JP4972247B2 - Flame retardant thermosetting resin composition, prepreg using the same, and laminate for electric wiring board - Google Patents

Flame retardant thermosetting resin composition, prepreg using the same, and laminate for electric wiring board Download PDF

Info

Publication number
JP4972247B2
JP4972247B2 JP37338299A JP37338299A JP4972247B2 JP 4972247 B2 JP4972247 B2 JP 4972247B2 JP 37338299 A JP37338299 A JP 37338299A JP 37338299 A JP37338299 A JP 37338299A JP 4972247 B2 JP4972247 B2 JP 4972247B2
Authority
JP
Japan
Prior art keywords
weight
parts
compound
thermosetting resin
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37338299A
Other languages
Japanese (ja)
Other versions
JP2001181399A (en
Inventor
健一 大堀
康之 平井
真一 鴨志田
稔 垣谷
紀大 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP37338299A priority Critical patent/JP4972247B2/en
Publication of JP2001181399A publication Critical patent/JP2001181399A/en
Application granted granted Critical
Publication of JP4972247B2 publication Critical patent/JP4972247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Epoxy Resins (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気配線板用絶縁材料として有用な熱硬化性樹脂組成物並びにこれを用いたプリプレグ及び金属張り積層板に関する。
【0002】
【従来の技術】
近年、電子機器の種類は、拡大の一途を辿っており、コンピューター関連ばかりでなく、自動制御機器、通信機器、事務用機器なども、小型、軽量化が望まれている。これらの機器に使用されている多層プリント配線板は、4〜10層が中心であり、高密度実装に対応するために、ファインパターン化はもちろん薄型化が図られている。
【0003】
このプリント配線板に要求される項目には、吸湿耐熱性、信頼性等が挙げられる。したがって、プリント配線板に用いられる樹脂にも高Tg、高耐熱性、低吸水性が必要である。この要求に対応するために、エポキシ樹脂の改良や、ポリイミド樹脂、イソシアネート樹脂等が使用されている。
【0004】
また、これらの電気絶縁材料は、ガラス基材エポキシ樹脂電気配線板用絶縁材料に代表される様に安全性の面から高い難燃性が求められハロゲン系難燃剤やアンチモン化合物またはリン系難燃剤等を併用して難燃化してきた。
【0005】
しかしながら、近年、環境汚染や毒性の面から使用物質規制の動きが高まってきており、なかでもダイオキシン等の有機ハロゲン物質の毒性、発がん性が問題となっており、ハロゲン含有物質の低減、削減が強く求められている。
【0006】
また、アンチモンの発がん性の問題から、アンチモン化合物についても低減、削減の要求がたかまっている。
【0007】
【発明が解決しようとする課題】
本発明は、ハロゲンおよびアンチモン化合物の含有量が0.1重量%以下にて難燃性UL94V−0を達成する材料を提供するものである。
【0008】
しかしながら、難燃剤として、リン酸エステル等の添加型のリン化合物を添加するとガラス転移点(以下、Tgと称す)の大幅な低下や耐熱性が低下する問題があり、本発明は、このような問題を解決するためになされたものである。
【0009】
すなわち、本発明は、ノンハロゲンかつノンアンチモンであって、耐熱性に優れる配線板用に有用な熱硬化性樹脂並びにこれを用いたプリプレグ及び金属張り積層板に関する。
【0010】
【課題を解決するための手段】
本発明は、次のものに関する。
1.(A)エポキシ樹脂、(B)ジヒドロベンゾオキサジン環を有する化合物を主成分とする熱硬化性樹脂及び(C)フェノール類とトリアジン環を有する化合物とアルデヒド類の重縮合物を、(A)、(B)及び(C)の総量100重量部に対して、(A)エポキシ樹脂5〜80重量部、(B)ジヒドロベンゾオキサジン環を有する熱硬化樹脂5〜80重量部、(C)フェノール類とトリアジン環を有する化合物とアルデヒド類の重縮合物5〜80重量部と、さらに(D)一般式(1)又は一般式(2)で表される反応型リン化合物を5〜50重量部含有し、使用する材料の総量に対して、ハロゲン原子およびアンチモン化合物の含有量が0.1重量%以下であることを特徴とする熱硬化性樹脂組成物。
【化1】

Figure 0004972247
【化2】
Figure 0004972247
(ただし、式中、R1〜R8は、水素、または、炭素数1〜10の一価脂肪族もしくは芳香族置換基でありR1〜R8は同一でも異なってもよい)
2.(A)エポキシ樹脂10〜50重量部、(B)ジヒドロベンゾオキサジン環を有する熱硬化樹脂10〜70重量部、(C)フェノール類とトリアジン環を有する化合物とアルデヒド類の重縮合物10〜50重量部を含有する項1に記載の熱硬化性樹脂組成物。
3.項1又は2に記載の熱硬化性樹脂組成物を基材に含浸乾燥してなるプリプレグ。
4.基材が織布または不織布である項3に記載のプリプレグ。
5.項3又は4記載のプリプレグ又はこれを積み重ねた積層体の片面または両面に金属箔を積層し、加熱加圧成形して得られる金属張り積層板。
【0011】
【発明の実施の形態】
本発明の熱硬化性樹脂組成物は、(A)エポキシ樹脂5〜80重量部、(B)ジヒドロベンゾオキサジン環を有する熱硬化樹脂5〜80重量部であり、(C)フェノール類とトリアジン環を有する化合物とアルデヒド類の重縮合物が5〜80重量部であって、これらの総量が100重量部になるように含有することが好ましい。
【0012】
(A)エポキシ樹脂が5〜80重量部であることが好ましい理由は、5重量部未満ではエポキシ樹脂の特長である高い接着性の発現が不十分になる傾向があり、80重量部を超えると相対的に他の成分が減少し、硬化不十分となる傾向があり、耐熱性やTgが低下する傾向がある。接着性や耐熱性やTgの点からエポキシ樹脂は、5〜80重量部が好ましく、さらに、難燃性等のバランスから10〜50重量部が特に好ましい。
【0013】
(B)ジヒドロベンゾオキサジン環を有する熱硬化樹脂が5〜80重量部であることが好ましい理由は、5重量部未満ではジヒドロベンゾオキサジン環を有する熱硬化樹脂の特長である高い難燃性や高い耐熱性の発現が低下する傾向があり、80重量部を超えると前記と同様に硬化不十分になる傾向があり、耐熱性が低下する傾向がある。そのため、(B)ジヒドロベンゾオキサジン環を有する熱硬化樹脂は、難燃性や耐熱性の点から5〜80重量部が好ましく、さらに、接着性等のバランスから10〜70重量部が特に好ましい。
【0014】
(C)フェノール類とトリアジン環を有する化合物とアルデヒド類の重縮合物が5〜80重量部であることが好ましい理由は、5重量部未満ではフェノール類とトリアジン環を有する化合物とアルデヒド類の重縮合物の特長である高い難燃性の発現が低下する傾向があり、80重量部を超えると前記したのと同様に硬化不十分となる傾向があり、耐熱性が低下する傾向がある、そのため、(C)フェノール類とトリアジン環を有する化合物とアルデヒド類の重縮合物は、難燃性や耐熱性の点から5〜80重量部が好ましく、さらに、接着性、Tg等のバランスから10〜50重量部が特に好ましい。
【0015】
(D)反応型リン化合物は前記の(A)、(B)及ぴ(C)の総量100重量部に対して1〜50重量部使用されるが、その理由は、1重量部未満では難燃性向上効果が低く、50重量部を超えるとTgおよび耐熱性が低下するためであり、、接着性および難燃性等の理由から5〜30重量部が特に好ましい。
【0016】
本発明に使用するエポキシ樹脂としてはビスフェノールA型エポキシ、ビスフェノールF型エポキシ、フェノールノボラック型エポキシ、ビスフェノールAノボラック型エポキシ、クレゾールノボラック型エポキシ、環状脂肪族エポキシ、複素環式エポキシ、ジグリシジルエステル系エポキシ等があげられ特に制限がなく、単独または数種類加えるなど使用目的にあわせて選択可能である。
【0017】
ジヒドロベンゾオキサジン環を有する熱硬化性樹脂としては、ジヒドロベンゾオキサジン環を有し、ジヒドロベンゾオキサジン環の開環反応により硬化する樹脂であれば特に限定されるものではなく、フェノール性水酸基を有する化合物、ホルマリン、1級アミンから下記の反応式に従って合成される。
【0018】
【化5】
Figure 0004972247
(式中のR1はアルキル基、シクロヘキシル基、フェニル基またはアルキル基もしくはアルコキシル基で置換されたフェニル基である。)
【0019】
フェノール性水酸基を有する化合物として、多官能フェノール、 ビフェノール化合物、ビスフェノール化合物、トリスフェノール化合物、テトラフェノール化合物、フェノール樹脂があげられる。多官能フェノールとしてはカテコール、ヒドロキノン、レゾルシノールがあげられる。ビスフェノール化合物としては、ビスフェノールA、ビスフェノールFおよびその位置異性体、ビスフェノールS、テトラフルオロビスフェノールAがあげられる。またフェノール樹脂としてはレゾール樹脂、フェノールノボラック樹脂、フェノール変性キシレン樹脂、アルキルフェノール樹脂、メラミンフェノール樹脂、ベンゾグアナミンフェノール樹脂、フェノール変性ポリブタジエン等があげられる。
【0020】
1級アミンとしては、具体的にメチルアミン、シクロヘキシルアミン、アニリン、置換アニリン等があげられる。
【0021】
本発明において、ジヒドロベンゾオキサジン環を有する熱硬化性樹脂は、フェノール性水酸基を有する化合物と1級アミンとの混合物を70℃以上に加熱したアルデヒド中に添加して、70〜110℃、好ましくは90〜100℃で20〜120分反応させ、その後120℃以下の温度で減圧乾燥することにより、合成することができる。
【0022】
本発明のフェノール類とトリアジン環を有する化合物とアルデヒド類との重縮合物を得るために使用するためのフェノール類としては、フェノ−ルまたはビスフェノ−ルA、ビスフェノ−ルF、ビスフェノ−ルSなどの多価フェノール類や、クレゾール、キシレノール、エチルフェノール、ブチルフェノール、などのアルキルフェノール類、アミノフェノール、フェニルフェノールなどがあげられ1種類または2種以上の併用も可能である。このましくはフェノールとビスフェノ−ルAの組合せまたは、フェノールとアルキルフェノ−ルを組合せて使用した場合にはフェノール単独を使用した場合より反応性が抑制され成形性にすぐれ、ビスフェノ−ルAやアルキルフェノ−ルを単独で使用した場合より難燃性に優れ好ましい。
【0023】
また、トリアジン環を有する化合物としてはメラミンまたはベンゾグアナミン、アセトグアナミンなどのグアナミン誘導体、シアヌル酸またはメチルシアヌレート、エチルシアヌレートなどのシアヌル酸誘導体や、イソシアヌル酸またはメチルイソシアヌレート、エチルシアヌレートなどのイソシアヌル酸誘導体などがあげられる。好ましくは耐熱性や難燃性が良好になり低価格なメラミンが適しておりトリアジン環を有する化合物種類、使用量を目的に合わせて選定しN含有量を調整し難燃性、反応性、耐熱性の最適化が可能である。
【0024】
アルデヒド類としては、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、テトラオキシメチレン等が挙げられこれらに限定されるものではないが、取扱いの容易さから、ホルムアルデヒドが好ましく、特にホルマリン、パラホルムアルデヒドが好ましい。
【0025】
本発明におけるフェノール類とトリアジン環を有する化合物とアルデヒド類との重縮合物は、前記のフェノール類、トリアジン環を有する化合物、アルデヒド類の主材料を所望のN(窒素)含有量、水酸基当量になる配合にて、触媒下にて反応させることに得ることができる。本発明のフェノール類とトリアジン環を有する化合物とアルデヒド類との重縮合物としては、メチルエチルケトンに固形分80重量%以下にて溶解するものが好ましい。
【0026】
次に、フェノール類とトリアジン環を有する化合物とアルデヒド類の重縮合物でを得るための代表的な方法について説明する。まず、前記したフェノール類とアルデヒド類とトリアジン環を有する化合物とを塩基性あるいは酸性触媒化で反応させる。この時系のpHは特に限定されるものではないがトリアジン環を含む化合物の多くが塩基性溶液に容易に溶解することから、塩基性触媒化で反応させることが好ましく、さらにはアミン類の使用が好ましい。また、各原料の反応順序も特に制限はなく、フェノール類、アルデヒド類をまず反応させてからトリアジン環を有する化合物を加えても、逆にトリァジン環を有する化合物とアルデヒド類を反応させてからフェノール類を加えても、同時にすべての原料を加えて反応させてもよい。このとき、フェノール類に対するアルデヒド類のモル比は特に限定されるものではないがO.2〜1.5で、好ましくはO.4〜0.8である。またフェノール類に対するトリアジン環を有する化合物との重量比は10〜98:90〜2で好ましくは50〜95:50〜5である。フェノール類の重量比が10%以下では樹脂化することが困難となり、98%以上では充分な難燃効果が得ることができなくなる。また触媒として特に限定されるものではないが、代表的なものとして水酸化ナトリウム、水酸化カリウム、水酸化バリウム等のアルカリ金属およびアルカリ土類金属の水酸化物、およびこれらの酸化物、アンモニア、1〜3級アミン類、ヘキサメチレンテトラミン、炭酸ナトリウム等、そして塩酸、硫酸、スルホン酸等の無機酸、シュウ酸、酢酸等の有機酸、ルイス酸、あるいは酢酸亜鉛などの2価金属塩等がある。金属などの無機物が触媒残として残ることは好ましくないことから、塩基性の触媒としてはアミン類、酸性の触媒としては有機酸を使用することが好ましい。また反応制御の面から反応を各種溶剤の存在化で行ってもよい。次に必要に応じて中和、水洗して塩類などの不純物を除去する。ただし触媒にアミン類を使用した場合は行わな・いことが好ましい。反応は、70〜90℃にて2〜4時間実施し、反応終了後、未反応のアルデヒド類、フェノール類、溶剤等を常圧蒸留、真空蒸留等の常法にしたがって除去する。この時、未反応のアルデヒド類とメチロール類を除去することが好ましく、未反応のアルデヒド類とメチロール基を実質的に含まない樹脂組成物を得るためには120℃以上の加熱処理を追加で実施する必要がある。このときノボラック樹脂を得るときの常法にしたがい充分に加熱、蒸留することが好ましい。特に限定されるわけではないが、このとき前記したように未反応一官能性のフェノール単量体を2重量%以下にすることが好ましい。このようにして得られたものは、フェノール類とトリアジン環を有する化合物とアルデヒドの混合物または縮合物からなるフェノール樹脂組成物である。特に限定されるものではないが該混合物または縮合物中に未反応フェノール類とトリアジン環を有する化合物とアルデヒド類との重縮合物アルデヒドを含まず、メチロール基についても実質上含まないことが好ましい。
【0027】
このときの触媒としては、トリアジン環を有する化合物の溶解性が良好なことから塩基性触媒が好ましく、なかでも金属等が触媒残として残ると電気絶縁材料として好ましくないため、アミン類が好ましい。反応の順番は制限されず、主材料すべてを同時でも、2種の主材料を先に選択的に反応させることもでき、アセトン、メチルエチルケトン等の各種溶媒下の存在下で反応させることにより安定制御が可能で好ましい。反応物は、中和、水洗、加熱処理、蒸留等を常法に従って行い未反応のフェノール類、アルデヒド類、メチロール基、溶媒を除去して本発明で使用する変性フェノール樹脂を得る。
【0028】
さらに、本発明の変性フェノール樹脂を数種組み合わせたり、他のフェノール類のノボラック樹脂と併用して硬化剤として使用することにより単独では得られない成形性や難燃性、耐熱性を得ることが可能であり目的に応じ併用することも好ましい。
【0029】
反応型リン化合物としては、一般式(1)に示す有機リン化合物の例としては、9,10−ジヒドロ−9−オキサ−10−ホスファフェナンスレン−10−オキサイド、6,8−ジクロル−9,10−ジヒドロ−9−オキサ−10−ホスファフェナンスレン−10−オキサイド、6,8−ジターシャリーブチル−9,10−ジヒドロ−9−オキサ−10−ホスファフェナンスレン−10−オキサイドなどがあり、また、一般式(2)に示す有機リン化合物の例としては、10−2,5−ジヒドロキシフェニル−10H−9−オキサ−10−ホスファフェナントレン=10−オキシドなどがあり、変性エポキシ樹脂の固形分の100重量部に対して1〜50重量部添加することが好ましい。
その理由は、1重量部未満では難燃性向上効果が少なく、50重量部を超えるとTgの低下および耐熱性の低下が著しくなるためである。
【0030】
これらの成分のほかに、必要に応じて、着色剤、酸化防止剤、還元剤、紫外線不透過剤などが配合される。
【0031】
プリプレグを作製する際に使用する織布および不織布の基材としては、紙、コットンリンターのような天然繊維基材、アラミド繊維、ポリビニルアルコール繊維、ポリエステル繊維、アクリル繊維のような有機合成繊維基材、ガラス、アスベストのような無機繊維基材が使用される。耐燃性の見地から、ガラス繊維基材が好ましい。ガラス繊維基材としては、Eガラス、Cガラス、Dガラス、Sガラスなどを使用した織布や短繊維を有機バインダーで接着したガラス不織布、さらに、ガラス繊維とセルロース繊維とを混沙したものがある。
【0032】
これらを配合したワニスは従来と同様に、織布や不織布などの基材に含浸させてプリプレグを製造し、プリプレグを重ねあわせその両面に銅箔を構成後、加圧、加熱プレスすることにより、銅張り積層板を製造することが出来る。
【0033】
【作用】
本発明は、芳香族成分が多く熱分解がしにくく、難燃性に優れたジヒドロベンゾオキサジン環を有する化合物を使用し、さらに、硬化剤として難燃性を高めるNを含有するトリアジン環を有したフェノール樹脂組成物を使用するため、安定した状態で分子構造中にNを多量に取り込み、さらに難燃性を高める作用を有するリン源として反応型リン化合物添加物を使用し樹脂の構造内にリンを取り込むことにより、添加型のリン酸エステル等を使用した際におこるTgの低下、耐熱性の低下を起こすことなく、難燃性、および他特性バランスのすぐれたエポキシ樹脂組成物を得ることが可能である。
【0034】
【実施例】
以下に本発明を実施例により詳しく説明するが、本発明はこの実施例のみに限定されるものではない。以下、部は「重量部」を%は「重量%」を示すものとする。
【0035】
実施例1〜3、参考例1〜2、比較例1〜2
〔1〕ジヒドロベンゾオキサジン環を有する樹脂の合成
(1)フェノールノボラックの合成
フェノール1.9kg、ホルマリン(37%水溶液)1.15kg、しゅう酸4gを5リットルフラスコに仕込み、還流温度で6時間反応させた。引き続き、内部を6666.1Pa以下に減圧して未反応のフェノールおよび水を除去した。得られた樹脂は軟化点89℃(環球法)、3核体以上/2核体比=89/11(ゲルパーミエーションクロマトグラフィーによるピーク面積比)であった。 以下得られた樹脂を(A1)と略記する。
(2)ジヒドロベンゾオキサジン環の導入
上記により合成したフェノールノボラック樹脂1.7kg(ヒドロキシル基16molに相当)をアニリン1.49kg(16molに相当)と80℃で5時間撹袢し、均一な混合溶液を調整した。5リットルフラスコ中に、ホルマリン1.62kgを仕込み90℃に加熱し、ここへノボラック/アニリン混合溶液を30分間かけて少しずつ添加した。添加終了後30分間、還流温度に保ち、然る後に100℃で2時間6666.1Pa以下に減圧して縮合水を除去し、反応しうるヒドロキシル基の95%がジヒドロベンゾオキサジン化された熱硬化性樹脂を得た。以下得られた樹脂を(B1)と略記する。
〔2〕変性フェノール樹脂組成物の合成例
フェノール94部に41.5%ホルマリン29部、およびトリエチルアミン0.47部を加え、 80℃にて3時間反応させた。メラミンを19部加えさらに1時間反応させた後、常圧下にて水を除去しながら120℃まで昇温し、温度を保持したまま2時間反応させた。次に常圧下にて水を除去しながら180℃まで昇温し、減圧下にて未反応のフェノールを除去し、軟化点136℃のフェノールとメラミンの反応物であるフェノール樹脂組成物を得た。
【0036】
以下得られた樹脂を(C1)と略記する。この樹脂において、フェノール/メラミン(重量比率)は76/24、未反応ホルムアルデヒド量は0%、メチロール基は存在せず、未反応フェノールモノマー量は0.3重量%であった。
【0037】
〔3〕その他の配合物
エポキシ樹脂
フェノールノボラック型エポキシ樹脂
エポキシ当量170〜180g/eq、常温で液状
反応型リン化合物
▲1▼9,10−ジヒドロ−9−オキサ−10−ホスファフェナンスレン−10−オキサイド:三光化学製 商品名 HCA
▲2▼10−2,5−ジヒドロキシフェニル−10H−9−オキサ−10−ホスファフェナンスレン=10−オキシド
:三光化学製 商品名 HCA−HQ
添加型リン化合物
トリフェニルホォスフェート(以下、TPPと称す)
〔4〕積層板の作製
表2に示した固形分配合の樹脂組成物をメチルエチルケトンに溶解させ、溶液の不揮発分を65〜75%になるようにメチルエチルケトンで調整した。しかる後、各々の混合溶液をガラスクロス(0.2mm)に含浸させ、160℃で4分間乾燥してプリプレグを得た。このプリプレグを8枚重ね、その両面に18μmの銅箔を重ね、 185℃、圧4MPaにて100分間加熱加圧成形して厚さ1.6mmの両面銅張り積層板を得た。
【0038】
以上作製した両面銅箔張積層板について、耐燃性、耐湿耐熱性、Tgを調べた。その結果を表1に示す。
【0039】
なお、試験方法は以下の通りとした。
耐燃焼性:UL94に準拠する。
はんだ耐熱性:121℃、2130hPaのプレッシャークッカー処理装置内に6時間保持後の試験片(50mm×50mmの片面半銅付き)を、 260℃に加熱されたはんだ槽に30秒間沈め、ふくれ及びミーズリングの発生の有無を肉眼にて観察した。試験片ののサンプル数は3である。表中の各記号は、○:変化なし、△:ミーズリングまたは目浮き発生、×:ふくれ発生を意味する。
ガラス転移温度(Tg): JIS−C−6481に規定されるTMA法に従って測定した。なお、昇温速度 10℃/分で試料がガラス転移温度以上になるまで加熱し、一旦室温まで冷却してから再度昇温速度10℃/分で昇温したときの寸法変化量を測定し、“温度−寸法”カーブからガラス転移温度を求めた。
【0040】
得られた積層板の特性を表1に示す。
【表1】
Figure 0004972247
【0041】
表1の結果から、本発明により、Tg、耐熱性が著しく低下することなく、ハロゲンおよびアンチモン化合物の含有量が0.1重量%以下にて難燃性UL94V−0を達成可能であることが確認できた。
【0042】
【発明の効果】
本発明により、 Tg、耐熱性が著しく低下することなく、ハロゲンおよびアンチモン化合物の含有量が0.1重量%以下にて難燃性UL94V−0を達成する材料を提供可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermosetting resin composition useful as an insulating material for electric wiring boards, and a prepreg and a metal-clad laminate using the same.
[0002]
[Prior art]
In recent years, the types of electronic devices have been steadily expanding, and not only computer-related but also automatic control devices, communication devices, office devices, and the like are desired to be reduced in size and weight. The multilayer printed wiring boards used in these devices are mainly composed of 4 to 10 layers. In order to cope with high-density mounting, a fine pattern is naturally achieved and a reduction in thickness is achieved.
[0003]
Items required for this printed wiring board include moisture absorption heat resistance and reliability. Therefore, the resin used for the printed wiring board also needs high Tg, high heat resistance, and low water absorption. In order to meet this requirement, improvements in epoxy resins, polyimide resins, isocyanate resins and the like are used.
[0004]
In addition, these electrical insulating materials are required to have high flame resistance from the viewpoint of safety, as typified by insulating materials for glass-based epoxy resin electrical wiring boards. Halogen flame retardants, antimony compounds, or phosphorus flame retardants It has become flame retardant by using together.
[0005]
However, in recent years, there has been an increase in the regulation of substances used due to environmental pollution and toxicity. In particular, the toxicity and carcinogenicity of organic halogen substances such as dioxin have become problems, and the reduction and reduction of halogen-containing substances has become a problem. There is a strong demand.
[0006]
In addition, antimony compounds are also demanded for reduction and reduction due to the carcinogenicity of antimony.
[0007]
[Problems to be solved by the invention]
The present invention provides a material that achieves flame retardancy UL94V-0 at a halogen and antimony compound content of 0.1% by weight or less.
[0008]
However, when an additive type phosphorus compound such as a phosphate ester is added as a flame retardant, there is a problem that the glass transition point (hereinafter referred to as Tg) is greatly lowered and the heat resistance is lowered. It was made to solve the problem.
[0009]
That is, the present invention relates to a thermosetting resin useful for a wiring board which is non-halogen and non-antimony and excellent in heat resistance, and a prepreg and a metal-clad laminate using the same.
[0010]
[Means for Solving the Problems]
The present invention relates to the following.
1. (A) an epoxy resin, (B) a thermosetting resin mainly composed of a compound having a dihydrobenzoxazine ring, and (C) a polycondensate of a phenol and a compound having a triazine ring and an aldehyde, (A), (A) 5 to 80 parts by weight of an epoxy resin, (B) 5 to 80 parts by weight of a thermosetting resin having a dihydrobenzoxazine ring, and (C) phenols based on 100 parts by weight of the total amount of (B) and (C). And 5-80 parts by weight of a polycondensate of a compound having a triazine ring and an aldehyde , and (D) 5-50 parts by weight of a reactive phosphorus compound represented by the general formula (1) or (2) A thermosetting resin composition, wherein the content of halogen atoms and antimony compound is 0.1% by weight or less based on the total amount of materials used.
[Chemical 1]
Figure 0004972247
[Chemical formula 2]
Figure 0004972247
(In the formula, R 1 to R 8 are hydrogen or a monovalent aliphatic or aromatic substituent having 1 to 10 carbon atoms, and R 1 to R 8 may be the same or different.)
2. (A) 10-50 parts by weight of an epoxy resin, (B) 10-70 parts by weight of a thermosetting resin having a dihydrobenzoxazine ring, (C) a polycondensate 10-50 of a compound having a phenol and a triazine ring and an aldehyde. Item 2. The thermosetting resin composition according to item 1, containing parts by weight.
3. A prepreg obtained by impregnating and drying a thermosetting resin composition according to Item 1 or 2 on a substrate.
4). Item 4. The prepreg according to Item 3, wherein the substrate is a woven fabric or a nonwoven fabric.
5. Item 5. A metal-clad laminate obtained by laminating a metal foil on one or both sides of a prepreg according to Item 3 or 4 or a laminate obtained by stacking the prepregs, and heating and pressing the laminate.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The thermosetting resin composition of the present invention comprises (A) 5 to 80 parts by weight of an epoxy resin, (B) 5 to 80 parts by weight of a thermosetting resin having a dihydrobenzoxazine ring, and (C) a phenol and a triazine ring. 5 to 80 parts by weight of the polycondensate of the compound having aldehydes and aldehydes, and the total amount thereof is preferably 100 parts by weight.
[0012]
(A) The reason why the epoxy resin is preferably 5 to 80 parts by weight is that if it is less than 5 parts by weight, there is a tendency that the high adhesiveness characteristic of the epoxy resin tends to be insufficient, and if it exceeds 80 parts by weight. There is a tendency that other components are relatively reduced and curing is insufficient, and heat resistance and Tg tend to decrease. From the viewpoint of adhesiveness, heat resistance and Tg, the epoxy resin is preferably 5 to 80 parts by weight, and more preferably 10 to 50 parts by weight from the balance of flame retardancy.
[0013]
(B) The reason why the thermosetting resin having a dihydrobenzoxazine ring is preferably 5 to 80 parts by weight is that when it is less than 5 parts by weight, high flame retardancy and high characteristics which are the characteristics of a thermosetting resin having a dihydrobenzoxazine ring There is a tendency for the expression of heat resistance to decrease, and when it exceeds 80 parts by weight, there is a tendency for curing to be insufficient as described above, and there is a tendency for heat resistance to decrease. Therefore, the thermosetting resin (B) having a dihydrobenzoxazine ring is preferably 5 to 80 parts by weight from the viewpoint of flame retardancy and heat resistance, and more preferably 10 to 70 parts by weight from the balance of adhesiveness and the like.
[0014]
(C) The reason why the polycondensation product of a compound having a phenol and a triazine ring and an aldehyde is preferably 5 to 80 parts by weight is that the weight of the compound having a phenol and a triazine ring is less than 5 parts by weight. High flame retardancy, which is a feature of the condensate, tends to decrease, and when it exceeds 80 parts by weight, it tends to be insufficiently cured as described above, and heat resistance tends to decrease. (C) The polycondensate of phenols and compounds having a triazine ring and aldehydes is preferably 5 to 80 parts by weight from the viewpoint of flame retardancy and heat resistance, and more preferably 10 to 10 from the balance of adhesiveness, Tg and the like. 50 parts by weight is particularly preferred.
[0015]
(D) The reactive phosphorus compound is used in an amount of 1 to 50 parts by weight based on 100 parts by weight of the total amount of the above (A), (B) and (C). This is because the effect of improving flame retardancy is low, and when it exceeds 50 parts by weight, Tg and heat resistance are lowered, and 5 to 30 parts by weight is particularly preferred for reasons such as adhesion and flame retardancy.
[0016]
Epoxy resins used in the present invention include bisphenol A type epoxy, bisphenol F type epoxy, phenol novolac type epoxy, bisphenol A novolak type epoxy, cresol novolak type epoxy, cycloaliphatic epoxy, heterocyclic epoxy, diglycidyl ester epoxy There are no particular restrictions, and it can be selected according to the purpose of use, such as adding alone or several kinds.
[0017]
The thermosetting resin having a dihydrobenzoxazine ring is not particularly limited as long as the resin has a dihydrobenzoxazine ring and is cured by a ring-opening reaction of the dihydrobenzoxazine ring. A compound having a phenolic hydroxyl group It is synthesized from formalin and primary amine according to the following reaction formula.
[0018]
[Chemical formula 5]
Figure 0004972247
(R 1 in the formula is an alkyl group, a cyclohexyl group, a phenyl group, or a phenyl group substituted with an alkyl group or an alkoxyl group.)
[0019]
Examples of the compound having a phenolic hydroxyl group include polyfunctional phenols, biphenol compounds, bisphenol compounds, trisphenol compounds, tetraphenol compounds, and phenol resins. Examples of the polyfunctional phenol include catechol, hydroquinone, and resorcinol. Examples of the bisphenol compound include bisphenol A, bisphenol F and its positional isomer, bisphenol S, and tetrafluorobisphenol A. Examples of the phenol resin include resole resin, phenol novolac resin, phenol-modified xylene resin, alkylphenol resin, melamine phenol resin, benzoguanamine phenol resin, and phenol-modified polybutadiene.
[0020]
Specific examples of the primary amine include methylamine, cyclohexylamine, aniline, and substituted aniline.
[0021]
In the present invention, the thermosetting resin having a dihydrobenzoxazine ring is added to a aldehyde heated to 70 ° C. or higher by mixing a mixture of a compound having a phenolic hydroxyl group and a primary amine, and is 70 to 110 ° C., preferably It can synthesize | combine by making it react at 90-100 degreeC for 20 to 120 minutes, and drying under reduced pressure at the temperature below 120 degreeC after that.
[0022]
Phenols for use in obtaining a polycondensate of the phenols of the present invention with a compound having a triazine ring and aldehydes include phenol or bisphenol A, bisphenol F, bisphenol S. And polyphenols such as cresol, alkylphenols such as cresol, xylenol, ethylphenol, and butylphenol, aminophenol, phenylphenol, and the like. More preferably, when a combination of phenol and bisphenol A or a combination of phenol and alkylphenol is used, the reactivity is suppressed and the moldability is better than when phenol alone is used, and bisphenol A or It is superior in flame retardancy and preferable when an alkylphenol is used alone.
[0023]
The compounds having a triazine ring include guanamine derivatives such as melamine, benzoguanamine, and acetoguanamine, cyanuric acid or cyanuric acid derivatives such as methyl cyanurate and ethyl cyanurate, and isocyanuric acids such as isocyanuric acid or methyl isocyanurate and ethyl cyanurate. And acid derivatives. Preferably, heat resistance and flame retardancy are good, and low-priced melamine is suitable, and the type and amount of compound having a triazine ring are selected according to the purpose, and the N content is adjusted to provide flame retardancy, reactivity, and heat resistance. Can be optimized.
[0024]
Examples of aldehydes include formaldehyde, paraformaldehyde, trioxane, tetraoxymethylene, and the like, but are not limited thereto. Formaldehyde is preferable from the viewpoint of ease of handling, and formalin and paraformaldehyde are particularly preferable.
[0025]
In the present invention, the polycondensation product of a phenol and a compound having a triazine ring and an aldehyde has a desired N (nitrogen) content and a hydroxyl group equivalent to the main materials of the phenol, the compound having a triazine ring and the aldehyde. It can obtain by making it react under a catalyst by the compounding which becomes. As the polycondensate of the phenols, compounds having a triazine ring and aldehydes of the present invention, those which are soluble in methyl ethyl ketone at a solid content of 80% by weight or less are preferable.
[0026]
Next, a typical method for obtaining a polycondensate of a phenol and a compound having a triazine ring and an aldehyde will be described. First, the above-described phenols, aldehydes, and a compound having a triazine ring are reacted by basic or acidic catalysis. At this time, the pH of the system is not particularly limited, but most of the compounds containing a triazine ring are easily dissolved in a basic solution. Is preferred. The reaction order of each raw material is also not particularly limited. Even if a compound having a triazine ring is added after first reacting phenols and aldehydes, the compound having a triazine ring is reacted with aldehydes. In addition, all the raw materials may be added and reacted at the same time. At this time, the molar ratio of aldehydes to phenols is not particularly limited. 2 to 1.5, preferably O.D. 4 to 0.8. Moreover, the weight ratio with the compound which has a triazine ring with respect to phenols is 10-98: 90-2, Preferably it is 50-95: 50-5. When the weight ratio of phenols is 10% or less, it becomes difficult to form a resin, and when it is 98% or more, a sufficient flame retarding effect cannot be obtained. The catalyst is not particularly limited, but representative examples include hydroxides of alkali metals and alkaline earth metals such as sodium hydroxide, potassium hydroxide and barium hydroxide, and oxides thereof, ammonia, Primary to tertiary amines, hexamethylenetetramine, sodium carbonate, etc., inorganic acids such as hydrochloric acid, sulfuric acid, sulfonic acid, organic acids such as oxalic acid, acetic acid, divalent metal salts such as Lewis acid, or zinc acetate is there. Since it is not preferable that inorganic substances such as metals remain as catalyst residues, it is preferable to use amines as basic catalysts and organic acids as acidic catalysts. Moreover, you may perform reaction by presence of various solvents from the surface of reaction control. Next, neutralization and washing with water as necessary remove impurities such as salts. However, it is preferable not to use amines as catalysts. The reaction is carried out at 70 to 90 ° C. for 2 to 4 hours. After the reaction is completed, unreacted aldehydes, phenols, solvents and the like are removed according to a conventional method such as atmospheric distillation or vacuum distillation. At this time, it is preferable to remove unreacted aldehydes and methylols, and in order to obtain a resin composition substantially free of unreacted aldehydes and methylol groups, additional heat treatment at 120 ° C. or more is performed. There is a need to. At this time, it is preferable to sufficiently heat and distill in accordance with a conventional method for obtaining a novolac resin. Although not particularly limited, it is preferable to make the unreacted monofunctional phenol monomer 2% by weight or less as described above. The product thus obtained is a phenol resin composition comprising a mixture or condensate of a phenol and a compound having a triazine ring and an aldehyde. Although not particularly limited, it is preferable that the mixture or condensate does not contain a polycondensate aldehyde of an unreacted phenol, a compound having a triazine ring and an aldehyde, and substantially does not contain a methylol group.
[0027]
As the catalyst at this time, a basic catalyst is preferable since the compound having a triazine ring has good solubility. Among them, amines are preferable because metals and the like remain as catalyst residues, which are not preferable as an electrically insulating material. The order of the reactions is not limited, and all main materials can be reacted simultaneously, or two main materials can be selectively reacted first, and stable control is achieved by reacting in the presence of various solvents such as acetone and methyl ethyl ketone. Is possible and preferred. The reaction product is subjected to neutralization, washing with water, heat treatment, distillation and the like in accordance with conventional methods to remove unreacted phenols, aldehydes, methylol groups, and solvent to obtain a modified phenol resin used in the present invention.
[0028]
Furthermore, by combining several kinds of the modified phenolic resin of the present invention or using it as a curing agent in combination with other novolac resins of phenols, it is possible to obtain moldability, flame retardancy and heat resistance that cannot be obtained alone. It is possible to use them in combination according to the purpose.
[0029]
As the reactive phosphorus compound, examples of the organic phosphorus compound represented by the general formula (1) include 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 6,8-dichloro- 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 6,8-ditertiarybutyl-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10- In addition, examples of the organic phosphorus compound represented by the general formula (2) include 10-2,5-dihydroxyphenyl-10H-9-oxa-10-phosphaphenanthrene = 10-oxide, It is preferable to add 1 to 50 parts by weight with respect to 100 parts by weight of the solid content of the modified epoxy resin.
The reason is that if the amount is less than 1 part by weight, the effect of improving flame retardancy is small, and if it exceeds 50 parts by weight, the Tg and the heat resistance are significantly reduced.
[0030]
In addition to these components, a colorant, an antioxidant, a reducing agent, an ultraviolet opaque agent and the like are blended as necessary.
[0031]
As the base material of woven fabric and non-woven fabric used for preparing the prepreg, natural fiber base material such as paper and cotton linter, organic synthetic fiber base material such as aramid fiber, polyvinyl alcohol fiber, polyester fiber and acrylic fiber Inorganic fiber substrates such as glass and asbestos are used. From the viewpoint of flame resistance, a glass fiber substrate is preferred. Glass fiber base materials include woven fabrics using E glass, C glass, D glass, S glass, etc., glass nonwoven fabrics obtained by bonding short fibers with organic binders, and those in which glass fibers and cellulose fibers are mixed. is there.
[0032]
The varnish blended with these is impregnated into a base material such as a woven fabric or a non-woven fabric to produce a prepreg, and after laying the prepreg together and forming a copper foil on both sides, pressurizing and hot pressing, A copper-clad laminate can be produced.
[0033]
[Action]
The present invention uses a compound having a dihydrobenzoxazine ring that has a large amount of aromatic components and is difficult to thermally decompose, and has excellent flame retardancy, and further has a triazine ring containing N as a curing agent to enhance flame retardancy. In order to use a stable phenolic resin composition, a large amount of N is incorporated into the molecular structure in a stable state, and a reactive phosphorus compound additive is used as a phosphorus source having the effect of enhancing flame retardancy. By incorporating phosphorus, an epoxy resin composition with excellent flame retardancy and other characteristics balance can be obtained without causing a decrease in Tg and a decrease in heat resistance when an additive type phosphate ester or the like is used. Is possible.
[0034]
【Example】
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. Hereinafter, “parts” represents “parts by weight” and “%” represents “% by weight”.
[0035]
Examples 1-3, Reference Examples 1-2 , Comparative Examples 1-2
[1] Synthesis of a resin having a dihydrobenzoxazine ring (1) Synthesis of phenol novolac 1.9 kg of phenol, 1.15 kg of formalin (37% aqueous solution) and 4 g of oxalic acid were charged into a 5 liter flask and reacted at reflux temperature for 6 hours. I let you. Subsequently, the internal pressure was reduced to 6666.1 Pa or less to remove unreacted phenol and water. The obtained resin had a softening point of 89 ° C. (ring and ball method), trinuclear or higher / binuclear ratio = 89/11 (peak area ratio by gel permeation chromatography). Hereinafter, the obtained resin is abbreviated as (A1).
(2) Introduction of dihydrobenzoxazine ring 1.7 kg of phenol novolak resin synthesized above (corresponding to 16 mol of hydroxyl groups) was stirred with 1.49 kg of aniline (corresponding to 16 mol) at 80 ° C. for 5 hours to obtain a uniform mixed solution Adjusted. Into a 5 liter flask, 1.62 kg of formalin was charged and heated to 90 ° C., and the novolak / aniline mixed solution was added little by little over 30 minutes. After completion of the addition, the temperature is maintained at the reflux temperature for 30 minutes. After that, the condensed water is removed by reducing the pressure to 6666.1 Pa or less at 100 ° C. for 2 hours, and thermosetting in which 95% of the reactive hydroxyl groups are dihydrobenzoxazine converted. A functional resin was obtained. Hereinafter, the obtained resin is abbreviated as (B1).
[2] Synthesis Example of Modified Phenolic Resin Composition 29 parts of 41.5% formalin and 0.47 part of triethylamine were added to 94 parts of phenol and reacted at 80 ° C. for 3 hours. After adding 19 parts of melamine and further reacting for 1 hour, the temperature was raised to 120 ° C. while removing water under normal pressure, and the reaction was continued for 2 hours while maintaining the temperature. Next, the temperature was raised to 180 ° C. while removing water under normal pressure, unreacted phenol was removed under reduced pressure, and a phenol resin composition that was a reaction product of phenol and melamine having a softening point of 136 ° C. was obtained. .
[0036]
Hereinafter, the obtained resin is abbreviated as (C1). In this resin, phenol / melamine (weight ratio) was 76/24, the amount of unreacted formaldehyde was 0%, no methylol group was present, and the amount of unreacted phenol monomer was 0.3% by weight.
[0037]
[3] Other compounds Epoxy resin Phenol novolac type epoxy resin Epoxy equivalent 170-180 g / eq, liquid reaction type phosphorus compound at room temperature (1) 9,10-dihydro-9-oxa-10-phosphaphenanthrene- 10-oxide: Sanko Chemical Co., Ltd. Trade name HCA
(2) 10-2,5-dihydroxyphenyl-10H-9-oxa-10-phosphaphenanthrene = 10-oxide: product of Sanko Chemical Co., Ltd. HCA-HQ
Additive phosphorus compound triphenyl phosphate (hereinafter referred to as TPP)
[4] Production of Laminate A resin composition having a solid content shown in Table 2 was dissolved in methyl ethyl ketone, and the solution was adjusted with methyl ethyl ketone so that the nonvolatile content of the solution was 65 to 75%. Thereafter, each mixed solution was impregnated into a glass cloth (0.2 mm) and dried at 160 ° C. for 4 minutes to obtain a prepreg. Eight prepregs were stacked, 18 μm copper foils were stacked on both sides thereof, and heated and pressed at 185 ° C. and a pressure of 4 MPa for 100 minutes to obtain a double-sided copper-clad laminate having a thickness of 1.6 mm.
[0038]
The double-sided copper foil-clad laminate produced above was examined for flame resistance, moisture and heat resistance, and Tg. The results are shown in Table 1.
[0039]
The test method was as follows.
Combustion resistance: Conforms to UL94.
Solder heat resistance: 121 ° C, 2130hPa pressure cooker processing test specimen (with 50mm x 50mm single-sided copper) for 6 hours, submerged in a solder bath heated to 260 ° C for 30 seconds, blistering and melting The presence or absence of the ring was observed with the naked eye. The number of samples of the test piece is 3. Each symbol in the table means ◯: no change, Δ: occurrence of measling or floating eyes, and x: occurrence of blistering.
Glass transition temperature (Tg): Measured according to the TMA method defined in JIS-C-6481. In addition, the sample was heated at a heating rate of 10 ° C./min until the glass transition temperature or higher, once cooled to room temperature, and then measured for dimensional change when the temperature was raised again at a heating rate of 10 ° C./min. The glass transition temperature was determined from the “temperature-dimension” curve.
[0040]
Table 1 shows the characteristics of the obtained laminate.
[Table 1]
Figure 0004972247
[0041]
From the results of Table 1, it can be seen that, according to the present invention, flame retardancy UL94V-0 can be achieved when the content of halogen and antimony compound is 0.1% by weight or less without significantly reducing Tg and heat resistance. It could be confirmed.
[0042]
【Effect of the invention】
According to the present invention, it is possible to provide a material that achieves flame retardancy UL94V-0 at a content of halogen and antimony compound of 0.1% by weight or less without significantly lowering Tg and heat resistance.

Claims (5)

(A)エポキシ樹脂、(B)ジヒドロベンゾオキサジン環を有する化合物を主成分とする熱硬化性樹脂及び(C)フェノール類とトリアジン環を有する化合物とアルデヒド類の重縮合物を、(A)、(B)及び(C)の総量100重量部に対して、(A)エポキシ樹脂5〜80重量部、(B)ジヒドロベンゾオキサジン環を有する熱硬化樹脂5〜80重量部、(C)フェノール類とトリアジン環を有する化合物とアルデヒド類の重縮合物5〜80重量部と、さらに(D)一般式(1)又は一般式(2)で表される反応型リン化合物を5〜50重量部含有し、使用する材料の総量に対して、ハロゲン原子およびアンチモン化合物の含有量が0.1重量%以下であることを特徴とする熱硬化性樹脂組成物。
Figure 0004972247
Figure 0004972247
(ただし、式中、R1〜R8は、水素、または、炭素数1〜10の一価脂肪族もしくは芳香族置換基でありR1〜R8は同一でも異なってもよい)
(A) an epoxy resin, (B) a thermosetting resin mainly composed of a compound having a dihydrobenzoxazine ring, and (C) a polycondensate of a phenol and a compound having a triazine ring and an aldehyde, (A), (A) 5 to 80 parts by weight of an epoxy resin, (B) 5 to 80 parts by weight of a thermosetting resin having a dihydrobenzoxazine ring, and (C) phenols based on 100 parts by weight of the total amount of (B) and (C). And 5-80 parts by weight of a polycondensate of a compound having a triazine ring and an aldehyde , and (D) 5-50 parts by weight of a reactive phosphorus compound represented by the general formula (1) or (2) A thermosetting resin composition, wherein the content of halogen atoms and antimony compound is 0.1% by weight or less based on the total amount of materials used.
Figure 0004972247
Figure 0004972247
(In the formula, R 1 to R 8 are hydrogen or a monovalent aliphatic or aromatic substituent having 1 to 10 carbon atoms, and R 1 to R 8 may be the same or different.)
(A)エポキシ樹脂10〜50重量部、(B)ジヒドロベンゾオキサジン環を有する熱硬化樹脂10〜70重量部、(C)フェノール類とトリアジン環を有する化合物とアルデヒド類の重縮合物10〜50重量部を含有する請求項1に記載の熱硬化性樹脂組成物。(A) 10-50 parts by weight of an epoxy resin, (B) 10-70 parts by weight of a thermosetting resin having a dihydrobenzoxazine ring, (C) a polycondensate 10-50 of a compound having a phenol and a triazine ring and an aldehyde. The thermosetting resin composition according to claim 1 containing parts by weight. 請求項1又は2に記載の熱硬化性樹脂組成物を基材に含浸乾燥してなるプリプレグ。 A prepreg obtained by impregnating and drying a thermosetting resin composition according to claim 1 or 2 on a substrate. 基材が織布または不織布である請求項3に記載のプリプレグ。 The prepreg according to claim 3, wherein the substrate is a woven fabric or a non-woven fabric. 請求項3又は4記載のプリプレグ又はこれを積み重ねた積層体の片面または両面に金属箔を積層し、加熱加圧成形して得られる金属張り積層板。 A metal-clad laminate obtained by laminating a metal foil on one or both sides of a prepreg according to claim 3 or 4 or a laminate obtained by stacking the prepregs and heating and pressing the laminate.
JP37338299A 1999-12-28 1999-12-28 Flame retardant thermosetting resin composition, prepreg using the same, and laminate for electric wiring board Expired - Fee Related JP4972247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37338299A JP4972247B2 (en) 1999-12-28 1999-12-28 Flame retardant thermosetting resin composition, prepreg using the same, and laminate for electric wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37338299A JP4972247B2 (en) 1999-12-28 1999-12-28 Flame retardant thermosetting resin composition, prepreg using the same, and laminate for electric wiring board

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009247661A Division JP2010024459A (en) 2009-10-28 2009-10-28 Flame retardant thermosetting resin composition, and prepreg and laminate plate for electric wiring board, using the same

Publications (2)

Publication Number Publication Date
JP2001181399A JP2001181399A (en) 2001-07-03
JP4972247B2 true JP4972247B2 (en) 2012-07-11

Family

ID=18502067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37338299A Expired - Fee Related JP4972247B2 (en) 1999-12-28 1999-12-28 Flame retardant thermosetting resin composition, prepreg using the same, and laminate for electric wiring board

Country Status (1)

Country Link
JP (1) JP4972247B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024459A (en) * 2009-10-28 2010-02-04 Hitachi Chem Co Ltd Flame retardant thermosetting resin composition, and prepreg and laminate plate for electric wiring board, using the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4596213B2 (en) * 2001-06-15 2010-12-08 ソニー株式会社 Image processing apparatus and method, recording medium, and program
JP4660979B2 (en) * 2001-06-15 2011-03-30 ソニー株式会社 Image processing apparatus and method, recording medium, and program
JP4596211B2 (en) * 2001-06-15 2010-12-08 ソニー株式会社 Image processing apparatus and method, recording medium, and program
JP4576794B2 (en) 2003-02-18 2010-11-10 日立化成工業株式会社 Insulating resin composition and use thereof
CN1960997B (en) 2004-05-28 2014-05-07 陶氏环球技术有限责任公司 Phosphorus-containing compounds useful for making halogen-free, ignition-resistant polymers
JP2006016574A (en) * 2004-07-05 2006-01-19 Hitachi Chem Co Ltd Resin composition for printed wiring board, and varnish, prepreg and metal-clad laminate using the same
EP1966269A1 (en) * 2005-12-22 2008-09-10 Dow Gloval Technologies Inc. A curable epoxy resin composition having a mixed catalyst system and laminates made therefrom
JP2010275557A (en) * 2010-07-06 2010-12-09 Hitachi Chem Co Ltd Novel thermosetting benzoxazine resin and method for manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166822A (en) * 1985-01-19 1986-07-28 Toshiba Chem Corp Resin composition for sealing
JP3092009B2 (en) * 1990-05-01 2000-09-25 東都化成株式会社 Flame retardant and thermosetting flame-retardant resin composition containing the flame retardant
JP3611435B2 (en) * 1997-10-22 2005-01-19 住友ベークライト株式会社 Flame retardant resin composition, prepreg and laminate using the same
JPH11158352A (en) * 1997-11-27 1999-06-15 Hitachi Chem Co Ltd Epoxy resin composition, epoxy resin prepreg and epoxy resin laminate
JP2001131393A (en) * 1999-10-29 2001-05-15 Hitachi Chem Co Ltd Epoxy resin molding material for sealing and electronic part device
JP2001151995A (en) * 1999-11-30 2001-06-05 Hitachi Chem Co Ltd Heat-curable resin composition and insulating resin sheet using same
CN1423678B (en) * 1999-12-13 2010-11-10 陶氏环球技术公司 Flame retardant phosphorus element-containing epoxy resin compositions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024459A (en) * 2009-10-28 2010-02-04 Hitachi Chem Co Ltd Flame retardant thermosetting resin composition, and prepreg and laminate plate for electric wiring board, using the same

Also Published As

Publication number Publication date
JP2001181399A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
JP5176072B2 (en) Thermosetting resin composition, prepreg using the same, laminated board for wiring board, and printed wiring board
CN101321790B (en) Phenol resin composition, cured product thereof, resin composition for copper clad laminate, copper clad laminate and novel phenol resin
JP4972247B2 (en) Flame retardant thermosetting resin composition, prepreg using the same, and laminate for electric wiring board
JP4036011B2 (en) Flame-retardant thermosetting resin composition, prepreg using the same, and laminate for electric wiring board
JP2000336248A (en) Epoxy resin composition and electrical laminate sheet
JPH11158352A (en) Epoxy resin composition, epoxy resin prepreg and epoxy resin laminate
JP4538873B2 (en) Thermosetting resin composition, prepreg using the same, and laminate for electric wiring board
JP5307041B2 (en) Thermosetting resin composition, prepreg using the same, and laminate for electric wiring board
JP2013124359A (en) Thermosetting resin composition and laminated plate for printed circuit board
JP2001122948A (en) Flame retardant resin composition, prepreg and laminate for printed wiring board
JP4449453B2 (en) Flame retardant resin composition, prepreg and laminate for printed wiring board
JP4039118B2 (en) Prepreg, laminated board for printed wiring board and printed wiring board
JP3488996B2 (en) Thermosetting resin composition and cured product thereof
JP2010024459A (en) Flame retardant thermosetting resin composition, and prepreg and laminate plate for electric wiring board, using the same
JP2001214029A (en) Flame retardant high-permittivity resin composition, flame retardant high-permittivity prepreg and flame retardant high-permittivity laminated sheet
JP2004231847A (en) Thermosetting resin composition and prepreg and laminate for electric wiring board each using the same composition
JP2007262198A (en) Resin composition and laminate for printed circuit board
JP2003213077A (en) Flame-retardant resin composition, prepreg and laminate for printed wiring board
CN116554425A (en) Phosphorus-containing benzoxazine resin, resin composition and application
JP2006001997A (en) Flame retardant resin composition, prepreg, laminated sheet for printed circuit board and printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090304

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090304

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091111

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees