JP4963918B2 - Method for annealing low carbon steel containing Cr - Google Patents

Method for annealing low carbon steel containing Cr Download PDF

Info

Publication number
JP4963918B2
JP4963918B2 JP2006267023A JP2006267023A JP4963918B2 JP 4963918 B2 JP4963918 B2 JP 4963918B2 JP 2006267023 A JP2006267023 A JP 2006267023A JP 2006267023 A JP2006267023 A JP 2006267023A JP 4963918 B2 JP4963918 B2 JP 4963918B2
Authority
JP
Japan
Prior art keywords
annealing
carbon steel
temperature range
rate
low carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006267023A
Other languages
Japanese (ja)
Other versions
JP2008088448A (en
Inventor
欽哉 窪園
明仁 古田
小林  直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2006267023A priority Critical patent/JP4963918B2/en
Publication of JP2008088448A publication Critical patent/JP2008088448A/en
Application granted granted Critical
Publication of JP4963918B2 publication Critical patent/JP4963918B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、製造工程中に冷間鍛造や冷間引抜きなどのAc1変態点以下の温度にて塑性変形による加工に用いる機械構造用の低炭素鋼の冷間加工性に優れる焼鈍方法に関する。 The present invention relates to an annealing method that is excellent in cold workability of low-carbon steel for machine structure used for processing by plastic deformation at a temperature below the Ac 1 transformation point such as cold forging and cold drawing during the manufacturing process.

自動車その他の各種の装置の機材の製造、例えば、歯車などの複雑な形状をした部品の製造は、JIS−SCM420、JIS−SCr420などのCrやMoを含有する低炭素鋼を熱間鍛造、冷間鍛造にて歯車の概略の形状を形成し、切削などにより最終形状に仕上げした後、浸炭を施して製造している。また、直動軸においても、概略の形状に引抜きをし、切削によって最終形状としていた。   In the manufacture of equipment for automobiles and other various devices, for example, the manufacture of parts with complicated shapes such as gears, low-carbon steels containing Cr and Mo such as JIS-SCM420 and JIS-SCr420 are hot forged and cooled. A rough shape of the gear is formed by inter-forging, and after finishing to the final shape by cutting or the like, it is manufactured by carburizing. In addition, the linear motion shaft was also drawn out into a rough shape and cut into a final shape.

しかし、近年では、冷間加工技術の発達に伴い、冷間による複雑な多段鍛造を行うことによる切削仕上げ工程の省略、大型部品に対して熱間鍛造によっていた工程の冷間鍛造化、複雑形状への引抜き加工などが行われている。そのため冷間鍛造、引抜きなど主に塑性変形を伴う加工により製造する部品、例えばCVTプーリー、ギア、シャフト、直動軸などの複雑形状の部品においては、鋼材の冷間加工性に対する要求は一層強くなってきている。   However, in recent years, with the development of cold working technology, the cutting finishing process by performing complicated multi-stage forging by cold is omitted, cold forging of the process that was hot forging for large parts, complicated shape The drawing process is performed. For this reason, in parts manufactured mainly by plastic deformation, such as cold forging and drawing, such as CVT pulleys, gears, shafts, linear motion shafts, etc., there is a stronger demand for cold workability of steel materials. It has become to.

ところで、このような鋼材の冷間加工性を向上するためには、焼鈍により硬さを下げる必要がある。従来は焼鈍により硬さを低減する方法として、2回焼鈍を行う方法や、冷却を極端に遅くする方法や、冷却時Ac1変態点近傍で保持する方法や、1度の焼鈍中に数回の加熱冷却を行う方法などがとられていた。しかし、これらには、それぞれ生産性の悪化や焼鈍の長時間化や鋼種によるAc1変態点の変化やパターンの複雑化などの問題が存在している。 By the way, in order to improve the cold workability of such a steel material, it is necessary to reduce the hardness by annealing. Conventionally, as a method of reducing hardness by annealing, a method of performing annealing twice, a method of extremely slowing cooling, a method of holding near the Ac 1 transformation point during cooling, and several times during one annealing The method of performing heating and cooling of was taken. However, these have problems such as deterioration in productivity, prolonged annealing, changes in Ac 1 transformation point due to steel types, and complicated patterns.

従来、鋼に含まれる炭化物を球状化すると、鋼の硬度が減少するので、塑性変形が容易となる。ところで、炭素を0.3質量%より多く含有する中炭素鋼および高炭素鋼では、球状化焼鈍法が知られている。しかし、低炭素鋼では、含有炭素量が少なく、中炭素鋼および高炭素鋼の方法では炭化物の球状化を行うことは困難である。ところで、このような低炭素鋼においてもA1変態点より低い温度に保持することで炭化物を球状化し、鋼の硬度を低下する方法が開発されている(例えば、特許文献1参照。)。 Conventionally, when carbides contained in steel are spheroidized, the hardness of the steel is reduced, so that plastic deformation is facilitated. By the way, the spheroidizing annealing method is known for medium carbon steel and high carbon steel containing more than 0.3% by mass of carbon. However, low carbon steel has a small carbon content, and it is difficult to spheroidize carbides by the methods of medium carbon steel and high carbon steel. By the way, even in such a low carbon steel, a method has been developed in which carbides are spheroidized by maintaining a temperature lower than the A 1 transformation point to reduce the hardness of the steel (for example, see Patent Document 1).

また、冷間加工性に優れた低炭素のCr−Mo鋼の熱処理方法が開発されている(例えば、特許文献2参照。)。   Further, a heat treatment method for low-carbon Cr—Mo steel having excellent cold workability has been developed (for example, see Patent Document 2).

一方、出願人は、被削性および冷間加工性に優れた0.8〜1.2質量%Cの高炭素クロム軸受鋼を開発している(例えば、特許文献3参照。)。しかし、この方法は高炭素鋼に係るものであり、低炭素鋼においては適用することはできなかった。   On the other hand, the applicant has developed a 0.8 to 1.2 mass% C high carbon chromium bearing steel excellent in machinability and cold workability (see, for example, Patent Document 3). However, this method is related to high carbon steel and could not be applied to low carbon steel.

特開昭57−161024号公報JP-A-57-161024 特開昭57−110617号公報Japanese Patent Laid-Open No. 57-110617 特開平9−227991号公報JP-A-9-227991

本発明が解決しようとする課題は、0.1〜0.3%の低炭素および0.5〜2.5%のCrを含有する歯車などに用いる低炭素鋼において、通常の焼鈍組織よりも球状化炭化物間の間隔が広く、硬さの低い組織とした、高い冷間加工性を有する低炭素鋼を製造するための焼鈍方法を提供することである。   The problem to be solved by the present invention is a low carbon steel used for gears containing 0.1 to 0.3% of low carbon and 0.5 to 2.5% of Cr, rather than a normal annealing structure. An object of the present invention is to provide an annealing method for producing a low carbon steel having a high cold workability and having a structure having a wide interval between spheroidized carbides and a low hardness.

発明者らは以下の知見を見出した。低炭素鋼を焼鈍する際、この低炭素鋼はA1変態点〜A3変態点の温度域においては、フェライト・オーステナイトの2相組織となる。しかし、実際は、この2相組織には若干の炭化物が残存している。そこで、この低炭素鋼をAc1変態点(720〜760℃)付近を10℃/hr以下の加熱速度で徐熱する、あるいはAc1変態点(720〜760℃)付近で等温保持する。この徐熱あるいは等温保持によりパーライトの分断される間隔が大きくなり、この結果、球状炭化物の核となる炭化物数を減少させることができる。その後760〜790℃まで加熱保持した後、次いで740〜720℃の温度範囲に空冷以下の速度で冷却し、さらに該温度範囲から10℃/hr以下の速度でAr1点終了以下の温度まで徐冷することにより、通常の焼鈍組織よりも球状化炭化物間の間隔が広く、硬さの低い組織を得ることができる。これらの知見から本発明の手段を得たものである。 The inventors have found the following findings. When the low carbon steel is annealed, the low carbon steel has a two-phase structure of ferrite and austenite in the temperature range from the A 1 transformation point to the A 3 transformation point. However, in practice, some carbide remains in this two-phase structure. Therefore, this low carbon steel is gradually heated near the Ac 1 transformation point (720 to 760 ° C.) at a heating rate of 10 ° C./hr or less, or is kept isothermal near the Ac 1 transformation point (720 to 760 ° C.). The interval at which the pearlite is divided is increased by this slow heating or isothermal holding, and as a result, the number of carbides serving as nuclei of the spherical carbides can be reduced. Thereafter, the mixture is heated to 760 to 790 ° C., then cooled to a temperature range of 740 to 720 ° C. at a rate of air cooling or less, and further gradually decreased from the temperature range to a temperature of Ar 1 point or less at a rate of 10 ° C./hr or less. By cooling, it is possible to obtain a structure having a wider interval between spheroidized carbides and a lower hardness than a normal annealed structure. The means of the present invention are obtained from these findings.

すなわち、本発明の手段は、質量%で、0.1〜0.3%のCおよび0.5〜2.5%のCrを含有する低炭素鋼の焼鈍に際し、加熱中のAc1変態点(720〜760℃)の近傍の昇温速度を遅くするものである。 That is, the means of the present invention is the Ac 1 transformation point during heating when annealing a low carbon steel containing 0.1 to 0.3% C and 0.5 to 2.5% Cr in mass%. The rate of temperature rise in the vicinity of (720 to 760 ° C.) is slowed down.

そこで、上記の課題を解決するための本発明の手段は、請求項1の発明では、質量%で、0.1〜0.3%のCおよび0.5〜2.5%のCrを含有する低炭素鋼に対し、700〜730℃の温度範囲に加熱した後、該温度範囲から740〜760℃まで10℃/hr以下の加熱速度で徐熱し、さらに760〜700℃まで加熱し保持した後、740〜720℃の温度範囲に空冷以下の速度で冷却し、さらに該温度範囲からAr1変態点終了以下の温度域まで10℃/hr以下で徐冷した後、空冷以下の速度で冷却することを特徴とする低炭素鋼の焼鈍方法である。本発明の手段とすることにより冷間加工性を良好とすることができる。 Therefore, the means of the present invention for solving the above-mentioned problem is that, in the invention of claim 1, the mass contains 0.1 to 0.3% of C and 0.5 to 2.5% of Cr. The low-carbon steel is heated to a temperature range of 700 to 730 ° C., then gradually heated from the temperature range to 740 to 760 ° C. at a heating rate of 10 ° C./hr or less, and further heated to and maintained at 760 to 700 ° C. After that, it is cooled to a temperature range of 740 to 720 ° C. at a rate below air cooling, and further gradually cooled at a rate of 10 ° C./hr or less from the temperature range to a temperature range below the end of the Ar 1 transformation point, and then cooled at a rate below air cooling. It is the annealing method of the low carbon steel characterized by doing. By employing the means of the present invention, the cold workability can be improved.

請求項2の発明では、質量%で、0.1〜0.3%のCおよび0.5〜2.5%のCrを含有する低炭素鋼に対し、720〜760℃まで加熱した後、4時間以上等温保持し、さらに760〜790℃まで加熱して保持した後、さらに740〜720℃の温度範囲に空冷以下の速度で冷却し、さらに該温度からAr1変態点終了以下の温度域まで10℃/hr以下で徐冷した後、空冷以下の速度で冷却することを特徴とする低炭素鋼の焼鈍方法である。上記と同様に、本発明の手段とすることにより冷間加工性を良好とすることができる。 In invention of Claim 2, after heating to 720-760 degreeC with respect to the low carbon steel containing 0.1 to 0.3% of C and 0.5 to 2.5% of Cr by mass%, Hold isothermal for 4 hours or more, further heat and hold to 760-790 ° C, then cool to a temperature range of 740-720 ° C at a rate below air cooling, and further from this temperature to the temperature range below the Ar 1 transformation point end This is an annealing method for low carbon steel, characterized by slowly cooling to 10 ° C./hr or less until cooling to air cooling or less. Similarly to the above, the cold workability can be improved by using the means of the present invention.

上記手段の各上下限の限定理由を以下に説明する。
請求項1の手段で、炭化物の間隔を大きくし硬さを低減するためには、鋼材の成分によって決まるAc1点付近を可能な限りゆっくり徐熱することが必要であるため、徐熱開始をAc1直下の700〜730℃とし、徐熱終了をAc1直上の740〜760℃とした。加熱速度は可能な限り遅くすることが望ましいが、生産性と硬さ低減の効果から10℃/hr以下の速度とした。
The reasons for limiting the upper and lower limits of the above means will be described below.
In order to increase the carbide interval and reduce the hardness with the means of claim 1, it is necessary to gradually heat the vicinity of the Ac 1 point determined by the components of the steel material as slowly as possible. The temperature was 700 to 730 ° C. immediately below Ac 1 , and the end of the slow heating was 740 to 760 ° C. immediately above Ac 1 . Although it is desirable to make the heating rate as slow as possible, the heating rate is set to 10 ° C./hr or less from the viewpoint of productivity and hardness reduction.

請求項2の手段で、炭化物の間隔を大きくし硬さを低減するためには、鋼材の成分によって決まるAc1点直上で保持するのが最も効果的であるため、720〜760℃で保持することとした。保持時間は可能な限り長く取ることが望ましいが、生産性と硬さ低減の効果から4時間以上とした。 In order to increase the interval between carbides and reduce the hardness by means of claim 2, it is most effective to hold just above the Ac 1 point determined by the components of the steel material, so hold at 720 to 760 ° C. It was decided. Although it is desirable to keep the holding time as long as possible, the holding time is set to 4 hours or more from the viewpoint of productivity and the effect of reducing hardness.

さらに、請求項1または請求項2の手段において、加熱する最高温度は低すぎると溶け残った炭化物の数が多くなり、また高すぎると炭化物が溶けすぎてしまうので、適切な炭化物量とするため760〜790℃とした。さらに溶け残った炭化物を成長させパーライト組織の発生を抑えるためAr点付近を徐冷却する必要があるので、徐冷却開始温度を740〜720℃とし終了温度をAr以下とした。冷却速度は可能な限り遅くすることが望ましいが、生産性と硬さ低減の効果から10℃/hr以下の速度とした。 Furthermore, in the means of claim 1 or claim 2, if the maximum temperature to be heated is too low, the number of undissolved carbides increases, and if it is too high, the carbides are excessively dissolved. The temperature was 760 to 790 ° C. Furthermore, since it is necessary to gradually cool the vicinity of the Ar 1 point in order to grow the undissolved carbide and suppress the generation of the pearlite structure, the slow cooling start temperature is set to 740 to 720 ° C., and the end temperature is set to Ar 1 or less. Although it is desirable to make the cooling rate as slow as possible, the cooling rate is set to 10 ° C./hr or less from the viewpoint of productivity and hardness reduction.

本発明の手段における低炭素鋼のC量は、少なすぎた場合、あるいは多すぎた場合のどちらにおいても、本発明の熱処理で硬さを低減することが困難であるため、質量%で、0.1〜0.3%とした。   The C content of the low carbon steel in the means of the present invention is 0% by mass% because it is difficult to reduce the hardness by the heat treatment of the present invention, both when it is too small and when it is too much. 0.1 to 0.3%.

さらに、Cr量は、最高温度時に適量の炭化物を残留させるために必要であるため、質量%で、0.5〜2.5%とした。   Furthermore, the Cr amount is 0.5% to 2.5% in mass% because it is necessary to leave an appropriate amount of carbide at the maximum temperature.

以上に説明したように、本発明の加熱工程からなる焼鈍方法は、従来の2回焼鈍を行う方法や、冷却を極端に遅くする方法や、冷却時Ac1変態点近傍で保持する方法や、1度の焼鈍中に数回の加熱冷却を行う方法などの方法をとることなく、ただ1回の焼鈍を行うことで、硬度を低減した低炭素鋼を得ることができ、この低炭素鋼は優れた冷間加工性のものである。 As explained above, the annealing method comprising the heating step of the present invention is a conventional method of performing annealing twice, a method of extremely slowing cooling, a method of holding near the Ac 1 transformation point during cooling, Without taking a method such as heating and cooling several times during one annealing, a low carbon steel with reduced hardness can be obtained by performing only one annealing. It has excellent cold workability.

本発明を実施するための最良の形態を図を参照して説明する。100kg真空溶解炉にて、表1に示す化学成分を有するA〜D鋼を溶解して得た鋼材から、熱間鍛造によりφ32mm×L100mm丸棒を製作した。ここで、A鋼、D鋼はMoを有意に含有するSCM系の鋼であるが、B鋼、C鋼はMoを不可避不純物として含有するものである。   The best mode for carrying out the present invention will be described with reference to the drawings. A φ32 mm × L100 mm round bar was manufactured by hot forging from a steel material obtained by melting A to D steels having chemical components shown in Table 1 in a 100 kg vacuum melting furnace. Here, steel A and steel D are SCM steels that contain Mo significantly, while steel B and steel C contain Mo as an inevitable impurity.

その後、請求項1の発明の実施例を本発明1とし、請求項2の発明の実施例を本発明2とし、従来方法の焼鈍例として、通常の焼鈍を例1とし、冷却速度の遅いパターンをを例2とし、冷却中一定温度を取るパターンを例3とし、通常の焼鈍を2回行うものを例4とし、図1に示す焼鈍パターンとし、これらの焼鈍パターンによる焼鈍を焼鈍炉にて行い、さらに表1のA鋼について炭化物状態を調査してその結果を図2に示し、さらに表1のA〜D鋼の試験片を図1に示す焼鈍パターンで焼鈍し、それぞれの焼鈍後の試験片の硬さを図3に示す。   Thereafter, the embodiment of the invention of claim 1 is set as the present invention 1, the embodiment of the invention of claim 2 is set as the present invention 2, and as an example of the annealing of the conventional method, the normal annealing is set as the example 1, and the slow cooling pattern Is set to Example 2, a pattern in which a constant temperature is taken during cooling is set to Example 3, an example in which normal annealing is performed twice is set to Example 4, and the annealing pattern shown in FIG. 1 is used, and annealing by these annealing patterns is performed in an annealing furnace. Further, the carbide state of the steel A in Table 1 was investigated, and the results are shown in FIG. 2, and the test pieces of the steels A to D in Table 1 were annealed with the annealing pattern shown in FIG. The hardness of the test piece is shown in FIG.

上記において、炭化物の状態は、試験片の断面のD/4部(ここで、「D」は試験片の断面の直径である。)においてミクロ組織を観察して確認した。表面硬さは、試験片の断面のD/4部においてロックウェル硬度計を使用して測定した。   In the above, the state of carbide was confirmed by observing the microstructure at D / 4 part of the cross section of the test piece (where “D” is the diameter of the cross section of the test piece). The surface hardness was measured using a Rockwell hardness meter at D / 4 part of the cross section of the test piece.

本発明の実施の形態である低炭素鋼の焼鈍方法において、図1の本発明1および本発明2に示す焼鈍パターンによるものは、図2のミクロ組織の写真の本発明1および本発明2に見られるように、炭化物間の間隔が広い組織が得られている。   In the annealing method of the low carbon steel according to the embodiment of the present invention, the annealing pattern shown in the present invention 1 and the present invention 2 in FIG. As can be seen, a structure with a wide spacing between carbides is obtained.

これに対し、従来方法の焼鈍例である図1の例1の通常の焼鈍パターンによるもの、例2の冷却速度の遅い焼鈍パターンによるもの、例3の冷却中一定温度をとる焼鈍パターンによるものおよび例4の通常の焼鈍を2回行う焼鈍パターンによるものは、図2のミクロ組織の写真の例1、例2、例3および例4に示すように、炭化物間の間隔がそれほど広くない組織となっている。   On the other hand, according to the normal annealing pattern of Example 1 in FIG. 1, which is an example of annealing of the conventional method, according to the annealing pattern with a slow cooling rate in Example 2, according to the annealing pattern having a constant temperature during cooling in Example 3, and According to the annealing pattern in which the normal annealing of Example 4 is performed twice, as shown in Example 1, Example 2, Example 3 and Example 4 of the microstructure photograph of FIG. It has become.

さらに、図3のグラフに示すように、本発明の実施の形態の図1に示す本発明1および本発明2では、硬さ(HRB)が低減されていることがわかる。これに対し、従来例である例1、例2、例3および例4では、本発明より硬さが大である。   Further, as shown in the graph of FIG. 3, it can be seen that the hardness (HRB) is reduced in the present invention 1 and the present invention 2 shown in FIG. 1 of the embodiment of the present invention. On the other hand, in Examples 1, 2, 3, and 4, which are conventional examples, the hardness is greater than that of the present invention.

また、表1のA鋼の発明2の焼鈍パターンにおける保持時間を2.5時間とした場合の硬さは74.2HRB、本発明1におけるAr1変態点までの冷却速度を15℃/hrとした場合の硬さは73.8HRB、本発明2の最高加熱温度を750℃とした場合の硬さは74.0、本発明2の最高加熱温度を800℃とした場合の硬さは75.1HRBと従来の熱処理と同程度の硬さ低減効果である。以上から本願発明における0.1〜0.3%のCおよび0.5〜2.5%のCrを含有する低炭素鋼では、本願の焼鈍方法により優れた冷間加工性が得られることがわかる。 Further, the hardness when the holding time in the annealing pattern of the invention A of Table 1 in the invention 2 is 2.5 hours is 74.2 HRB, and the cooling rate to the Ar 1 transformation point in the invention 1 is 15 ° C./hr. The hardness is 73.8 HRB, the hardness when the maximum heating temperature of the present invention 2 is 750 ° C. is 74.0, and the hardness when the maximum heating temperature of the present invention 2 is 800 ° C. is 75. It is the same hardness reduction effect as 1HRB and conventional heat treatment. From the above, in the low carbon steel containing 0.1 to 0.3% C and 0.5 to 2.5% Cr in the present invention, excellent cold workability can be obtained by the annealing method of the present application. Recognize.

本発明の方法と従来の方法による焼鈍パターンを示す図である。It is a figure which shows the annealing pattern by the method of this invention, and the conventional method. 本発明の方法における焼鈍パターンで得られたミクロ組織と、従来の方法における焼鈍パターンで得られたミクロ組織を示す写真である。It is a photograph which shows the microstructure obtained by the annealing pattern in the method of this invention, and the microstructure obtained by the annealing pattern in the conventional method. 本発明の方法における焼鈍パターンで得られたCrを含有する低炭素鋼の硬さと、従来の方法における焼鈍パターンで得られた低炭素鋼の硬さを示すグラフである。It is a graph which shows the hardness of the low carbon steel containing Cr obtained by the annealing pattern in the method of this invention, and the hardness of the low carbon steel obtained by the annealing pattern in the conventional method.

Claims (2)

質量%で、0.1〜0.3%のCおよび0.5〜2.5%のCrを含有する低炭素鋼に対し、700〜730℃の温度範囲に加熱した後、740〜760℃まで10℃/hr以下の加熱速度で徐熱し、さらに760〜790℃の温度範囲まで加熱し保持した後、該温度範囲から740〜720℃の温度範囲に空冷以下の速度で冷却し、さらに該温度範囲からAr1変態点終了以下の温度域まで10℃/hr以下で徐冷した後、空冷以下の速度で冷却することを特徴とする低炭素鋼の焼鈍方法。 For low carbon steel containing 0.1 to 0.3% C and 0.5 to 2.5% Cr in mass%, after heating to a temperature range of 700 to 730 ° C, 740 to 760 ° C Is gradually heated at a heating rate of 10 ° C./hr or less, further heated to and maintained at a temperature range of 760 to 790 ° C., and then cooled from the temperature range to a temperature range of 740 to 720 ° C. at a rate of air cooling or less. An annealing method for low-carbon steel, characterized by annealing at a rate of 10 ° C./hr or less from a temperature range to a temperature range below the end of the Ar 1 transformation point and then cooling at a rate of air cooling or less. 質量%で、0.1〜0.3%のCおよび0.5〜2.5%のCrを含有する低炭素鋼に対し、720〜760℃の温度範囲まで加熱した後、4時間以上等温保持し、さらに760〜790℃の温度範囲まで加熱し保持した後、該温度範囲から740〜720℃の温度範囲に空冷以下の速度で冷却し、さらに該温度範囲からAr1変態点終了以下の温度域まで10℃/hr以下で徐冷した後、空冷以下の速度で冷却することを特徴とする低炭素鋼の焼鈍方法。 A low-carbon steel containing 0.1 to 0.3% C and 0.5 to 2.5% Cr in mass% is heated to a temperature range of 720 to 760 ° C. and then isothermal for 4 hours or more. Held and further heated to a temperature range of 760 to 790 ° C. and then cooled from the temperature range to a temperature range of 740 to 720 ° C. at a rate of air cooling or less, and further from the temperature range to the end of the Ar 1 transformation point or less. An annealing method for low carbon steel, characterized by annealing at a rate of 10 ° C./hr or less to a temperature range and then cooling at a rate of air cooling or less.
JP2006267023A 2006-09-29 2006-09-29 Method for annealing low carbon steel containing Cr Expired - Fee Related JP4963918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006267023A JP4963918B2 (en) 2006-09-29 2006-09-29 Method for annealing low carbon steel containing Cr

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006267023A JP4963918B2 (en) 2006-09-29 2006-09-29 Method for annealing low carbon steel containing Cr

Publications (2)

Publication Number Publication Date
JP2008088448A JP2008088448A (en) 2008-04-17
JP4963918B2 true JP4963918B2 (en) 2012-06-27

Family

ID=39372914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006267023A Expired - Fee Related JP4963918B2 (en) 2006-09-29 2006-09-29 Method for annealing low carbon steel containing Cr

Country Status (1)

Country Link
JP (1) JP4963918B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110325657A (en) * 2017-02-21 2019-10-11 杰富意钢铁株式会社 High-carbon hot-rolled steel sheet and its manufacturing method
CN114622064B (en) * 2022-02-23 2023-10-03 大冶特殊钢有限公司 Spheroidizing annealing method of MnCr series low-carbon gear steel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353208A (en) * 1986-08-22 1988-03-07 Nippon Steel Corp Spheroidizing annealing method for alloy steel for machine structural use
JPH0426721A (en) * 1990-05-23 1992-01-29 Nippon Steel Corp Spheroidization annealing method for steel bar and wire
JP3915128B2 (en) * 1995-09-25 2007-05-16 Jfeスチール株式会社 Method of spheroidizing annealing of low alloy steel
JP3909939B2 (en) * 1997-09-08 2007-04-25 日新製鋼株式会社 Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability
JP3909950B2 (en) * 1998-03-25 2007-04-25 日新製鋼株式会社 Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability
JP3772581B2 (en) * 1999-03-19 2006-05-10 Jfeスチール株式会社 Direct spheroidizing annealing method of alloy steel wire
JP2001079630A (en) * 1999-09-17 2001-03-27 Sanyo Special Steel Co Ltd Cold form-rolled ring consisting of steel base stock excellent in cold form-rolling property
JP3870631B2 (en) * 1999-10-29 2007-01-24 Jfeスチール株式会社 Method for short-time spheroidizing annealing of steel and steel by the same method

Also Published As

Publication number Publication date
JP2008088448A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
JP5126857B2 (en) Manufacturing method of case-hardened steel pipe with excellent workability
JP5135562B2 (en) Carburizing steel, carburized steel parts, and manufacturing method thereof
JP5135563B2 (en) Carburizing steel, carburized steel parts, and manufacturing method thereof
JP5927868B2 (en) Carburizing steel excellent in cold forgeability and method for producing the same
JP4646866B2 (en) BEARING STEEL WIRE EXCELLENT IN DRAWING AND METHOD FOR PRODUCING THE SAME
JP5742801B2 (en) Hot rolled steel bar or wire rod
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
JP6109729B2 (en) Case-hardened steel with excellent grain coarsening prevention characteristics during carburizing
JP5824063B2 (en) Manufacturing method of steel parts
JP5093410B2 (en) High carbon chromium bearing steel and manufacturing method thereof
KR20140056378A (en) Rolled steel bar or wire for hot forging
JP2014031525A (en) Steel material for cold forging
JP4963918B2 (en) Method for annealing low carbon steel containing Cr
JP2016188421A (en) Carburized component
CN101899612B (en) Non-tempered steel pipe and preparation method thereof
JP5365477B2 (en) Steel for surface hardening treatment
JPH10226817A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JP6447064B2 (en) Steel parts
WO2016158375A1 (en) Steel for carbonitriding and carbonitrided component
JPH10226818A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JP5840376B2 (en) Iron-based material and manufacturing method thereof
JP2005325438A (en) Method for producing hot forged component for high temperature carburizing
JP2006118014A (en) Method for producing case hardening steel having excellent cold workability and crystal grain coarsening resistance
JP2011241470A (en) Ferrous material and method of manufacturing the same
JP2022091501A (en) Carburizing steel, carburized steel component and manufacturing method of carburized steel component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees