JPS6353208A - Spheroidizing annealing method for alloy steel for machine structural use - Google Patents

Spheroidizing annealing method for alloy steel for machine structural use

Info

Publication number
JPS6353208A
JPS6353208A JP19528686A JP19528686A JPS6353208A JP S6353208 A JPS6353208 A JP S6353208A JP 19528686 A JP19528686 A JP 19528686A JP 19528686 A JP19528686 A JP 19528686A JP S6353208 A JPS6353208 A JP S6353208A
Authority
JP
Japan
Prior art keywords
less
steel
temperature
pearlite transformation
spheroidizing annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19528686A
Other languages
Japanese (ja)
Inventor
Toshizo Tarui
敏三 樽井
Toshihiko Takahashi
高橋 稔彦
Hiroshi Sato
洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19528686A priority Critical patent/JPS6353208A/en
Publication of JPS6353208A publication Critical patent/JPS6353208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To soften an alloy steel having high hardenability by spheroidizing annealing for short time by promoting furthermore pearlite transformation at high temp. by adding B in the steel having the specific composition and also specifying the spheroidizing annealing condition. CONSTITUTION:The steel having by wt% of 0.15-0.65 C, <0.1 Si, 0.2-0.5 Mn, 0.0003-0.01 B, >0.9-1.8 Cr, 0.01-0.1 Al, <0.02 P and S, and the remaining part of Fe is provided. After heating this steel at >740-850 deg.C for 20sec-2hr, (A) it is slowly cooled at <=5 deg.C/min cooling velocity in the temp. range to the completion of pearlite transformation, or (B) after keeping at 690-740 deg.C for 15min-3hr, it is cooled in the air. By the (A) or (B) process, the spheroidizing treatment is executed. Further, in the above steel, one or more elements to <=1% Ni, <=0.3% Mo, <=1% Cu and/or one or more elements of 0.002-0.05% Ti, 0.005-0.05% Nb, 0.005-0.2% V may be contained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は機械構造用合金鋼の球状化焼鈍法に係り、特に
冷間鍛造によって1例えばボルト、ナツトなどに加工さ
れる機械構造用合金鋼の軟質化を目的とする球状化焼鈍
法の改良に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a spheroidizing annealing method for alloy steel for machine structures, and particularly for alloy steels for machine structures that are processed into bolts, nuts, etc. by cold forging. The present invention relates to improvements in the spheroidizing annealing process aimed at softening.

[従来の技術] 従来1機械構造用合金鋼は、冷間鍛造に際し、その変形
抵抗を下げて冷間鍛造性の向上をはかるために、軟質化
処理が行われ、その手段の一つとしてセメンタイトの球
状化焼鈍処理が行われている。
[Prior Art] Conventionally, alloy steel for machine structures is subjected to softening treatment during cold forging in order to lower its deformation resistance and improve cold forgeability, and one of the means for this is the use of cementite. Spheroidizing annealing treatment is performed.

この球状化焼鈍処理は、たとえば特開昭59−1364
21号公報などに見られるように、A8点以上の温度に
加熱した後、10℃/時程度の超徐冷で連続冷却するか
、あるいはA0点直下に3時間以上保定するという方法
で行われている。
This spheroidizing annealing treatment is performed, for example, in Japanese Patent Application Laid-Open No. 59-1364.
As seen in Publication No. 21, etc., after heating to a temperature of A8 point or higher, it is continuously cooled by super slow cooling of about 10°C/hour, or maintained just below the A0 point for 3 hours or more. ing.

しかしながら、これでは処理時間が非常に長くなり工業
的に不利である。一方、焼鈍時間の短縮を目的として連
続冷却の冷却速度を速くしたり、あるいはA1点直下の
保定時間を短くするような試みを行うと、結果として強
度が増加し、いずれも軟質化の目的を達成できない。
However, this requires a very long processing time, which is industrially disadvantageous. On the other hand, if attempts are made to increase the cooling rate of continuous cooling with the aim of shortening the annealing time, or to shorten the holding time just below the A1 point, the strength will increase as a result, and both of these methods will defeat the purpose of softening. Unachievable.

ところで、一般に球状化焼鈍材はフェライト。By the way, the spheroidizing annealed material is generally ferrite.

パーライト組織となっている。従って強度を低下させる
ためには、組織の大半を占めるパーライトの強度を低下
させることが必要である。
It has a perlite structure. Therefore, in order to reduce the strength, it is necessary to reduce the strength of pearlite, which occupies most of the structure.

一般にパーライトの強度は、セメンタイト間隔に反比例
する関係があるので、球状パーライト強度を低下させる
ことを考えると、そのためにはパーライトのセメンタイ
ト間間隔を粗くすることが必要になる。
In general, the strength of pearlite is inversely proportional to the cementite spacing, so in order to reduce the strength of spherical pearlite, it is necessary to coarsen the spacing between cementites in pearlite.

しかるに、球状パーライトのセメンタイト間間隔は、オ
ーステナイトからパーライトが変態生成する温度で一義
的に決り、高い温度で変態するほど粗くなる。ところが
パーライト変態は、温度が高くなるほど進行が遅れ、終
了にきわめて長時間を要するようになる。
However, the intercementite spacing of spherical pearlite is primarily determined by the temperature at which pearlite transforms from austenite, and becomes coarser as the transformation temperature increases. However, the higher the temperature, the slower the pearlite transformation progresses, and it takes an extremely long time to complete.

そこで本発明者らは、かかる従来の知見を種々解析して
、中炭素系機械構造用鋼についてその強度の支配因子を
検討した結果、A1点近傍の温度域でのパーライト変態
を促進して、短時間の球状化焼鈍により鋼材の軟質化を
はかるための手段として、従来の鋼に含まれるMnの一
部をCrとおき変えるとともに、球状化焼鈍条件として
適正なるものを選択すればよいという知見を得て、先に
特願昭60−13607号により提案を行っている。
Therefore, the present inventors analyzed various such conventional findings and examined the factors governing the strength of medium carbon steel for mechanical structural use. Knowledge that as a means of softening steel materials through short-time spheroidizing annealing, it is sufficient to replace part of the Mn contained in conventional steel with Cr and to select appropriate spheroidizing conditions. In response to this, the proposal was first made in Japanese Patent Application No. 13607-1983.

ところで、この製造手段は焼入性の低い低合金鋼の軟質
化という点では極めて優れているものの、S Cr、 
S CM鋼のような焼入性の高い合金鋼の軟質化という
点ではまだ改良の余地があった。
By the way, although this manufacturing method is extremely superior in terms of softening low alloy steel with low hardenability, S Cr,
There was still room for improvement in terms of softening alloy steels with high hardenability such as SCM steel.

[発明が解決しようとする問題点コ 本発明は上記のごとき実情に鑑みなされるものであって
、焼入性の高い合金鋼を短時間の球状化焼鈍で軟質化す
る方法を堤供することを目的とするものである。
[Problems to be Solved by the Invention] The present invention has been made in view of the above-mentioned circumstances, and aims to provide a method for softening highly hardenable alloy steel by short-time spheroidizing annealing. This is the purpose.

[問題点を解決するための手段 作用]即ち、本発明者
らは先に提案した技術をさらに改良し、Bを添加するこ
とによって軟質化の最大のポイントであるところの高温
でのパーライト変態を一層促進させるとともに、球状化
焼鈍条件として適正なものを選択することにより、焼入
性の高い合金鋼でも短時間で軟質化が可能であるという
全く新たな知見を得て本発明をなしたものである。
[Means for Solving the Problems] That is, the present inventors have further improved the previously proposed technique, and by adding B, the pearlite transformation at high temperatures, which is the most important point in softening, has been improved. The present invention was made based on the completely new knowledge that even alloy steels with high hardenability can be softened in a short time by further promoting the spheroidizing annealing and selecting appropriate conditions for spheroidizing annealing. It is.

本発明は、以上の知見に基づいてなされたものであって
、その要旨とする所は、重量%でC: 0.15〜0.
65%、Si: 0.1%未満。
The present invention was made based on the above findings, and its gist is that C: 0.15-0.
65%, Si: less than 0.1%.

Mn:0.2〜0.5%、B : 0.0003−0.
01%、Cr:0.9超〜1.8%、AQ:0.01−
0.1%を含有し、Pを0.02%未満、Sを0゜02
%未満と制限し、その他必要に応じて(A)Ni:1%
以下、Mo:0.3%以下、Cu:1%以下の1種また
は2種以上、(B)Ti: 0.002〜0.05%、
Nb: 0.005〜0.05%、v:0 、、OO5
〜0.2%の1種または2種以上、の(A)、(B)の
群の一方または両方を含有し。
Mn: 0.2-0.5%, B: 0.0003-0.
01%, Cr: more than 0.9 to 1.8%, AQ: 0.01-
Contains 0.1%, P less than 0.02%, S 0°02
(A)Ni: 1% as necessary.
Below, Mo: 0.3% or less, Cu: 1% or less, one or more types, (B) Ti: 0.002 to 0.05%,
Nb: 0.005-0.05%, v:0, OO5
Contains ~0.2% of one or more of the groups (A) and (B).

残部は、Feおよび不可避不純物よりなる鋼について、
740超〜850℃に20秒〜2時間加熱した後、(イ
)5℃/分以下の冷却速度でパーライト変態終了までの
温度範囲を徐冷するか、あるいは(ロ)690〜740
℃の範囲の温度に15分〜3時間保定した後放冷するか
(イ)、(ロ)いずれかの球状化処理を実施することを
特徴とする機械構造用合金鋼の球状化焼鈍法にある。
For steel, the remainder consists of Fe and unavoidable impurities.
After heating to over 740°C to 850°C for 20 seconds to 2 hours, (a) slowly cool the temperature range until the end of pearlite transformation at a cooling rate of 5°C/min or less, or (b) 690 to 740°C.
A spheroidizing annealing method for alloy steel for machine structural use, which comprises holding at a temperature in the range of °C for 15 minutes to 3 hours and then allowing it to cool, or performing either (a) or (b) spheroidizing treatment. be.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

まず最初に、本発明において軟質化とは、その焼鈍材の
引張強度を、炭素当J+t Caq (Caq= C+
SL/24+Mn/6+Cr15+Cu/13+M。
First of all, in the present invention, softening refers to the tensile strength of the annealed material as J+t Caq (Caq= C+
SL/24+Mn/6+Cr15+Cu/13+M.

/4+Ni/40)によって規定される強度= 20 
+ 59 Ceq (Kg/am”)以下とすることを
意味する。この強度式はCaqiを0゜3〜1.3の範
囲内で求めたものであり、20はフェライトとパーライ
トの強度に、また59はCeq量即ちパーライト量にそ
れぞれ依存する項である。Caq量によって決る同大の
値を強度が越える場合には球状化焼鈍により軟質化した
とは言えない。
/4+Ni/40) = 20
+59 Ceq (Kg/am") or less. This strength formula is obtained by calculating Caqi within the range of 0°3 to 1.3, and 20 is the strength of ferrite and pearlite, and 59 is a term that depends on the amount of Ceq, that is, the amount of pearlite.If the strength exceeds the same value determined by the amount of Caq, it cannot be said that the material has been softened by spheroidizing annealing.

次に1本発明の対象とする鋼の成分限定理由についての
べる。
Next, the reason for limiting the composition of steel, which is the object of the present invention, will be described.

まず、Cは冷間鍛造後の焼入れ焼戻し処理において製品
に所要の強度を付与するために必須の元素であるが、0
.15%未満では所要の強度が得られず、一方0.65
%を越えても焼入れ焼戻し後の強度はもはや増加しない
ので、0.15〜0゜65%の範囲に限定した。
First, C is an essential element in order to impart the required strength to the product in the quenching and tempering treatment after cold forging, but 0
.. If it is less than 15%, the required strength cannot be obtained;
%, the strength after quenching and tempering will no longer increase, so it was limited to a range of 0.15 to 0.65%.

また、Siはその固容体硬化作用によって圧延材の強度
を高めるので、固容体硬化の影響を無視できるようにな
る0、1%未満に含有量を限定した。また、このように
SLを下げても、焼入処理時に要求される焼入性は低下
しない。
In addition, since Si increases the strength of the rolled material through its solid hardening effect, the content was limited to less than 0.1% so that the influence of solid hardening can be ignored. Further, even if the SL is lowered in this way, the hardenability required during hardening treatment does not decrease.

つぎに、MnとBに関してであるが、この含有量を前記
のように定めた点が本発明の最も重要な点である。
Next, regarding Mn and B, the most important point of the present invention is that the contents are determined as described above.

即ち、例えば従来の代表的な機械構造用クロム鋼である
S Cr430鋼は C: 0.28〜0.33%、Si: 0.15〜0.
35%、Mn: 0.60〜0.85%、Cr:  0
.90〜1.20%を含むことが規定されているが、そ
のM n Jilを減らすことによって、S Cr43
0鋼に比べ軟質化のポイントであるパーライト変態の終
了温度が高くなる。Mniが減少しただけ焼入性は低下
するが、これはBを添加することによって補う。さらに
、Bは徐冷域ではパーライト変態を抑制することはなく
、逆に固溶BがB化合物として析出することによりパー
ライト変態を促進させる効果がある。従って、Bを添加
した鋼を徐冷すると高温でのパーライト変態を短時間で
終了させることができる。なお通常、Bは焼入性を向上
させる元素として使用されているが、本発明ではBを焼
鈍時のパーライト変態を促進させるためと冷間鍛造後の
熱処理時における焼入性向上の両方に利用するものであ
る。従って、このような鋼は5Cr430t!l!に比
べ高速で冷却しても同じ温度でパーライト変態させられ
る。また、この錆はMn量を減らしてBを添加すること
によりパーライト変態温度が高温側ヘシフトするので、
A8点近傍の温度に保定した場合にも短時間でパーライ
ト変態を終了させることができる。
That is, for example, S Cr430 steel, which is a typical conventional chromium steel for mechanical structures, has C: 0.28 to 0.33% and Si: 0.15 to 0.
35%, Mn: 0.60-0.85%, Cr: 0
.. Although it is specified that S Cr43 contains 90 to 1.20%, by reducing its M n Jil
Compared to zero steel, the end temperature of pearlite transformation, which is the point of softening, is higher. Hardenability decreases as Mni decreases, but this is compensated for by adding B. Furthermore, B does not suppress pearlite transformation in the slow cooling region, but on the contrary, solid solution B precipitates as a B compound, thereby having the effect of promoting pearlite transformation. Therefore, when steel to which B is added is slowly cooled, pearlite transformation at high temperatures can be completed in a short time. Generally, B is used as an element to improve hardenability, but in the present invention, B is used both to promote pearlite transformation during annealing and to improve hardenability during heat treatment after cold forging. It is something to do. Therefore, such steel is 5Cr430t! l! Even if it is cooled at a higher speed than that of , it can undergo pearlite transformation at the same temperature. In addition, this rust can be prevented by reducing the amount of Mn and adding B, as the pearlite transformation temperature shifts to the higher temperature side.
Even when the temperature is maintained at around point A8, the pearlite transformation can be completed in a short time.

ここで、MnとBの添加量を上記のように限定したのは
以下の理由による。
Here, the reason why the amounts of Mn and B added are limited as described above is as follows.

高温域のパーライト変態を短時間で終了させるためには
、できるだけMnを減らした方がよいが。
In order to complete the pearlite transformation in the high temperature range in a short time, it is better to reduce Mn as much as possible.

Mnが0.2%未満では鋼中のSを十分に固定すること
ができず、熱間脆性をおさえることができない、一方、
Mnが0.5%を越えるとBが添加されていても高温で
のパーライト変態を短時間に終了させることができない
ので、Mn量を0.2〜0゜5%に限定した。
If Mn is less than 0.2%, S in the steel cannot be sufficiently fixed and hot embrittlement cannot be suppressed;
If Mn exceeds 0.5%, pearlite transformation at high temperature cannot be completed in a short time even if B is added, so the Mn amount was limited to 0.2 to 0.5%.

Bは、徐冷域でのパーライト変態を促進させ且つ冷間鍛
造後の熱処理の焼入性を著しく高め強度を向上させるの
に有効であるが、0.0003%未満ではその効果が上
がらず、一方C)、01%を越えると冷間鍛造性を劣化
させるので、0.0003〜0.01%に限定した。
B is effective in promoting pearlite transformation in the slow cooling region and significantly increasing the hardenability in heat treatment after cold forging and improving strength, but if it is less than 0.0003%, the effect will not increase, while C ), if it exceeds 0.01%, cold forgeability deteriorates, so it is limited to 0.0003 to 0.01%.

また、Crは焼入性を高め、強度、靭性を向上させるの
に有効であるが、0.9%以下ではその効果が不十分で
あり本発明の目的とするところの焼入性の高い鋼となら
ない、一方、1.8%を越えると鋼の焼入性が高まりす
ぎてパーライト変態終了温度が低下し軟質材とならない
ので、0.9超〜1.8%に限定した。
In addition, although Cr is effective in increasing hardenability and improving strength and toughness, if it is less than 0.9%, the effect is insufficient and the purpose of the present invention is to improve the hardenability of the steel. On the other hand, if it exceeds 1.8%, the hardenability of the steel will increase too much, the temperature at which pearlite transformation ends will drop, and the material will not be soft, so it is limited to more than 0.9 to 1.8%.

A Qは冷間鍛造後の焼入れ処理時のオーステナイト粒
度の粗大化を防止するためとNをAQN化合物として固
定しBの焼入性効果を確保するために必要な元素である
が、0.01%未満ではその効果がなく、一方0.1%
を試えると上記の効果が飽和する上、むしろ冷間鍛造性
を劣化させるので、0.01〜0.1%に限定した。
A Q is an element necessary to prevent coarsening of austenite grain size during quenching treatment after cold forging, and to fix N as an AQN compound to ensure the hardenability effect of B, but 0.01 Less than % has no effect, while 0.1%
If tried, the above effect would be saturated and the cold forgeability would actually deteriorate, so it was limited to 0.01 to 0.1%.

P、Sはいずれも冷間鍛造性に有害な元素である。いず
れも0.02%を越えると悪影響が顕著になるので、こ
れ未満に限定した。
Both P and S are elements harmful to cold forgeability. In either case, if it exceeds 0.02%, the adverse effects become significant, so the content was limited to less than this.

以」−が本発明の対象とする鋼の基本成分であるが、本
発明においてlよ、さらにこの鋼に(A)Ni: 1%
以下、Mo:0.3%以下、Cu:1%以下の1種また
は2種以上、 CB)Ti: 0.002〜0.05%、Nb: 0.
005〜0.05%、V:0.005〜0.2%の1種
または2種以上 の(A)、(B)の群の一方または両方を含有せしめる
こともできる。
These are the basic components of the steel that is the object of the present invention, but in the present invention, (A) Ni: 1% is added to this steel.
Below, Mo: 0.3% or less, Cu: 1% or less, CB) Ti: 0.002 to 0.05%, Nb: 0.
005 to 0.05% and V: 0.005 to 0.2% of one or more of the groups (A) and (B).

まず、(A)群のNiは靭性を向上させるとともに焼入
性を大きくして強度を上げるために添加されるが、1%
を越えると焼入性が大きくなり過ぎて冷間鍛造性が悪く
なるのでこれを上限とした。
First, Ni in group (A) is added to improve toughness and increase hardenability to increase strength.
If this value is exceeded, the hardenability becomes too large and the cold forgeability deteriorates, so this was set as the upper limit.

Moは焼入れ性を向上させ、強い焼戻し軟化抵抗を与え
る元素であるが、0.3%を越えても添加量に見合うだ
けの効果が期待できないのでこれを上限とした。
Mo is an element that improves hardenability and provides strong temper softening resistance, but even if it exceeds 0.3%, an effect commensurate with the amount added cannot be expected, so this was set as the upper limit.

Cu+JNiと同様に靭性と焼入性を向上させるが。Like Cu+JNi, it improves toughness and hardenability.

1%を越えるとその効果は飽和するのでこれを上限とし
た。
If it exceeds 1%, the effect will be saturated, so this was set as the upper limit.

一方、(B)群のTi、Nb、Vはいずれも熱間圧延後
のオーステナイト結晶粒を微細化させ焼鈍時の高温域で
のパーライト変態の促進を目的に添加される。
On the other hand, Ti, Nb, and V in group (B) are all added for the purpose of refining austenite crystal grains after hot rolling and promoting pearlite transformation in a high temperature range during annealing.

TiはNと結合してTiN化合物を形成し、熱間圧延後
のオーステナイト結晶粒の粗大化を防止する。また、T
iとBは組合せて添加する方が効果的で、TiはAQと
共にNを固定してBのパーライト変態を促進させる効果
と冷間鍛造後の焼入性効果を十分に発揮させるために添
加される。Tiは0.002%未満ではNを固定する効
果が不十分であり、一方0.05%を越えると冷間鍛造
性及び靭性に有害な粗大なT i NあるいはTiCが
生成するので、0.002〜0.05%に制限した。
Ti combines with N to form a TiN compound, which prevents austenite crystal grains from becoming coarser after hot rolling. Also, T
It is more effective to add i and B in combination, and Ti is added together with AQ to fix N and promote the pearlite transformation of B, and to fully exhibit the hardenability effect after cold forging. Ru. If Ti is less than 0.002%, the effect of fixing N is insufficient, while if it exceeds 0.05%, coarse TiN or TiC that is harmful to cold forgeability and toughness will be generated. It was limited to 0.002% to 0.05%.

Nb、Vはいずれも圧延後のオーステナイト粒度を微細
化させて、焼鈍時のパーライト変態を促進することを目
的に添加するが、それぞれ0.005%未満では微細効
果が期待できず、一方Nbが0.05%、■が0.2%
をそれぞれ越えるとNb、 vの粗大な炭窒化物が析出
して靭性及び冷間鍛造性を劣化させるので、Nbは0.
005〜0゜05%、またVは0.005〜0.2%ニ
ソれぞれ限定した。
Both Nb and V are added for the purpose of refining the austenite grain size after rolling and promoting pearlite transformation during annealing, but if each is less than 0.005%, no finer effect can be expected; 0.05%, 0.2%
If Nb and v are exceeded, coarse carbonitrides of Nb and V will precipitate, deteriorating toughness and cold forgeability.
0.005 to 0.05%, and V was limited to 0.005 to 0.2% niso.

次に、本発明においては、軟質化処理のための球状化焼
鈍条件として、740超〜850℃に20秒〜2時間加
熱した後、(イ)5℃/分の冷却速度でパーライト変態
が終了するまでの温度範囲を徐冷するか、あるいは(ロ
)690〜740℃の範囲の温度に15分〜3時間保定
した後放冷するかの(イ)、(ロ)のうちいずれかの処
理を施すのであって、(イ)、(ロ)いずれの手段によ
っても高温域でのパーライト変態を短時間に終了せしめ
、且つ引張強度を20 + 59 Ceq(kg/mm
”)以下とすることが可能である。
Next, in the present invention, as the spheroidizing annealing conditions for softening treatment, after heating to over 740 to 850 °C for 20 seconds to 2 hours, (a) pearlite transformation is completed at a cooling rate of 5 °C/min. Either of (a) or (b): slow cooling in the temperature range until the temperature reaches By applying (a) and (b), pearlite transformation in a high temperature range can be completed in a short time, and the tensile strength can be reduced to 20 + 59 Ceq (kg/mm).
”) It is possible to do the following.

まず、加熱温度を740℃超以上に限定したのは、74
0℃以下の温度ではセメンタイトが十分にオーステナイ
トへ溶は込まないので、その後の冷却で球状パーライト
に変態させられないで、目標とする軟質化度が得られな
いためである。一方。
First, the heating temperature was limited to over 740°C.
This is because cementite does not fully melt into austenite at temperatures below 0° C., so it is not transformed into spherical pearlite by subsequent cooling, and the target degree of softening cannot be obtained. on the other hand.

加熱温度が850”Cを越えると、オーステナイトから
球状パーライトではなく層状パーライトが変態生成して
目標の軟質化度が得られないので850℃を上限とした
。なお、好ましい加熱温度範囲は750℃〜790℃で
ある。
If the heating temperature exceeds 850"C, the austenite transforms into layered pearlite instead of spherical pearlite, making it impossible to obtain the target degree of softening. Therefore, the upper limit was set at 850"C.The preferred heating temperature range is 750"C~ The temperature is 790°C.

加熱時間を20秒〜2時間に限定したのも同じ理由で、
20秒未満ではセメンタイトの溶は込みが不十分なため
、又2時間を越えると、球状パーライトを変態生成させ
られないためである。
For the same reason, we limited the heating time to 20 seconds to 2 hours.
This is because if the time is less than 20 seconds, the dissolution of cementite is insufficient, and if it is more than 2 hours, spherical pearlite cannot be transformed.

