WO2013111177A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2013111177A1
WO2013111177A1 PCT/JP2012/000409 JP2012000409W WO2013111177A1 WO 2013111177 A1 WO2013111177 A1 WO 2013111177A1 JP 2012000409 W JP2012000409 W JP 2012000409W WO 2013111177 A1 WO2013111177 A1 WO 2013111177A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
outdoor heat
flow
bypass pipe
Prior art date
Application number
PCT/JP2012/000409
Other languages
English (en)
French (fr)
Inventor
若本 慎一
直史 竹中
山下 浩司
森本 修
博文 ▲高▼下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201280063211.9A priority Critical patent/CN104011485B/zh
Priority to EP12866723.5A priority patent/EP2808626B1/en
Priority to JP2013554983A priority patent/JP6085255B2/ja
Priority to US14/354,668 priority patent/US9518754B2/en
Priority to PCT/JP2012/000409 priority patent/WO2013111177A1/ja
Publication of WO2013111177A1 publication Critical patent/WO2013111177A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • F25B2313/02322Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses during defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Definitions

  • This invention relates to an air conditioner.
  • defrosting is performed by reversing the refrigerant cycle in order to remove frost from the outdoor heat exchanger that serves as an evaporator during heating operation.
  • the heating is stopped during the defrosting operation, so the indoor comfort is impaired. Therefore, as a technology that enables heating operation and defrost operation at the same time, the outdoor heat exchanger is divided into a plurality of parallel heat exchangers, and the discharge gas from the injection compressor corresponding to each of the divided heat exchangers
  • a heat pump provided with a bypass circuit for bypassing and an electromagnetic on-off valve for controlling the bypass state (for example, see Patent Document 1).
  • This heat pump includes an outdoor unit, an indoor unit, and a main pipe that connects them so that a refrigerant circulates, and is a multi-type air conditioner in which two indoor units are connected to one outdoor unit.
  • the outdoor unit consists of an injection compressor, a four-way valve that switches between cooling operation and heating operation, an outdoor heat exchanger connected in parallel, one end connected between the injection compressor and the four-way valve, and the other end branched and the outdoor heat
  • a first bypass pipe connected in parallel to the pipe connected to the exchanger, a second flow path switching device for switching the refrigerant flow path to either the main pipe or the first bypass pipe, and the first bypass
  • a third flow rate control valve that controls the flow rate of the refrigerant flowing through the pipe is provided.
  • thermoelectric refrigerator in which the heat exchanger is configured as a plurality of parallel heat exchangers, includes a plurality of main compressors and sub-compressors, and injects refrigerant used for defrosting the heat exchanger into the sub-compressor (for example, see Patent Document 2).
  • Patent Document 2 requires a sub-compressor, and further relates to a refrigerator that can perform only refrigeration and freezing, and does not include means for switching the flow direction of the refrigerant. The heating and cooling operations required as a device cannot be performed.
  • the present invention has been made to solve the above-described conventional problems, and can improve energy efficiency and heating capacity in simultaneous operation of heating operation and defrost operation using a main compressor.
  • An object is to provide an air conditioner.
  • the air conditioner according to the present invention is an air conditioner including a main pipe that connects the indoor unit and the outdoor unit so that the refrigerant circulates between the indoor heat exchanger and the refrigerant flowing through the indoor heat exchanger.
  • a flow rate control valve for controlling the flow rate of the refrigerant, an injection type compressor having an injection port capable of injecting the refrigerant into the refrigerant being compressed, a refrigerant flow switching device for switching between the cooling operation and the heating operation, and a plurality of units connected in parallel
  • the outdoor heat exchanger has a first end connected between the injection compressor and the refrigerant flow switching device, and the other end connected to one of the plurality of outdoor heat exchangers on the inlet / outlet side.
  • the bypass pipe and one end of the bypass pipe are connected to the injection port or a pipe connected to the injection port, and the other end is connected to the other of the inlet / outlet side of the plurality of outdoor heat exchangers.
  • a second bypass pipe being continued, the flow path of the refrigerant, a first flow path switching unit to switch to one of the main pipes or the first bypass pipe,
  • a second flow path switching device for switching a refrigerant flow path to either the main pipe or the second bypass pipe, and frosting of the outdoor heat exchanger of any of the plurality of outdoor heat exchangers
  • the first flow path switching device allows a part of the refrigerant discharged from the injection compressor to pass through the first bypass pipe, and among the plurality of outdoor heat exchangers
  • the defrost target outdoor heat exchanger is supplied to the second flow path switching device, and a part of the refrigerant supplied to the defrost target outdoor heat exchanger is caused to flow into the second bypass pipe. .
  • the present invention there is no need to lower the refrigerant pressure for defrosting to the suction pressure. Therefore, in the injection compressor, only the refrigerant circulating in the main circuit for heating needs to be increased from low pressure to high pressure, and the injected intermediate-pressure gas-liquid two-phase refrigerant is increased from the intermediate pressure to the high pressure. Therefore, the amount of work of the injection compressor 1 is reduced, and the effect of improving the efficiency and heating capacity of the heat pump can be obtained.
  • Embodiment 1 FIG. The first embodiment of the present invention will be described below with reference to FIGS. In addition, the same code
  • 1 is a diagram illustrating a refrigerant circuit of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the air conditioner 1000 will be described with reference to FIG.
  • the air conditioner 1000 includes an outdoor unit 100, indoor units 200a and 200b, and a main pipe that connects them so that a refrigerant circulates, and two indoor units are connected to one outdoor unit. Multi-type air conditioner.
  • the outdoor unit 100 includes an injection compressor 1, a temperature sensor 2, a four-way valve 3, a refrigerant heat exchanger 6, a second flow control valve 7 (corresponding to the outdoor flow control valve in the present invention), and a two-way valve 8a. 8b, outdoor heat exchangers 9a and 9b, two-way valves 10a and 10b, first bypass pipe 21, two-way valves 22a and 22b, second bypass pipe 31, and third flow control valves 32a and 32b (main) Corresponding to the second bypass flow control valve in the invention), the third bypass pipe 41, the fourth flow control valve 42 (corresponding to the injection flow control valve in the present invention), the first flow path switching device A, the second Two flow path switching devices B are provided.
  • the indoor unit 200a is provided with an indoor heat exchanger 4a and a first flow control valve 5a (corresponding to the flow control valve in the present invention).
  • the indoor unit 200b is provided with an indoor heat exchanger 4b and a first flow control valve 5b (corresponding to the flow control valve in the present invention).
  • the injection compressor 1 is a compressor that can inject a refrigerant into a refrigerant that is being compressed.
  • the temperature sensor 2 measures the temperature of the refrigerant discharged from the injection compressor 1.
  • the four-way valve 3 switches between the cooling operation and the heating operation, and corresponds to the refrigerant flow switching device of the present invention.
  • the refrigerant heat exchanger 6 exchanges heat between the refrigerant flowing through the main pipe and the refrigerant flowing through the third bypass pipe 41 (described later).
  • the first bypass pipe 21 has one end connected between the injection compressor 1 and the four-way valve 3 and the other end branched, and connected in parallel to the pipe connected to the outdoor heat exchangers 9a and 9b.
  • the second bypass pipe 31 is connected to the third bypass pipe 41 at one end and the other pipe different from the pipes of the two outdoor heat exchangers 9a and 9b with the other end connected to the first bypass pipe 21.
  • the third bypass pipe 41 has one end connected between the outdoor heat exchangers 9a and 9b and the main pipe connected to the indoor units 200a and 200b, and the other end connected to the injection port of the injection compressor 1. Is.
  • the first flow control valves 5a and 5b control the flow rate of the refrigerant flowing between the indoor units 200a and 200b.
  • the second flow rate control valve 7 controls the flow rate of the refrigerant flowing between the refrigerant heat exchanger 6 and the two-way valves 8a and 8b.
  • the third flow rate control valves 32 a and 32 b control the flow rate of the refrigerant that flows from the first flow path switching device B through the second bypass pipe 31.
  • the fourth flow control valve 42 adjusts the flow rate of the refrigerant flowing through the third bypass pipe 41.
  • the first flow path switching device A is composed of two-way valves 8a, 8b, 22a and 22b.
  • the second flow path switching device B includes two-way valves 10a and 10b and third flow control valves 32a and 32b.
  • the two-way valves 8a, 8b, 10a, 10b, 22a, and 22b can be opened and closed regardless of the pressure at the inlet / outlet of the valve, and switch the refrigerant flow path.
  • the two-way valves 8a, 8b, 10a, 10b, 22a, and 22b are configured as shown in FIG. 5 so that they can be opened and closed regardless of the pressure at the inlet / outlet of the valve, and can be further blocked Shows an example of the structure and operation of a one-way two-way valve.
  • the two-way valve includes a valve main body V connecting the main pipe M1 and the main pipe M2, a pressure adjusting device X for adjusting the pressure in the pressure chambers P1 and P2 in the valve main body V, and the valve main body V and the pressure adjusting device X. It consists of pipes T1, T2, T3, and T4 connected to the refrigerant pipe.
  • the valve main body V is connected to the moving walls W1, W2 that move to the left and right according to the pressures of the pressure chambers P1, P2, and is moved to the left and right on the valve seat U to open and close the valve. It consists of a slide valve S.
  • the pressure adjusting device X includes a small slide valve S and a small slide valve driving device Y that drives the small slide valve S.
  • the small slide valve S connects the pipe T1 and the pipe T3, connects the pipe T2 and the pipe T4 (when the valve is opened), connects the pipe T1 and the pipe T2, and connects the pipe T3 and the pipe T4. Is selectively switched to one of the cases where the valve is electrically connected (when the valve is closed).
  • the pipe T1 has one end connected to the pressure adjusting device X and the other end connected to the main pipe M1.
  • the pipe T2 has one end connected to the pressure adjusting device X and the other end connected to the pressure chamber P1.
  • the pipe T3 has one end connected to the pressure adjusting device X and the other end connected to the pressure chamber P2.
  • the pipe T4 is connected to a location that is always at a low pressure in the air conditioner, such as a low-pressure pipe, a suction pipe of the injection compressor 1, an accumulator, or the like.
  • the two-way valves 10a and 10b are in the direction from the outdoor heat exchangers 9a and 9b to the four-way valve 3 (upward in the drawing), and the two-way valves 8a and 8b are outdoor.
  • the refrigerant is cut off only in the direction of flowing out of the outdoor unit 100 from the heat exchangers 9a and 9b through the main pipe (downward on the paper surface).
  • the arrow beside the valve in the figure indicates the direction of the refrigerant that can be shut off.
  • FIGS. 2 to 4 showing the refrigerant flow of this apparatus
  • FIG. 7 to FIG. 9 which are ph diagrams (diagram showing the relationship between the refrigerant pressure and enthalpy).
  • thick solid lines indicate the flow of the refrigerant during operation
  • the numbers [i] (i 1, 2,...)
  • In parentheses are i in the diagrams of FIGS.
  • the piping part corresponding to a point each state of a refrigerant
  • coolant is shown.
  • FIG. 2 illustrates a flow in the case where cooling is performed by cooling indoor air with an indoor heat exchanger and radiating heat to the outside air with an outdoor heat exchanger (hereinafter referred to as “cooling operation”).
  • FIG. 3 illustrates a flow in the case where heating is performed by heating indoor air with an indoor heat exchanger and absorbing heat from the outside air with an outdoor heat exchanger (hereinafter, referred to as “all heating operation”).
  • all heating operation indoor air is heated by the indoor heat exchanger, and one of the parallel heat exchangers (outdoor heat exchanger 9 a in FIG. 1) constituting the outdoor heat exchanger evaporates the refrigerant and heats it from the outside air.
  • FIG. 2 is a diagram showing the refrigerant flow during the cooling only operation of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 7 is a diagram showing the relationship between the refrigerant pressure and enthalpy during the cooling only operation of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the flow of the cooling only operation will be described with reference to FIGS. 2 and 7.
  • the four-way valve 3 is switched to the state shown by the broken line in FIG.
  • the refrigerant that has exited the four-way valve 3 branches and flows into both the outdoor heat exchangers 9a and 9b, and the refrigerant that has exited the outdoor heat exchangers 9a and 9b is the main pipe. And are switched to be supplied to the refrigerant heat exchanger 6 and the indoor units 200a and 200b.
  • the low-temperature and low-pressure gas refrigerant is compressed by the injection compressor 1.
  • the change of the refrigerant in the injection compressor 1 is expressed by an inclined line (points [1]-[2]) in which the enthalpy slightly increases in consideration of the efficiency of the injection compressor 1.
  • the refrigerant in the middle of compression and the refrigerant flowing in from the third bypass pipe 41 merge.
  • the change of the refrigerant at the time of merging is performed in a state where the pressure is substantially constant, and is represented by a horizontal line (point [2]-[3], point [9]-[3]). It is further compressed and discharged as a high-temperature and high-pressure gas refrigerant.
  • the change of the refrigerant in the injection compressor 1 is represented by an inclined line (points [3]-[4]) in which the enthalpy slightly increases in consideration of the efficiency of the injection compressor 1.
  • the high-temperature and high-pressure gas refrigerant discharged from the injection compressor 1 passes through the four-way valve 3, passes through the second flow path switching device B after the refrigerant is branched, and each of the branched refrigerants exchanges outdoor heat.
  • the change of the refrigerant in the outdoor heat exchangers 9a and 9b is performed under a substantially constant pressure, but is slightly inclined in the ph diagram in consideration of the pressure loss of the outdoor heat exchangers 9a and 9b. It is represented by a line (point [4] ⁇ point [5]) close to the horizontal line.
  • each refrigerant in the liquid state passes through the first flow path switching device A, then merges, passes through the main pipe, and flows through the third bypass pipe 41 in the refrigerant heat exchanger 6.
