JP4961746B2 - Method for forming carbon nanotube thin film - Google Patents

Method for forming carbon nanotube thin film Download PDF

Info

Publication number
JP4961746B2
JP4961746B2 JP2006002386A JP2006002386A JP4961746B2 JP 4961746 B2 JP4961746 B2 JP 4961746B2 JP 2006002386 A JP2006002386 A JP 2006002386A JP 2006002386 A JP2006002386 A JP 2006002386A JP 4961746 B2 JP4961746 B2 JP 4961746B2
Authority
JP
Japan
Prior art keywords
thin film
carbon nanotube
nanotube thin
carbon
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006002386A
Other languages
Japanese (ja)
Other versions
JP2007182356A (en
Inventor
徹 宇田
義明 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2006002386A priority Critical patent/JP4961746B2/en
Publication of JP2007182356A publication Critical patent/JP2007182356A/en
Application granted granted Critical
Publication of JP4961746B2 publication Critical patent/JP4961746B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、カーボンナノチューブ薄膜の製膜方法に関する。さらに詳しくは、配向性を低減したカーボンナノチューブ薄膜の製膜方法に関する。   The present invention relates to a method for forming a carbon nanotube thin film. More specifically, the present invention relates to a method for forming a carbon nanotube thin film with reduced orientation.

カーボンナノチューブは、優れた電気伝導性と熱伝導性を有し、この特性を活かした様々な応用用途が期待されているが、通常はカーボンナノチューブ同士が複雑に絡み合った状態にあるため、薄膜形成が非常に困難であり、薄膜化が難しい材料である。一方で、カーボンナノチューブは高価な材料であるため、少量の使用により効果を発揮させることが求められているのが現状である。   Carbon nanotubes have excellent electrical and thermal conductivity, and are expected to be used in a variety of applications that take advantage of these properties. Usually, carbon nanotubes are intricately entangled with each other, so a thin film is formed. Is a material that is very difficult to make into a thin film. On the other hand, since the carbon nanotube is an expensive material, it is currently required to exhibit the effect by using a small amount.

かかる要請から、本出願人は先に、カーボンナノチューブの薄膜化方法として、電場を利用してカーボンナノチューブを製膜することにより行う方法、具体的には、ジメチルホルムアミド溶媒中にカーボンナノチューブを分散させ、この分散溶媒中にて電極に電圧をかけ、陽極側にカーボンナノチューブを吸着させるという方法を提案している。この方法は、導通のある基材は勿論のこと、導通のない基材でも無電解メッキを施すことにより、基材表面への製膜が可能であるという特徴を有する。しかるに、かかる方法ではカーボンナノチューブの分散量が少ないため、結果的に吸着量が少ないといった解決すべき課題が残されている。
特開2005−235425号公報
In view of this demand, the present applicant firstly made a method of forming a carbon nanotube using an electric field as a method for thinning the carbon nanotube, specifically, by dispersing the carbon nanotube in a dimethylformamide solvent. In this dispersion solvent, a method is proposed in which a voltage is applied to the electrode to adsorb the carbon nanotube on the anode side. This method has a feature that a film can be formed on the surface of a base material by applying electroless plating not only to a conductive base material but also to a non-conductive base material. However, in this method, since the amount of carbon nanotube dispersion is small, there remains a problem to be solved such that the amount of adsorption is small.
JP 2005-235425 A

本出願人はまた、カーボンナノチューブ等の炭素材料を、塩基性高分子型分散剤を添加した炭化水素溶媒中に分散させ、この溶媒中で被被覆材を陽極として電圧を印加し、陽極材表面上にカーボンナノチューブ等に炭素材料薄膜を形成せしめる方法を提案している。
特開2006−63436号公報
The present applicant also disperses a carbon material such as carbon nanotubes in a hydrocarbon solvent to which a basic polymer type dispersant is added, and applies a voltage in this solvent with the coating material as an anode, A method for forming a carbon material thin film on a carbon nanotube or the like has been proposed.
JP 2006-63436 A

しかるに、通常のカーボンナノチューブはアスペクト比の非常に高い繊維構造を有しているため、この方法で製膜された薄膜中のカーボンナノチューブの多くは、基材である被被覆材面に沿った面配向の状態で吸着されている。カーボンナノチューブは、カーボンファイバーや金属線などと同様に、繊維軸に沿った方向に電気や熱を伝導することから、このような配向状態にあるカーボンナノチューブは、電気や熱の伝導の際異方性を示すことが予想される。電界放出型表示装置や配線などへの応用では、カーボンナノチューブが配向した状態にある方が好ましいが、電極やセンサなどへの応用では、カーボンナノチューブは無配向なランダムな状態にあることが好ましい。   However, since ordinary carbon nanotubes have a fiber structure with a very high aspect ratio, most of the carbon nanotubes in the thin film formed by this method are surfaces along the surface of the substrate to be coated. Adsorbed in an oriented state. Since carbon nanotubes conduct electricity and heat in the direction along the fiber axis in the same way as carbon fibers and metal wires, carbon nanotubes in this orientation state are anisotropic when conducting electricity and heat. It is expected to show gender. In application to field emission display devices and wiring, it is preferable that the carbon nanotubes are in an aligned state, but in application to electrodes and sensors, the carbon nanotubes are preferably in a non-oriented random state.

本発明の目的は、配向性を低減し、ランダムな状態にあり、電極やセンサなどに有効に応用されるカーボンナノチューブ薄膜の製膜方法を提供することにある。   An object of the present invention is to provide a method of forming a carbon nanotube thin film that has a reduced orientation, is in a random state, and is effectively applied to electrodes, sensors, and the like.

かかる本発明の目的は、カーボンナノチューブを、塩基性高分子型分散剤を添加した非プロトン溶媒中に分散させ、この分散液中で被被覆材を陽極として交流電場を適用し、陽極材表面にカーボンナノチューブ薄膜を形成せしめ、カーボンナノチューブ薄膜を製膜する方法によって達成される。   The object of the present invention is to disperse carbon nanotubes in an aprotic solvent to which a basic polymer type dispersant is added, and in this dispersion, apply an alternating electric field with the coating material as an anode, and apply it to the surface of the anode material. This is achieved by a method of forming a carbon nanotube thin film and forming the carbon nanotube thin film.

本発明方法によって製膜されたカーボンナノチューブ薄膜は、被被覆材面に沿った面配向状態を低減し、ランダムに無配向しているので、電気や熱の伝導が有効に行われる。製膜されたカーボンナノチューブ薄膜は、このような良好な電気伝導性を応用して燃料電池用のセパレータや電極ガス拡散体、リチウム電池用電極、帯電防止材、電磁波シールド材、電界放出ディスプレーなどへ有効に使用することができ、また熱伝導性にもすぐれているという性質を応用して放熱材用途にも有効に用いることができる。   Since the carbon nanotube thin film formed by the method of the present invention reduces the plane orientation state along the surface of the material to be coated and is randomly non-oriented, the conduction of electricity and heat is effectively performed. The formed carbon nanotube thin film is applied to fuel cell separators, electrode gas diffusers, lithium battery electrodes, antistatic materials, electromagnetic shielding materials, field emission displays, etc. by applying such good electrical conductivity. It can be used effectively, and it can also be used effectively as a heat radiating material by applying the property of being excellent in thermal conductivity.

塩基性高分子型分散剤としては、分子量が数千〜数万であり、エステルを有する構造のものであれば特に制限なく使用することができ、脂肪酸エステルなど、好ましくはポリエステル酸アマイドアミン塩が用いられる。実際には、市販品、例えば楠本化成製品ディスパロンDA-703-50、DA-705、DA-725、DA-234等が用いられる。この他、ポリエーテルリン酸エステルのアミン塩である同社製品ディスパロンDA-325等も用いられる。これらは、1〜20重量%、好ましくは3〜10重量%の割合で、炭化水素系溶媒中に添加されて用いられる。この使用割合がこれ以下では、本発明の目的が達成されず、一方これ以上の割合で用いられると、形成した薄膜中に塩基性高分子型分散剤が多量に付着することとなり、好ましくない。   As the basic polymer type dispersant, a molecular weight of several thousand to several tens of thousands can be used without particular limitation as long as it has an ester structure, and a fatty acid ester or the like, preferably a polyester acid amide amine salt is used. Used. In practice, commercially available products such as Enomoto Kasei products Disparon DA-703-50, DA-705, DA-725, DA-234 and the like are used. In addition, the company's product Disparon DA-325, which is an amine salt of polyether phosphate, is also used. These are used by being added to a hydrocarbon solvent in a proportion of 1 to 20% by weight, preferably 3 to 10% by weight. If the use ratio is less than this, the object of the present invention is not achieved. On the other hand, if the use ratio is more than this, a large amount of the basic polymer type dispersant is adhered to the formed thin film, which is not preferable.

塩基性高分子型分散剤を添加した非プロトン溶媒中に分散させたカーボンナノチューブは、単層または多層のいずれでもよく、その平均粒子径(湿式でのレーザー散乱法による50%粒子径)は、100〜1000nm、好ましくは500〜800nmに設定されることが好ましい。このような平均粒子径への調整は、ボールミルなどを用いても行われるが、好ましくは超音波ホモジナイザを用いて行われる。超音波ホモジナイザの代りに、超音波洗浄器を用いると、分散液中のカーボンナノチューブ凝集塊の平均粒子径は1000nm以上となり、またポット型ボールミルを用いると、カーボンナノチューブの破断などがみられることもある。   Carbon nanotubes dispersed in an aprotic solvent to which a basic polymer type dispersant is added may be either single-walled or multi-walled, and the average particle size (50% particle size by wet laser scattering method) is: The thickness is preferably set to 100 to 1000 nm, preferably 500 to 800 nm. Such adjustment to the average particle diameter is also performed using a ball mill or the like, but is preferably performed using an ultrasonic homogenizer. If an ultrasonic cleaner is used instead of an ultrasonic homogenizer, the average particle diameter of the carbon nanotube aggregates in the dispersion will be 1000 nm or more, and if a pot-type ball mill is used, the carbon nanotubes may break. is there.

非プロトン溶媒としては、芳香族炭化水素溶媒などが挙げられるが、好ましくはキシレンまたはトルエンが用いられる。これらの非プロトン溶媒は、カーボンナノチューブに対して一般に約100〜1000倍量程度用いられる。   Examples of the aprotic solvent include aromatic hydrocarbon solvents, and preferably xylene or toluene is used. These aprotic solvents are generally used in an amount of about 100 to 1000 times the amount of carbon nanotubes.

被被覆材陽極としては、導電性のものであれば特に制限なく、また導通のない基材でも無電解メッキを施したのもを使用することができ、例えば樹脂と黒鉛などからなる燃料電池用の電極のガス拡散体基材またはセパレータ基材、帯電防止基材、電磁波シールド基材、リチウム電池電極基材、電界放出ディスプレー基材、放熱基材などが用いられるが、好ましくはカーボンペーパー、カーボン不織布、カーボン織布などの多孔質炭素体であるカーボンシート基材が用いられる。   The anode of the coating material is not particularly limited as long as it is conductive, and a non-conductive base material subjected to electroless plating can be used, for example, an electrode for a fuel cell made of resin and graphite Gas diffuser base material or separator base material, antistatic base material, electromagnetic wave shield base material, lithium battery electrode base material, field emission display base material, heat dissipation base material, etc. are used, preferably carbon paper, carbon non-woven fabric, A carbon sheet substrate that is a porous carbon body such as a carbon woven fabric is used.

本発明の原理は、カーボンナノチューブはその製造時に用いた金属触媒の除去のため、加熱、酸処理等の精製が行われるが、この際カーボンナノチューブに存在する欠陥箇所が酸化され、カルボニル基、水酸基等の官能性基が発生し、カーボンナノチューブは水中でアニオン電荷を持つと考えられる。そこで、カーボンナノチューブを分散させた溶液に電場をかければ、カーボンナノチューブは陽極である燃料電池セパレータ基材に移動し付着(吸着)し、また付着したカーボンナノチューブは凝集のし易さから繋がったネットワークを形成することとなる。 The principle of the present invention is that the carbon nanotubes are purified by heating, acid treatment, etc. in order to remove the metal catalyst used in the production thereof. At this time, defective portions present in the carbon nanotubes are oxidized to form carbonyl groups, hydroxyl groups. functional group is generated and the like, the carbon nanotubes are considered to have an anionic charge in water. Therefore, if an electric field is applied to a solution in which carbon nanotubes are dispersed, the carbon nanotubes move to and adhere to (adsorb on) the fuel cell separator substrate that is the anode, and the attached carbon nanotubes are connected due to the ease of aggregation. Will be formed.

そのため、カーボンナノチューブ薄膜の形成は、カーボンナノチューブを塩基性高分子型分散剤を添加した非プロトン溶媒中で、パルスファンクション発生器の如き交流電圧を制御する装置を用いて交流電場を適用し、上記陽極に電圧を印加して陽極材上にカーボンナノチューブを付着(吸着)させることにより行われる。ここで、印加される電圧は、約1〜100V、好ましくは約3V〜20V、特に好ましくは5V程度であり、周波数は約0.1〜1000Hz、好ましくは約1〜10Hzであり、また、印加時間は必要とする製膜量および電極間距離(一般に約3〜5mmに設定される)により異なるが、例えば10〜1000分、好ましくは20〜200分あるいは周期的に印加することも可能である。このとき、炭素材料の沈降を防ぐべく、分散溶液を攪拌しながら製膜することも行われる。また、製膜時にマスキングを行うことで、導電性が必要な部分にのみカーボンナノチューブを付着させることができる。   Therefore, the carbon nanotube thin film is formed by applying an AC electric field using an apparatus for controlling an AC voltage such as a pulse function generator in an aprotic solvent to which a carbon nanotube is added a basic polymer type dispersant. This is performed by applying a voltage to the anode to adhere (adsorb) the carbon nanotubes on the anode material. Here, the applied voltage is about 1 to 100 V, preferably about 3 V to 20 V, particularly preferably about 5 V, the frequency is about 0.1 to 1000 Hz, preferably about 1 to 10 Hz, and the application time is Depending on the required amount of film formation and the distance between electrodes (generally set to about 3 to 5 mm), for example, it can be applied for 10 to 1000 minutes, preferably 20 to 200 minutes or periodically. At this time, in order to prevent sedimentation of the carbon material, a film is also formed while stirring the dispersion solution. Further, by performing masking at the time of film formation, the carbon nanotubes can be attached only to portions where conductivity is required.

表面にカーボンナノチューブ薄膜が製膜された陽極材は、分散溶液中から取り出した後、表面に製膜されたカーボンナノチューブ以外を取除くように洗浄され、乾燥される。   The anode material having the carbon nanotube thin film formed on the surface is taken out of the dispersion solution, and then washed and dried so as to remove the carbon nanotubes formed on the surface.

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

実施例
キシレン90mlに、ポリエステル酸アマイドアミン塩(楠本化成製品ディスパロンDA-703-50;50%キシレン溶液)10mlを加え、この溶液に気相成長法多層カーボンナノチューブ(日機装製品;繊維径10〜30nm、平均繊維長1〜100μm)100mgを添加し、超音波ホモジナイザ(BRANSON SONIFIER 450)を用いて、出力300Wで12時間の照射分散処理を行い、多層カーボンナノチューブ分散液を得た。
Example: To 90 ml of xylene, 10 ml of a polyester acid amide amine salt (Tsubakimoto Kasei product Disparon DA-703-50; 50% xylene solution) was added, and to this solution, vapor grown multi-walled carbon nanotubes (Nikkiso product; fiber diameter 10-30 nm) And 100 mg of an average fiber length of 1 to 100 μm), and using an ultrasonic homogenizer (BRANSON SONIFIER 450), irradiation dispersion treatment was performed for 12 hours at an output of 300 W to obtain a multi-walled carbon nanotube dispersion.

次に電極としてITO電極を用い、PTFE製スペーサ(厚さ3mm)を電極間に挟み、電極間距離が3mmとなるように設置した。パルスファンクションジェネレータ(ヒューレットパッカード社製品8116A)を用い、5Vの電圧(-5V〜+5V)、周波数5Hzの条件下で120分間、端子とケーブルを通じてITO電極に交流電場を印加することにより、陽極材への製膜処理を行った。製膜後、ITO電極表面の走査型電子顕微鏡観察を行ったところ、厚さ約4μmのカーボンナノチューブ薄膜が確認された。   Next, an ITO electrode was used as an electrode, and a PTFE spacer (thickness 3 mm) was sandwiched between the electrodes so that the distance between the electrodes was 3 mm. By using a pulse function generator (Hewlett Packard product 8116A) and applying an AC electric field to the ITO electrode through the terminal and cable for 120 minutes under the condition of 5 V voltage (-5 V to +5 V) and frequency 5 Hz, the anode material The film forming process was performed. After film formation, the surface of the ITO electrode was observed with a scanning electron microscope. As a result, a carbon nanotube thin film having a thickness of about 4 μm was confirmed.

製膜後、ITO電極の表面(倍率6000倍)および断面(倍率10000倍)の走査型電子顕微鏡観察を行ったところ、図1〜2のSEM写真に示されるように、比較的無配向な厚さ約4μmのカーボンナノチューブ薄膜が確認された。   After film formation, the surface of the ITO electrode (magnification 6000 times) and the cross section (magnification 10000 times) were observed with a scanning electron microscope. As shown in the SEM photographs of FIGS. A carbon nanotube thin film with a thickness of about 4 μm was confirmed.

比較例
実施例において、電極としてITO電極を用い、ミニクランプを用いて電極間距離が30mmになるように設置し、直流電場として200Vの電圧を10分間印加することにより、陽極材への製膜処理を行った。製膜後、ITO電極の表面(倍率6000倍)および断面(倍率10000倍)の走査型電子顕微鏡観察を行ったところ、図3〜4のSEM写真に示されるように、面配向した厚さ約4μmのカーボンナノチューブ薄膜が確認された。
Comparative Example In the examples, ITO electrodes were used as electrodes, and the distance between the electrodes was set to 30 mm using a mini clamp, and a 200 V voltage was applied as a DC electric field for 10 minutes to form a film on the anode material. Processed. After film formation, the surface of the ITO electrode (magnification 6000 times) and the cross section (magnification 10000 times) were observed with a scanning electron microscope. As shown in the SEM photographs of FIGS. A 4 μm carbon nanotube thin film was confirmed.

実施例で得られたカーボンナノチューブ薄膜の表面のSEM写真である。It is a SEM photograph of the surface of the carbon nanotube thin film obtained in the Example. 実施例で得られたカーボンナノチューブ薄膜の断面のSEM写真である。It is a SEM photograph of the section of the carbon nanotube thin film obtained in the example. 比較例で得られたカーボンナノチューブ薄膜の表面のSEM写真である。It is a SEM photograph of the surface of the carbon nanotube thin film obtained by the comparative example. 比較例で得られたカーボンナノチューブ薄膜の断面のSEM写真である。It is a SEM photograph of the section of the carbon nanotube thin film obtained by the comparative example.

Claims (8)

カーボンナノチューブを、塩基性高分子型分散剤を添加した非プロトン溶媒中に分散させ、この分散液中で被被覆材を陽極として交流電場を適用し、陽極材表面にカーボンナノチューブ薄膜を形成せしめることを特徴とするカーボンナノチューブ薄膜の製膜方法。   Carbon nanotubes are dispersed in an aprotic solvent with a basic polymer type dispersant added, and an AC electric field is applied in this dispersion using the coated material as an anode, thereby forming a carbon nanotube thin film on the surface of the anode material. A method for producing a carbon nanotube thin film characterized by the following. 交流電場の適用が、電圧1〜200V、周波数0.1〜1000Hz、照射時間10〜1000分の条件下で行われる請求項1記載のカーボンナノチューブ薄膜の製膜方法。   The method for producing a carbon nanotube thin film according to claim 1, wherein the application of the AC electric field is performed under conditions of a voltage of 1 to 200 V, a frequency of 0.1 to 1000 Hz, and an irradiation time of 10 to 1000 minutes. 塩基性高分子型分散剤が、ポリエステル酸アマイドアミン塩である請求項1記載のカーボンナノチューブ薄膜の製膜方法。   The method for producing a carbon nanotube thin film according to claim 1, wherein the basic polymer type dispersant is a polyester acid amide amine salt. 非プロトン溶媒が芳香族炭化水素溶媒である請求項1記載のカーボンナノチューブ薄膜の製膜方法。   The method for producing a carbon nanotube thin film according to claim 1, wherein the aprotic solvent is an aromatic hydrocarbon solvent. 被被覆材陽極としてカーボンシート基材が用いられる請求項1記載のカーボンナノチューブ薄膜の製膜方法。The method for producing a carbon nanotube thin film according to claim 1, wherein a carbon sheet substrate is used as an anode to be coated. カーボンシートがカーボンペーパー、カーボン不織布またはカーボン織布である請求項5記載のカーボンナノチューブ薄膜の製膜方法。6. The method for producing a carbon nanotube thin film according to claim 5, wherein the carbon sheet is carbon paper, carbon non-woven fabric or carbon woven fabric. 被被覆材面に沿った面配向状態を低減し、ランダムに無配向している請求項1記載のカーボンナノチューブ薄膜の製造方法。The method for producing a carbon nanotube thin film according to claim 1, wherein the plane orientation state along the surface of the material to be coated is reduced and non-oriented randomly. 被被覆材陽極として燃料電池用の電極ガス拡散体基材またはセパレータ基材、帯電防止基材、電磁波シールド基材、リチウム電池電極基材、電界放出ディスプレー基材あるいは放熱基材が用いられる請求項1または7記載のカーボンナノチューブ薄膜の製膜方法。The electrode gas diffuser base material or separator base material for a fuel cell, an antistatic base material, an electromagnetic wave shielding base material, a lithium battery electrode base material, a field emission display base material, or a heat dissipation base material is used as a coating material anode. 8. A method for producing a carbon nanotube thin film according to 1 or 7.
JP2006002386A 2006-01-10 2006-01-10 Method for forming carbon nanotube thin film Active JP4961746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006002386A JP4961746B2 (en) 2006-01-10 2006-01-10 Method for forming carbon nanotube thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006002386A JP4961746B2 (en) 2006-01-10 2006-01-10 Method for forming carbon nanotube thin film

Publications (2)

Publication Number Publication Date
JP2007182356A JP2007182356A (en) 2007-07-19
JP4961746B2 true JP4961746B2 (en) 2012-06-27

Family

ID=38338751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006002386A Active JP4961746B2 (en) 2006-01-10 2006-01-10 Method for forming carbon nanotube thin film

Country Status (1)

Country Link
JP (1) JP4961746B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203304A (en) * 2008-02-27 2009-09-10 Nok Corp Method for producing actuator element
ES2655073T3 (en) * 2009-06-09 2018-02-16 Ramesh Sivarajan Coatings based on solutions of nanostructured carbon materials (NCM) on bipolar plates in fuel cells
CN114212773A (en) * 2021-12-17 2022-03-22 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of carbon nanotube film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171537A (en) * 1997-08-29 1999-03-16 Asahi Chem Ind Co Ltd Electroconductive coating material composition for floor and electroconductive floor material
JP2001316104A (en) * 2000-04-28 2001-11-13 Sony Corp Carbon material for hydrogen occlusion and its manufacturing method, hydrogen occluding carbon material and its manufacturing method, and cell using hydrogen occluding carbon material and fuel cell using hydrogen occluding carbon material
KR20050084226A (en) * 2002-12-09 2005-08-26 더 유니버시티 오브 노쓰 캐롤라이나 엣 채플 힐 Methods for assembly and sorting of nanostructure-containing materials and related articles
JP2005139353A (en) * 2003-11-07 2005-06-02 Jsr Corp Composition for use in electrodeposition of carbon cluster, carbon cluster membrane, its manufacturing method and electronic element
JP4396308B2 (en) * 2004-02-17 2010-01-13 Nok株式会社 Manufacturing method of fuel cell separator

Also Published As

Publication number Publication date
JP2007182356A (en) 2007-07-19

Similar Documents

Publication Publication Date Title
JP5050352B2 (en) Post-treatment method for carbon material thin film
KR101581363B1 (en) Composite conductive material, power storage device, conductive dispersion, conductive device, conductive composite and thermally conductive composite and method of producing a composite conductive material
KR101410854B1 (en) Nano carbon materials having multiple hydrogen bonding motifs and metal nanomaterial hybrid materials and their fabrication method
JP2019527641A (en) Carbon nanotube film structure and manufacturing method thereof
Almuhamed et al. Measuring of electrical properties of MWNT-reinforced PAN nanocomposites
Huynh et al. Electrical property enhancement by controlled percolation structure of carbon black in polymer-based nanocomposites via nanosecond pulsed electric field
JP2010053033A (en) Method for manufacturing carbon nanotube/polymer composite
WO2013146254A1 (en) Conductive composition and conducting film
CN101451262A (en) Methods and devices for electrophoretic deposition of a uniform carbon nanotube composite film
JP4581663B2 (en) Method for forming carbon material thin film
KR20070121577A (en) Dispersion method, redispersion method and crush method of dispersoids, and apparatuses therefor
JP4961746B2 (en) Method for forming carbon nanotube thin film
JP2014133842A (en) Conductive resin composition
JP4910332B2 (en) Method for producing carbon material thin film
WO2017169627A1 (en) Conductive film and method for producing same
Shah et al. Improved dielectric properties of polyetherimide and polyaniline-coated few-layer graphene based nanocomposites
JP2006312677A (en) Carbon fiber oriented connecting film and its manufacturing method
Zha et al. Improved mechanical and electrical properties in electrospun polyimide/multiwalled carbon nanotubes nanofibrous composites
Cho et al. Formation and structural characteristic of perpendicularly aligned boron nitride nanosheet bridges in polymer/boron nitride composite film and its thermal conductivity
KR20160032409A (en) High conductive Paste composition and producing Method thereof using high temperature heat treatment
Wroblewski et al. Graphene platelets as morphology tailoring additive in carbon nanotube transparent and flexible electrodes for heating applications
TW201325897A (en) Method for making carbon nanotube composite films
JP2017157539A (en) Photovoltaic power generation module with snow melting function and building having photovoltaic power generation module
Xu et al. Effects of surface modification of MWCNT on the mechanical and electrical properties of fluoro elastomer/MWCNT nanocomposites
JP2017197871A (en) Conductive nanofiber

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

R150 Certificate of patent or registration of utility model

Ref document number: 4961746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250