次に、上記のごとき条件で加熱後、(イ)連続冷却によ
り徐冷を行う場合は、その冷却速度が5℃/分を越える
と、球状パーライトの変態態度が下がりすぎて層状の低
温変態パーライトもしくはベイナイトが生成して軟質化
できないのでこれを上限とした。軟質化の点からは、冷
却速度は小さい方がいいが、設備上、生産性上の実用的
な面を考慮すると、0.2〜b 化と生産性を両立させる望ましい冷却速度範囲である。
Next, after heating under the above conditions, (a) if slow cooling is performed by continuous cooling, if the cooling rate exceeds 5°C/min, the transformation behavior of spherical pearlite will drop too much, resulting in layered low-temperature transformed pearlite. Otherwise, bainite is generated and it cannot be softened, so this is set as the upper limit. From the point of view of softening, the lower the cooling rate is, the better; however, considering the practical aspects of equipment and productivity, the cooling rate range is preferably within the range of 0.2-b and achieving both productivity.

徐冷停止温度は、パーライト変態終了前に徐冷を停止す
るとその後の放冷過程で強度の高い低温パーライトもし
くはベイナイトが生成して硬くなるので、パーライト変
態終了温度とした。パーライト変態終了温度は鋼種、冷
却速度によって変るが、本発明の対象とする成分系の鋼
では、約660〜690℃である。
The slow cooling stop temperature was set as the pearlite transformation finish temperature because if slow cooling is stopped before the end of pearlite transformation, high-strength low-temperature pearlite or bainite will be generated and hardened in the subsequent cooling process. The end temperature of pearlite transformation varies depending on the steel type and the cooling rate, but is approximately 660 to 690°C in the steel of the composition targeted by the present invention.

一方、(ロ)保定を行う場合、保定温度の上限を740
℃に限定したのは、740℃を越えると球状パーライト
変態を終了させるのに5時間以上を要し実用的でないた
めである。しかし、690℃より下ではセメンタイト間
隔が細かくなって。
On the other hand, (b) When performing retention, the upper limit of the retention temperature is 740℃.
The temperature was limited to 740°C because it would take more than 5 hours to complete the spherical pearlite transformation, which is not practical. However, below 690℃, the cementite spacing becomes finer.

目標の軟質化度が得られない、また、保定時間は15分
未満ではパーライト変態が終了せず、目標の軟質化に到
達しないので15分保定を下限とした。一方3時間を越
えて保定しても軟質化はもはや進行しないので3時間を
上限とした。保定後は放冷を行うものであるが、これは
前記保定によってパーライト変態が完了するので、その
後徐冷する必要がないからである。    ” 以下、実施例により本発明の効果をさらに具体的に説明
する。
The target degree of softening cannot be obtained, and if the retention time is less than 15 minutes, the pearlite transformation will not be completed and the target softening will not be achieved, so the retention time of 15 minutes was set as the lower limit. On the other hand, since softening no longer progresses even if held for more than 3 hours, the upper limit was set at 3 hours. After the retention, the material is left to cool. This is because the pearlite transformation is completed by the retention, so there is no need for subsequent gradual cooling. ” Hereinafter, the effects of the present invention will be explained in more detail with reference to Examples.

[実施例] 第1表に供試材の化学組成ならびに通常の熱間圧延で1
1φIに仕上げた後の冷却条件等を示す。
[Example] Table 1 shows the chemical composition of the sample material and the
The cooling conditions etc. after finishing to 1φI are shown.

同表中試験番号No、4.6.10−15.21−24
.28が本発明例で、その他は比較例である。これらの
材料を用いて、引張試験はJISI4A号試験片で行い
、冷鍛性の評価は0 、5 mm深さのVノツチを付け
た10φmmX15mmの試験片で据込率40%の圧縮
試験を行った時の割れの発生の有無で求め、○印は割れ
が発生がしなかったこと、X印は割れが発生したことを
示す、これらの試験結果を第1表に併記する。
Test number No. 4.6.10-15.21-24 in the same table
.. No. 28 is an example of the present invention, and the others are comparative examples. Using these materials, tensile tests were performed using JISI No. 4A test pieces, and cold forgeability evaluation was performed using 10φmm x 15mm test pieces with a V-notch of 0 and 5 mm depth and a compression test with an upsetting rate of 40%. The test results are determined based on the presence or absence of cracking when the test piece is heated, and the ○ mark indicates that no cracking occurred, and the X mark indicates that cracking occurred.These test results are also listed in Table 1.

同表に見られるように、本発明例はいずれも圧延材にお
いて引張強度20 +59 Ceq (kg/+im”
)を十分に下まわり、満足すべき軟質化度が得られてい
る。また、冷間鍛造性と焼入れ焼戻し処理後の靭性も申
し分ない。
As seen in the table, all of the examples of the present invention have a tensile strength of 20 +59 Ceq (kg/+im") in the rolled material.
), and a satisfactory degree of softening was obtained. It also has excellent cold forgeability and toughness after quenching and tempering.

これに対して、比較例であるNo、3.8,9゜25.
26.27はいずれも焼鈍条件が不適切なために軟質化
されなかった例である。即ち、No。
On the other hand, the comparative example No. 3.8, 9°25.
No. 26 and No. 27 are both examples in which softening was not achieved due to inappropriate annealing conditions. That is, No.

3は加熱後の冷却速度が速すぎたために、セメンタイト
間隔が細かくなって、またNo、8は加熱源底が高すぎ
たために層状パーライト変態が生成して、いずれも軟質
化されなかった。さらに、No、9は保定温度が高すぎ
、No、25は加熱時間が短かすぎ、No、26は保定
時間が短かすぎ、No、27は保定温度が低すぎるため
に、いずれも目標強度を下回ることができなかった。。
In No. 3, the cooling rate after heating was too fast, so the cementite spacing became fine, and in No. 8, the bottom of the heating source was too high, resulting in layered pearlite transformation, and neither softened. Furthermore, No. 9 has a too high retention temperature, No. 25 has too short a heating time, No. 26 has a too short retention time, and No. 27 has a retention temperature too low, so all of them have the target strength. could not be lower than that. .

一方、比較例であるNo、1..2,5,7.16−2
0は、鋼材組成が不適切な例で、 No、 1はCr、
No、、2はMn、No、5はSiの含有是がそれぞれ
多すぎろために軟質化されていない。また、No、7は
11.No、19はV、No、20は゛[iの含有址が
それぞれ多すぎるために軟質化は達成されているものの
冷間t8造性が悪い例である。
On the other hand, No. 1, which is a comparative example. .. 2,5,7.16-2
0 is an example where the steel material composition is inappropriate, No. 1 is Cr,
Nos. 2 and 2 contain too much Mn, and Nos. 5 and 5 contain too much Si, so they are not softened. Also, No. 7 is 11. No. 19 is an example of V, and No. 20 is an example in which the amount of "[i" contained is too large, so although softening has been achieved, the cold t8 formability is poor.

さらに、No、18はSiとMnの含有址が多すぎるた
めに強度が高く、しかもNbiが多すぎるために冷間鍛
造性も悪い、No、25.26はそれぞれp、smが多
すぎて冷間鍛造性に問題があった例である。
Furthermore, No. 18 has high strength because it contains too much Si and Mn, and has poor cold forgeability because it contains too much Nbi. No. 25.26 has too much p and sm, so This is an example where there was a problem with forgeability.

[発明の効果] 以上の実施例からも明らかなごとく、本発明は鋼材組成
と球状化焼鈍条件とを適9jに選択することによって、
機械構造用高合金鋼の球状化焼鈍時間の短縮と軟質化の
確保、冷間鍛造性の確保を両立させることを可能にした
ものであり、産業上の効果は極めて顕著なものがある。
[Effect of the invention] As is clear from the above examples, the present invention achieves the following effects by appropriately selecting the steel composition and the spheroidizing annealing conditions
This has made it possible to reduce the spheroidizing annealing time of high-alloy steel for machine structures, ensure softening, and ensure cold forgeability, and the industrial effects are extremely significant.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%でC:0.15〜0.65%、Si:0.
1%未満、 Mn:0.2〜0.5%、 B:0.0003〜0.01%、 Cr:0.9超〜1.8%、 Al:0.01〜0.1%、 を含有し、Pを0.02%未満、Sを0.02%未満と
制限し、残部はFeおよび不可避不純物よりなる鋼につ
いて、740超〜850℃に20秒〜2時間加熱した後
、(イ)5℃/分以下の冷却速度でパーライト変態終了
までの温度範囲を徐冷するか、あるいは(ロ)690〜
740℃の範囲の温度に15分〜3時間保定した後放冷
するか、(イ)、(ロ)いずれかの球状化処理を実施す
ることを特徴とする機械構造用合金鋼の球状化焼鈍法。
(1) C: 0.15-0.65%, Si: 0.
less than 1%, Mn: 0.2-0.5%, B: 0.0003-0.01%, Cr: more than 0.9-1.8%, Al: 0.01-0.1%, For steels containing P and S of less than 0.02% and S of less than 0.02%, with the remainder consisting of Fe and unavoidable impurities, after heating to over 740°C to 850°C for 20 seconds to 2 hours, (I) ) Slowly cool the temperature range until the end of pearlite transformation at a cooling rate of 5°C/min or less, or (b) 690~
Spheroidizing annealing of alloy steel for machine structures, characterized in that the temperature is maintained at a temperature in the range of 740°C for 15 minutes to 3 hours and then allowed to cool, or the spheroidizing treatment of either (a) or (b) is performed. Law.
(2)重量%でC:0.15〜0.65%。 Si:0.1%未満、 Mn:0.2〜0.5%、 B:0.0003〜0.01%、 Cr:0.9超〜1.8%、 Al:0.01〜0.1% を含有し、Pを0.02%未満、Sを0.02%未満と
制限し、更に (A)Ni:1%以下、Mo:0.3%以下、Cu:1
%以下の1種または2種以上、 (B)Ti:0.002〜0.05%、Nb:0.00
5〜0.05%、V:0.005〜0.2%の1種また
は2種以上、 の(A)、(B)の群の一方または両方を含有し、残部
はFeおよび不可避不純物よりなる鋼について、740
超〜850℃に20秒〜2時間加熱した後、(イ)5℃
/分以下の冷却速度でパーライト変態終了までの温度範
囲を徐冷するか、あるいは(ロ)690〜740℃の範
囲の温度に15分〜3時間保定した後放冷するか、(イ
)、(ロ)いずれかの球状化処理を実施することを特徴
とする機械構造用合金鋼の球状化焼鈍法
(2) C: 0.15-0.65% by weight. Si: less than 0.1%, Mn: 0.2-0.5%, B: 0.0003-0.01%, Cr: more than 0.9-1.8%, Al: 0.01-0. 1%, P is limited to less than 0.02%, S is limited to less than 0.02%, and (A) Ni: 1% or less, Mo: 0.3% or less, Cu: 1
% or less, (B) Ti: 0.002 to 0.05%, Nb: 0.00
5 to 0.05%, V: 0.005 to 0.2%, one or more of the groups (A) and (B), and the remainder is Fe and unavoidable impurities. About Naru Steel, 740
After heating to ultra-850℃ for 20 seconds to 2 hours, (a) 5℃
Either slowly cool the temperature range until the end of pearlite transformation at a cooling rate of /min or less, or (b) maintain the temperature in the range of 690 to 740°C for 15 minutes to 3 hours and then let it cool. (b) A spheroidizing annealing method for machine structural alloy steel, which is characterized by carrying out any of the spheroidizing treatments.
JP19528686A 1986-08-22 1986-08-22 Spheroidizing annealing method for alloy steel for machine structural use Pending JPS6353208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19528686A JPS6353208A (en) 1986-08-22 1986-08-22 Spheroidizing annealing method for alloy steel for machine structural use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19528686A JPS6353208A (en) 1986-08-22 1986-08-22 Spheroidizing annealing method for alloy steel for machine structural use

Publications (1)

Publication Number Publication Date
JPS6353208A true JPS6353208A (en) 1988-03-07

Family

ID=16338629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19528686A Pending JPS6353208A (en) 1986-08-22 1986-08-22 Spheroidizing annealing method for alloy steel for machine structural use

Country Status (1)

Country Link
JP (1) JPS6353208A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088448A (en) * 2006-09-29 2008-04-17 Sanyo Special Steel Co Ltd Method for annealing low-carbon steel containing cr
CN107587069A (en) * 2017-08-25 2018-01-16 武汉钢铁有限公司 A kind of high-intensity high-tenacity bolt steel and production method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174321A (en) * 1985-01-29 1986-08-06 Nippon Steel Corp Spheroidizing annealing method of machine structural steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174321A (en) * 1985-01-29 1986-08-06 Nippon Steel Corp Spheroidizing annealing method of machine structural steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008088448A (en) * 2006-09-29 2008-04-17 Sanyo Special Steel Co Ltd Method for annealing low-carbon steel containing cr
CN107587069A (en) * 2017-08-25 2018-01-16 武汉钢铁有限公司 A kind of high-intensity high-tenacity bolt steel and production method

Similar Documents

Publication Publication Date Title
JP2001240941A (en) Bar wire rod for cold forging and its production method
JP4629816B2 (en) High strength bolt excellent in delayed fracture resistance and method for producing the same
JPH0257637A (en) Manufacture of spring with high fatigue strength and steel wire for spring for use therein
JPH0112816B2 (en)
US4702778A (en) Method for softening rolled medium carbon machine structural steels
JPH0250910A (en) Production of steel plate for die having good heat fatigue characteristic
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPH039168B2 (en)
JPS5810442B2 (en) Manufacturing method for high-toughness, high-strength steel with excellent workability
JPS589813B2 (en) Manufacturing method for non-thermal forged steel products
JP4061003B2 (en) Cold forging bar wire with excellent induction hardenability and cold forgeability
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JP2000336460A (en) Hot rolled wire rod and steel bar for machine structure and manufacture of the same
JPS6156235A (en) Manufacture of high toughness nontemper steel
JPH04371547A (en) Production of high strength and high toughness steel
JPS6353208A (en) Spheroidizing annealing method for alloy steel for machine structural use
JPH0813028A (en) Production of precipitation hardening steel material having high tensile strength and high toughness
JPS63161117A (en) Production of hot rolled steel products having high strength and high toughness
JPH05339676A (en) Steel for machine structure excellent in cold workability and its manufacture
KR910003883B1 (en) Making process for high tension steel
JPS61139646A (en) Nontemper bar steel for hot forging
JPH0576522B2 (en)
US20240052467A1 (en) High-strength wire rod for cold heading with superior heat treatment characteristics and resistance of hydrogen-delayed fracture characteristics, heat-treated component, and method for manufacturing same
JPH10280036A (en) Wire rod for high strength bolt excellent in strength and ductility and its production
JPH1171633A (en) Induction hardened parts excellent in strength and fatigue resistance and production thereof