  • the change of the refrigerant in the refrigerant heat exchanger 6 is performed under a substantially constant pressure, but in consideration of the pressure loss of the refrigerant heat exchanger 6, a line close to a slightly inclined horizontal line in the ph diagram. (Point [5] ⁇ Point [6]).
  • the change of the refrigerant in the first flow control valves 5a and 5b is performed under a constant enthalpy and is represented by a vertical line (point [6] ⁇ point [7]) in the ph diagram. Is done.
  • each refrigerant decompressed to a low pressure flows into the indoor heat exchangers 4a and 4b, evaporates by exchanging heat with indoor air, and cools the room.
  • the change of the refrigerant in the indoor heat exchangers 4a and 4b is performed under a substantially constant pressure, but is slightly inclined in the ph diagram in consideration of the pressure loss of the indoor heat exchangers 4a and 4b. It is represented by a line (point [7] ⁇ point [1]) close to the horizontal line.
  • the cooling operation is performed by circulating the refrigerant in the main circuit.
  • the refrigerant flowing into the third bypass pipe 41 is decompressed by the fourth flow control valve 42 and changes to a low-temperature gas-liquid two-phase state.
  • the change of the refrigerant in the fourth flow control valve 42 is performed under a constant enthalpy and is represented by a vertical line (point [6] ⁇ point [8]) in the ph diagram. .
  • the refrigerant that has flowed into the refrigerant heat exchanger 6 is heated and evaporated by the refrigerant flowing through the main pipe.
  • the change of the refrigerant in the refrigerant heat exchanger 6 is performed under a substantially constant pressure, but in consideration of the pressure loss of the refrigerant heat exchanger 6, a line close to a slightly inclined horizontal line in the ph diagram. (Point [8] ⁇ Point [9]).
  • FIG. 3 is a diagram showing the refrigerant flow during the heating only operation of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • FIG. 8 is a diagram showing the relationship between the refrigerant pressure and enthalpy during the heating only operation of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the flow of the heating only operation will be described with reference to FIGS. 3 and 8.
  • the four-way valve 3 is switched to the state shown by the solid line in FIG.
  • the refrigerant flowing into the outdoor unit 100 from the indoor units 200a and 200b branches and is sent to both the outdoor heat exchangers 9a and 9b.
  • the refrigerant merges, passes through the four-way valve 3, and is switched to be sucked into the injection compressor 1.
  • the low-temperature and low-pressure gas refrigerant is compressed by the injection compressor 1.
  • the change of the refrigerant in the injection compressor 1 is expressed by an inclined line (points [1]-[2]) in which the enthalpy slightly increases in consideration of the efficiency of the injection compressor 1.
  • the refrigerant in the middle of compression and the refrigerant flowing in from the third bypass pipe 41 merge.
  • the change of the refrigerant at the time of merging is performed in a state where the pressure is almost constant, and is represented by a horizontal line (point [2]-[3], point [10]-[3]). It is further compressed and discharged as a high-temperature and high-pressure gas refrigerant.
  • the change of the refrigerant in the injection compressor 1 is represented by an inclined line (points [3]-[4]) in which the enthalpy slightly increases in consideration of the efficiency of the injection compressor 1.
  • the high-temperature and high-pressure gas refrigerant discharged from the injection compressor 1 passes through the four-way valve 3 and branches, then flows through the main pipe into the indoor units 200a and 200b, and exchanges heat with indoor air to condense and liquefy. Heat the room.
  • the change of the refrigerant in the indoor heat exchangers 4a and 4b is performed under a substantially constant pressure, but is slightly inclined in the ph diagram in consideration of the pressure loss of the indoor heat exchangers 4a and 4b. It is represented by a line (point [4] ⁇ point [5]) close to the horizontal line.
  • coolant which became this liquid state is pressure-reduced by 1st flow control valve 5a, 5b.
  • the change of the refrigerant in the first flow control valves 5a and 5b is performed under a constant enthalpy and is represented by a vertical line (point [5] ⁇ point [6]) in the ph diagram. Is done.
  • the decompressed refrigerant merges, partly flows into the third bypass pipe 41 through the main pipe, and the rest flows into the refrigerant heat exchanger 6.
  • the refrigerant that has flowed into the refrigerant heat exchanger 6 is cooled by the refrigerant flowing through the third bypass pipe 41 and the temperature is lowered.
  • the change of the refrigerant in the refrigerant heat exchanger 6 is performed under a substantially constant pressure, but in consideration of the pressure loss of the refrigerant heat exchanger 6, a line close to a slightly inclined horizontal line in the ph diagram. (Point [6] ⁇ Point [7]).
  • the refrigerant that has exited the refrigerant heat exchanger 6 flows into the second flow control valve 7 and is depressurized to a low-pressure gas-liquid two-phase state.
  • the change of the refrigerant in the second flow control valve 7 is performed under a constant enthalpy and is represented by a vertical line (point [7] ⁇ point [8]) in the ph diagram. .
  • Each refrigerant decompressed to a low pressure branches and then flows into the outdoor heat exchangers 9a and 9b, exchanges heat with outdoor outdoor air, evaporates, and dissipates heat to the outdoor.
  • the change of the refrigerant in the outdoor heat exchangers 9a and 9b is performed under a substantially constant pressure, but is slightly inclined in the ph diagram in consideration of the pressure loss of the outdoor heat exchangers 9a and 9b. It is represented by a line (point [8] ⁇ point [1]) close to the horizontal line.
  • the low-temperature and low-pressure gaseous refrigerants that have exited the outdoor heat exchangers 9a and 9b join together and are again sucked into the injection compressor 1 through the four-way valve 3.
  • the heating operation is performed by circulating the refrigerant in the main circuit.
  • the refrigerant flowing into the third bypass pipe 41 is decompressed by the fourth flow control valve 42 and changes to a low-temperature gas-liquid two-phase state.
  • the change of the refrigerant in the fourth flow control valve 42 is performed under a constant enthalpy and is represented by a vertical line (point [5] ⁇ point [9]) in the ph diagram. .
  • the refrigerant that has flowed into the refrigerant heat exchanger 6 is heated and evaporated by the refrigerant flowing through the main pipe.
  • the change of the refrigerant in the refrigerant heat exchanger 6 is performed under a substantially constant pressure, but in consideration of the pressure loss of the refrigerant heat exchanger 6, a line close to a slightly inclined horizontal line in the ph diagram. (Point [9] ⁇ Point [10]). In this operation, when the outdoor air temperature is low, frost is generated in the outdoor heat exchangers 9a and 9b, and when the operation is continued, the frost further increases and the heat exchange amount decreases.
  • the refrigerant flowing from the indoor units 200a and 200b into the outdoor unit 100 is sent only to the outdoor heat exchanger 9a, passes through the four-way valve 3, and is sucked into the injection compressor 1.
  • Part of the refrigerant discharged from the injection compressor 1 passes through the first bypass pipe 21, passes through the first flow path switching device A, flows into the outdoor heat exchanger 9b, and enters the second bypass pipe. It is switched so as to pass through 31 and merge with the refrigerant in the third bypass pipe 41.
  • the low-temperature and low-pressure gas refrigerant is compressed by the injection compressor 1.
  • the change of the refrigerant in the injection compressor 1 is expressed by an inclined line (points [1]-[2]) in which the enthalpy slightly increases in consideration of the efficiency of the injection compressor 1.
  • the refrigerant that is being compressed and the refrigerant that flows in from the third bypass pipe 41 merge.
  • the change of the refrigerant at the time of merging is performed in a state where the pressure is substantially constant, and is represented by a horizontal line (point [2]-[3], point [11]-[3]).
  • the refrigerant is further compressed and discharged as a high-temperature and high-pressure gas refrigerant.
  • the change of the refrigerant in the injection compressor 1 is represented by an inclined line (points [3] to [4]) in which the enthalpy slightly increases in consideration of the efficiency of the injection compressor 1.
  • the change of the refrigerant in the indoor heat exchangers 4a and 4b is performed under a substantially constant pressure, but is slightly inclined in the ph diagram in consideration of the pressure loss of the indoor heat exchangers 4a and 4b. It is represented by a line (point [4] ⁇ point [5]) close to the horizontal line.
  • coolant which became this liquid state passes the 1st flow control valve 5a, 5b, and is pressure-reduced.
  • the change of the refrigerant in the first flow control valves 5a and 5b is performed under a constant enthalpy and is represented by a vertical line (point [5] ⁇ point [6]) in the ph diagram. Is done.
  • the decompressed refrigerant merges, partly flows into the third bypass pipe 41 through the main pipe, and the rest flows into the refrigerant heat exchanger 6.
  • the refrigerant that has flowed into the refrigerant heat exchanger 6 is cooled by the refrigerant flowing through the third bypass pipe 41, and the temperature decreases.
  • the change of the refrigerant in the refrigerant heat exchanger 6 is performed under a substantially constant pressure, but in consideration of the pressure loss of the refrigerant heat exchanger 6, a line close to a slightly inclined horizontal line in the ph diagram. (Point [6] ⁇ Point [7]).
  • the refrigerant that has exited the refrigerant heat exchanger 6 flows into the second flow control valve 7 and is decompressed to a low-pressure gas-liquid two-phase state.
  • the change of the refrigerant in the second flow control valve 7 is performed under a constant enthalpy and is represented by a vertical line (point [7] ⁇ point [8]) in the ph diagram. .
  • each refrigerant decompressed to a low pressure passes through the first flow path switching device A, flows into the outdoor heat exchanger 9a, evaporates by exchanging heat with outdoor outdoor air, and dissipates heat to the outdoor.
  • the change of the refrigerant in the outdoor heat exchanger 9a is performed under a substantially constant pressure, but in consideration of the pressure loss of the outdoor heat exchanger 9a, a line close to a slightly inclined horizontal line in the ph diagram. (Point [8] ⁇ Point [1]).
  • the low-temperature and low-pressure gas refrigerant exiting the outdoor heat exchanger 9a passes through the four-way valve 3 again and is sucked into the injection compressor 1. As described above, the heating operation is performed by circulating the refrigerant in the main circuit.
  • the refrigerant flowing into the third bypass pipe 41 is decompressed by the fourth flow control valve 42 and changes to a low-temperature gas-liquid two-phase state.
  • the change of the refrigerant in the fourth flow control valve 42 is performed under a constant enthalpy and is represented by a vertical line (point [6] ⁇ point [9]) in the ph diagram. .
  • the refrigerant that has passed through the fourth flow control valve 42 merges with the refrigerant that has flowed from the second bypass pipe 31.
  • the change in the refrigerant at the time of merging is performed in a state where the pressure is almost constant, and is represented by a horizontal line (point [9] ⁇ point [10], point [13] ⁇ point [10]) in the ph diagram.
  • the merged refrigerant flows into the refrigerant heat exchanger 6 and is heated and evaporated by the refrigerant flowing through the main pipe.
  • the change of the refrigerant in the refrigerant heat exchanger 6 is performed under a substantially constant pressure, but in consideration of the pressure loss of the refrigerant heat exchanger, a line close to a slightly inclined horizontal line in the ph diagram ( Point [10] ⁇ point [11]).
  • the refrigerant flowing into the first bypass pipe 21 passes through the first flow path switching device A and condenses while melting the frost generated in the outdoor heat exchanger 9b.
  • the change of the refrigerant in the outdoor heat exchanger 9b is performed under a substantially constant pressure.
  • a line close to a slightly inclined horizontal line in the ph diagram. Point [4] ⁇ Point [12]).
  • the condensed refrigerant is decompressed by the third flow control valve 32b, and changes to a refrigerant in a gas-liquid two-phase state.
  • the change of the refrigerant in the third flow control valve 32b is performed under a constant enthalpy and is represented by a vertical line (point [12] ⁇ point [13]) in the ph diagram. .
  • the decompressed refrigerant passes through the second bypass pipe 31 and merges with the refrigerant flowing through the third bypass pipe 41.
  • the frost in the outdoor heat exchanger 9b can be melted while heating the room. Further, in the case of heating operation in which the outdoor heat exchanger 9a is a defrost target, the first flow path switching device A and the second flow path switching device B are switched to melt the frost in the outdoor heat exchanger 9a. Then, the outdoor heat exchanger 9b performs an operation of radiating heat to the outside.
  • the air conditioner 1000 of the first embodiment there are three operation modes of the cooling only operation, the heating only operation, and the heating defrost simultaneous operation, frost is generated in the outdoor heat exchanger 9b, and the air volume is reduced.
  • the heating and defrosting operation can be performed simultaneously to continuously heat the room.
  • the refrigerant for performing the defrost is injected not in the suction side of the injection compressor 1 but in the middle of the compression process in the injection compressor 1.
  • the injection compressor 1 only the refrigerant circulating in the main circuit for heating needs to be increased from low pressure to high pressure, and the injected intermediate-pressure gas-liquid two-phase state refrigerant is increased from the intermediate pressure. What is necessary is just to raise to a high pressure. Therefore, the work of the injection compressor 1 is reduced, and the efficiency of the heat pump (heating capacity / work of the injection compressor 1) is improved. As a result, it can also contribute to an energy saving effect.
  • the gas-liquid two-phase refrigerant flowing into the injection compressor 1 from the injection port is heated by the intermediate-pressure gas refrigerant in the middle of compression, and the injection compression Since it changes to a gas state inside the machine 1, the reliability of the heat pump is improved.
  • the difference in enthalpy of the refrigerant used for defrosting (the length of the line segment from point [4] to point [12] in FIG. 9) is calculated using the conventional air conditioner (in FIG. 8).
  • the length of the line segment from point [6] to point [7] can be made larger, and defrosting can be performed with a small amount of refrigerant flow, thereby improving the heating capacity.
  • the temperature sensor 2 for measuring the refrigerant discharge temperature of the injection compressor 1 is provided, and the fourth flow control valve 42 is controlled according to the discharge temperature. Therefore, an increase in discharge temperature under low outside air conditions can be suppressed, and the reliability of the injection compressor 1 is improved.
  • the outdoor heat exchanger 9b to be defrosted exchanges heat by flowing a refrigerant in a direction parallel to the flow direction of the outside air, and the outdoor heat not to be defrosted.
  • the exchanger 9a exchanges heat by flowing a refrigerant in a direction opposite to the flow direction of the outside air.
  • the outdoor heat exchangers 9a and 9b shown in FIG. 6 are fin-tube heat exchangers in which a plurality of heat transfer tubes penetrates in a direction perpendicular to the plurality of fins, and are divided into two rows in the air flow direction and vertically divided into two. Shows the configuration.
  • a low-temperature and low-pressure refrigerant in a gas-liquid two-phase state flows from the downstream row with respect to the air flow, evaporates while releasing heat to the air, moves to the upstream row, and further evaporates. And flows out of the outdoor heat exchanger 9a.
  • the air conditioner 1000 uses a two-way valve that can perform an opening / closing operation regardless of the magnitude of the pressure at the inlet / outlet of the valve, and that restricts the flow of the refrigerant to one direction. Therefore, it is possible to use a two-way valve with a simple internal structure that can block only the flow of refrigerant in one direction.
  • a plurality of outdoor heats are arranged so that the direction of the refrigerant flowing out from the outdoor heat exchangers 9a and 9b to the main pipe matches the direction that can be blocked by the two-way valve.
  • a first flow path switching device A and a second flow path switching device B are installed in each of the exchangers 9a and 9b, and the first flow path switching device A and the second flow path are all in all operation modes. The refrigerant in the switching device B can be shut off without leakage.
  • the configuration in which the third flow control valves 32a and 32b are provided in the second bypass pipe 31 has been described, but the second bypass pipe 31 is branched.
  • Two two-way valves may be provided for each of the two pipes, and one flow rate control valve may be provided for one pipe after joining. According to this configuration, the temperature of the refrigerant flowing into the outdoor heat exchanger 9b to be defrosted decreases, the temperature change of the refrigerant in the outdoor heat exchanger 9b to be defrosted can be reduced, and the defrosting unevenness can be reduced. Increases frost efficiency.
  • one end is connected between the outdoor heat exchangers 9a and 9b and the second flow rate control valve 7, and the other end is connected to the injection port of the injection compressor 1.
  • the refrigerant heat exchanger 6 that exchanges heat between the refrigerant that flows between the third bypass pipe 41 to be connected, the outdoor heat exchangers 9a and 9b, and the second flow rate control valve 7, and the refrigerant that flows through the third bypass pipe 41.
  • a fourth flow rate control valve 42 for controlling the flow rate of the refrigerant flowing through the third bypass pipe 41 is provided.
  • the other end of the second bypass pipe 31 is connected to a stage preceding the refrigerant heat exchanger 6 of the third bypass pipe 41. Therefore, in the refrigerant heat exchanger 6, heat can be exchanged between the refrigerant flowing out of the outdoor heat exchanger 9b to be defrosted and the refrigerant flowing through the main pipe, and the efficiency is improved.
  • the outdoor heat exchanger 9b may perform the defrosting operation.
  • the water after defrosting is re-iced by the lower outdoor heat exchanger (outdoor heat exchanger 9b in FIG. 6) in the upper outdoor heat exchanger (outdoor heat exchanger 9a in FIG. 6).
  • the defrosting operation can be performed without leaving frost, and the reliability of the air conditioner is improved.
  • FIG. 10 is a diagram illustrating a refrigerant circuit of the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • FIG. 11 is a diagram illustrating the refrigerant flow during the simultaneous heating and defrosting operation of the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • FIG. 12 is a diagram showing the relationship between the refrigerant pressure and enthalpy during the simultaneous heating and defrosting operation of the heat pump according to the second embodiment of the present invention.
  • the air conditioner 1000 will be described with reference to FIG.
  • the air conditioner 1000 includes an outdoor unit 100, indoor units 200a and 200b, and a main pipe that connects them so that a refrigerant circulates, and two indoor units are connected to one outdoor unit. Multi-type air conditioner.
  • the outdoor unit 100 includes two-way valves 51 a and 51 b connected to the second bypass pipe 31, a fifth flow control valve 50 (the first bypass flow control valve in the present invention) in the first bypass pipe 21. Equivalent).
  • a second pressure sensor 56 is provided on the discharge side of the injection compressor 1. Further, a first pressure sensor 55 is provided between the refrigerant heat exchanger 6 and the first flow control valves 5a and 5b (on the first flow control valves 5a and 5b side from the branch point to the third bypass pipe 41). Is provided.
  • the two-way valves 22a, 22b, 51a, 51b are configured by the same valves as in the first embodiment shown in FIG. 5 or electromagnetic valves that open and close the valves by a motor.
  • the two-way valves 8a, 8b, 10a, 10b, 22a, 22b, 51a, 51b block the refrigerant only in the direction of the arrow in the figure.
  • the check valve 52 is provided between a portion where the two-way valves 51a and 51b are provided and a portion where the second bypass pipe 31 and the third bypass pipe 41 are connected.
  • the check valve 52 is for preventing the refrigerant from flowing from the portion where the second bypass pipe 31 and the third bypass pipe 41 are connected toward the two-way valves 51a and 51b.
  • the second pressure sensor 56 measures the discharge pressure of the refrigerant of the injection compressor 1.
  • the first pressure sensor 55 is located between the first flow control valves 5a and 5b and the refrigerant heat exchanger 6 (on the first flow control valves 5a and 5b side from the branch point to the third bypass pipe 41). The pressure is measured.
  • FIG. 11 showing the refrigerant flow of this apparatus
  • FIG. 12 which is a ph diagram (diagram showing the relationship between the refrigerant pressure and enthalpy).
  • the thick solid line indicates the flow of the refrigerant during operation
  • the numbers [i] (i 1, 2,...)
  • i points each state of the refrigerant in the diagram of FIG. 12).
  • the piping part corresponding to is shown.
  • indoor air is heated by the indoor heat exchangers 4a and 4b, and one of the parallel heat exchangers constituting the outdoor heat exchanger (the outdoor heat exchanger 9a in FIG. 11) evaporates the refrigerant.
  • the outdoor heat exchanger 9a in FIG. 11 evaporates the refrigerant.
  • the other parallel heat exchanger (outdoor heat exchanger 9b in FIG. 11) heats the frost to melt the frost generated in the outdoor heat exchanger 9b (hereinafter, simultaneous heating and defrost operation) Will be described.
  • the indoor heat exchangers 4a and 4b function as condensers
  • the outdoor heat exchangers 9a and 9b function as evaporators. The same applies to the embodiments described later.
  • the refrigerant flowing from the indoor units 200a and 200b into the outdoor unit 100 is sent only to the outdoor heat exchanger 9a, passes through the four-way valve 3, and is sucked into the injection compressor 1.
  • Part of the refrigerant discharged from the injection compressor 1 passes through the first bypass pipe 21, passes through the first flow path switching device A, flows into the outdoor heat exchanger 9b, and enters the second bypass pipe. It is switched so as to pass through 31 and merge with the refrigerant in the third bypass pipe 41.
  • the low-temperature and low-pressure gas refrigerant is compressed by the injection compressor 1.
  • the change of the refrigerant in the injection compressor 1 is expressed by an inclined line (points [1]-[2]) in which the enthalpy slightly increases in consideration of the efficiency of the injection compressor 1.
  • the refrigerant that is being compressed and the refrigerant that flows in from the third bypass pipe 41 merge.
  • the change of the refrigerant at the time of merging is performed in a state where the pressure is almost constant and is represented by a horizontal line (point [2]-[3], point [11]-[3]).
  • the refrigerant is further compressed and discharged as a high-temperature and high-pressure gas refrigerant.
  • the change of the refrigerant in the injection compressor 1 is represented by an inclined line (points [3] to [4]) in which the enthalpy slightly increases in consideration of the efficiency of the injection compressor 1.
  • the change of the refrigerant in the indoor heat exchangers 4a and 4b is performed under a substantially constant pressure, but is slightly inclined in the ph diagram in consideration of the pressure loss of the indoor heat exchangers 4a and 4b. It is represented by a line (point [4] ⁇ point [5]) close to the horizontal line.
  • coolant which became this liquid state passes the 1st flow control valve 5a, 5b, and is pressure-reduced.
  • the change of the refrigerant in the first flow control valves 5a and 5b is performed under a constant enthalpy and is represented by a vertical line (point [5] ⁇ point [6]) in the ph diagram. Is done.
  • the decompressed refrigerant merges, partly flows into the third bypass pipe 41 through the main pipe, and the rest flows into the refrigerant heat exchanger 6.
  • the refrigerant that has flowed into the refrigerant heat exchanger 6 is cooled by the refrigerant flowing through the third bypass pipe 41, and the temperature decreases.
  • the change of the refrigerant in the refrigerant heat exchanger 6 is performed under a substantially constant pressure, but in consideration of the pressure loss of the refrigerant heat exchanger 6, a line close to a slightly inclined horizontal line in the ph diagram. (Point [6] ⁇ Point [7]).
  • the refrigerant that has exited the refrigerant heat exchanger 6 flows into the second flow control valve 7 and is decompressed to a low-pressure gas-liquid two-phase state.
  • the change of the refrigerant in the second flow control valve 7 is performed under a constant enthalpy and is represented by a vertical line (point [7] ⁇ point [8]) in the ph diagram. .
  • each refrigerant decompressed to a low pressure passes through the first flow path switching device A, flows into the outdoor heat exchanger 9a, evaporates by exchanging heat with outdoor outdoor air, and dissipates heat to the outdoor.
  • the change of the refrigerant in the outdoor heat exchanger 9a is performed under a substantially constant pressure, but in consideration of the pressure loss of the outdoor heat exchanger 9a, a line close to a slightly inclined horizontal line in the ph diagram. (Point [8] ⁇ Point [1]).
  • the low-temperature and low-pressure gas refrigerant exiting the outdoor heat exchanger 9a passes through the four-way valve 3 again and is sucked into the injection compressor 1. As described above, the heating operation is performed by circulating the refrigerant in the main circuit.
  • the refrigerant flowing into the third bypass pipe 41 is decompressed by the fourth flow control valve 42 and changes to a low-temperature gas-liquid two-phase state.
  • the change of the refrigerant in the fourth flow control valve 42 is performed under a constant enthalpy and is represented by a vertical line (point [6] ⁇ point [9]) in the ph diagram. .
  • the refrigerant that has passed through the fourth flow control valve 42 merges with the refrigerant that has flowed from the second bypass pipe 31.
  • the change in the refrigerant at the time of merging is performed in a state where the pressure is almost constant, and is represented by a horizontal line (point [9] ⁇ point [10], point [13] ⁇ point [10]) in the ph diagram.
  • the merged refrigerant flows into the refrigerant heat exchanger 6 and is heated and evaporated by the refrigerant flowing through the main pipe.
  • the change of the refrigerant in the refrigerant heat exchanger 6 is performed under a substantially constant pressure, but in consideration of the pressure loss of the refrigerant heat exchanger, a line close to a slightly inclined horizontal line in the ph diagram ( Point [10] ⁇ point [11]).
  • the refrigerant flowing into the first bypass pipe 21 is decompressed by the fifth flow control valve 50.
  • the change of the refrigerant in the fifth flow control valve 50 is performed under a constant enthalpy and is represented by a vertical line (point [4] ⁇ point [12]) in the ph diagram. .
  • the decompressed refrigerant passes through the first flow path switching device A and condenses while melting the frost generated in the outdoor heat exchanger 9b.
  • the change of the refrigerant in the outdoor heat exchanger 9b is performed under a substantially constant pressure. However, in consideration of the pressure loss of the outdoor heat exchanger 9b, a line close to a slightly inclined horizontal line in the ph diagram. (Point [12] ⁇ Point [13]).
  • the condensed refrigerant passes through the second bypass pipe 31 and merges with the refrigerant flowing through the third bypass pipe 41.
  • the frost in the outdoor heat exchanger 9b can be melted while heating the room. Further, in the case of heating operation in which the outdoor heat exchanger 9a is a defrost target, the first flow path switching device A and the second flow path switching device B are switched to melt the frost in the outdoor heat exchanger 9a. Then, the outdoor heat exchanger 9b performs an operation of radiating heat to the outside.
  • the method for adjusting the discharge temperature of the injection compressor 1 is the same as in the first embodiment, and a description thereof will be omitted.
  • the air-conditioning apparatus 1000 according to the second embodiment can reduce the temperature and temperature change of the refrigerant flowing into the outdoor heat exchanger 9b to be defrosted together with the same effects as those of the first embodiment. Unevenness can be reduced and defrosting efficiency is improved.
  • the second pressure sensor 56 that measures the refrigerant discharge pressure of the injection compressor 1 is provided, and becomes a predetermined discharge pressure during the simultaneous heating and defrosting operation. Since the fifth flow control valve 50 is controlled as described above, the heating capacity of the indoor heat exchangers 4a and 4b can be maintained. Specifically, when the discharge pressure is lower than the predetermined pressure, the opening degree of the fifth flow control valve 50 is reduced, and when the discharge pressure is higher than the predetermined pressure, the fifth flow control valve Increase the opening of 50.
  • the first flow control is performed between the first flow control valves 5a and 5b and the refrigerant heat exchanger 6 (the first flow control is performed rather than the branch point to the third bypass pipe 41). Since the first pressure sensor 55 for measuring the pressure of the valves 5a and 5b) is provided and the second flow control valve 7 is controlled according to the pressure, the fourth flow control valve 42 and the refrigerant heat The pressure of the refrigerant flowing into the exchanger 6 can be controlled to a predetermined value, the amount of heat exchange in the refrigerant heat exchanger 6 and the outdoor heat exchangers 9a and 9b can be controlled, and the operation is stabilized. Specifically, when the pressure drops below a predetermined pressure, the opening of the second flow control valve 7 is increased, and when the pressure rises above the predetermined pressure, the second flow control valve 7 Reduce the opening.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 第1の流路切替装置Aにより、インジェクション式圧縮機1から吐出された冷媒の一部を第1のバイパス配管21を通過させ、デフロスト対象の室外熱交換器9bに供給し、第2の流路切替装置Bにより、デフロスト対象の室外熱交換器9bに供給された冷媒の一部を第2のバイパス配管31に流入させる。

Description

空気調和装置
 この発明は、空気調和装置に関するものである。
 従来の空気調和装置では、暖房運転時に蒸発器となる室外熱交換器の着霜を除去するにあたり、冷媒サイクルを逆転させる方法でデフロスト運転を行っている。しかしながら、このデフロスト運転では、デフロスト運転中に暖房が停止するために室内の快適性が損なわれる。そこで、暖房運転とデフロスト運転を同時に可能とした技術として、室外熱交換器を複数の並列熱交換器に分割し、分割された熱交換器の各々に対応してインジェクション式圧縮機からの吐出ガスをバイパスさせるバイパス回路と、バイパス状態を制御する電磁開閉弁とを設けたヒートポンプがある(例えば、特許文献1参照)。
 このヒートポンプは、室外ユニットと、室内ユニットと、それらを冷媒が循環するように接続する主配管とを備えており、1台の室外ユニットに2台の室内機が接続されたマルチ型の空気調和装置である。室外ユニットは、インジェクション式圧縮機、冷房運転と暖房運転を切り替える四方弁、並列接続された室外熱交換器、一端をインジェクション式圧縮機と四方弁との間に接続し他端を分岐し室外熱交換器に接続されている配管に並列に接続する第1のバイパス配管、冷媒の流路を主配管と第1のバイパス配管のいずれか一方に切り替える第2の流路切替装置、第1のバイパス配管を流れる冷媒の流量を制御する第3の流量制御弁を設けている。これにより、インジェクション式圧縮機からの冷媒の一部を各バイパス回路に交互に流入させ、各並列熱交換器を交互にデフロストすることで、冷凍サイクルを逆転させることなく連続して暖房を行うことを可能としている。
 また、熱交換器を複数の並列熱交換器として構成し、複数の主圧縮機と副圧縮機を備え、熱交換器の除霜に用いた冷媒を副圧縮機にインジェクションする冷凍機がある(たとえば、特許文献2参照)。
特開2009-85484号公報(要約) 特開2007-225271号公報
 しかしながら、特許文献1の技術では、暖房運転とデフロスト運転の同時運転中、デフロスト対象の室外熱交換器から流出した気液二相状態の冷媒と、暖房作用を行っている室外熱交換器から流出したガス冷媒とが混合してインジェクション式圧縮機に吸入される。したがって、インジェクション式圧縮機は暖房を行うための冷媒だけでなく、デフロストを行うための冷媒も低圧から高圧に昇圧する必要があり、空気調和装置の効率が低下する問題があった。
 また、デフロストに利用できるエンタルピは、ガスの顕熱のみであり、霜を融かすためには、第1のバイパス配管にインジェクション式圧縮機から吐出された多量の高温高圧の冷媒を流す必要があり、暖房を行うために室外に放熱している室外熱交換器を流れる冷媒流量が減少し、暖房能力が低下する問題があった。
 また、特許文献2の技術では、副圧縮機が必要であり、さらに、冷蔵や冷凍のみを行うことができる冷凍機に関する技術であり、冷媒の流れ方向を切り替える手段を備えていないため、空気調和装置として必要な暖房と冷房の運転を行うことができない。
 本発明は、上述のような従来の課題を解決するためになされたものであり、主圧縮機を利用した暖房運転とデフロスト運転の同時運転に際し、エネルギー効率の向上と暖房能力の向上が可能な空気調和装置を提供することを目的とする。
 本発明に係る空気調和装置は、室内ユニットと室外ユニットとの間を冷媒が循環するように接続する主配管を備えた空気調和装置において、室内熱交換器と、前記室内熱交換器を流れる冷媒の流量を制御する流量制御弁と、圧縮途中の冷媒に冷媒を注入可能なインジェクションポートを備えたインジェクション式圧縮機と、冷房運転と暖房運転を切り替える冷媒流路切替装置と、並列接続された複数の室外熱交換器と、一端が前記インジェクション式圧縮機と前記冷媒流路切替装置との間に接続され、他端が前記複数の室外熱交換器の出入口側の一方に接続されている第1のバイパス配管と、一端が前記インジェクションポート又は前記インジェクションポートにつながる配管に接続され、他端が前記複数の室外熱交換器の出入口側の他方に接続されている第2のバイパス配管と、冷媒の流路を、前記主配管または前記第1のバイパス配管のいずれかに切り替える第1の流路切替装置と、
 冷媒の流路を、前記主配管または前記第2のバイパス配管のいずれかに切り替える第2の流路切替装置とを備え、前記複数の室外熱交換器のいずれかの室外熱交換器の着霜を除去するデフロスト運転時に、前記第1の流路切替装置により、前記インジェクション式圧縮機から吐出された冷媒の一部を前記第1のバイパス配管を通過させ、前記複数の室外熱交換器のうち、デフロスト対象の室外熱交換器に供給し、前記第2の流路切替装置により、デフロスト対象の室外熱交換器に供給された冷媒の一部を前記第2のバイパス配管に流入させるものである。
 本発明によれば、デフロストを行うための冷媒の圧力を吸入圧力まで下げる必要がない。よって、インジェクション式圧縮機では、暖房を行うための主回路を循環する冷媒だけを低圧から高圧に昇圧するだけでよく、インジェクションされた中間圧の気液二相状態の冷媒については中間圧から高圧に昇圧すればよいため、インジェクション式圧縮機1の仕事量が減少し、ヒートポンプの効率および暖房能力が向上する効果が得られる。
本発明の実施の形態1に係る空気調和装置の冷媒回路を示す図である。 本発明の実施の形態1に係る空気調和装置の全冷房運転時の冷媒の流れを示す図である。 本発明の実施の形態1に係る空気調和装置の全暖房運転時の冷媒の流れを示す図である。 本発明の実施の形態1に係る空気調和装置の暖房デフロスト同時運転時の冷媒の流れを示す図である。 本発明の実施の形態1に係る空気調和装置に備えている二方弁の構造と動作を示す図である。 本発明の実施の形態1に係る空気調和装置に備えている室外熱交換器の構成及び冷媒の流れを示す図である。 本発明の実施の形態1に係る空気調和装置の全冷房運転時における冷媒の圧力とエンタルピとの関係を示す図である。 本発明の実施の形態1に係る空気調和装置の全暖房運転時における冷媒の圧力とエンタルピとの関係を示す図である。 本発明の実施の形態1によるヒートポンプの暖房デフロスト同時運転時における冷媒の圧力とエンタルピとの関係を示す図である。 本発明の実施の形態2に係る空気調和装置の冷媒回路を示す図である。 本発明の実施の形態2に係る空気調和装置の暖房デフロスト同時運転時の冷媒の流れを示す図である。 本発明の実施の形態2によるヒートポンプの暖房デフロスト同時運転時における冷媒の圧力とエンタルピとの関係を示す図である。
実施の形態1.
 以下、図1~図9を参照して本発明の実施の形態1について説明する。なお、同一の箇所には同一符号を付す。図1は、本発明の実施の形態1に係る空気調和装置の冷媒回路を示す図である。以下、図1を用いて、空気調和装置1000について説明する。
 空気調和装置1000は、室外ユニット100と、室内ユニット200a、200bと、それらを冷媒が循環するように接続する主配管とを備えており、1台の室外ユニットに2台の室内ユニットが接続されたマルチ型の空調機である。
 室外ユニット100には、インジェクション式圧縮機1、温度センサ2、四方弁3、冷媒熱交換器6、第2の流量制御弁7(本発明における室外流量制御弁に相当する)、二方弁8a、8b、室外熱交換器9a、9b、二方弁10a、10b、第1のバイパス配管21、二方弁22a、22b、第2のバイパス配管31、第3の流量制御弁32a、32b(本発明における第2バイパス流量制御弁に相当する)、第3のバイパス配管41、第4の流量制御弁42(本発明におけるインジェクション流量制御弁に相当する)、第1の流路切替装置A、第2の流路切替装置Bが設けられている。室内ユニット200aには、室内熱交換器4a、第1の流量制御弁5a(本発明における流量制御弁に相当する)が設けられている。室内ユニット200bには、室内熱交換器4b、第1の流量制御弁5b(本発明における流量制御弁に相当する)が設けられている。
 インジェクション式圧縮機1は、圧縮途中の冷媒に冷媒が注入可能な圧縮機である。温度センサ2は、インジェクション式圧縮機1から吐出される冷媒の温度を測定するものである。四方弁3は、冷房運転と暖房運転を切り替えるものであり、本発明の冷媒流路切替装置に相当する。冷媒熱交換器6は、主配管を流れる冷媒と第3のバイパス配管41(後述する)を流れる冷媒とを熱交換するものである。
 第1のバイパス配管21は、一端をインジェクション式圧縮機1と四方弁3との間で接続して他端を分岐し、室外熱交換器9a、9bに接続されている配管に並列に接続するものである。第2のバイパス配管31は、一端を第3のバイパス配管41に接続し、他端を第1のバイパス配管21に接続した2台の室外熱交換器9a、9bの配管とは異なる他方の配管に並列に接続したものである。第3のバイパス配管41は、一端を室外熱交換器9a、9bと室内ユニット200a,200bに接続される主配管との間に接続し、他端をインジェクション式圧縮機1のインジェクションポートに接続するものである。
 第1の流量制御弁5a、5bは、室内ユニット200a、200bの間を流れる冷媒の流量を制御するものである。第2の流量制御弁7は、冷媒熱交換器6と、二方弁8a、8bとの間を流れる冷媒の流量を制御する。第3の流量制御弁32a、32bは、第1の流路切替装置Bから第2のバイパス配管31を流れる冷媒の流量を制御する。第4の流量制御弁42は、第3のバイパス配管41を流れる冷媒の流量を調整するものである。
 第1の流路切替装置Aは、二方弁8a、8b、22a、22bから構成される。第2の流路切替装置Bは、二方弁10a、10b、第3の流量制御弁32a、32bから構成される。二方弁8a、8b、10a、10b、22a、22bは、弁の出入口の圧力の大小と関係なく開閉可能であり、冷媒の流路を切り替えるものである。
 二方弁8a、8b、10a、10b、22a、22bは、図5のように構成することで、弁の出入口の圧力の大小と関係なく開閉動作を行うことができ、さらに遮断できる冷媒の方向が一方向のみの二方弁の構造の一例と動作を示す。この二方弁は、主配管M1と主配管M2を接続した弁本体V、弁本体V内の圧力室P1、P2の圧力を調整する圧力調整装置X、および弁本体Vと圧力調整装置Xや冷媒配管に接続される配管T1、T2、T3、T4で構成される。
 弁本体Vは圧力室P1、P2の圧力に応じて左右に移動する移動壁W1、W2と、移動壁W1、W2と連結されて弁座U上を左右に移動し、弁の開閉を行う小型スライド弁Sで構成される。圧力調整装置Xは、小型スライド弁S、および小型スライド弁Sを駆動する小型スライド弁駆動装置Yで構成される。小型スライド弁Sは、配管T1と配管T3とを導通させ、配管T2と配管T4とを導通させる場合(弁を開いた場合)と、配管T1と配管T2とを導通させ、配管T3と配管T4とを導通させる場合(弁を閉じた場合)とのどちらか一方に選択的に切り替えるためのものである。
 配管T1は、一端を圧力調整装置Xに、他端を主配管M1に連結されている。配管T2は、一端を圧力調整装置Xに、他端を圧力室P1に連結されている。配管T3は、一端を圧力調整装置Xに、他端を圧力室P2に連結されている。配管T4は、空気調和装置において常に低圧となる箇所、たとえば低圧配管、インジェクション式圧縮機1の吸入配管やアキュムレータなどに接続される。
 このような構成の二方弁では、図5の(a)のように、小型スライド弁駆動装置Yで、小型スライド弁Sを左方向に移動させた場合、配管T1と配管T3が導通し、配管T2と配管T4が導通する。これにより、圧力室P1の圧力が圧力室P2の圧力より小さくなり、小型スライド弁Sが左に移動し、弁が開く。
 また、図5の(b)のように、小型スライド弁駆動装置Yで、小型スライド弁Sを右方向に移動させた場合、配管T1と配管T2が導通し、配管T3と配管T4が導通する。これにより、圧力室P1の圧力が圧力室P2の圧力より大きくなり、小型スライド弁Sが右に移動し、弁が閉じる。
 なお、図1に示すように本実施の形態1では、二方弁10a、10bは室外熱交換器9a、9bから四方弁3へ向かう方向(紙面上方向)、二方弁8a、8bは室外熱交換器9a、9bから主配管を介して室外ユニット100から流出する方向(紙面下方向)にのみ冷媒を遮断する。なお、図中の弁横の矢印は遮断できる冷媒の方向を示している。
 次に、この装置の冷媒の流れを示す図2~図4およびp-h線図(冷媒の圧力とエンタルピとの関係を示す線図)である図7~図9に添って説明する。図2~図4において、太実線は運転時の冷媒の流れを示し、括弧内の数字[i](i=1,2,...)は、図7~図9の線図上のi点(冷媒の各状態)に対応する配管部分を示す。
 図2では室内熱交換器で室内の空気を冷却し室外熱交換器で外気へ放熱することによって冷房を行う場合(以下では全冷房運転と称する)の流れを説明する。
 図3では室内熱交換器で室内の空気を加熱し室外熱交換器で外気から吸熱することによって暖房を行う場合(以下では全暖房運転と称する)の流れを説明する。
 図4では、室内熱交換器で室内の空気を加熱し、室外熱交換器を構成する一方の並列熱交換器の1台(図1では室外熱交換器9a)では冷媒を蒸発させ外気から熱を吸熱し、他方の並列熱交換器(図1では室外熱交換器9b)では室外熱交換器9bに発生した霜を融かすために霜を加熱する場合(以下では暖房デフロスト同時運転と称する)の流れを説明する。なお、これらの暖房運転時において室内熱交換器は凝縮器として機能し、室外熱交換器は蒸発器として機能する。後述の実施の形態においても同様である。
<全冷房運転>
 図2は、本発明の実施の形態1に係る空気調和装置の全冷房運転時の冷媒の流れを示す図である。図7は、本発明の実施の形態1に係る空気調和装置の全冷房運転時における冷媒の圧力とエンタルピとの関係を示す図である。以下、図2及び図7を用いて全冷房運転の流れを説明する。
 全冷房運転時は、四方弁3は図2の破線で示される状態に切り換えられている。また、第2の流路切替装置Bは、四方弁3を出た冷媒が室外熱交換器9a、9bの両方に分岐して流入し、室外熱交換器9a、9bを出た冷媒が主配管を通り、冷媒熱交換器6、室内ユニット200a、200bに供給されるように切り替えられている。
 まず、低温低圧のガス冷媒がインジェクション式圧縮機1により圧縮される。このインジェクション式圧縮機1内での冷媒の変化は、インジェクション式圧縮機1の効率を考慮して、わずかにエンタルピが増加する傾斜線(点[1]-[2])で表される。
 そして、圧縮途中の冷媒と第3のバイパス配管41から流入する冷媒が合流する。合流の際の冷媒の変化は、ほぼ圧力一定の状態で行われ水平線(点[2]-[3]、点[9]-[3])で表される。そして、さらに圧縮され、高温高圧のガス冷媒となって吐出される。
 このインジェクション式圧縮機1内での冷媒の変化は、インジェクション式圧縮機1の効率を考慮して、わずかにエンタルピが増加する傾斜線(点[3]-[4])で表される。
 インジェクション式圧縮機1から吐出された高温高圧のガス冷媒は四方弁3を通過し、冷媒が分岐された後で第2の流路切替装置Bを通り、分岐された各々の冷媒が室外熱交換器9a、9bに流入し、ここで室外の外気と熱交換して凝縮液化、室外へ放熱する。室外熱交換器9a、9bでの冷媒の変化は、ほぼ圧力一定のもとで行われるが、室外熱交換器9a、9bの圧力損失を考慮して、p-h線図にてやや傾いた水平線に近い線(点[4]→点[5])で表される。
 そして、この液状態となった各々の冷媒は、第1の流路切替装置Aを通った後、合流し、主配管を通って、冷媒熱交換器6で第3のバイパス配管41を流れる冷媒によって冷却されて温度が低下する。冷媒熱交換器6での冷媒の変化は、ほぼ圧力一定のもとで行われるが、冷媒熱交換器6の圧力損失を考慮して、p-h線図にてやや傾いた水平線に近い線(点[5]→点[6])で表される。
 冷媒熱交換器6を出た冷媒は、一部が第3のバイパス配管41に流入し、残りは室内ユニット200a、200bに流入する。室内ユニット200a、200bに流入した冷媒は分岐し、各々が第1の流量制御弁5a、5bに流入し低圧の気液二相状態まで減圧される。第1の流量制御弁5a、5bでの冷媒の変化は、エンタルピ一定のもとで行われるものであり、p-h線図にて垂直線(点[6]→点[7])で表される。
 そして、低圧まで減圧された各々の冷媒は、それぞれ室内熱交換器4a、4bに流入し、室内の空気と熱交換して蒸発し、室内を冷房する。室内熱交換器4a、4bでの冷媒の変化は、ほぼ圧力一定のもとで行われるが、室内熱交換器4a、4bの圧力損失を考慮して、p-h線図にてやや傾いた水平線に近い線(点[7]→点[1])で表される。
 室内熱交換器4a、4bを出た各々の低温低圧のガス状態の冷媒は合流し、室内ユニット200a、200bを出て主配管を通って室外ユニット100に流入し、再び四方弁3を通り、インジェクション式圧縮機1に吸入される。以上のようにして、冷媒が主回路を循環することにより冷房運転を行う。
 一方、第3のバイパス配管41に流入した冷媒は、第4の流量制御弁42によって減圧され、低温の気液二相状態に変化する。第4の流量制御弁42での冷媒の変化は、エンタルピ一定のもとで行われるものであり、p-h線図にて垂直線(点[6]→点[8])で表される。
 冷媒熱交換器6に流入した冷媒は、主配管を流れる冷媒によって加熱され、蒸発する。冷媒熱交換器6での冷媒の変化は、ほぼ圧力一定のもとで行われるが、冷媒熱交換器6の圧力損失を考慮して、p-h線図にてやや傾いた水平線に近い線(点[8]→点[9])で表される。
<全暖房運転>
 図3は、本発明の実施の形態1に係る空気調和装置の全暖房運転時の冷媒の流れを示す図である。図8は、本発明の実施の形態1に係る空気調和装置の全暖房運転時における冷媒の圧力とエンタルピとの関係を示す図である。以下、図3及び図8を用いて、全暖房運転の流れを説明する。
 全暖房運転時は、四方弁3は図3の実線で示される状態に切り換えられている。また、第1の流路切替装置A、第2の流路切替装置Bは、室内ユニット200a、200bから室外ユニット100へ流入した冷媒が分岐し、室外熱交換器9a、9bの両方に送られ、その冷媒が合流し、四方弁3を通り、インジェクション式圧縮機1に吸入されるように切り替えられている。
 まず、低温低圧のガス冷媒がインジェクション式圧縮機1により圧縮される。このインジェクション式圧縮機1内での冷媒の変化は、インジェクション式圧縮機1の効率を考慮して、わずかにエンタルピが増加する傾斜線(点[1]-[2])で表される。
 そして、圧縮途中の冷媒と第3のバイパス配管41から流入する冷媒と合流する。合流の際の冷媒の変化は、ほぼ圧力一定の状態で行われ水平線(点[2]-[3]、点[10]-[3])で表される。そして、さらに圧縮され、高温高圧のガス冷媒となって吐出される。
 このインジェクション式圧縮機1内での冷媒の変化は、インジェクション式圧縮機1の効率を考慮して、わずかにエンタルピが増加する傾斜線(点[3]-[4])で表される。インジェクション式圧縮機1から吐出された高温高圧のガス冷媒は四方弁3を通過し、分岐した後、主配管を通り室内ユニット200a、200bに流入し、室内の空気と熱交換して凝縮液化し、室内を暖房する。
 室内熱交換器4a、4bでの冷媒の変化は、ほぼ圧力一定のもとで行われるが、室内熱交換器4a、4bの圧力損失を考慮して、p-h線図にてやや傾いた水平線に近い線(点[4]→点[5])で表される。
 そして、この液状態となった各々の冷媒は、第1の流量制御弁5a、5bで減圧される。第1の流量制御弁5a、5bでの冷媒の変化は、エンタルピ一定のもとで行われるものであり、p-h線図にて垂直線(点[5]→点[6])で表される。
 減圧された冷媒は合流し、主配管を通って、一部が第3のバイパス配管41に流入し、残りは冷媒熱交換器6に流入する。冷媒熱交換器6に流入した冷媒は、第3のバイパス配管41を流れる冷媒によって冷却され温度が低下する。冷媒熱交換器6での冷媒の変化は、ほぼ圧力一定のもとで行われるが、冷媒熱交換器6の圧力損失を考慮して、p-h線図にてやや傾いた水平線に近い線(点[6]→点[7])で表される。
 冷媒熱交換器6を出た冷媒は、第2の流量制御弁7に流入し低圧の気液二相状態まで減圧される。第2の流量制御弁7での冷媒の変化は、エンタルピ一定のもとで行われるものであり、p-h線図にて垂直線(点[7]→点[8])で表される。
 そして、低圧まで減圧された各々の冷媒は、分岐した後、室外熱交換器9a、9bに流入し、室外の外気と熱交換して蒸発し、室外へ放熱する。室外熱交換器9a、9bでの冷媒の変化は、ほぼ圧力一定のもとで行われるが、室外熱交換器9a、9bの圧力損失を考慮して、p-h線図にてやや傾いた水平線に近い線(点[8]→点[1])で表される。 室外熱交換器9a、9bを出た各々の低温低圧のガス状態の冷媒は合流し、再び四方弁3を通り、インジェクション式圧縮機1に吸入される。以上のようにして冷媒が主回路を循環することにより暖房運転を行う。
 一方、第3のバイパス配管41に流入した冷媒は、第4の流量制御弁42によって減圧され、低温の気液二相状態に変化する。第4の流量制御弁42での冷媒の変化は、エンタルピ一定のもとで行われるものであり、p-h線図にて垂直線(点[5]→点[9])で表される。
 冷媒熱交換器6に流入した冷媒は、主配管を流れる冷媒によって加熱され、蒸発する。冷媒熱交換器6での冷媒の変化は、ほぼ圧力一定のもとで行われるが、冷媒熱交換器6の圧力損失を考慮して、p-h線図にてやや傾いた水平線に近い線(点[9]→点[10])で表される。この運転では、室外の空気温度が低い場合、室外熱交換器9a、9bに霜が発生し、連続して運転するとさらに霜が多くなり熱交換量が低下する。
<暖房デフロスト同時運転>
 次に、暖房デフロスト同時運転(室外熱交換器9bをデフロスト対象とした暖房運転の場合)の流れを、図4と図9に従って説明する。暖房デフロスト同時運転時は、四方弁3は図4の実線で示されるように全暖房運転と同様の状態に切り換えられている。
 また、第1の流路切替装置Aは、室内ユニット200a、200bから室外ユニット100へ流入した冷媒が室外熱交換器9aのみに送られ、四方弁3を通過し、インジェクション式圧縮機1に吸入されるように切り替えられる。
 インジェクション式圧縮機1から吐出された一部の冷媒は第1のバイパス配管21を通過し、第1の流路切替装置Aを通過して室外熱交換器9bに流入して第2のバイパス配管31を通過して、第3のバイパス配管41の冷媒と合流するように、切り替えられる。
 まず、低温低圧のガス冷媒がインジェクション式圧縮機1により圧縮される。このインジェクション式圧縮機1内での冷媒の変化は、インジェクション式圧縮機1の効率を考慮して、わずかにエンタルピが増加する傾斜線(点[1]-[2])で表される。
 次に、圧縮途中の冷媒と第3のバイパス配管41から流入する冷媒と合流する。合流の際の冷媒の変化は、ほぼ圧力一定の状態で行われ、水平線(点[2]-[3]、点[11]-[3])で表される。
 そして、さらに冷媒が圧縮され、高温高圧のガス冷媒となって吐出される。このインジェクション式圧縮機1内での冷媒の変化は、インジェクション式圧縮機1の効率を考慮して、わずかにエンタルピが増加する傾斜線(点[3]-[4])で表される。
 インジェクション式圧縮機1から吐出された高温高圧のガス冷媒の一部は第1のバイパス配管21に流入し、残りは四方弁3を通過し、主配管を通り室内ユニット200a,200bに流入し、室内の空気と熱交換して凝縮液化し、室内を暖房する。室内熱交換器4a、4bでの冷媒の変化は、ほぼ圧力一定のもとで行われるが、室内熱交換器4a、4bの圧力損失を考慮して、p-h線図にてやや傾いた水平線に近い線(点[4]→点[5])で表される。
 そして、この液状態となった各々の冷媒は、第1の流量制御弁5a、5bを通り、減圧される。第1の流量制御弁5a、5bでの冷媒の変化は、エンタルピ一定のもとで行われるものであり、p-h線図にて垂直線(点[5]→点[6])で表される。減圧された冷媒は合流し、主配管を通って、一部が第3のバイパス配管41に流入し、残りは冷媒熱交換器6に流入する。
 冷媒熱交換器6に流入した冷媒は、第3のバイパス配管41を流れる冷媒によって冷却されて温度が低下する。冷媒熱交換器6での冷媒の変化は、ほぼ圧力一定のもとで行われるが、冷媒熱交換器6の圧力損失を考慮して、p-h線図にてやや傾いた水平線に近い線(点[6]→点[7])で表される。
 冷媒熱交換器6を出た冷媒は、第2の流量制御弁7に流入し、低圧の気液二相状態まで減圧される。第2の流量制御弁7での冷媒の変化は、エンタルピ一定のもとで行われるものであり、p-h線図にて垂直線(点[7]→点[8])で表される。
 そして、低圧まで減圧された各々の冷媒は、第1の流路切替装置Aを通り、室外熱交換器9aに流入し、室外の外気と熱交換して蒸発し、室外へ放熱する。室外熱交換器9aでの冷媒の変化は、ほぼ圧力一定のもとで行われるが、室外熱交換器9aの圧力損失を考慮して、p-h線図にてやや傾いた水平線に近い線(点[8]→点[1])で表される。室外熱交換器9aを出た低温低圧のガス状態の冷媒は、再び四方弁3を通り、インジェクション式圧縮機1に吸入される。以上のようにして冷媒が主回路を循環することにより暖房運転を行う。
 一方、第3のバイパス配管41に流入した冷媒は、第4の流量制御弁42によって減圧され、低温の気液二相状態に変化する。第4の流量制御弁42での冷媒の変化は、エンタルピ一定のもとで行われるものであり、p-h線図にて垂直線(点[6]→点[9])で表される。
 そして、第4の流量制御弁42を通過した冷媒は、第2のバイパス配管31から流入した冷媒と合流する。この合流の際の冷媒の変化は、ほぼ圧力一定の状態で行われp-h線図にて水平線(点[9]-点[10]、点[13]-点[10])で表される。
 合流した冷媒は、冷媒熱交換器6に流入し、主配管を流れる冷媒によって加熱され、蒸発する。冷媒熱交換器6での冷媒の変化は、ほぼ圧力一定のもとで行われるが、冷媒熱交換器の圧力損失を考慮して、p-h線図にてやや傾いた水平線に近い線(点[10]→点[11])で表される。
 また、第1のバイパス配管21に流入した冷媒は、第1の流路切替装置Aを通り、室外熱交換器9bで発生した霜を融かしながら凝縮する。室外熱交換器9bでの冷媒の変化は、ほぼ圧力一定のもとで行われるが、室外熱交換器9bの圧力損失を考慮して、p-h線図にてやや傾いた水平線に近い線(点[4]→点[12])で表される。
 凝縮した冷媒は、第3の流量制御弁32bで減圧され、気液二相状態の冷媒に変化する。第3の流量制御弁32bでの冷媒の変化は、エンタルピ一定のもとで行われるものであり、p-h線図にて垂直線(点[12]→点[13])で表される。
 減圧された冷媒は、第2のバイパス配管31を通り、第3のバイパス配管41を流れる冷媒と合流する。
 以上のように、この運転モードでは、室内の暖房を行いながら、室外熱交換器9bの霜を融かすことができる。また、室外熱交換器9aをデフロスト対象とした暖房運転の場合には、第1の流路切替装置A、第2の流路切替装置Bを切り替えて、室外熱交換器9aで霜を融かし、室外熱交換器9bで室外に放熱する運転を行う。
<インジェクション式圧縮機1の吐出温度の調整方法>
 次に、インジェクション式圧縮機1の吐出温度の調整方法を説明する。温度センサ2によって測定されるインジェクション式圧縮機1の吐出温度が、インジェクション式圧縮機1の信頼性を確保するための上限温度以上である場合には第4の流量制御弁42の開度を大きくし、上限温度を下回る場合には第4の流量制御弁42の開度を小さくする。
 低外気温度での暖房運転時には、インジェクション式圧縮機1の吐出温度が上昇することから、このようにインジェクション式圧縮機1の吐出温度をチェックすることでインジェクション式圧縮機1の吐出温度の異常上昇を防止している。
 以上のように、本実施の形態1の空気調和装置1000では、全冷房運転、全暖房運転および暖房デフロスト同時運転の3つの運転モードがあり、室外熱交換器9bで霜が発生し、風量の低下や蒸発温度の低下などによる性能低下を生じ始めた場合に、暖房デフロスト同時運転行い、連続して室内の暖房を行うことができる。
 また、本実施の形態1の空気調和装置1000では、デフロストを行うための冷媒をインジェクション式圧縮機1の吸入側ではなくインジェクション式圧縮機1での圧縮過程の途中にインジェクションするようにしたため、デフロストを行うための冷媒の圧力を吸入圧力まで下げる必要がない。よって、インジェクション式圧縮機1では、暖房を行うための主回路を循環する冷媒だけを低圧から高圧に昇圧するだけでよく、インジェクションされた中間圧の気液二相状態の冷媒については中間圧から高圧に昇圧すればよい。したがって、インジェクション式圧縮機1の仕事量が減少し、ヒートポンプの効率(暖房能力/インジェクション式圧縮機1仕事量)が向上する。その結果、省エネ効果にも寄与できる。
 さらに、本実施の形態1の空気調和装置1000では、インジェクションポートからインジェクション式圧縮機1内に流入する気液二相状態の冷媒は、圧縮途中の中間圧のガス冷媒によって加熱され、インジェクション式圧縮機1内部でガス状態に変化するため、ヒートポンプの信頼性が向上する。また、上記実施の形態1では、デフロストに利用される冷媒のエンタルピ差(図9中の点[4]→点[12]の線分長さ)を、従来の空気調和装置(図8中の点[6]-点[7]の線分の長さ)より大きくすることができ、少量の冷媒流量でデフロストを行うことができ暖房能力が向上する。
 さらに、本実施の形態1の空気調和装置1000では、インジェクション式圧縮機1の冷媒の吐出温度を測定する温度センサ2を設け、吐出温度に応じて第4の流量制御弁42を制御するようにしたので、低外気条件での吐出温度の上昇を抑制することができ、インジェクション式圧縮機1の信頼性が向上する。
 さらに、本実施の形態1の空気調和装置1000では、暖房運転において、デフロスト対象の室外熱交換器9bは、外気の流れ方向と並行する方向に冷媒を流して熱交換し、デフロスト対象でない室外熱交換器9aは、外気の流れ方向と対向する方向に冷媒を流して熱交換する。以下、図6を用いて、暖房デフロスト同時運転における冷媒の流れを説明する。
 図6に示す室外熱交換器9a、9bは複数の伝熱管が複数のフィンと直交する方向に貫通するフィン-チューブ型熱交換器であり、空気の流れ方向に2列、上下に2分割されている構成を示している。室外熱交換器9aでは、空気の流れに対して下流側の列から気液二相状態の低温低圧の冷媒が流入し、空気へ放熱しながら蒸発し、上流側の列に移動し、さらに蒸発して室外熱交換器9aから流出する。一方、デフロストを行っている室外熱交換器9bでは、空気の流れの上流側の列から高温高圧の冷媒が流入し、霜を加熱、融かしながら凝縮し、下流側の列に移動し、さらに凝縮し、室外熱交換器9bから流出する。デフロスト対象でない室外熱交換器9aでは空気と冷媒との温度差を大きくとれ、効率的な運転ができ、デフロスト対象の室外熱交換器9bでは最も着霜量が多い空気の流れの上流側に、より温度の高い冷媒を供給でき、効率よく霜を融かすことができる。
 また、本実施の形態1の空気調和装置1000では、弁の出入口の圧力の大小と関係なく開閉動作を行うことができ、冷媒の流れを遮断する方向が一方向に限られる二方弁を用いているため、一方向のみの冷媒の流れだけを遮断することができる内部構造が簡単な二方弁を用いることができる。
 また、本実施の形態1の空気調和装置1000では、室外熱交換器9a、9bから主配管へ流出する冷媒の方向と二方弁で遮断できる方向とが一致するように、複数台の室外熱交換器9a、9bのそれぞれに第1の流路切替装置Aおよび第2の流路切替装置Bを設置しており、すべての運転モードで第1の流路切替装置Aと第2の流路切替装置Bにおける冷媒を漏洩なく遮断することができる。
 また、本実施の形態1の空気調和装置1000では、第2のバイパス配管31に第3の流量制御弁32a、32bを設けた構成について説明したが、第2のバイパス配管31の分岐されている2本の配管それぞれに2台の二方弁、合流した後の1本の配管に1台の流量制御弁で構成してもよい。この構成によれば、デフロスト対象の室外熱交換器9bに流入する冷媒の温度が低下し、デフロスト対象の室外熱交換器9b内の冷媒の温度変化を小さくでき、除霜むらを小さくでき、除霜効率が向上する。
 また、本実施の形態1の空気調和装置1000では、一端を室外熱交換器9a、9bと第2の流量制御弁7との間に接続し、他端をインジェクション式圧縮機1のインジェクションポートに接続する第3のバイパス配管41、室外熱交換器9a、9bと第2の流量制御弁7の間を流れる冷媒と、第3のバイパス配管41を流れる冷媒とを熱交換する冷媒熱交換器6、第3のバイパス配管41を流れる冷媒の流量を制御する第4の流量制御弁42とを設けている。また、第2のバイパス配管31の他端を第3のバイパス配管41の、冷媒熱交換器6の前段に接続している。そのため、冷媒熱交換器6においてデフロスト対象の室外熱交換器9bから流出した冷媒と主配管を流れる冷媒とを熱交換することができ、効率が向上する。
 なお、本実施の形態1の空気調和装置1000では、暖房デフロスト同時運転の際のデフロストを行う順番について説明していないが、図6に示す熱交換器の場合、上側の室外熱交換器9aでデフロスト運転を行った後、室外熱交換器9bでデフロスト運転を行ってもよい。この構成によれば、上方の室外熱交換器(図6では室外熱交換器9a)で除霜後の水が下方の室外熱交換器(図6では室外熱交換器9b)で再氷結した場合においても、霜を残すことなく、デフロスト運転ができ、空気調和装置の信頼性が向上する。
実施の形態2.
 以下、図10~図12を参照して本発明の実施の形態2について説明する。なお、同一の箇所には同一符号を付す。図10は、本発明の実施の形態2に係る空気調和装置の冷媒回路を示す図である。図11は、本発明の実施の形態2に係る空気調和装置の暖房デフロスト同時運転時の冷媒の流れを示す図である。図12は、本発明の実施の形態2によるヒートポンプの暖房デフロスト同時運転時における冷媒の圧力とエンタルピとの関係を示す図である。以下、図10を用いて、空気調和装置1000について説明する。
 空気調和装置1000は、室外ユニット100と、室内ユニット200a、200bと、それらを冷媒が循環するように接続する主配管とを備えており、1台の室外ユニットに2台の室内ユニットが接続されたマルチ型の空調機である。
 室外ユニット100には、第2のバイパス配管31に接続されている二方弁51a、51bと、第1のバイパス配管21に第5の流量制御弁50(本発明における第1バイパス流量制御弁に相当する)が設けられている。また、インジェクション式圧縮機1の吐出側に第2の圧力センサ56が設けられている。また、冷媒熱交換器6と第1の流量制御弁5a、5bの間(第3のバイパス配管41への分岐点よりも第1の流量制御弁5a、5b側)に第1の圧力センサ55が設けられている。
 二方弁22a、22b、51a、51bは、図5に示す実施形態1と同様の弁、またはモータによって弁の開閉動作を行なう電磁弁で構成される。
 なお、本実施の形態2では、実施の形態1と同様に、二方弁8a、8b、10a、10b、22a、22b、51a、51b、は図中の矢印の方向のみについて冷媒を遮断する。
 逆止弁52は、二方弁51a、51bが設けられている部分と、第2のバイパス配管31と第3のバイパス配管41が接続されている部分との間に設けられている。逆止弁52は、第2のバイパス配管31と第3のバイパス配管41が接続されている部分から二方弁51a、51bの方向に向かって冷媒が流れないようにするためのものである。第2の圧力センサ56は、インジェクション式圧縮機1の冷媒の吐出圧力を測定するものである。第1の圧力センサ55は、第1の流量制御弁5a、5bと冷媒熱交換器6との間(第3のバイパス配管41への分岐点よりも第1の流量制御弁5a、5b側)の圧力を測定するものである。
 その他の構成については、実施の形態1と同様につき、説明を省略する。
 次に、この装置の冷媒の流れを示す図11およびp-h線図(冷媒の圧力とエンタルピとの関係を示す線図)である図12に添って説明する。図11において、太実線は運転時の冷媒の流れを示し、括弧内の数字[i](i=1,2,...)は、図12の線図上のi点(冷媒の各状態)に対応する配管部分を示す。
 図11では、室内熱交換器4a、4bで室内の空気を加熱し、室外熱交換器を構成する一方の並列熱交換器の1台(図11では室外熱交換器9a)では冷媒を蒸発させ外気から熱を吸熱し、他方の並列熱交換器(図11では室外熱交換器9b)では室外熱交換器9bに発生した霜を融かすために霜を加熱する場合(以下では暖房デフロスト同時運転と称する)の流れを説明する。なお、暖房運転時においては、室内熱交換器4a、4bは凝縮器として機能し、室外熱交換器9a、9bは蒸発器として機能する。後述の実施の形態においても同様である。
 他の運転モード、冷房運転、暖房運転については、実施の形態1と同様につき、説明を省略する。
<暖房デフロスト同時運転>
 次に、暖房デフロスト同時運転(室外熱交換器9bをデフロスト対象とした暖房運転の場合)の流れを、図11と図12に従って説明する。暖房デフロスト同時運転時は、四方弁3は図11の実線で示されるように全暖房運転と同様の状態に切り換えられている。
 また、第1の流路切替装置Aは、室内ユニット200a、200bから室外ユニット100へ流入した冷媒が室外熱交換器9aのみに送られ、四方弁3を通過し、インジェクション式圧縮機1に吸入されるように切り替えられる。
 インジェクション式圧縮機1から吐出された一部の冷媒は第1のバイパス配管21を通過し、第1の流路切替装置Aを通過して室外熱交換器9bに流入して第2のバイパス配管31を通過して、第3のバイパス配管41の冷媒と合流するように、切り替えられる。
 まず、低温低圧のガス冷媒がインジェクション式圧縮機1により圧縮される。このインジェクション式圧縮機1内での冷媒の変化は、インジェクション式圧縮機1の効率を考慮して、わずかにエンタルピが増加する傾斜線(点[1]-[2])で表される。
 次に、圧縮途中の冷媒と第3のバイパス配管41から流入する冷媒と合流する。合流の際の冷媒の変化は、ほぼ圧力一定の状態で行われ、水平線(点[2]-[3]、点[11]-[3])で表される。
 そして、さらに冷媒が圧縮され、高温高圧のガス冷媒となって吐出される。このインジェクション式圧縮機1内での冷媒の変化は、インジェクション式圧縮機1の効率を考慮して、わずかにエンタルピが増加する傾斜線(点[3]-[4])で表される。
 インジェクション式圧縮機1から吐出された高温高圧のガス冷媒の一部は第1のバイパス配管21に流入し、残りは四方弁3を通過し、主配管を通り室内ユニット200a,200bに流入し、室内の空気と熱交換して凝縮液化し、室内を暖房する。室内熱交換器4a、4bでの冷媒の変化は、ほぼ圧力一定のもとで行われるが、室内熱交換器4a、4bの圧力損失を考慮して、p-h線図にてやや傾いた水平線に近い線(点[4]→点[5])で表される。
 そして、この液状態となった各々の冷媒は、第1の流量制御弁5a、5bを通り、減圧される。第1の流量制御弁5a、5bでの冷媒の変化は、エンタルピ一定のもとで行われるものであり、p-h線図にて垂直線(点[5]→点[6])で表される。減圧された冷媒は合流し、主配管を通って、一部が第3のバイパス配管41に流入し、残りは冷媒熱交換器6に流入する。
 冷媒熱交換器6に流入した冷媒は、第3のバイパス配管41を流れる冷媒によって冷却されて温度が低下する。冷媒熱交換器6での冷媒の変化は、ほぼ圧力一定のもとで行われるが、冷媒熱交換器6の圧力損失を考慮して、p-h線図にてやや傾いた水平線に近い線(点[6]→点[7])で表される。
 冷媒熱交換器6を出た冷媒は、第2の流量制御弁7に流入し、低圧の気液二相状態まで減圧される。第2の流量制御弁7での冷媒の変化は、エンタルピ一定のもとで行われるものであり、p-h線図にて垂直線(点[7]→点[8])で表される。
 そして、低圧まで減圧された各々の冷媒は、第1の流路切替装置Aを通り、室外熱交換器9aに流入し、室外の外気と熱交換して蒸発し、室外へ放熱する。室外熱交換器9aでの冷媒の変化は、ほぼ圧力一定のもとで行われるが、室外熱交換器9aの圧力損失を考慮して、p-h線図にてやや傾いた水平線に近い線(点[8]→点[1])で表される。室外熱交換器9aを出た低温低圧のガス状態の冷媒は、再び四方弁3を通り、インジェクション式圧縮機1に吸入される。以上のようにして冷媒が主回路を循環することにより暖房運転を行う。
 一方、第3のバイパス配管41に流入した冷媒は、第4の流量制御弁42によって減圧され、低温の気液二相状態に変化する。第4の流量制御弁42での冷媒の変化は、エンタルピ一定のもとで行われるものであり、p-h線図にて垂直線(点[6]→点[9])で表される。
 そして、第4の流量制御弁42を通過した冷媒は、第2のバイパス配管31から流入した冷媒と合流する。この合流の際の冷媒の変化は、ほぼ圧力一定の状態で行われp-h線図にて水平線(点[9]-点[10]、点[13]-点[10])で表される。
 合流した冷媒は、冷媒熱交換器6に流入し、主配管を流れる冷媒によって加熱され、蒸発する。冷媒熱交換器6での冷媒の変化は、ほぼ圧力一定のもとで行われるが、冷媒熱交換器の圧力損失を考慮して、p-h線図にてやや傾いた水平線に近い線(点[10]→点[11])で表される。
 また、第1のバイパス配管21に流入した冷媒は、第5の流量制御弁50で減圧される。第5の流量制御弁50での冷媒の変化は、エンタルピ一定のもとで行なわれるものであり、p-h線図にて垂直線(点[4]→点[12])で表される。減圧された冷媒は第1の流路切替装置Aを通り、室外熱交換器9bで発生した霜を融かしながら凝縮する。室外熱交換器9bでの冷媒の変化は、ほぼ圧力一定のもとで行われるが、室外熱交換器9bの圧力損失を考慮して、p-h線図にてやや傾いた水平線に近い線(点[12]→点[13])で表される。
 凝縮した冷媒は、第2のバイパス配管31を通り、第3のバイパス配管41を流れる冷媒と合流する。
 以上のように、この運転モードでは、室内の暖房を行いながら、室外熱交換器9bの霜を融かすことができる。また、室外熱交換器9aをデフロスト対象とした暖房運転の場合には、第1の流路切替装置A、第2の流路切替装置Bを切り替えて、室外熱交換器9aで霜を融かし、室外熱交換器9bで室外に放熱する運転を行う。
 インジェクション式圧縮機1の吐出温度の調整方法は、実施の形態1と同様につき、説明を省略する。
 以上のように、本実施の形態2の空気調和装置1000では、実施の形態1と同様の効果とともに、デフロスト対象の室外熱交換器9bに流入する冷媒の温度および温度変化を低くでき、除霜むらを小さくでき、除霜効率が向上する。
 さらに、本実施の形態2の空気調和装置1000では、インジェクション式圧縮機1の冷媒の吐出圧力を測定する第2の圧力センサ56を設け、暖房デフロスト同時運転の際に、所定の吐出圧力になるように第5の流量制御弁50を制御するようにしたので、室内熱交換器4a、4bの暖房能力を維持することができる。具体的には、所定の圧力より吐出圧力が低下した場合は、第5の流量制御弁50の開度を小さくし、所定の圧力より吐出圧力が上昇した場合には、第5の流量制御弁50の開度を大きくする。
 さらに、本実施の形態2の空気調和装置1000では、第1の流量制御弁5a、5bと冷媒熱交換器6との間(第3のバイパス配管41への分岐点よりも第1の流量制御弁5a、5b側)の圧力を測定する第1の圧力センサ55を設け、その圧力に応じて第2の流量制御弁7を制御するようにしたので、第4の流量制御弁42と冷媒熱交換器6に流入する冷媒の圧力を所定の値に制御でき、冷媒熱交換器6、室外熱交換器9a、9bでの熱交換量を制御でき、運転が安定する。具体的には、所定の圧力より圧力が低下した場合は、第2の流量制御弁7の開度を大きくし、所定の圧力より圧力が上昇した場合には、第2の流量制御弁7の開度を小さくする。
 1 インジェクション式圧縮機、2 温度センサ、3 四方弁、4a、4b 室内熱交換器、5a、5b 第1の流量制御弁、6 冷媒熱交換器、7 第2の流量制御弁、8a、8b 二方弁、9a、9b 室外熱交換器、10a、10b 二方弁、21 第1のバイパス配管、22a、22b 二方弁、31 第2のバイパス配管、32a、32b 第3の流量制御弁、41 第3のバイパス配管、42 第4の流量制御弁、50 第5の流量制御弁、51a、51b 二方弁、52 逆止弁、55 第1の圧力センサ、56 第2の圧力センサ、100 室外ユニット、200a、200b 室内ユニット、1000 空気調和装置、A 第1の流路切替装置、B 第2の流路切替装置、M1、M2 主配管、P1、P2 圧力室、S 小型スライド弁、T1、T2、T3、T4 配管、U 弁座、V 弁本体、W1、W2 移動壁、X 圧力調整装置、Y 小型スライド弁駆動装置。

Claims (13)

  1.  室内ユニットと室外ユニットとの間を冷媒が循環するように接続する主配管を備えた空気調和装置において、
     室内熱交換器と、
     前記室内熱交換器を流れる冷媒の流量を制御する流量制御弁と、
     圧縮途中の冷媒に冷媒を注入可能なインジェクションポートを備えたインジェクション式圧縮機と、
     冷房運転と暖房運転を切り替える冷媒流路切替装置と、
     並列接続された複数の室外熱交換器と、
     一端が前記インジェクション式圧縮機と前記冷媒流路切替装置との間に接続され、他端が前記複数の室外熱交換器の出入口側の一方に接続されている第1のバイパス配管と、
     一端が前記インジェクションポート又は前記インジェクションポートにつながる配管に接続され、他端が前記複数の室外熱交換器の出入口側の他方に接続されている第2のバイパス配管と、
     冷媒の流路を、前記主配管または前記第1のバイパス配管のいずれかに切り替える第1の流路切替装置と、
     冷媒の流路を、前記主配管または前記第2のバイパス配管のいずれかに切り替える第2の流路切替装置とを備え、
     前記複数の室外熱交換器のいずれかの室外熱交換器の着霜を除去するデフロスト運転時に、
     前記第1の流路切替装置により、前記インジェクション式圧縮機から吐出された冷媒の一部を前記第1のバイパス配管を通過させ、前記複数の室外熱交換器のうち、デフロスト対象の室外熱交換器に供給し、
     前記第2の流路切替装置により、デフロスト対象の室外熱交換器に供給された冷媒の一部を前記第2のバイパス配管に流入させる
     空気調和装置。
  2.  暖房運転において、
     前記複数の室外熱交換器のうち、デフロスト対象の室外熱交換器は、外気の流れ方向と並行する方向に冷媒を流して熱交換し、
     前記複数の室外熱交換器のうち、デフロスト対象でない室外熱交換器は、外気の流れ方向と対向する方向に冷媒を流して熱交換する
     請求項1に記載の空気調和装置。
  3.  前記第1の流路切替装置および前記第2の流路切替装置は、
     弁の出入口の圧力の大小と関係なく開閉可能な二方弁で構成される
     請求項1または2に記載の空気調和装置。
  4.  前記第1の流路切替装置および前記第2の流路切替装置は、
     冷媒の流れを遮断する方向が一方向に限られる
     請求項3に記載の空気調和装置。
  5.  前記第1の流路切替装置および前記第2の流路切替装置は、
     冷媒が前記室外熱交換器から前記主配管へ流出する方向の流れを遮断する
     請求項4に記載の空気調和装置。
  6.  前記第2のバイパス配管に、冷媒の流量を制御する第2バイパス流量制御弁を備えた
     請求項1~5のいずれか一項に記載の空気調和装置。
  7.  一端を前記室外熱交換器と前記流量制御弁との間に接続し、他端を前記インジェクションポートに接続する第3のバイパス配管と、
     前記室外熱交換器と前記流量制御弁の間を流れる冷媒と、前記第3のバイパス配管を流れる冷媒の熱交換を行う冷媒熱交換器と、
     前記第3のバイパス配管を流れる冷媒の流量を制御するインジェクション流量制御弁とを備え、
     前記第2のバイパス配管の他端は前記第3のバイパス配管に接続されている
     請求項1~6のいずれか一項に記載の空気調和装置。
  8.  前記第2のバイパス配管の他端が前記冷媒熱交換器の前段で前記第3のバイパス配管に接続されている
     請求項7に記載の空気調和装置。
  9.  前記インジェクション式圧縮機から吐出される冷媒の温度を測定する温度センサを備え、
     前記温度センサの値が所定の温度以上である場合には前記インジェクション流量制御弁の開度を大きくし、
     前記温度センサの値が所定の温度を下回る場合には前記インジェクション流量制御弁の開度を小さくする
     請求項7又は8に記載の空気調和装置。
  10.  前記冷媒熱交換器と前記第1の流路切替装置との間に設けられ、冷媒の流量を制御する室外流量制御弁と、
     前記流量制御弁と前記冷媒熱交換器との間でかつ、前記第3のバイパス配管への分岐点よりも前記流量制御弁側の圧力を検知する第1の圧力センサとを備え、
     前記第1の圧力センサで検出された値に基づいて、前記室外流量制御弁の開度が制御される
     請求項7~9のいずれか一項に記載の空気調和装置。
  11.  前記インジェクション式圧縮機から吐出された冷媒の圧力を検知する第2の圧力センサと、
     前記第1のバイパス配管に設けられ、冷媒の流量を制御する第1バイパス流量制御弁とを備え、
     前記第2の圧力センサで検出された値に基づいて、前記第1バイパス流量制御弁の開度が制御される
     請求項1~10のいずれか一項に記載の空気調和装置。
  12.  上下に分割された複数の前記室外熱交換器において、
     分割された室外熱交換器のうち、上方に位置する室外熱交換器でデフロスト運転が行われた後に、該室外熱交換器の下方に位置する室外熱交換器でデフロスト運転が行われる
     請求項1~11のいずれか一項に記載の空気調和装置。
  13.  前記室内熱交換器と、前記流量制御弁は、前記室内ユニットに収容され、
     前記インジェクション式圧縮機と、前記冷媒流路切替装置と、前記複数の室外熱交換器と、前記第1のバイパス配管と、前記第2のバイパス配管と、前記第1の流路切替装置と、前記第2の流路切替装置は、前記室外ユニットに収容され、
     前記室外ユニットに少なくとも1台以上の前記室内ユニットが接続される
     請求項1~12のいずれか一項に記載の空気調和装置。
PCT/JP2012/000409 2012-01-24 2012-01-24 空気調和装置 WO2013111177A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280063211.9A CN104011485B (zh) 2012-01-24 2012-01-24 空气调节装置
EP12866723.5A EP2808626B1 (en) 2012-01-24 2012-01-24 Air-conditioning unit
JP2013554983A JP6085255B2 (ja) 2012-01-24 2012-01-24 空気調和装置
US14/354,668 US9518754B2 (en) 2012-01-24 2012-01-24 Air-conditioning apparatus
PCT/JP2012/000409 WO2013111177A1 (ja) 2012-01-24 2012-01-24 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/000409 WO2013111177A1 (ja) 2012-01-24 2012-01-24 空気調和装置

Publications (1)

Publication Number Publication Date
WO2013111177A1 true WO2013111177A1 (ja) 2013-08-01

Family

ID=48872960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000409 WO2013111177A1 (ja) 2012-01-24 2012-01-24 空気調和装置

Country Status (5)

Country Link
US (1) US9518754B2 (ja)
EP (1) EP2808626B1 (ja)
JP (1) JP6085255B2 (ja)
CN (1) CN104011485B (ja)
WO (1) WO2013111177A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471203A (zh) * 2013-08-29 2013-12-25 广东美的制冷设备有限公司 空调器的化霜控制方法及空调器***
WO2015059792A1 (ja) * 2013-10-24 2015-04-30 三菱電機株式会社 空気調和装置
WO2015140951A1 (ja) * 2014-03-19 2015-09-24 三菱電機株式会社 空気調和装置
WO2015145712A1 (ja) * 2014-03-28 2015-10-01 日立アプライアンス株式会社 冷凍サイクル装置
WO2016189739A1 (ja) * 2015-05-28 2016-12-01 三菱電機株式会社 空気調和装置
WO2016207993A1 (ja) * 2015-06-24 2016-12-29 三菱電機株式会社 空気調和装置
WO2017006596A1 (ja) * 2015-07-06 2017-01-12 三菱電機株式会社 冷凍サイクル装置
WO2017163339A1 (ja) * 2016-03-23 2017-09-28 三菱電機株式会社 空気調和装置
WO2018029817A1 (ja) * 2016-08-10 2018-02-15 三菱電機株式会社 冷凍サイクル装置
WO2018047416A1 (ja) * 2016-09-12 2018-03-15 三菱電機株式会社 空気調和装置
US20180372379A1 (en) * 2015-06-18 2018-12-27 Daikin Industries, Ltd. Air conditioner
JP2020073854A (ja) * 2020-02-06 2020-05-14 三菱電機株式会社 冷凍サイクル装置

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9732992B2 (en) * 2011-01-27 2017-08-15 Mitsubishi Electric Corporation Air-conditioning apparatus for preventing the freezing of non-azeotropic refrigerant
JP5949831B2 (ja) * 2014-05-28 2016-07-13 ダイキン工業株式会社 冷凍装置
CN204183064U (zh) * 2014-09-30 2015-03-04 名硕电脑(苏州)有限公司 气体冷却装置及具有该气体冷却装置的回焊炉
CN104896672B (zh) * 2015-06-11 2018-11-02 Tcl空调器(中山)有限公司 空调器的除霜控制方法以及空调器
WO2017085887A1 (ja) * 2015-11-20 2017-05-26 三菱電機株式会社 冷凍サイクル装置及び冷凍サイクル装置の制御方法
US10845087B2 (en) * 2016-08-22 2020-11-24 Mitsubishi Electric Corporation Air-conditioning apparatus
CN106352613A (zh) * 2016-09-26 2017-01-25 珠海格力电器股份有限公司 一种空调器及其化霜***
CN106403205A (zh) * 2016-11-29 2017-02-15 广东美的制冷设备有限公司 一种空调化霜***及化霜控制方法
CN107023944B (zh) * 2017-04-01 2020-05-29 青岛海尔空调器有限总公司 空调器不停机除霜运行方法
CN106871382B (zh) * 2017-04-01 2020-05-29 青岛海尔空调器有限总公司 空调器不停机除霜运行方法
CN106918122B (zh) * 2017-04-01 2020-05-29 青岛海尔空调器有限总公司 空调器不停机除霜运行方法
JP6827542B2 (ja) * 2017-07-04 2021-02-10 三菱電機株式会社 冷凍サイクル装置
CN111201410B (zh) * 2017-10-12 2021-09-24 三菱电机株式会社 空气调节装置
CN108131858B (zh) * 2017-11-08 2019-08-27 珠海格力电器股份有限公司 一种热泵空调***及其控制方法
CN108362027B (zh) 2018-01-17 2020-01-31 珠海格力电器股份有限公司 一种热泵***及其控制方法
CN108679867B (zh) * 2018-05-23 2020-02-18 西安交通大学 一种自复叠制冷***及其控制方法
CN108870689B (zh) * 2018-07-17 2020-01-07 珠海格力电器股份有限公司 空调机组的压力控制方法及***
CN109386989B (zh) * 2018-10-22 2020-07-28 广东美的暖通设备有限公司 两管制喷气增焓室外机及多联机***
CN109386909B (zh) * 2018-10-22 2020-10-16 广东美的暖通设备有限公司 室外机、回油控制方法及空调器
US20220049869A1 (en) * 2018-12-04 2022-02-17 Mitsubishi Electric Corporation Air-conditioning apparatus
US11885518B2 (en) * 2018-12-11 2024-01-30 Mitsubishi Electric Corporation Air-conditioning apparatus
US11221151B2 (en) * 2019-01-15 2022-01-11 Johnson Controls Technology Company Hot gas reheat systems and methods
SE545954C2 (en) * 2019-03-25 2024-03-26 Mitsubishi Electric Corp An air-conditioning apparatus comprising a plurality of parallel heat exchangers and configured to adjust the refrigerant flow rate to defrost one of said heat exchangers
CN112665116B (zh) * 2019-10-16 2022-04-12 广东美的制冷设备有限公司 多联机化霜方法、装置、多联机空调***及可读存储介质
CN110645746B (zh) * 2019-10-23 2024-03-19 珠海格力电器股份有限公司 一种连续制热控制***、方法及空调设备
WO2021095131A1 (ja) * 2019-11-12 2021-05-20 三菱電機株式会社 熱交換ユニットおよび冷凍サイクル装置
KR20210104476A (ko) * 2020-02-17 2021-08-25 엘지전자 주식회사 공기조화기
JP7454977B2 (ja) * 2020-03-25 2024-03-25 ヤンマーパワーテクノロジー株式会社 ヒートポンプ

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116163U (ja) * 1984-01-10 1985-08-06 三洋電機株式会社 ヒ−トポンプ式空気調和機
JPS61235644A (ja) * 1985-04-09 1986-10-20 株式会社荏原製作所 ヒ−トポンプ装置
JPH06241623A (ja) * 1993-02-22 1994-09-02 Mitsubishi Electric Corp 冷却装置
JP2006322586A (ja) * 2005-05-20 2006-11-30 Saginomiya Seisakusho Inc パイロット式電磁弁
JP2007225271A (ja) 2005-06-15 2007-09-06 Daikin Ind Ltd 冷凍装置
JP2008249236A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 空気調和装置
JP2009085484A (ja) 2007-09-28 2009-04-23 Daikin Ind Ltd 空気調和機用室外機
JP2010271011A (ja) * 2009-05-25 2010-12-02 Mitsubishi Electric Corp 空気調和機
JP2011099572A (ja) * 2009-11-04 2011-05-19 Panasonic Corp 冷凍サイクル装置及びそれを用いた温水暖房装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57108558A (en) 1980-12-25 1982-07-06 Ebara Mfg Heat pump apparatus
JPS60116163A (ja) 1983-11-29 1985-06-22 Nec Corp 半導体装置
US5575158A (en) * 1994-10-05 1996-11-19 Russell A Division Of Ardco, Inc. Refrigeration defrost cycles
US5755104A (en) * 1995-12-28 1998-05-26 Store Heat And Produce Energy, Inc. Heating and cooling systems incorporating thermal storage, and defrost cycles for same
JP2000018734A (ja) 1998-06-30 2000-01-18 Matsushita Refrig Co Ltd ヒートポンプ式空気調和機
JP4069733B2 (ja) 2002-11-29 2008-04-02 三菱電機株式会社 空気調和機
KR100463548B1 (ko) * 2003-01-13 2004-12-29 엘지전자 주식회사 공기조화기용 제상장치
US7424807B2 (en) 2003-06-11 2008-09-16 Carrier Corporation Supercritical pressure regulation of economized refrigeration system by use of an interstage accumulator
AU2005265436A1 (en) * 2004-09-03 2006-05-11 Daikin Industries, Ltd. Refrigerating apparatus
JP2006145144A (ja) 2004-11-22 2006-06-08 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
US7168262B2 (en) * 2005-03-24 2007-01-30 Hoshizaki Denki Kabushiki Kaisha Ice making machine
US7810353B2 (en) * 2005-05-27 2010-10-12 Purdue Research Foundation Heat pump system with multi-stage compression
KR20080019251A (ko) * 2005-06-15 2008-03-03 다이킨 고교 가부시키가이샤 냉동 장치
US20090031737A1 (en) * 2005-07-08 2009-02-05 Takeo Ueno Refrigeration System
JP4797715B2 (ja) * 2006-03-09 2011-10-19 ダイキン工業株式会社 冷凍装置
JP4675810B2 (ja) 2006-03-28 2011-04-27 三菱電機株式会社 空気調和装置
JP4069947B2 (ja) * 2006-05-26 2008-04-02 ダイキン工業株式会社 冷凍装置
JP2009079863A (ja) 2007-09-27 2009-04-16 Mitsubishi Heavy Ind Ltd 冷凍装置
JP5357418B2 (ja) 2007-11-22 2013-12-04 三菱重工業株式会社 ヒートポンプ式空気調和機
WO2009133640A1 (ja) * 2008-04-30 2009-11-05 三菱電機株式会社 空気調和装置
JP2010071530A (ja) * 2008-09-17 2010-04-02 Daikin Ind Ltd 空気調和装置
CN101726132A (zh) * 2009-11-12 2010-06-09 广东美的电器股份有限公司 一种空调器
DK2505941T3 (da) * 2009-11-25 2019-06-17 Daikin Ind Ltd Køleindretning til container
KR101264471B1 (ko) * 2009-12-11 2013-05-14 엘지전자 주식회사 냉매 시스템 연동 물 순환 시스템
WO2011135616A1 (ja) 2010-04-27 2011-11-03 三菱電機株式会社 冷凍サイクル装置
KR101175516B1 (ko) * 2010-05-28 2012-08-23 엘지전자 주식회사 히트펌프 연동 급탕장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116163U (ja) * 1984-01-10 1985-08-06 三洋電機株式会社 ヒ−トポンプ式空気調和機
JPS61235644A (ja) * 1985-04-09 1986-10-20 株式会社荏原製作所 ヒ−トポンプ装置
JPH06241623A (ja) * 1993-02-22 1994-09-02 Mitsubishi Electric Corp 冷却装置
JP2006322586A (ja) * 2005-05-20 2006-11-30 Saginomiya Seisakusho Inc パイロット式電磁弁
JP2007225271A (ja) 2005-06-15 2007-09-06 Daikin Ind Ltd 冷凍装置
JP2008249236A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 空気調和装置
JP2009085484A (ja) 2007-09-28 2009-04-23 Daikin Ind Ltd 空気調和機用室外機
JP2010271011A (ja) * 2009-05-25 2010-12-02 Mitsubishi Electric Corp 空気調和機
JP2011099572A (ja) * 2009-11-04 2011-05-19 Panasonic Corp 冷凍サイクル装置及びそれを用いた温水暖房装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2808626A4

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103471203A (zh) * 2013-08-29 2013-12-25 广东美的制冷设备有限公司 空调器的化霜控制方法及空调器***
WO2015059792A1 (ja) * 2013-10-24 2015-04-30 三菱電機株式会社 空気調和装置
JP5992112B2 (ja) * 2013-10-24 2016-09-14 三菱電機株式会社 空気調和装置
JPWO2015059792A1 (ja) * 2013-10-24 2017-03-09 三菱電機株式会社 空気調和装置
WO2015140951A1 (ja) * 2014-03-19 2015-09-24 三菱電機株式会社 空気調和装置
WO2015145712A1 (ja) * 2014-03-28 2015-10-01 日立アプライアンス株式会社 冷凍サイクル装置
WO2016189739A1 (ja) * 2015-05-28 2016-12-01 三菱電機株式会社 空気調和装置
GB2555258A (en) * 2015-05-28 2018-04-25 Mitsubishi Electric Corp Air conditioning device
GB2555258B (en) * 2015-05-28 2020-08-19 Mitsubishi Electric Corp Air conditioning apparatus
JPWO2016189739A1 (ja) * 2015-05-28 2018-01-11 三菱電機株式会社 空気調和装置
US11199342B2 (en) * 2015-06-18 2021-12-14 Daikin Industries, Ltd. Air conditioner
US20180372379A1 (en) * 2015-06-18 2018-12-27 Daikin Industries, Ltd. Air conditioner
GB2557058B (en) * 2015-06-24 2020-08-26 Mitsubishi Electric Corp Air-conditioning apparatus and heat source unit
JPWO2016207993A1 (ja) * 2015-06-24 2018-02-08 三菱電機株式会社 空気調和装置及び熱源機
GB2557058A (en) * 2015-06-24 2018-06-13 Mitsubishi Electric Corp Air conditioner
WO2016207993A1 (ja) * 2015-06-24 2016-12-29 三菱電機株式会社 空気調和装置
JPWO2017006596A1 (ja) * 2015-07-06 2017-10-26 三菱電機株式会社 冷凍サイクル装置
WO2017006596A1 (ja) * 2015-07-06 2017-01-12 三菱電機株式会社 冷凍サイクル装置
GB2563162B (en) * 2016-03-23 2020-10-21 Mitsubishi Electric Corp Air conditioner
WO2017163339A1 (ja) * 2016-03-23 2017-09-28 三菱電機株式会社 空気調和装置
GB2563162A (en) * 2016-03-23 2018-12-05 Mitsubishi Electric Corp Air conditioner
JPWO2017163339A1 (ja) * 2016-03-23 2018-12-13 三菱電機株式会社 空気調和装置
JPWO2018029817A1 (ja) * 2016-08-10 2019-04-25 三菱電機株式会社 冷凍サイクル装置
WO2018029817A1 (ja) * 2016-08-10 2018-02-15 三菱電機株式会社 冷凍サイクル装置
GB2569898A (en) * 2016-09-12 2019-07-03 Mitsubishi Electric Corp Air conditioner
JPWO2018047416A1 (ja) * 2016-09-12 2019-04-25 三菱電機株式会社 空気調和装置
WO2018047330A1 (ja) * 2016-09-12 2018-03-15 三菱電機株式会社 空気調和装置
US10760832B2 (en) 2016-09-12 2020-09-01 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2018047416A1 (ja) * 2016-09-12 2018-03-15 三菱電機株式会社 空気調和装置
GB2569898B (en) * 2016-09-12 2021-02-03 Mitsubishi Electric Corp Air-conditioning apparatus
JP2020073854A (ja) * 2020-02-06 2020-05-14 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
JP6085255B2 (ja) 2017-02-22
CN104011485B (zh) 2016-05-25
JPWO2013111177A1 (ja) 2015-05-11
US9518754B2 (en) 2016-12-13
EP2808626A1 (en) 2014-12-03
US20140245766A1 (en) 2014-09-04
EP2808626A4 (en) 2015-10-07
CN104011485A (zh) 2014-08-27
EP2808626B1 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
JP6085255B2 (ja) 空気調和装置
WO2015140951A1 (ja) 空気調和装置
JP5611353B2 (ja) ヒートポンプ
JP5968534B2 (ja) 空気調和装置
JP6161741B2 (ja) 空気調和装置
JP5871959B2 (ja) 空気調和装置
US10036562B2 (en) Air-conditioning apparatus
US9523520B2 (en) Air-conditioning apparatus
JP5383816B2 (ja) 空気調和装置
US20150292789A1 (en) Air-conditioning apparatus
US20120204596A1 (en) Heat pump
JP2007271094A (ja) 空気調和装置
KR20170104364A (ko) 공기 조화기의 실외 유닛 및 제어 방법
WO2015063846A1 (ja) 空気調和装置
WO2013146415A1 (ja) ヒートポンプ式加熱装置
JP5334554B2 (ja) 空気調和装置
JP2010002112A (ja) 冷凍装置
KR101151529B1 (ko) 냉매시스템
CN111919073A (zh) 制冷装置
JP2009293887A (ja) 冷凍装置
KR100821729B1 (ko) 공기 조화 시스템
JP2009115336A (ja) 冷凍装置
JP5194842B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866723

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14354668

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013554983

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012866723

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE