選択比較回路27に与え、電流選択比較回路27の出力を電流検出回路26に与えるように構成した点である。
上記構成において、全てのバイパススイッチ9a、9b、・・・、9nを開放し、全ての電磁石電源ユニット10a、10b、・・・、10nを運転する。
ここで電流選択比較回路27の動作について図4を参照して説明する。図4に示すように、電磁石コイル8aの地絡検出を行うには、電磁石コイル8a用の電磁石電源ユニット10aの正側出力電流を検出する電流検出器6aの電流検出値(1)と電磁石電源ユニット10nの負側出力電流を検出する電流検出器7nの検出値(2*n)の差電流を選択して地絡電流検出を行う。
同様に、電磁石コイル8bの地絡検出を行うには、電磁石コイル8b用の電磁石電源ユニット10bの正側出力電流を検出する電流検出器6bの電流検出値(3)と電磁石電源ユニット10aの負側出力電流を検出する電流検出器7aの検出値(2)の差電流を選択して地絡電流検出を行い、電磁石コイル8nの地絡検出を行うには、電磁石コイル8n用の電磁石電源ユニット10nの正側出力電流を検出する電流検出器6nの電流検出値(2*n−1)と電磁石電源ユニット10mの負側出力電流を検出する電流検出器7mの検出値(2*n−2)の差電流を選択して地絡電流検出を行う。ただしここでm=n−1である。
以上説明したように、n台の電磁石電源ユニットを運転した状態で、運転している電磁石電源ユニットの正側出力の直流電流と、地絡検出対象となる1台の電磁石コイルを介して隣り合う電磁石電源ユニットの負側出力の直流電流の差分を検出するようにすれば、任意の電磁石コイルの地絡電流を検出することができる。
本実施例によれば、地絡が発生した電磁石コイル(または、電磁石コイルのグループ)を特定することが可能となる。従って、例えば実施例2に示した手法によっていずれかの電磁石コイルの地絡を検出したあと、本実施例の手法によって地絡が発生した電磁石コイルを特定するなどの応用が可能となる。また、実施例2に示した手法を用いず、本実施例の手法のみによって電磁石コイルの地絡を検出するときは、バイパススイッチ9a、9b、・・・、9nを設ける必要はない。
尚、以上の説明においては、電流選択比較回路27によって検出電流を切り換えて地絡電流を検出する構成としたが、個々の電磁石電源ユニットまたは電磁石コイルに対応して比較回路と電流検出回路を設ける構成としても良い。
以上の実施例1乃至3の説明において、電磁石電源ユニットの構成要素即ち変圧器、交直変換器、受動フィルタ等は、1台に限定されることなく、複数台あっても良いしまた複数台を組み合わせたものであっても良い。また、電磁石電源ユニットは、リプル電流を抑制するためのリプル補償器を備えているものであっても良い。
同様に、電磁石コイルの台数についても、図示の1台が複数台の電磁石コイルの組合せから構成されていても良いことは明らかである。
本発明の実施例1に係る電磁石電源装置の回路構成図。 本発明の実施例2に係る電磁石電源装置の回路構成図。 本発明の実施例3に係る電磁石電源装置の回路構成図。 電流選択比較回路の動作説明図。
符号の説明
1 交流電源
2 変圧器
3 交直変換器
4 受動フィルタ
5 接地抵抗
6、6a、6b、6c、・・・、6n 電流検出器
7、7a、7b、7c、・・・、7n 電流検出器
8、8a、8b、8c、・・・、8n 電磁石コイル
9a、9b、・・・、9n バイパススイッチ
10、10a、10b、・・・、10n 電磁石電源ユニット

20 制御回路
21 電流基準発生器
22 減算器
23 電流制御器
24 ゲート制御器
25 減算器
26 電流検出回路
27 電流選択比較回路

Claims (3)

  1. 交流電源から供給される交流を直流に変換する交直変換器及びこの交直変換器の直流出力を平滑する受動フィルタとから成り、その出力を負荷となる電磁石コイルN(Nは2以上の整数)台と交互に直列接続して直流を供給する電磁石電源ユニットN台と、
    前記各々の電磁石電源ユニットの出力を短絡するN台のバイパススイッチと、
    前記N台電磁石電源ユニットのうち、何れか1台の電磁石電源ユニットの直流出力の正側に設けられた第1の電流検出器と、
    前記N台の電磁石電源ユニットのうち、当該1台の電磁石電源ユニットの直流出力の負側に設けられた第2の電流検出器と、
    前記第1または第2の電流検出器で検出される電流が所定の値になるように前記N台の電磁石電源ユニットの各々の交直変換器の出力を制御する電流制御手段と
    を具備し、
    前記1台の電磁石電源ユニットの交直変換器を運転して、他の(N−1)台の交直変換器を停止し、
    当該1台の電磁石電源ユニットの出力のバイパススイッチを開放して、他の(N−1)台のバイパススイッチを短絡したとき、
    前記第1の電流検出器で検出される電流と前記第2の電流検出器で検出される電流の差電流によって、前記N台の電磁石コイルのうち何れかの電磁石コイルの地絡を検出するようにしたことを特徴とする電磁石電源装置。
  2. 交流電源から供給される交流を直流に変換する交直変換器及びこの交直変換器の直流出力を平滑する受動フィルタとから成り、その出力を負荷となる電磁石コイルN(Nは2以上の整数)台と交互に直列接続して直流を供給する電磁石電源ユニットN台と、
    前記N台の電磁石電源ユニットの各々の直流出力の正側に設けられた第1の電流検出器と、
    前記N台の電磁石電源ユニットの各々の直流出力の負側に設けられた第2の電流検出器と、
    前記第1または第2の電流検出器で検出される電流が所定の値になるように前記N台の電磁石電源ユニットの各々の交直変換器の出力を制御する電流制御手段と
    を具備し、
    前記N台のうちの1台の電磁石電源ユニットの出力側の前記第1の電流検出器で検出される電流と、
    当該1台の電磁石電源ユニットと、地絡検出対象となる1台の電磁石コイルを介して隣り合う電磁石電源ユニットの出力側の前記第2の電流検出器で検出される電流との差電流によって、
    当該1台の電磁石コイルの地絡を検出するようにしたことを特徴とする電磁石電源装置。
  3. 前記N台の電磁石電源ユニットの各々の直流出力の正側に設けられた第1の電流検出器で検出されるN個の電流値と、
    前記N台の電磁石電源ユニットの各々の直流出力の負側に設けられた第2の電流検出器で検出されるN個の電流値とを入力とする電流選択比較手段を備え、
    前記電流選択比較手段は、
    前記N台のうち1台の電磁石コイルに流入する前記第1の電流検出器で検出される電流値と、当該1台の電磁石コイルから流出する前記第2の電流検出器で検出される電流値との差電流を
    N台分次々と切替えて各々の電磁石コイルの地絡を検出するようにしたことを特徴とする請求項2に記載の電磁石電源装置。
JP2006242537A 2006-09-07 2006-09-07 電磁石電源装置 Active JP4974215B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006242537A JP4974215B2 (ja) 2006-09-07 2006-09-07 電磁石電源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006242537A JP4974215B2 (ja) 2006-09-07 2006-09-07 電磁石電源装置

Publications (2)

Publication Number Publication Date
JP2008067490A JP2008067490A (ja) 2008-03-21
JP4974215B2 true JP4974215B2 (ja) 2012-07-11

Family

ID=39289689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006242537A Active JP4974215B2 (ja) 2006-09-07 2006-09-07 電磁石電源装置

Country Status (1)

Country Link
JP (1) JP4974215B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010254966B2 (en) * 2009-06-04 2013-12-05 Daikin Industries,Ltd. Power converter
US10110149B2 (en) * 2017-01-06 2018-10-23 General Electric Company Grounding scheme for power converters with silicon carbide MOSFETs

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3313619B2 (ja) * 1997-06-17 2002-08-12 株式会社東芝 電源装置
JP3649660B2 (ja) * 2000-09-27 2005-05-18 英倫 吉田 漏洩電流探査装置

Also Published As

Publication number Publication date
JP2008067490A (ja) 2008-03-21

Similar Documents

Publication Publication Date Title
Kumar et al. Review on fault‐diagnosis and fault‐tolerance for DC–DC converters
Garg et al. A fault-tolerant three-phase adjustable speed drive topology with active common-mode voltage suppression
Shahbazi et al. Open-and short-circuit switch fault diagnosis for nonisolated DC–DC converters using field programmable gate array
CN110999006B (zh) 电源装置
US8570775B2 (en) CMV reduction under bus transient condition
Pei et al. Short-circuit fault protection strategy for high-power three-phase three-wire inverter
US9966835B2 (en) Detecting ground faults on non-isolated DC systems
Ahn et al. Robust design of a solid-state pulsed power modulator based on modular stacking structure
WO2014049779A1 (ja) 電力変換装置
Utvic et al. Low voltage modular multilevel converter submodule for medium voltage applications
WO2017006400A1 (ja) 電力変換装置の制御装置
JPWO2012114467A1 (ja) 電力変換装置
JPWO2020165954A1 (ja) 電力変換装置、および電力変換システム
Carballo et al. Multiple resonant controllers strategy to achieve fault ride‐through and high performance output voltage in UPS applications
Yadav et al. Short-circuit fault detection and isolation using filter capacitor current signature in low-voltage DC microgrid applications
JP4974215B2 (ja) 電磁石電源装置
KR101275070B1 (ko) 교류모터용 무효전력보상장치
Kumar et al. DVR with sliding mode control to alleviate voltage sags on a distribution system for three phase short circuit fault
Shao The application of sliding mode observers to fault detection and isolation for multilevel converters
JP4244025B2 (ja) 分散電源装置およびその直流地絡の検出方法
Teschke et al. Electrical design of the BUSSARD inverter system for ASDEX Upgrade saddle coils
KR101936564B1 (ko) 멀티레벨 인버터 제어장치
CN110521105B (zh) 模块化多电平转换器及其dc偏移补偿方法
US9255958B2 (en) Ground fault detection circuit
JP5264287B2 (ja) 瞬時電圧低下補償装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250